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PHI-SMFE: spatial multi-scale
feature extract neural network
based on physical
heterogeneous interaction for
solving passive scalar advection
in a 2-D unsteady flow

Yuchen Yuan1†, Ning Song1†, Jie Nie1*, Xiaomeng Shi2*,
Jingjian Chen1, Qi Wen1 and Zhiqiang Wei1

1College of Information Science and Engineering, Ocean University of China, Qingdao, China,
2Qingdao Meteorological Observatory, Qingdao Meteorological Bureau, Qingdao, China
Fluid dynamic calculations play a crucial role in understanding marine

biochemical dynamic processes, impacting the behavior, interactions, and

distribution of biochemical components in aquatic environments. The

numerical simulation of fluid dynamics is a challenging task, particularly in

real-world scenarios where fluid motion is highly complex. Traditional

numerical simulation methods enhance accuracy by increasing the resolution

of the computational grid. However, this approach comes with a higher

computational demand. Recent advancements have introduced an alternative

by leveraging deep learning techniques for fluid dynamic simulations. These

methods utilize discretized learned coefficients to achieve high-precision

solutions on low-resolution grids, effectively reducing the computational

burden while maintaining accuracy. Yet, existing fluid numerical simulation

methods based on deep learning are limited by their single-scale analysis of

spatially correlated physical fields, which fails to capture the diverse scale

characteristics inherent in flow fields governed by complex laws in different

physical space. Additionally, these models lack an effective approach to enhance

correlation interactions among dynamic fields within the same system. To tackle

these challenges, we propose the Spatial Multi-Scale Feature Extract Neural

Network based on Physical Heterogeneous Interaction (PHI-SMFE). The PHI

module is designed to extract heterogeneity and interaction information from

diverse dynamic fields, while the SMFE module focuses on capturing multi-scale

features in fluid dynamic fields. We utilize channel-biased convolution to

implement a separation strategy, reducing the processing of redundant feature

information. Furthermore, the traditional solution module based on the finite

volumemethod is integrated into the network to facilitate the numerical solution

of the discretized dynamic field in subsequent time steps. Comparative analysis

with the current state-of-the-art model reveals that our proposed method offers
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a 41% increase in simulation accuracy and a 12.7% decrease in inference time

during the iterative evolution of unsteady flow. These results underscore the

superior performance of our model in terms of both simulation accuracy and

computational speedup, establishing it as a state-of-the-art solution.
KEYWORDS

unsteady flow, multi-scale features, ASPP, passive scalar advection, spatial
discretization, discretization acceleration
1 Introduction

Fluid dynamics calculations play a crucial role in marine

biochemical domains, including air pollution (Wei et al., 2020),

climate change (Benmoshe et al., 2012), engine engineering design

(Arcoumanis and Whitelaw, 1987), and physical science (Tang and

Chan, 2005). By comprehending and manipulating fluid flow, these

calculations facilitate the anticipation of nutrient dispersion, oxygen

diffusion, solute conveyance, part ic le migration, and

other phenomena.

Traditional approaches for fluid numerical simulations involve

employing grid discretization of the continuity equations and

physical fields. Stuart (2009) proposed a finite-difference based

mesh technique to solve the governing equations of fluid motion.

This approach has the advantage of considering the intricate

characteristics of fluid motion, including the fluid structure and

energy conversion processes. Spalart and Allmaras (1992)

introduced a gridded fluid numerical simulation technique based

on the finite volume method. This method utilizes a single transport

approach incorporating eddy viscosity to model fluid effects, leading

to enhanced predictive capability and accuracy in complex

engineering scenarios. However, the traditional gridding method

faces a drawback of high computational complexity as the grid

resolution increases. This limitation poses challenges when applying

the method to simulate complex fluid characteristics with

hierarchical structures in practical scenarios.

High-precision numerical simulation acceleration methods

based on traditional gridding models have been developed to

address the aforementioned challenges. These methods primarily

focus on improving the grid generation process, resulting in

accelerated simulations without compromising the accuracy of the

results. Research in this field has focused on two main aspects.

Firstly, there is a growing interest in achieving high-precision

simulation of complex fluid motion. One prominent method in

this regard is Large Eddy Simulation (LES) (Lesieur and Metais,

1996), which has found widespread applications in various

engineering domains including internal combustion engines

(Malé et al., 2019), turbomachinery (Arroyo et al., 2019), and gas

turbine engine design (Esclapez et al., 2017). On the other hand,

parallel efforts have been made to address the challenge of

computational complexity in high-precision simulation. One such

method is Reynolds-averaged Navier-Stokes (RANS) (Alfonsi,

2009), which is a highly efficient fluid numerical simulation
02
technique. The fundamental concept of this method involves

averaging the Navier-Stokes equations, resulting in a set of

Reynolds-averaged equations that are computationally more

tractable to solve. In essence, the RANS method allows for the

prediction of the average behavior of fluid without explicitly

resolving the fluid fluctuations at each point, thus reducing the

computational cost of the simulation. However, as the RANS

method averages the fluid field over time, it loses the detailed

information about the unstable structures in the flow, making it

unsuitable for simulating unstable and complex flows. Building

upon the RANS method, Shur et al. (1999) introduced detached

eddy simulation (DES). DES addresses the limitations of RANS and

LES methods in simulating complex fluid by employing high-

resolution grids near the wall region and low-resolution grids in

the outer region. However, such traditional numerical simulation

methods have certain limitations. Firstly, when dealing with high

Reynolds number flows, these methods still incur high

computational costs, demanding significant computing resources

and time. Consequently, they may lack real-time capability in

simulation prediction tasks and the ability to make timely

engineering decisions. Secondly, the extent to which traditional

numerical simulation methods truly enable a deep understanding of

fluid behavior and fluid systems remains a subject of investigation.

Based on the aforementioned research, traditional methods have

faced a trade-off between simulation accuracy and computational

performance, which remains a bottleneck in current fluid numerical

simulation. In recent years, there has been an emerging trend in

combining traditional numerical simulation methods with machine

learning techniques. Deep learning-based numerical simulation

methods have demonstrated potential in achieving a balance

between accuracy and computational efficiency. Kochkov et al.

(2021) applied a deep learning-based acceleration method to

numerical simulation of high-resolution flow fields. Their approach

achieved a significant computational acceleration of 40-80 times

compared to traditional benchmark solvers, while maintaining

comparable accuracy. Zhuang et al. (2021) applied the

aforementioned method to solve the advection equation in two-

dimensional flow. They specifically focused on analyzing small-scale

features in complex flow and conducting numerical simulation of

turbulent flow fields at low resolution. Notably, their method

achieved comparable accuracy to a baseline high-order solver, even

when the baseline mesh was four times coarser, resulting in a

computational speedup of approximately five times.
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However, the previously mentioned numerical simulation

method based on deep learning relies on a singlescale

convolutional neural network to analyze the physical field with

spatial-temporal correlation. This approach has limitations in

effectively capturing the multi-scale flow field in space, especially

when dealing with complex motion patterns of vortex clusters at

different scales. Additionally, the spatial discretization of the

velocity field can impact the evolution of the concentration field

over time. Furthermore, the convolution filtering fusion strategy

may not adequately facilitate the partial interaction among different

physical fields. These challenges can result in the model’s limited

ability to fully learn the differential coefficients that better match the

actual behavior, consequently leading to a reduction in simulation

accuracy. To address these challenges, we have introduced a novel

approach that incorporates a spatial multi-scale feature extraction

module to enhance the accuracy of numerical simulation by

capturing the intricate characteristics of turbulent eddies across

different scales within the flow field. Additionally, we have devised a

physical heterogeneity fusion module to augment the heterogeneity

of the velocity field and concentration field in the spatial domain

while establishing global correlations between them. Moreover, to

optimize computational efficiency, we have improved upon the

traditional convolution operator by implementing a separation

strategy that selectively retains intermediate feature information

across specific channels , thereby reducing redundant

computational processing.

