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When a time propagator eδtA for dura-
tion δt consists of two noncommuting parts
A = X + Y , Trotterization approximately
decomposes the propagator into a prod-
uct of exponentials of X and Y . Vari-
ous Trotterization formulas have been uti-
lized in quantum and classical comput-
ers, but much less is known for the Trot-
terization with the time-dependent gen-
erator A(t). Here, for A(t) given by
the sum of two operators X and Y with
time-dependent coefficients A(t) = x(t)X +
y(t)Y , we develop a systematic approach
to derive high-order Trotterization for-
mulas with minimum possible exponen-
tials. In particular, we obtain fourth-order
and sixth-order Trotterization formulas in-
volving seven and fifteen exponentials, re-
spectively, which are no more than those
for time-independent generators. We also
construct another fourth-order formula
consisting of nine exponentials having a
smaller error coefficient. Finally, we nu-
merically benchmark the fourth-order for-
mulas in a Hamiltonian simulation for a
quantum Ising chain, showing that the 9-
exponential formula accompanies smaller
errors per local quantum gate than the
well-known Suzuki formula.

1 Introduction
Let us consider an initial value problem

d

dt
S(t, t′) = A(t)S(t, t′), (1)

S(t′, t′) = I, (2)

where A(t), S(t, t′) ∈ Cd×d and I is the identity
operator in Cd×d. Equation (1) frequently ap-
pears in physics. For instance, the Schrödinger
equation corresponds to the case where A(t) is
anti-Hermitian (i.e., A(t) = −iH(t) with a Her-
mitian Hamiltonian H(t)). The Lindblad equa-
tion, which is the time evolution equation for
Markovian open systems, corresponds to the case
where A(t) is the Liouvillian, which is not Her-
mitian nor anti-Hermitian in general. Therefore,
solving Eq. (1) is one of the fundamental prob-
lems in physics.

The formal solution of Eq. (1) is given by the
following time-ordered exponential,

S(t, t′) = T exp
(∫ t

t′
A(s)ds

)
. (3)

When the operator A(t) is time-independent, i.e.,
A(t) = A ∀t, Eq. (3) reduces to S(t, t′) =
exp((t − t′)A). The time-ordered exponential is
defined as an infinite sum of multiple integrals
and is not easy to calculate since A(t) consists
of non-commuting operators in general. Thus, a
decomposition that expresses (3) as a product of
exponentials of simpler operators is important in
applications such as a digital quantum simula-
tion.

For the time-independent case of A = X +
Y , decompositions of S(δt, 0) = e(X+Y )δt into
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a product of eαX and eβY have been exten-
sively studied. The lowest-order decomposition
S(δt, 0) = eδtXeδtY + O(δt2) was first obtained
by Lie and its applicability was extended by Trot-
ter [24] and Kato [12]. Also, various higher-order
decompositions have been proposed both in clas-
sical mechanics [6] and in quantum mechanics [7].
Here, Trotterization means the form of

T (⃗a, b⃗) =
{
ea1Xeb1Y · · · eaqXebqY

ea1Xeb1Y · · · eaqXebqY eaq+1X .
(4)

with real numbers aj ’s and bj ’s, where 2q or 2q+1
denotes the number of exponentials in each for-
mula. When aj ’s and bj ’s are chosen so that the
error of the approximation is of the order of δtp+1,
i.e.,

S

(
µ+ δt

2 , µ− δt

2

)
= T (⃗a, b⃗) +O(δtp+1), (5)

we call T (⃗a, b⃗) the p-th order Trotterization for-
mula of S(µ + δt

2 , µ − δt
2 ). Unlike other meth-

ods [14], Trotterization allows us to implement
Schrödinger equation in digital quantum com-
puters without exploiting ancillary qubits and
has been widely used in noisy intermediate-scale
quantum computers.