In summary, our contributions can be categorized as follows.
Fron
• Our first contribution lies in addressing the impact of the

divergence-free velocity field on the scalar concentration

field by taking into account the advective form of the

concentration field. To enhance the representation of the

velocity field and the concentration field characteristics, we

propose a pre-fusion module. This module enables us to

capture the heterogeneity and nonlinear interaction

information of the physical field in advance, leading to an

improved understanding of the nature of the velocity field

and the concentration field.

• We have developed a spatial multi-scale neural network

with ASPP as the backbone, which enables the learning of

eddy characteristics and motion patterns at different scales

from the fluid dynamic field, leading to enhanced accuracy

in numerical simulations. Furthermore, the inclusion of

deredundant sidechannel convolutions within the backbone

network reduces the need for extensive feature processing,

resulting in accelerated numerical computations.

• We conducted comprehensive experiments, including

comparisons with the baseline model and ablation studies,

using a random velocity field dataset. Additionally, we

performed experiments using constant velocity fields and

deformed flow velocity fields to assess the model’s

performance under different flow conditions. Our method

demonstrates significant improvements compared to the

current baseline model, achieving a 41% higher simulation

accuracy and a 12.7% reduction in inference time during

the iterative evolution of the unsteady flow field. These
tiers in Marine Science 03
results highlight that our proposed model achieves state-of-

the-art performance in terms of both simulation accuracy

and computation speedup.
This paper is developed as follows: chapter 2 provides a

comprehensive overview of recent advancements that have

significantly contributed to fluid numerical simulation. In chapter

3, we propose a novel model called Spatial multi-scale feature

extract neural network based on physical heterogeneous

interaction to enhance the performance of numerical simulation

in passive scalar advection. Our model leverages the Atrous Spatial

Pyramid Pooling (ASPP) as the backbone network to capture spatial

scale information from the two-dimensional discretized dynamic

fields. Prior to the backbone, a feature fusion module is employed to

extract the heterogeneity and interaction information among

different dynamic fields. Notably, within the backbone, the

channel-side convolution employs a separation strategy to

minimize the processing of redundant feature information.

Subsequently, chapter 4 is dedicated to conducting comparative

experiments aimed at validating the overall model’s superior

performance in classic test cases. Additionally, we conduct

ablation experiments within this chapter to assess the

performance impact of each sub-module within the network

model on the system as a whole. Finally, in chapter 5, we

summarize the proposed methods and their contributions. We

also outline potential directions for further improvement by

analyzing the experimental results.
2 Related work

2.1 Traditional fluid numerical
calculation methods

The purpose of numerical simulation in fluid dynamics is to

facilitate the study and comprehension of fluid behavior and the

underlying principles governing fluid flow in various scenarios.

During the early stages of fluid dynamics numerical simulation,

conventional methods were employed, which involved discretizing

the fluid domain into grid nodes to facilitate numerical calculations.

These traditional methods encompassed fundamental techniques

such as the finite difference method (Simos and Williams, 1997),

finite volume method (Jameson et al., 1981), and finite element

method (Bassi and Rebay, 1997). The classical methods mentioned

discretize the computational domain of the original nonlinear partial

differential equations, which consist of continuity equations, diffusion

equations, and other relevant equations. This discretization process

involves dividing the domain into grid nodes and formulating the

equations in a discretized form. By doing so, the continuous

equations are transformed into a set of discrete equations that can

be solved numerically. In addition to the aforementioned methods,

there are other numerical techniques utilized for fluid calculations,

such as spectral methods and pseudospectral methods. Spectral

methods employ fourier series to approximate the solutions of

partial differential equations, aiming to achieve high accuracy by

capturing the spectral content of the solution (Feit et al., 1982).
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However, these methods directly evaluate the nonlinear terms of the

partial differential equations in physical space, which can lead to

computationally expensive calculations and potential numerical

instability issues. Subsequently, pseudospectral methods (Garg

et al., 2010), which combine the advantages of spectral methods

and finitedifference techniques, emerged as an alternative approach.

Pseudospectral methods involve computing the nonlinear terms in

fourier space, where they can be efficiently evaluated using fast fourier

transforms, and then transforming them back to physical space using

inverse fourier transforms (Orszag, 1974). Orszag (1972) conducted a

comparative study of these methods in various model problems and

demonstrated the effectiveness and stability of pseudospectral

methods. Patera (1984) further extended the application of

pseudospectral methods by combining them with the finite element

method to solve the one-dimensional advection-diffusion equation,

which proved useful in simulating laminar separation flow in channel

expansion. Krastev and Schäfer (2005) proposed a pseudospectral

solver with multigrid techniques for the numerical prediction of

incompressible nonisothermal flow. These developments showcased

the potential of pseudospectral methods in achieving accurate and

efficient solutions for fluid dynamics problems.
2.2 Acceleration method for traditional
fluid numerical simulation

Traditional fluid numerical simulation methods often face

challenges when dealing with fluids exhibiting complex motion

characteristics. These methods can be computationally demanding

and time-consuming, limiting their efficiency and practicality in

real-world applications. To address these issues, the development of

fluid numerical simulation acceleration methods has gained

attention. The primary objective of these methods is to reduce the

computational burden while accurately capturing the intricate flow

features at small scales. By achieving faster simulations of fluid

fields, these acceleration methods aim to enhance the applicability

of numerical simulation in engineering practice. Traditional

methods for accelerating fluid numerical simulations include the

multi-grid method (Alcouffe et al., 1981) and the adaptive grid

method (Hiptmair, 1998). The multi-grid method is a convergence

acceleration technique that combines iterative methods with coarse

grid corrections. It involves generating grids at different scales to

iteratively solve the discretized partial differential equations. The

main advantage of this method is that it speeds up the numerical

solution process through iterative computations, while the use of

grids at different scales helps eliminate error components of varying

wavelengths. Jameson (1993) successfully applied the multi-grid

method to accelerate the computation of transonic potential flow.

His proposed multi-grid alternating direction method

demonstrated high efficiency and reliability in practical

experiments. Ghia et al. (1982) introduced the coupled strong

implicit multi-grid method (CSI-MG) for solving fine-grid

incompressible flow with high Reynolds numbers. This method

yielded solutions for fluid motion scenarios with a grid size of
Frontiers in Marine Science 04
257*257 and a Reynolds number of 10000. However, it should be

noted that this method faces challenges in generating coarse meshes

for complex geometries and in solving hyperbolic equations. Berger

and Oliger (1984) introduced the adaptive grid method as a means

to tackle more complex fluid problems. This method allows for the

continuous adjustment of the grid during the iterative calculation

process, enabling the gradual attainment of an optimized grid

distribution and physical decoupling. Consequently, the adaptive

grid method is well-suited for resolving scenarios involving highly

dynamic or intricate fluid motion changes. Liu et al. (1998)

introduced an adaptive grid technique that utilizes the cell

volume deformation method. This approach enables direct

control of cell volumes by transforming the jacobian matrix and

determines grid movement speeds through the solution of the

Poisson equation. The method’s effectiveness is showcased

through its application in steady-state Euler flow calculations,

where it successfully solves the compressible Euler equations and

demonstrates its capability in computing transonic flow around a

wing in a test case. However, the adaptive grid method has its

limitations. When confronted with complex fluid motion, the

computational burden associated with mesh refinement tends to

increase substantially. Additionally, the interpolation required in

regions undergoing rapid changes can introduce numerical errors

(Vanella et al., 2010). With the advancement of computer

processing power and the evolution of methods based on grid

discretization, fluid numerical simulation methods suitable for

engineering applications have emerged. Two notable examples are

Large Eddy Simulation (LES) (Zhiyin, 2015) and Reynolds-

Averaged Navier-Stokes (RANS) (Ling and Templeton, 2015).

Both LES and RANS methods employ a low-pass filtering

technique to capture the characteristics of the fluid field in time

and space, enabling numerical simulation of fluid behavior. LES

focuses on resolving turbulent features at larger scales, while

subgrid stresses are used to represent smaller-scale turbulent

effects. Recently, the approach of integrating weather research and

forecasting models(WRF) with LES has gained widespread

adoption. This includes applications in wind energy prediction

(Liu et al., 2011), precipitation simulation (Rai et al., 2017), and

turbulence simulation (Xue et al., 2016). On the other hand, RANS

performs time averaging on the Navier-Stokes equation,

decomposing the turbulent flow into a combination of steady and

fluctuating components. The additional unknowns in RANS are

expressed through Reynolds stress terms, transforming the

turbulent flow problem into one under steady conditions. Mi

et al. (2022) utilized the WRF-BEP and RANS coupled simulation

to perform a multi-scale numerical assessment of urban wind

resources. This approach has led to enhanced accuracy in

simulating wind flow patterns within densely urbanized regions.

However, both methods require modeling of the unresolved stress

terms, introducing uncertainties and limitations. LES tends to

overlook small-scale complex turbulent characteristics, while

RANS suffers from the loss of information inherent in the time-

averaging process. These limitations impact the reliability and

confidence of the simulation predictions in practical applications.
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2.3 Acceleration method for fluid
numerical simulation based on
deep learning

Over the past decade, significant advancements have been made in

machine learning theory, leading to breakthrough results. The coupled

model of ML (Machine Learning) and WRF demonstrates superior

performance when compared to the traditional nested WRF model

(Wang et al., 2021; Zhong et al., 2023). Deep learning methods,

facilitated by the development and refinement of neural network

algorithms, have found their way into a wide range of practical

applications, including industries and service sectors. Moreover, deep

learning has made significant contributions across various fields of

computer science, permeating and influencing diverse domains of

computational research. Recently, the application of deep learning in

the field of fluid dynamics computing has been regarded as a

breakthrough that promotes the advancement of fluid dynamics (Lu

et al., 2021). It has shown promising prospects for further development.

These methods can be classified based on whether they rely on mesh

solving or not. In the early stages, Kansa et al. (2004) introduced the

collocation method using radial basis functions, which enabled the

solution of partial differential equations without relying on a mesh.

Building upon this approach, Raissi et al. (2019) employs automatic

differentiation for solving partial differential equations and utilizes a

trained multi-layer perceptron to minimize residual losses at

collocation points, as well as the initial and boundary conditions.

The Physics-informed Neural Network (PINN) proposed by them

incorporates physical prior knowledge into neural networks,

addressing the limitation of pure data-driven inference that deviates

from physical reality. Since then, a significant amount of research has

been conducted on this novel approach, leading to the development of

various related methods, including Res-PINN (Cheng and Zhang,

2021), SA-PINNs (McClenny and Braga-Neto, 2020), and PI-ESN

(Doan et al., 2020). In subsequent studies, Raissi et al. (2020) embedded

the Navior-Stokes equations into a PINN to perform more complex

numerical simulations of the flow field. In experimental evaluations,

PINN demonstrated promising performance in reconstructing the

transmission of smoke and fuel within physical systems, as well as

reconstructing physiological blood flow in patients with cranial

aneurysms within the biological domain. These results highlight the

practical applicability of the method in the fields of physics and

biomedicine. While the PINN-based solver provides a novel

acceleration approach for fluid numerical simulations, it is important

to note that this method does not completely replace advanced

traditional fluid solvers. One limitation arises from the challenge of

optimizing the highly nonlinear and non-convex residual loss function

within the model architecture. Moreover, despite the capability of

PINN to expedite the solution of partial differential equations, its model

architecture incorporates a fully connected layer with a significant

number of parameters and utilizes complex residual losses that are

challenging tomodel accurately. Consequently, addressing the trade-off

between computational cost and accuracy remains a formidable task,

particularly in the context of complex turbulence simulations.

On another front, hybrid methods that combine deep learning

with mesh-based traditional numerical formats have emerged as
Frontiers in Marine Science 05
means to accelerate numerical simulations. These approaches

investigate the integration of deep learning techniques within the

framework of traditional solvers (Hsieh et al., 2019; Belbute-Peres

et al., 2020; Um et al., 2020). Recently, Bar-Sinai et al. (2019)

proposed a method to reduce computational costs in solving fine-

grained spatiotemporal features and achieve high-precision

solutions on low-resolution grids. This approach involves data-

driven grid coarsening and modeling coarse-grained equations. By

utilizing neural network analysis, it addresses the features and

interactions within the solution’s prior knowledge and infers

spatial derivatives that satisfy the coarse-grained equations

through end-to-end optimization. In the solution scheme of the

one-dimensional Burgers equation, this method demonstrates the

ability to achieve higher accuracy compared to the traditional finite

difference method, even when using a grid that is 4 to 8 times

coarser. Furthermore, they optimized the constant coefficients,

which are unrelated to time and space, by replacing them with

variable mapping functions based on the neighboring values of the

field nodes. They employed a fully convolutional neural network

(LeCun et al., 2015) to learn these coefficients. Interestingly, it was

observed that the learned coefficients of the velocity field exhibited

an “upwind” behavior, with the sign of the coefficient being opposite

to the velocity value of the node. This aligns with the principles of

fluid motion as described by the Burgers equation. Based on their

work, Zhuang et al. (2021); Song et al. (2023) introduced a novel

approach to accelerate the numerical solution process by replacing

the resolution-affected components of the finite volume scheme

with convolutional neural networks. Similar to the LES method

(Zhou et al., 2021) used for fluid field analysis, the approach

incorporates convolutional filters to assess the similarity of spatial

and temporal characteristics in the fluid field. Furthermore, the

data-driven method (Zhuang et al., 2021) is employed to interpolate

high-precision differential operators onto coarser grids, resulting in

notable reductions in computational complexity and enabling

significant acceleration of the simulation process. In the

verification experiment, the proposed method demonstrates

superior accuracy compared to the high-order flux-limited

advection solver, even when using a grid resolution that is four

times coarser. In addition, the experimental results also showcase

the model’s performance capabilities in handling other flow fields,

including deformable flows. However, in order to strike a balance

between accuracy and time complexity, the network model that

replaces traditional components in this method is relatively

simplistic. As a result, the simulation accuracy of this approach is

limited since it does not fully account for the distinct scale

characteristics of the physical field or the nonlinear interactions

between different physical fields.