However, much less is known about Trotteriza-
tion for the time-dependent case [7, 8, 14, 19],
which includes more variety of nonequilibrium
quantum phenomena. For simplicity, we focus,
throughout this paper, on the following type of a
time-dependent generator [1]

A(t) = x(t)X + y(t)Y, (6)

where x(t) and y(t) are smooth real functions
and X,Y ∈ Cd×d. Two different approaches are
known for the Trotterization formula of a time-
dependent operator. The first is to take x(t)
and y(t) at fine-tuned discrete points tk (n =
1, · · · , N), and the algorithm is constructed
using exp(akXδt) and exp(bky(tk)Y ) [7, 26].
This approach systematically generates higher-
order formulas based on the formulas for time-
independent cases, but its efficiency, especially
the number of exponentials, is not necessarily op-
timal. The second is an approach based on a
different approximation initiated by Huyghebaert
and de Readt [8, 19], where the time-ordered ex-
ponential (3) is approximated by a product of
normal exponentials such as exp

(∫ t
t′ x(s)Xds

)

and exp
(∫ t

t′ y(s)Y ds
)
. However, its generaliza-

tion to higher orders is not straightforward and
has not been systematically developed.

Here we focus on the number of exponentials
in the formula as its usefulness. The number is
directly related to the calculation cost for, e.g., a
digital quantum computer and a matrix-product-
state-(MPS-)based classical simulation. There-
fore, we look for the Trotter formula of the min-
imum number of exponentials. For k = 2, the
well-known formula so-called midpoint rule (see
Eq. (12) below) is a three-exponential formula
and is the minimum formula. This is because
it is readily shown that there does not exist a 2-
exponential second-order formula in general. For
k = 4, by contrast, there are some known for-
mulas. For example, Suzuki [7, 23, 26] gave
a 15-exponential formula for the more general
case X(t) + Y (t), and this reduces to an 11-
exponential one for the present class of problem
given in Eq. (3). However, it has remained un-
solved whether there exists another fourth-order
formula having fewer exponentials, and the mini-
mum number of exponentials has not been found
yet, to the best of the authors’ knowledge.

In this paper, we derive minimum Trotteri-
zation formulas for time-dependent A(t) in the
form of Eq. (6). In particular, we obtain the
fourth-order (sixth-order) explicit formulas con-
sisting of 7 (15) exponentials and show that 7
(15) exponentials are the minimum among all the
fourth-order (sixth-order) formulas in the form
of Eq. (4). Thus we call our formulas the min-
imum fourth-order and sixth-order Trotteriza-
tion (MFT and MST) formulas. We also find
a fourth-order 9-exponential formula, whose er-
ror is less than that of the MFT. We numer-
ically compare the error between the MFT, 9-
exponential, and Suzuki’s fourth-order formu-
las in 1-qubit and many-spin models. We con-
firm that the MFT (9-exponential) formula has
a slightly larger (smaller) error per exponential
than Suzuki’s does. In this way, the 9-exponential
formula offers an efficient way for simulating dy-
namics on, e.g., a digital quantum computer and
an MPS-based classical simulator.
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2 The formulas and errors
We begin with the Magnus expansion [3]

S

(
µ+ δt

2 , µ− δt

2

)
= exp

( ∞∑
n=1

Ωn

)
. (7)

As is well known, Ωn is given by a multiple in-
tegral over n variables t1, . . . , tn on the domain
µ − δt/2 ≤ tn ≤ · · · ≤ t1 ≤ µ + δt/2, and
the integrand consists of nested commutators of
A(t1), . . . , A(tn) (see Appendix A for their con-
crete forms). Therefore, Ω1 = O(δt) and Ωn =
O(δtn+1) (n ≥ 2) hold in general. Also, our pa-
rameterization ensures that Ωn does not involve
even-order terms in δt when Taylor-expanded.
The Magnus expansion, truncated at some order,
has been utilized for classical and quantum sim-
ulations (see, e.g., Refs. [10, 21]). Here we use it
to derive Trotterization formulas, i.e., decompo-
sitions into X and Y as in Eq. (4).

For A(t) given in Eq. (6), the Magnus expan-
sion reduces to the continuous BCH formula [3]
giving

Ω1 = β1(µ, δt)X + β2(µ, δt)Y, (8)
Ω2 = β12(µ, δt)[X,Y ], (9)

Ω3 =
2∑

i=1
βi12(µ, δt)[Zi, [X,Y ]], (10)

Ω4 =
2∑

i=1

2∑
j=1

βij12(µ, δt)[Zi, [Zj , [X,Y ]]], (11)

and so on, where we introduced useful notations
Z1 = X and Z2 = Y , and β’s are real num-
bers, such as β1 =

∫ µ+δt/2
µ−δt/2 dtx(t) and β2 =∫ µ+δt/2

µ−δt/2 dty(t) (see Appendix A for the others).
For brevity, we shall omit (µ, δt) from β’s in the
following.

We remark that Eq. (7) becomes a trivial iden-
tity in the time-independent case, where x(t) = x
and y(t) = y. In this case, the exact evolution
does not need the time-ordered exponential, giv-
ing S(µ + δt/2, µ − δt/2) = exp[(xX + yY )δt].
Also, Ωn = 0 holds for n > 1 since β12 = β112 =
· · · = 0, and the right-hand side of Eq. (7) equals
exp[(xX + yY )δt], where we used β1 = xδt and
β2 = yδt.

Interestingly, Ωn’s are actually smaller than
the obvious estimate O(δtn). For instance,
Ω2 ∝ β12 = 1

2
∫ µ+δt/2

µ−δt/2 dt2
∫ t2

µ−δt/2 dt1[y(t2)x(t1) −

x(t2)y(t1)] = O(δt3). To prove this, one can, e.g.,
Taylor-expand x(tj) and y(tj) at tj = µ, finding
that the coefficient of δt2 vanishes. Furthermore,
one can show Ω3 = O(δt5) and Ω4 = O(δt5) (see
Appendix A for proof). This rapid increase of or-
ders in Ωn enables us to construct efficient Trot-
terization formulas as shown below.

Using the lowest-order continuous BCH for-
mula, we can reproduce the well-known second-
order Trotterization formula S(µ + δt

2 , µ − δt
2 ) =

T2(µ+ δt
2 , µ− δt

2 ) +O(δt3) with

T2

(
µ+ δt

2 , µ− δt

2

)
≡ ex(µ)Xδt/2ey(µ)Y δtex(µ)Xδt/2

(12)

also known as the mid-point rule. To do this,
we notice S(µ + δt

2 , µ − δt
2 ) = eΩ1 + O(δt3) =

eβ1X+β2Y +O(δt3) and use the minimum second-
order formula for a time-independent problem
eβ1X+β2Y = eβ1X/2eβ2Y eβ1X/2 + O(δt3) together
with β1 = x(µ) +O(δt3) and that for β2.

To obtain a fourth-order formula, we invoke the
following key result.

Theorem 1. Suppose u ≡ β12/β2 = O(δt2).
Then it follows

S

(
µ+ δt

2 , µ− δt

2

)
= euXeβ1X+β2Y e−uX + Υ5;

(13)

Υ5 = Ω3 + Ω4 − u2

2 β2[X, [X,Y ]] +O(δt7). (14)

Proof. The BCH formula leads to
euXeβ1X+β2Y e−uX = eβ1X+β2Y +u[X,β2Y ] +
u2

2 [X, [X,β2Y ]] + O(δt7) = eβ1X+β2Y +β12[X,Y ] +
u2

2 β2[X, [X,Y ]] + O(δt7), where we used
u = O(δt2) ensured by our assumption. On the
other hand, the continuous BCH formula gives

S

(
µ+ δt

2 , µ− δt

2

)
= eβ1X+β2Y +β12[X,Y ]

+ Ω3 + Ω4 +O(δt7)
(15)

Comparing these, we obtain Eq. (13).