3 Proposed method

3.1 Overall architecture of PHI-SMFE

The proposed solver"s overall architecture is depicted in

Figure 1. The model leverages a data-driven discretization

technique to accurately interpolate the differential operator onto
frontiersin.org
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the coarse grid (Bar-Sinai et al., 2019). This process enables the

acquisition of the velocity and concentration fields on low-

resolution grids. In detail, our model utilizes neural networks to

learn spatial discretization coefficients from analyzing the physical

features in the velocity and concentration fields.

~a = f (U ,C,W) (1)

As depicted in formula (1), the spatial discretization coefficient
~a encompasses various elements with physical significance,

including velocity field templates U in both the horizontal and

vertical directions, the concentration dynamic field C aligned with

the direction of the velocity field, and trainable parameters W.

Subsequently, the two-dimensional velocity field and concentration

field under the coarse grid are fed into PHI-SMFE for feature

extraction. The network comprises two sub-modules: the physical

heterogeneity interaction module (PHI) and the spatial multi-scale

feature extraction module (SMFE). PHI module utilizes a 3×3 size two-

dimensional periodic convolution to preprocess the velocity dynamic

field in the X and Y directions, as well as the concentration dynamic

field. The purpose of this preprocessing step is to enhance the

heterogeneity in the characteristics of the dynamic field. Then, the

correlation between the velocity dynamic field in the X and Y directions

is enhanced through the nonlinear fusion, resulting in an interaction

feature. Next, the interaction feature is combined with the

concentration field feature through splicing. SMFE module receives

the spliced features obtained from the previous module and utilizes

convolution filters with varying dilated ratio to extract multi-scale

features of the physical dynamic field. To tackle the computational

complexity of the model, this module selectively performs convolution

operations on specific channels of the features. This selective approach

is employed due to the potential presence of redundant feature

information in the expanded channels. By adopting this selective
Frontiers in Marine Science 06
processing strategy, the inference process is accelerated. Next, the

multi-scale features are concatenated, and two layers of conventional

convolution are applied to obtain spatial discretization coefficient with

the same number of channels as the number of flux templates. In the

subsequent finite volume format module, these coefficients are divided

into two parts to calculating the concentration field at the next time

step. In the subsequent step, the CFP module calculates the

concentration flux template using the spatial discretization

coefficients obtained from the previous module, thereby obtaining

the spatial derivative of the concentration field. The time derivative is

computed using the finite volume scheme in the traditional solver to

determine the concentration field for the next time step. Finally, a

corresponding loss function is employed to minimize the discrepancy

between the concentration dynamic field and update the learning

parameters for the subsequent iteration of the network model.

Our proposed numerical simulation process for the passive

scalar concentration dynamic field at the next time step can be

summarized in the following three steps.
1) Utilize the proposed network model to extract multi-scale

features from the velocity and concentration dynamic fields

following data-driven discretization.

2) Perform the summation of the inner product between the

spatial discretization coefficient and the concentration field

template to obtain the spatial derivative.

3) Use the finite volume format module to calculate the time

derivative and obtain the concentration field at the next

time step using the forward Euler formula.
In the following subsections, we will provide detailed

introductions to the two sub-modules of the proposed neural

network model in Section 3.2 and Section 3.3, respectively. We
FIGURE 1

Our proposed PHI-SMFE neural network architecture. PHI module, SMFE module, and CFP module are the abbreviations of Physical heterogeneous
interaction module, Spatial multi-scale feature extraction module, and Concentration field prediction module, respectively. The input velocity field
and concentration field at the current moment pass through the above three modules in turn to obtain the concentration field at the next moment.
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will then discuss the spatial derivative calculation module in Section

3.4, followed by an explanation of the loss function used in

Section 3.5.
3.2 Physical heterogeneous
interaction module

The PHI module is specifically designed to incorporate the

heterogeneity and correlation of various physical dynamic fields

into the model. Taking the analysis of the velocity dynamic field as

an example, we initially employ a 3×3 size convolution to amplify

the nonlinearity of the velocity field characteristics. This step aims

to enhance the network model"s capacity to capture the

heterogeneity of the velocity field. Next, we concatenate the

preprocessed features of the velocity dynamic field in the X and Y

directions along a specified dimension to enable the modeling of

feature correlations. Subsequently, we apply distinct nonlinear

mapping functions to process the concatenated features. The

specific calculation process is as follows.

k = Tanh(Concat(f(U(x, t)),j(U(y, t)))) (2)

j = sigmoid(Concat(f(U(x, t)),j(U(y, t)))) (3)

i = 1 − sigmoid(Concat(f(U(x, t)),j(U(y, t)))) (4)

Where, U(x,t) denotes the velocity field in the horizontal

direction at the current time step, while U(y,t) represents the

velocity field in the vertical direction at the current time step. f
and j represent convolution operators for different dynamic fields.

Additionally, i, j, and k denote the features obtained through

different nonlinear mapping functions. Although the mapping

ranges of these three nonlinear functions are comparable, each

function serves a distinct purpose.

After performing the aforementioned operations, we compute

the interaction between feature i and the dynamic feature of the

original velocity field o, denoted as M-O Feature. This fusion

process aims to enhance the existing effect of the original features,

which already exhibit a relatively high level of effectiveness.

Similarly, we fuse feature j after applying the Sigmoid mapping

function and feature k after applying the Tanh mapping function,

denoted as S-T Feature. By combining the respective advantages of

these two mappings, the resulting features capture more complex

nonlinear interactions and contain richer interaction information.

Finally, we fuse the original inter-mapping interaction features (M-

O) with the inter-mapping interaction features (S-T) to obtain the

final heterogeneous-correlation integrated feature information,

denoted as Svx and Svy . The specific process is as follows.

Svx = i⊙ ox + j⊙ k (5)

Svy = i⊙ oy + j⊙ k (6)

In contrast to the analytical velocity dynamic field, we only

employ a 3×3 size convolution operation to enhance the

heterogeneity of the concentration dynamic field. denoted as Sc,
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Subsequently, we combine these enhanced features with the

previously obtained integrated features of the velocity dynamic

field. This fusion process yields the final set of features

representing the physical dynamic field.