Three remarks are in order regarding Theo-
rem 1. The first remark is on the role of the as-
sumption β12/β2 = O(δt2). Although β2 = O(δt)
always holds true, β2 can happen to be as small
as β2 = Θ(δt3). Here, β = Θ(δtn) stands for
0 < limδt→+0(β/δtn) < ∞, and we used the fact

Accepted in Quantum 2023-10-30, click title to verify. Published under CC-BY 4.0. 3



that β2 consists of odd-order terms of δt (see
Appendix B). In such a case, if β12 = Θ(δt3),
u = Θ(1) and Eq. (13) does not hold. However,
even when β12/β1 ̸= O(δt2), if β12/β2 = O(δt2),
we can still use Theorem 1 by interchanging the
roles of x(t)X and y(t)Y . Recall that our tar-
get S(µ + δt

2 , µ − δt
2 ) is invariant under the in-

terchange of x(t)X and y(t)Y . If both β12/βi

(i = 1, 2) are not O(δt2), Theorem 1 can be used
by setting u = 0 as follows. This case implies
β1 = β2 = O(δt3) and Ωn = O(δt5) for n ≥ 2,
and S(µ+ δt/2, µ− δt/2) = eβ1X+β2Y +O(δt5).

The second remark is that Theorem 1 can also
be derived using (a non-Hermitian version of) the
Schrieffer-Wolff Transformation (SWT) [4, 20].
When we regard Ω1 and Ω2 as the unperturbed
and perturbation terms, respectively, the SWT
aims to eliminate Ω2 within O(δt5) errors by an
appropriate similarity transformation (S is not
necessarily Hermitian below)

eS(Ω1 + Ω2)e−S = Ω1 +O(δt5), (16)

whose exponential form reads

eSeΩ1+Ω2e−S = eΩ1 +O(δt5). (17)

Assuming that S = O(δt2), we obtain the condi-
tion for S satisfying Eq. (16) as

[S,Ω1] + Ω2 = 0 (18)

when O(δt5) errors are neglected. Recalling that
Ω1 = β1X + β2Y and Ω2 = β12[X,Y ], we obtain
a solution S = (β12/β2)X = uX for Eq. (18),
for which Eq. (17) coincides with Eq. (13). We
remark that the transformation is unitary if X is
Hermitian.

The final remark is that Theorem 1 becomes
trivial for the time-independent case, where we
have u = 0 and Υ5. This follows from Ωn = 0 for
n > 1, as remarked above. In this sense, Υ5 is
the characteristic of time-dependent cases, which
we will call the time-dependent component of the
Trotter error.

Having given those three remarks, we now re-
turn to the Trotterization formula’s derivation.
Even though we are considering a time-dependent
problem, Eq. (13) tells us that the Trotteriza-
tion is achieved by Trotterizing eβ1X+β2Y , which
is done by invoking a conventional formula for
time-independent problems. For example, we can

apply the Forest-Ruth-Suzuki formula [6, 22]

eβ1X+β2Y = e
sβ1

2 Xesβ2Y e
1−s

2 β1Xe(1−2s)β2Y

× e
1−s

2 β1Xesβ2Y e
sβ1

2 X + Γ5, (19)

where where s = (2 − 21/3)−1 and Γ5 = O(δt5)
is the error [17, 18], whose properties are gener-
ally investigated [5]. Substituting Eq. (19) into
Eq. (13), we obtain the following corollary giving
the MFT.

Corollary 1.1 (Minimum 7-exponential for-
mula). It follows

S

(
µ+ δt

2 , µ− δt

2

)
= T7,4 + Λ5;

T7,4 ≡ e( sβ1
2 +u)Xesβ2Y e

1−s
2 β1Xe(1−2s)β2Y

× e
1−s

2 β1Xesβ2Y e( sβ1
2 −u)X ;

Λ5 = Γ5 + Υ5. (20)

Remarkably, the 7-exponential formula (20) is
minimum among fourth-order formulas. To prove
this, we recall that our time-dependent problem
involves the time-independent problems as a spe-
cial case of x(t) = x and y(t) = y. For the special
case, Eq. (20) reduces to the fourth-order Forest-
Ruth-Suzuki formula [6, 22] as one can check eas-
ily. Recall that the 7-exponential fourth-order
Forest-Ruth-Suzuki formula is minimum among
time-independent problems. Thus every fourth-
order formula for general time-dependent prob-
lems requires at least 7 exponentials. Theorem 1
shows that such a formula actually exists despite
a reasonable inference that more general prob-
lems demand more exponentials.