I = dict(Svx , Svy , Sc) (7)

The obtained feature set I serves as latent features for the SFME

module, which will be elaborated upon in the subsequent section.
3.3 Spatial multi-scale feature
extraction module

In fluid dynamic systems, the energy cascade or inverse cascade

effect (Boffetta and Ecke, 2012) leads to the exchange of energy

between vortices of varying scales. This phenomenon gives rise to

the presence of intricate and multiscale features within the dynamic

system. To effectively handle the complexity of such systems, it is

advantageous to employ convolutional filtering with richer

receptive fields. Motivated by this understanding, we introduce a

pivotal sub-module in our network architecture, referred to as the

SMFE module. The SMFE module takes as input the extracted

potential features obtained from the PHI module. It employs

convolution filters with various dilated ratio to extract features of

diverse scales within the potential field simultaneously. This parallel

extraction process allows for the capture of information at multiple

spatial scales.

Ki = ki + (ki −  1)(di −  1) (8)

rn = rn−1 + (kn − 1)
Yn−1

i=1
si (9)

In formula (8), ki represents the size of the original convolution

kernel, Kirepresents the size of the expanded convolution kernel, and di
represents the dilated ratio. Formula (9) calculates the receptive field

size of the current layer based on the size of the expanded convolution

obtained in the previous step. In this equation, si represents the stride

number of the current layer, kn represents the convolution kernel size

of the current layer, rn−1 represents the receptive field size of the

previous layer, and rn represents the receptive field size of the current

layer. Applying formula (8) and formula (9) helps us determine an

appropriate dilated ratio for measuring the scale range in the feature

extraction task. In our case, the size of the discretized grid is 16∗16.
After careful consideration, we select dilated ratio of 1, 2, 3 respectively.

Mi = Dconv(I, di) (10)

In formula (10), Dconv(·) represents the dilated convolution

operator. The latent representation feature I undergoes the Dconv

(·), resulting in the corresponding multi-scale features Mi(i = 1, 2,

3, 4).

To address the potential issue of redundant feature information

in the feature extraction process, we introduce a batch-processing

approach for channel features. This approach involves utilizing

both dilated convolution and channel-biased convolution operators

(Chen et al., 2023). The dilated convolution operator is applied to a

portion of the channel features, while the channel-biased
frontiersin.org

https://doi.org/10.3389/fmars.2023.1276869
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yuan et al. 10.3389/fmars.2023.1276869
convolution operator is employed for the remaining channels. As

shown in formula (11), the channel-biased convolution operator,

based on feature selection, preserves the original features of certain

channels while applying the convolution operator to process the

features in the remaining channels. The resulting features from both

operators are then concatenated in the channel dimension, yielding

the feature set denoted as Pi(i = 1,2,3,4). This strategy effectively

mitigates redundant feature information while maintaining the

necessary computational efficiency.

Pi = Concat(I,Conv(Ir)) (11)

Lastly, we combine the feature sets Miand Piby concatenating

them along the channel dimension. The process is shown in

formula (12). To ensure compatibility with the subsequent steps,

we restore the number of channels to match the number of flux

templates. This is achieved through two layers of conventional

convolution. The obtained result is the spatial discretization

coefficient, which plays a crucial role in our downstream

inference tasks. The primary objective of our network is to learn

and update this coefficient, enabling it to adaptively capture the

spatial characteristics of the physical dynamic field.

a = Conv(Concat(Mi, Pi)) (12)
3.4 Concentration field prediction module

The proposed concentration field prediction (CFP) module is

grounded in the finite volume method (Jameson et al., 1981), which

is dependent on the dynamic field flux template. This module

calculates the predicted dynamic field based on the obtained

spatial discretization coefficients, adhering to two key principles.

Prediction based on the current state: The concentration field

for the next time step is solely predicted using the current state,

without considering future information.

Euler framework for derivative calculation: The discretized

spatial derivative is computed using the explicit forward Euler

method. This framework ensures that the derivative calculation

on the divided grid strictly follows the Euler method. The original

formula for the calculation is presented in formula (13).

∂C
∂ x

jx=xi =ok
j=−kajCi+j (13)

The spatial derivative of the discretized concentration dynamic

field at the current moment is denoted as ∂C
∂ x :fx1,…, xng represents

the discretized spatial grid points, fa−k,…, akg is the matrix of

discretized difference coefficients, and Cjdenotes the concentration

at grid point xj. By employing a variant of the original Euler method,

we calculate the corresponding flux template. This method involves

separately obtaining the dynamic templates for the vertical and

horizontal dimensions, utilizing a split operator approach. This

allows for the extension to the numerical solution of the two-

dimensional equation.

Fr = SUM(Ur ⊙Cr) (14)
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Ft = SUM(Ut ⊙Ct) (15)

Where {Ur,Ut} and {Cr,Ct} represent the velocity and

concentration dynamic field templates at the right and top

boundaries, respectively, obtained after splitting the spatial

discretization coefficients. By applying the forward Euler’s

formula, we perform the inner product between the

corresponding concentration field and velocity field. Using the

SUM(·) function, we expand and sum the inner product values

across each grid point in the first dimension. This process allows us

to obtain the flux template {Fr,Ft} at the right boundary and top

boundary. Similarly, the corresponding flux {Fl,Fb} at the left

boundary and bottom boundary can be obtained based on the

computed flux.

Finally, adhering to the principle of dynamic continuity in the

physical field, we utilize the obtained fluxes at the four boundaries

to calculate the time derivatives.

∂C
∂ t

= −
(Fr − Fl) + (Ft − Fb)

dx
(16)

Where {Fr,Ft,Fl,Fb} represent the boundary flux templates in the

right, top, left, and bottom directions, respectively, and dx

represents the number of grid steps. By applying the forward

Euler scheme, we can calculate the concentration dynamic field

Ct+△t at the next time step using the time derivative ∂C
∂ t , the number

of time steps dt, and the concentration field Ct at the current

moment. This process allows us to update and predict the

concentration dynamics over time based on the current state.

Ct+Dt = Ct + dt
∂C
∂ t

(17)
3.5 Loss function

We utilize the mean absolute value error (MAE) as both our loss

function for model training and as a metric to evaluate the

prediction confidence. The reason for selecting the MAE as the

loss function is its robustness to extreme values and outliers in

the forecast. This property ensures that extreme values resulting

from numerical diffusion in the dynamic system do not

disproportionately influence the forecast estimates. In addition,

the conventional approach of estimating the conditional expected

value as the prediction target is not well-suited for dynamic system

prediction with an asymmetric error distribution. Instead, we

propose using the approximate value of the conditional median as

the prediction target. This approach allows us to capture the central

tendency of the predicted values while accounting for the

asymmetry in the error distribution. The specific formula is

provided in formula (18).