The error parts Γ5 and Υ5 of the total error
Λ5 are time-independent and -dependent compo-
nents, respectively. As we discussed, Υ5 = 0
holds for the special case that x(t) and y(t) are
time-independent. Since Γ5 is the well-known
Trotter error for time-independent case [5], Υ5 is
the additional error source particular to the time
dependence.

We remark on the time-reversal character of
the MFT. The exact evolution satisfies

S

(
µ− δt

2 , µ+ δt

2

)−1
= S

(
µ+ δt

2 , µ− δt

2

)
,

(21)

which follows from S(µ+ δt
2 , µ− δt

2 )S(µ− δt
2 , µ+

δt
2 ) = 1. Nicely, the MFT T7,4 also has this
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property. Namely, if we apply Theorem 1 to
S(µ − δt

2 , µ + δt
2 ) by substituting δt → −δt to

have

S(µ− δt

2 , µ+ δt

2 ) = T ′7,4 + Λ′5, (22)

T ′7,4 = e(
sβ′

1
2 +u′)Xesβ′

2Y e
1−s

2 β′
1Xe(1−2s)β′

2Y

× e
1−s

2 β′
1Xesβ′

2Y e(
sβ′

1
2 −u′)X , (23)

then we obtain

T ′7,4
−1 = T7,4. (24)

The keys to confirming Eq. (24) are the relations
β′i = −βi (i = 1, 2) and β′12 = −β12 and their con-
sequence u′ = u. The time-reversal character (24)
implies that the error is of odd order [17].

Although we have substituted the minimum
Forest-Ruth-Suzuki formula (19) into Eq. (13),
we can use any fourth-order Trotterization for-
mulas instead (see, e.g., Ref. [18] for a list of
them). One can use another to reduce the error
Γ5 by using more exponentials than seven. For in-
stance, using Omelyan’s Forest-Ruth formula (see
Refs. [17, 18] for detail and real numbers aj ’s and
bj ’s)

eβ1X+β2Y = ea1β1Xeb1β2Y ea2β1Xeb2β2Y ea3β1X

× eb2β2Y ea2β1Xeb1β2Y ea1β1X + Γ′5
(25)

in Eq. (13), we obtain the following corollary giv-
ing the 9-exponential fourth-order formula.

Corollary 1.2 (9-exponential formula). It fol-
lows

S

(
µ+ δt

2 , µ− δt

2

)
= T9,4 + Λ′5;

T9,4 ≡ e(a1β1+u)Xeb1β2Y ea2β1Xeb2β2Y ea3β1X

× eb2β2Y ea2β1Xeb1β2Y e(a1β1−u)X ;
Λ′5 = Γ′5 + Υ5. (26)

Here, in exchange for adding two more exponen-
tials, we have smaller coefficients in Γ′5 than in
Γ5. As we will see below in an example model in
Sec. 5, the 9-exponential formula produces less er-
ror than the MFT and the Suzuki formula model
when compared at the same number of elemen-
tary quantum gates.

Before closing this section, we remark on the
generalization beyond the fourth-order formula.

Recall that the MFT (20) reduces to the Forest-
Ruth-Suzuki for time-independent cases when we
set u = 0 or eliminate the SWT. This implies that
the MFT can be derived by applying an appropri-
ate SWT to the time-independent formula. This
approach is promising to derive higher-order min-
imum Trotterization formulas and, in fact, leads
to the following minimum sixth-order Trotteriza-
tion (MST) formula T15,7 consisting of 15 expo-
nentials (see Appendix C for the derivation).

Theorem 2 (Minimum sixth-order 15-exponen-
tial formula). Suppose that β1 = Θ(δt) and β2 =
Θ(δt). Then it follows

S

(
µ+ δt

2 , µ− δt

2

)
= T15,7 + Λ7; Λ7 = O(δt7);

T15,7 ≡ e(a1β1+u4)Xe(b1β2+u3)Y e(a2β1+u2)Xe(b2β2+u1−z)Y

× e(a3β1−w)Xe(b3β2+z)Y e(a4β1+w)Xeb4β2Y

× e(a4β1+w)Xe(b3β2+z)Y e(a3β1−w)Xe(b2β2−u1−z)Y

× e(a2β1−u2)Xe(b1β2−u3)Y e(a1β1−u4)X ,
(27)

where a1, . . . , a4 and b1, . . . , b4 are given in
Eq. (52), u1, . . . , u4 of O(δt2) and w and z of
O(δt3) are given by Eqs. (62) and (63).

We make some remarks on Eq. (27). First, as in
the MFT, Eq. (27) reduces to Yoshida’s minimum
sixth-order formula [27] in the time-independent
case, where u1 = · · · = u4 = w = z = 0.
Namely, these variables are introduced as a time-
dependent generalization. Second, the 15 ex-
ponentials in Eq. (27) are placed symmetrically
around the central eb4β2Y , except for the asym-
metric appearance of ±uj (j = 1, . . . , 4) due to
the SWTs. Third, w and z appearing symmet-
rically are not SWTs but are newly introduced
at the sixth order, enabling T15,7 to reproduce
Ω3 in the Magnus expansion. These structures
would be generalized to even higher orders: The
SWTs and the symmetric decorations like w and
z would produce the minimum Trotterization for-
mulas for time-dependent cases out of those for
time-independent ones. Finally, like the MFT,
the MST is a minimum sixth-order formula be-
cause it has the same number of exponentials as
Yoshida’s formula does for time-independent gen-
erators.
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3 algorithm for unitary dynamics
The arguments in the previous sections have been
so general that A(t) may or may not be anti-
Hermitian. Nonetheless, the case where A(t) is
anti-Hermitian is particularly important because
it includes the Schrödinger equation, for which
A(t) = −iH(t) with H(t) being a Hamiltonian.
In this section, we focus on this case, summariz-
ing the algorithm for the Hamiltonian simulation.
Considering Eq. (6), we focus on the following
Hamiltonian

H(t) = f(t)F + g(t)G, (28)

where f(t) and g(t) are real, and F and G are
noncommuting Hermitian operators. To address
these problems, one can utilize the above results
with the replacements A(t) → −iH(t), x(t) →
f(t), X → −iF , etc. As relevant applications,
the MFT offers an efficient implementation in
quantum dynamics simulation on a digital quan-
tum computer and matrix-product-state(MPS-
)based classical simulations.

For usage, we summarize the algorithm as a
pseudocode in Fig. 1. Here we focus on the MFT
since it works similarly with the other formulas.
In the algorithm, we provide an ordered list of
unitaries that brings an initial state |ψ(ti)⟩ at
time t = ti to a final state |ψ(tf )⟩ according to the
Hamiltonian (28) based on the MFT. We can also
use the 9-exponential formula instead of the MFT
in the algorithm by replacing the seven exponen-
tials to append with 9 exponentials appearing in
Eq. (26).

We note that each time step requires the or-
acle functions that evaluate integrals, which can
be cumbersome. In such a case, we can do it
approximately up to the fourth order of δt by us-
ing the Taylor or orthogonal-polynomial expan-
sion for x(t) and y(t) (see also Appendix B).

4 Comparison to Other Time-
Dependent Formulas
Here we compare the MFT and 9-exponential
formulas with other Trotterization formulas for
time-dependent Hamiltonians (28). The known
second-order formulas are equivalent to the mid-
point rule (12) within errors of O(δt3). In fact,
the second-order Suzuki [7, 23] is the same as the
mid-point rule, and another integrator THdR =

Figure 1: Pseudocode for the Hamiltonian simulation
based on the MFT.
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10 2 10 1 100
Time step ( t)

10 10

10 7

10 4

10 1 Suzuki
Suzuki
MFT
MFT
9-exp
9-exp
mid-point
mid-point

t5

Figure 2: Errors (30) of Trotterization formulas for the
time-dependent Hamiltonian (31) at µ = 1. Different
symbols correspond to the fourth-order Suzuki (circle),
MFT (square), 9-exponential (triangle), and mid-point
rule (diamond) formulas. The filled symbols correspond
to the assignment σx → f(t)F and tσz → g(t)G in
Eqs. (28) and (31), whereas the open symbols to the
other assignment σx → g(t)G and tσz → f(t)F in
these equations. The solid line guides the eye for the
power law ∝ δt5.