MAE = o
n
i=1 Ĉ t+Dt − Ct+Dt
�� ��

n
(18)

MAE is computed as the sum of the absolute differences

between the observed values and the corresponding true values,

divided by the sample size n. In our study, Ct+△t represents the
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predicted value of the concentration field at the next moment, while

Ĉ t+△ t refers to the reference solution, derived from executing the

second-order Van Leer advection solver (Lin et al., 1994) evolving

under initial concentration conditions.
4 Experiments

In the experimental section, we provide a comprehensive

description of the implementation details and the data sets

creation process. The generated data sets are constructed by

introducing various types of divergence-free velocity dynamic

fields, which alter the flow patterns within the same initial

concentration dynamic field conditions. In the experimental

phase, we conduct a comparative analysis between our proposed

model and state-of-the-art (SOTA) models, as well as traditional

finite-difference models. Additionally, we perform an ablation study

specifically on our proposed model. The objective of these

experiments is to evaluate and assess the performance of our

model in terms of simulation accuracy and computational

efficiency. The experimental results clearly demonstrate that our

proposed model outperforms the competing models in terms of

both accuracy and acceleration, validating its effectiveness and

superiority in simulating fluid dynamic fields.
4.1 Implementation details

PHI-SMFE, along with other baseline models, was tested and

trained using the NVIDIA Tesla V100SXM2 GPU. During the

training process, we utilized the Adam optimization algorithm with

a default learning rate of 10−3. We set the learning rate decay rate to

0, indicating that the learning rate remained constant throughout

training. The input batch size during training was set to 40. To

prepare the input physical dynamic field, we applied a spatial grid

coarsening method to downsample the original velocity dynamic

field dataset and concentration dynamic field dataset from a grid

resolution of 128*128 to a resolution of 16*16. Subsequently, the

low-resolution raw dataset was split into separate training and

testing sets. Both the training set and the test set were divided

into two parts: a pre-inference input part and a post-inference

output part. The input part before inference consisted of the

velocity field and concentration field at the current time t, while

the output part after inference contained the concentration field at

the next time t+1. In the SMFE module, the dilated convolution

layer and the channel-biased convolution layer are configured with

20 filters each, while the pooling layer utilizes 40 filters. During the

training process, all network layers have their weights randomly

initialized. The total size of the network model is 11.2k, and the size

of the training weight parameters amounts to 61.4k.
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4.2 Data sets

4.2.1 Random velocity dynamic field
The generation of random velocity dynamic fields follows the

theory of non-divergent velocity field calculation (Kraichnan,

1970). According to this theory, it is essential to ensure that the

two velocity component vectors are perpendicular to each other in

order to achieve a non-divergent velocity field. This requirement

guarantees the proper implementation of the non-divergence

condition in the generated velocity fields. We obtain the final

random velocity dynamic field by computing the horizontal

velocity field component and the vertical velocity field component

for each point on the designated 128x128 discretization grid. The

calculation process of the velocity field is as follows.

u(x) =oN
n=1wn sin (knx + wnt) +oN

n=1un cos (knx + wnt) (19)

u(y) =oN
n=1wn sin (kny + wnt) +oN

n=1un cos (kny + wnt) (20)

Where the variables vn and wn represent the amplitudes

determined based on velocity divergence constraints. The wave

number is denoted by kn, while x and y represent the two-

dimensional spatial positions within the current grid. The variable

wn represents the frequency, and t corresponds to the time

parameter. We generate random velocity dynamic fields over

multiple time steps by evenly spacing the time parameter,

resulting in a dataset with diverse temporal variations. To ensure

the generalization performance of the model, we carefully partition

the random velocity dynamic field dataset into distinct training and

test set portions. This division guarantees that the model is exposed

to different instances during training and evaluation.

4.2.2 Concentration dynamic field
To initiate the concentration dynamic field, we generate initial

values within the range [0,1] for each point in the two-dimensional

concentration field. To ensure the periodicity of the field, we apply a

two-dimensional periodic boundary constraint. Next, we employ

the second-order finite-difference Van Leer advection model to

evolve the initial concentration field over time, taking into account

the corresponding velocity dynamic field. This process results in

snapshots of the concentration field at multiple time steps. Similarly

to the velocity dynamic field dataset, we partition the concentration

dynamic field dataset into separate training and test sets. This

division ensures that the training and evaluation phases use distinct

subsets of data, preserving the consistency between the

concentration and velocity dynamic field datasets. The specific

calculations for the initial concentration field are detailed in

formulas (21)-(25).

r(x, y) = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x −

1
4
)2 + (y −

1
4
)2,

r
 r ∈ ½0, 1� (21)
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c1(x, y) =
1
2
(1 + cos (pr)) (22)

c2(x, y) =
9
10

−
4
5
(c1)

2 (23)

c3(x, y) =
1
10 c1, r ≥

1
2

 1, r < 1
2

(
(24)

C(x, y) = 1 −
3
10

(c1 + c2 + c3) (25)

In the given equations, {x,y} represents the spatial coordinates of a

two-dimensional grid point, indicating its position within the system.

The function r denotes the boundary constraint, which imposes specific

conditions on the behavior of the concentration dynamic field at the

system boundaries. The constraints {c1,c2,c3} specify the conditions that

the initial concentration dynamic fieldmust satisfy at different locations

or boundaries. These conditions include specific concentration values

or other constraints relevant to the problem. C(x,y) represents the

initial concentration value assigned to each grid point, determining the

starting state of the concentration dynamic field.
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4.3 Comparison with SOTA methods

4.3.1 Results on unsteady dynamic fluid fields
We conducted experiments using an unsteady dynamic flow

field dataset to compare the performance of the proposed PHI-

SMFE model with the traditional SOTA numerical simulation Van

Leer solver. The traditional numerical simulation baseline schemes

selected for passive scalar advection under 2D unsteady flow include

the following:(1)Second-order Van Leer advection transport

scheme with a grid resolution of 16x16 (Lin et al., 1994). (2)

Second-order Van Leer advection transport scheme with a grid

resolution of 32x32 (Lin et al., 1994). (3)Second-order Van Leer

advection transport scheme with a grid resolution of 64x64 (Lin

et al., 1994). The superiority of the second-order Van Leer method

in transporting fluids with steep gradients, while avoiding

unrealistic oscillations and negative mixing ratios, is showcased in

low-resolution atmospheric simulations involving active cumulus

convection. This state-of-the-art scheme replaces the fourth-order

central difference scheme (Li et al., 1995) and has been implemented

in the simulation of the general circulation of the atmosphere at the

Goddard Laboratory. Figure 2 illustrates the comparative outcomes
FIGURE 2

Accuracy simulation results of the traditional competitive model and the proposed PHI-SMFE model at 32-time steps in a unsteady fluid field dataset.
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of the cumulative errors over multiple time steps between the PHI-

SMFE model and the Van Leer method.

The results clearly demonstrate that our PHI-SMFE model,

trained on a 16*16 grid resolution, consistently achieves the lowest

prediction error across 32-time steps. This substantiates the

superiority of our proposed method in enhancing the accuracy of

fluid numerical simulation. Notably, the prediction error of PHI-

SMFE at the 32nd time step is 0.079, significantly outperforming the

traditional solution model. This finding highlights the capability of

our proposed method to achieve higher numerical solution

accuracy at a grid resolution four times lower than that of the

conventional SOTA numerical simulation scheme.