T exp(−i
∫ µ+δt/2

µ x(s)Xds)T exp(−i
∫ µ+δt/2

µ−δt/2 y(s)Y ds)
×T exp(−i

∫ µ
µ−δt/2 x(s)Xds) proposed

by Huyghebaert–de Readt [8] satisfies
THdR = T2 + O(δt3) as one can check easily.
Furthermore, those second-order 3-exponential
formulas are minimum as they are known to be
minimum for time-independent cases. Thus we
take Suzuki’s formula (i.e., mid-point rule) as
the representative for the second-order formula.

The fourth-order formula can vary in terms
of error and gate complexity depending on the
choice of algorithm. The fourth-order Suzuki for-
mula for time-dependent Hamiltonians [7, 23, 26]
is made of the mid-point rule (12) (with x(t)X →
−if(t)F and y(t)Y → −ig(t)G) as

T4

(
µ+ δt

2 , µ− δt

2

)
= T2

(
µ+ δt

2 , µ4

)
T2(µ4, µ3)

× T2(µ3, µ2)T2(µ2, µ1)T2

(
µ1, µ− δt

2

)
,

(29)

where µ1 = µ − 1−2w
2 δt, µ2 = µ − 1−4w

2 δt,
µ3 = µ + 1−4w

2 δt, µ4 = µ + 1−2w
2 δt, and w =

(4 − 41/3)−1. Note that T4 consists of 11 expo-
nentials for Hamiltonians in Eq. (28) because four
pairs of e−iαF (α ∈ R) can be combined into one
between T2’s. Note again that the MFT has only
7 exponentials.

Now we implement each algorithm and numer-
ically compare their accuracy. To quantify the

accuracy, we define the error ϵ as

ϵ =
∥∥∥∥S (µ+ δt

2 , µ− δt

2

)
− T

∥∥∥∥ , (30)

where T is the time-evolution unitary achieved
through an algorithm and || · || is the Frobenius
norm of the operator. We have confirmed that
the results do not change qualitatively when the
spectral norm is used, as shown in Appendix D.
Figure 2 shows the simulation errors for the sem-
inal Landau-Zener Hamiltonian

H(t) = σx + tσz, (31)

confirming the expected error scaling (σx and σz

are the Pauli matrices). Here we fix µ = 1, for in-
stance, and plot the errors of each formula against
the time step δt. Recall that we have two choices
in assigning which of σx and tσz to f(t)F (and
the other to g(t)G). In Fig. 2, the assignment
σx → f(t)F and tσz → g(t)G is shown by filled
symbols and the other assignment σx → g(t)G
and tσz → f(t)F by open ones. For both as-
signments, the mid-point rule gives O(δt3) errors,
whereas the MFT, 9-exponential, and the fourth-
order Suzuki formulas give O(δt5) errors, as ex-
pected.

For µ = 1 in Fig. 2, we observe that the error
coefficient of the MFT is larger than that of the
fourth-order Suzuki formula. This is a penalty
to pay with the MFT instead of its advantage
of fewer exponentials. However, it is noteworthy
that the 9-exponential formula has error coeffi-
cients as small as Suzuki’s, even though it still
has fewer exponentials. Here we recall that the
errors of the MFT Λ5 and the 9-exponential for-
mula Λ′5 consist of two parts as in Eqs. (20) and
(26), including the common contribution Υ5 in-
herent to the time dependence. Our observation
about the difference in error coefficients derives
rather from the time-independent formulas, Γ5
and Γ′5.