Subsequently, we conducted a comparative analysis between

PHI-SMFE and a state-of-the-art deep learning-based spatially

discretized CNN-FVM solver (Zhuang et al., 2021). The CNN-

FVM approach employs a fusion framework that seamlessly

integrates neural network modules into traditional finite volume

schemes. Extensive research has demonstrated the ability of this

method to achieve advanced simulation accuracy and acceleration

in numerically solving various equations, including the Burgers

equation (Bar-Sinai et al., 2019), advection equation (Zhuang et al.,

2021), and incompressible NavierStokes equation (Kochkov et al.,

2021). In the low-resolution advective transport simulation, which

is represented by the advection equation, this method demonstrates

an accuracy comparable to that of the traditional second-order flux-

limited advection solver, even when using a grid that is four times

coarser. In the direct numerical simulation of high-resolution

turbulent flow governed by the incompressible NavierStokes

equations, this method achieves a simulation accuracy
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comparable to that of the DNS baseline solver, even when using a

grid resolution that is 8 to 10 times coarser. This remarkable

accuracy is accompanied by a significant computational

acceleration, reaching a speedup of 40 to 80 times compared to

the baseline solver.

Our experimental comparison focuses on the advection of

passive scalar in 2D turbulent flow. Specifically, we evaluate the

performance of our proposed PHI-SMFE model against the baseline

method CNN-FVM. In terms of single-step prediction, the CNN-

FVMmethod achieves an inference error of 0.0044 and an inference

time of 0.1781s. The average training time per epoch during the

training phase is 4ms. On the other hand, our PHI-SMFE model

achieves an improved performance with an inference error of

0.0027, an inference time of 0.0752s, and an average training time

of 450us per epoch. Overall, our PHI-SMFE model demonstrates a

significant enhancement in both single-step simulation accuracy,

which has increased by 38%, and single-step inference speed, which

has improved by 58%. These results position our model at the

forefront of the current state-of-the-art performance. Additionally,

we conducted tests to evaluate the cumulative loss over multiple

time steps. The comparison of multi-step cumulative errors

between PHI-SMFE and CNN-FVM is illustrated in Figure 3. The

results demonstrate that PHI-SMFE exhibits a more gradual

cumulative growth of error compared to the baseline Conv-FVM.

Additionally, the overall loss at 32-time steps is reduced by 41% in

PHI-SMFE, indicating its capability to significantly enhance

simulation inference accuracy across multiple time steps.

Furthermore, we conducted tests to evaluate the multi-time step

inference speed of the proposed method and the SOTA model.
FIGURE 3

Accuracy simulation results of the deep learning competition model and the proposed PHI-SMFE model at 32-time steps on a unsteady fluid field dataset.
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Figure 4 illustrates the results, indicating that the baseline method

requires a total running time of 0.7665s for multi-time step

inference, while the proposed PHI-SMFE achieves a total running

time of 0.6693s. This represents a notable reduction of 12.7% in

running time compared to the baseline method. Considering that

the model requires re-invoking the solver for inference at each time

step, we believe that evaluating inference performance in the multi-

sample case can provide a better indication of the accelerated

computing power of the proposed model. This concept aligns

with the findings observed in the single-step inference test

described earlier. The superior acceleration performance of our

proposed model compared to the baseline can be attributed to

several factors. Firstly, in the spatial discretization coefficient

prediction component, PHI-SMFE reduces the depth of the

original model by employing a single layer of multi-scale pyramid

network and two layers of convolutional network to handle

dynamic field features. This reduction in model depth leads to

significantly smaller trained model parameters compared to the

original model. Additionally, PHI-SMFE minimizes redundant

processing in scale feature extraction, and the lateral connections

in the network layers retain feature information from previous

layers in a channel-biased manner. The weight quantization index

further supports the enhanced computational acceleration of our

proposed model. Specifically, the weight parameters of the original

model amount to 7.93MB, whereas the trained model’s weight

parameters are only 61.4kB in size.

We further provided visualizations of the results obtained by

different models in the inference of the numerical evolution of the
Frontiers in Marine Science 12
concentration field. Figure 5 illustrates these visualizations,

showcasing the behavior of each model as the time step increases.

It is evident that the inference results of the traditional finite-

difference scheme model exhibit a significant amount of invisible

diffusion when operating under a low-resolution grid. This

observation indicates that the performance of the traditional

model is inadequate and fails to provide satisfactory simulation

results. Similarly, the Conv-FVM model also displays some

numerical diffusion in the numerical simulation of the

concentration field, suggesting that the model lacks stability. In

contrast, our PHI-SMFE Network model surpasses the performance

of the aforementioned models, producing inference results that

align more closely with the actual simulation scenario.
4.3.2 Results on other fluid fields
We conducted an evaluation of the simulation performance of

the PHI-SMFE neural network on additional fluid dynamic field

datasets, namely the constant flow dynamic field dataset and the

deformation flow dynamic field dataset. For the constant flow

dynamic field dataset, the velocity field values at each grid point

remain constant throughout the simulation, and the initial

concentration field is set to match that of the unsteady flow initial

concentration field. On the other hand, the deformation flow

dataset serves as a standard test field for atmospheric advection

schemes, featuring a velocity field composed of periodic eddies. The

specific calculation formulas for the deformation flow dataset can be

found in formulas (26) and (27).
FIGURE 4

The simulation results of the solution speed of the deep learning competition model and the proposed PHI-SMFE model under the unsteady fluid
field dataset under 32-time steps.
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u(x,  y,  t) = ¼ sin2(2px) sin (2py) cos (
p t
T

) (26)

u(x,  y,  t) = sin2(2py) sin (2px) cos (
p t
T

) (27)

Where the period is denoted by T. It is worth noting that the

velocity dynamic field at time t = nT remains consistent with the

initial velocity dynamic field. The initial concentration field takes a

circular shape, and its calculation formula is provided in formulas

(28) and (29).

r(x, y) = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x −

1
4
)2 + (y −

1
4
)2,

r
 r ∈ ½0, 1� (28)

C(x, y) =
1
2
(1 + cos (pr)) (29)

Under the conditions of the constant flow velocity field and the

deformed flow velocity field, we performed time evolution of the

initial concentration fields to generate the constant flow

concentration dynamic field and the deformed flow concentration
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dynamic field, respectively. The visual simulation inference results

under time evolution are presented in Figures 6 and 7. It can be

observed that our model performs well in the inference of the

deformed flow under the 32-step time iteration, exhibiting good

agreement with the observed reality. However, in the results of the

constant flow dynamic field simulation, it is evident that the

concentration field at the 24th time step exhibits slight deviation

signs, and the concentration field at the 32nd time step displays a

slight trajectory drift. This can be attributed to the accumulation of

errors as the number of iterations increases, resulting in poorer

inference results. The experimental findings indicate that there is

still ample room for improvement in our proposed model, and we

will explore solutions to address this issue in future

research endeavors.
4.4 Ablation study

Within the realm of machine learning, ablation study is geared

towards the examination of specific components within a network
FIGURE 5

Visualization of predictions of the evolution of the initial concentration field after 32 time-step iterations of different models under a unsteady fluid
field dataset. The third row represents the prediction results of the proposed PHI-SMFE model.
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model. This approach seeks to gain deeper insights into the network

model’s behavior by selectively deactivating or altering certain parts

of it. This section focuses on examining the impact of PHI modules

and varying dilation coefficients on the accuracy of numerical

simulation for passive scalar advection. Additionally, we

investigate the effectiveness of channel-biased convolution in

improving the computational performance of numerical

simulations. The evaluations and metrics presented in this section

are conducted using unsteady dynamic field datasets. It should be
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noted that the Contrast model in Figures 8–10 refer to the

comparison models after ablation of the specified modules.

4.4.1 Impact of PHI module for simulation of
unsteady dynamic field

Considering the correlated nature of different physical dynamic

fields, our PHI module aims to improve the heterogeneity of

physical dynamic fields and the correlation between them,

thereby enabling better simulations. Therefore, we ablated the
FIGURE 7

Visualization of Iterative Evolution Prediction of Different Models under Constant Flow Field Dataset. The third row represents the prediction results
of the PHI-SMFE model.
FIGURE 6

Visualization of iterative evolution predictions for different models under deformed flow field datasets. The third row represents the prediction
results of the PHI-SMFE model.
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FIGURE 9

Accurate simulation results of the model with and without the separation strategy under a unsteady fluid field dataset.
FIGURE 8

Accuracy simulation results with and without PHI fusion model under unsteady fluid field dataset.
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PHI module, trained two models with and without the PHI module,

and verified the superior performance of the PHI module by

comparing the performance indicators of the ablated Contrast

model and PHI-SMFE in numerical simulation tests. The test

results are shown in Figure 8, from which it can be seen that the

proposed PHI-SMFE obtains a lower cumulative error in time step

iterations, which also indicates the best simulation performance.

We illustrate the reasons for these results by pointing out the

shortcomings of the Contrast model and the advantages of PHI-

SMFE, respectively. The Contrast model using the convolutional

filter fusion strategy provides inferior simulation accuracy (23%)

since the fact that the convolutional filter fusion strategy of the

baseline method Conv-FVM only uses an increased number of

channels to fuse the feature information after splicing velocity field

and concentration field, which does not effectively enforce global

correlation between velocity and concentration field features,

resulting in poorer simulation guidance. On the contrary, the PHI

module uses a shunt strategy before performing the correlation

between the velocity field and the concentration field. By separately

performing pre-feature extraction on different dynamic fields, the

learning model can understand the unique heterogeneous

information of different physical fields. The subsequent fusion

strategy implements the nonlinear global interaction between the

velocity field and the concentration field features, which strengthens

the representation ability of the intermediate features and improves

the simulation accuracy by 21%. This verifies that the PHI module is
Frontiers in Marine Science 16
an effective fusion method for the numerical simulation of the

flow field.

4.4.2 Impact of different dilated ratio for
simulation of unsteady dynamic field

Due to the uncertainty in the scale of the fluid dynamic field

features, the model performance will be affected by the limitation of the

scale processing range of the dilated convolution in the SMFE module.

We performed a heuristic search on the hyperparameters of the model.

Under different dilated ratio, the model can extract features with

different scale ranges to predict discretized difference coefficients. The

best prediction results represent that the scale extraction range of the

model can better match the scale size of the physical dynamic field

characteristics under the selected dilated ratio, so as to obtain the

optimal difference coefficient. The coarsened physical dynamic field is

executed under the grid size of 16 ∗ 16, which limits the scaling

processing to be within a reasonable range of the matching grid size. In

other words, the range of dilated ratio we need to consider exists in a

bounded within the collection. The size of our convolution kernel is 3 ×

3. According to the calculation formulas (8)-(9), when the dilated ratio

is 7, the receptive field size reaches the boundary range of the grid. This

extrapolation provides a reasonable guide for choosing dilated ratio.

Finally, we set three different dilated ratio to extract small-scale,

medium-scale, and large-scale fluid features. The optimal dilated

ratio is determined through the tests illustrated in Figure 11. It can

be seen that the iterative simulation achieves the best results when the
FIGURE 10

Solution speed simulation results of the model with and without a separation strategy under a unsteady fluid field dataset.
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dilated ratio are {1 ,2, 3} respectively. When the scale range that the

convolution can handle gradually increases, the simulated iterative loss

gradually decreases, but it is still not as good as when the dilated ratio

are {1, 2, 3}. At the same time, considering that the convolution

operator with a large receptive field may bring unnecessary tensor

calculations, increasing the computational burden. We choose {1, 2, 3}

as the final set of dilated ratio used by the model.

4.4.3 Effectiveness of separation strategy for
simulation of unsteady dynamic field

In this section, we evaluate the effect of channel-biased

convolution in model-guided learning of discretized differential

coefficients. We replace the channel-biased convolution operator

in PHI-SMFE with ordinary convolution to obtain the Contrast

model, and compare the corresponding numerical simulation

results and inference time on the unsteady dynamic flow field.

From Figure 9, we observe that the Contrast model using ordinary

convolutions exhibits limited simulation performance because the

redundant feature information produced by the model will

accumulate with the increase of network layer depth. By adding

side-channel convolution to the learning model, the accuracy of the

final numerical simulation is improved by 5%, which shows that the

side-channel convolution operator is beneficial to the learning of

discretized difference coefficients. From Figure 10, we observe that

SMFE module using channel-biased convolution can effectively

accelerate simulation inference because, in each feature extraction,

channel-biased convolution retains part of the original feature

information and thus reduces the need for redundant feature
Frontiers in Marine Science 17
processing. In inference simulations, channel-biased convolution

achieves a 16.7% computational speedup.
5 Conclusion

We propose a PHI-SMFE network for solving passive scalar

advection in 2D unsteady flow and implement it in numerical

simulations of three test cases. We use the network model to learn

discretized differential coefficients, calculate the time partial derivative

and spatial partial derivative related to the concentration dynamic field

according to the learned adaptive differential coefficient, and then

combine the traditional finite volume scheme to obtain a High-

precision solution under the resolution grid.

To improve the accuracy of fluid numerical calculations, we

have developed a feature extraction module based on different

scales, called SMFE Module, which aims to capture the difficult-

to-analyze scale turbulence feature information in complex fluid

dynamic fields. At the same time, considering the interactive

influence of the fluid velocity field on the concentration field, we

designed the physical heterogeneous interaction module to enhance

the heterogeneity of the physical fields and the nonlinear interaction

between them. Furthermore, we propose a channel-biased

convolution operator to speed up numerical computation by

reducing the processing of redundant feature information.

Compared with other deep learning models, our model achieves

state-of-the-art performance in terms of reduced computational

cost and improved accuracy.
FIGURE 11

Accuracy simulation results of different dilated ratio models and PHI-SMFE model under the unsteady fluid field dataset.
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Despite achieving state-of-the-art results, our proposed model

still has limitations in reducing iteration errors, as shown in

Figure 7. The trajectory drift problem occurs in the dynamic field

at the end of the time step iteration. In addition, we need to combine

it with the prediction of real data, and add the integration of neural

networks and numerical solutions to partial differential equations in

the prediction process. This can add physical information

constraints to better solve real problems in atmospheric science

and earth science. We will address these issues in future work.
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