To investigate the µ-dependence systemati-
cally, we plot the errors in Fig. 3. Here we set
δt = 0.1/∥H(µ)∥ = 0.1/

√
1 + µ2 for each µ since

the magnitude of H(t) significantly changes in
such a wide range. The figure shows the following
two features. First, as µ → 0, the errors are diver-
gent for the MFT and 9-exponential formulas in
the assignment σx → g(t)G and tσz → f(t)F .
This derives from the fact that, in that limit,
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Figure 3: Errors (30) of Trotterization formulas for
the time-dependent Hamiltonian (31) for various µ.
The time step δt is taken, depending on µ, as δt =
0.1/∥H(µ)∥ = 0.1/

√
1 + µ2. The symbols are the same

as in Fig. 2: The filled symbols correspond to the assign-
ment σx → f(t)F and tσz → g(t)G in Eqs. (28) and
(31), whereas the open symbols to the other assignment
σx → g(t)G and tσz → f(t)F . The solid line guides
the eye for the power law ∝ µ−1.

β1 = O(δt2) and β12/β1. Hence, to obtain a bet-
ter approximation, we must choose the appropri-
ate assignment σx → f(t)F and tσz → g(t)G.
Second, the error of the 9-exponential formula,
with the appropriate assignment, is as small as
the fourth-order Suzuki’s over the entire range of
µ, whereas that of the MFT can be as good as
them in two limiting cases µ → 0 and µ → ∞.
The worst case for the MFT is µ ∼ 1, for which
the δt-scaling is shown in Fig. 2. We note again
that its error comes dominantly from Γ5 rather
than the time-dependent part Υ5. In fact, the
µ−1-scaling and the difference between the two
MFT results in the large µ regime can be un-
derstood by analyzing Γ5 (see Appendix E for
details).

5 Application to a quantum circuit

Having studied the basic properties of the MFT
and the 9-exponential formula in a single qubit
model, we here apply them to a more practi-
cal model. We consider a quantum Ising chain
of length L under an oscillatory transverse field,
whose Hamiltonian is in the form of Eq. (28) with

f(t) = sin(t), F =
L∑

i=1
hxσ

i
x, (32)

g(t) = 1, G =
L∑

i=1
(Jσi

zσ
i+1
z + hzσ

i
z), (33)

101 102

#gates/L

10 4

10 2

100
midpoint
MFT
9-exp
Suzuki

Figure 4: Errors (34) of Trotterization formulas for the
time-dependent quantum Ising Hamiltonian [Eqs. (32)
and (33)] at L = 6 plotted against Ngates/L. The time
evolution from ti = 0 to tf = π is calculated for steps
N ranging from 5 to 400, which is converted to Ngate
for each Trotterization formula shown in the legend (see
also text).

where σi
x and σi

z are the Pauli matrices acting
on the site i. We impose the periodic boundary
condition σL+1

z = σ1
z and set J = −1.0, hz = 0.2,

and hx = −2.0.
Let us compare the cost and accuracy of each

algorithm by considering a time evolution from
ti = 0 to tf = π, for example. For a number N
of steps and the step size δt = (tf − ti)/N , we
introduce tk = ti + kδt (k = 0, 1, . . . , N) to study
the error

ϵ ≡

∥∥∥∥∥∥S(tf , ti) −
←∏

k=1,...,N

T (tk, tk−1)

∥∥∥∥∥∥ , (34)

where the Trotterization T (tk, tk−1) is taken for
either the mid-point rule, MFT, 9-exponential, or
Suzuki formulas.

We focus on the number of 1-qubit and
2-qubit gates, Ngates, in each Trotterization.
For the mid-point rule, we have T (t, s) =
e−i sin(µ)δtF/2e−iδtGe−i sin(µ)δtF/2 (µ ≡ t+s

2 ), which
is further decomposed into 1- and 2-qubit
gates by e−i sin(µ)δtF/2 =

∏L
i=1 e

−i sin(µ)δtσi
x/2 and

e−iδtG =
∏L

i=1 e
−iJσi

zσi+1
z δt∏L

i=1 e
−ihzσi

zδt. Thus,
we have Ngates = 5LN for the mid-point rule.
Likewise, we have Ngates = 10LN for the MFT,
13LN for the 9-exponential formula, and 15LN
for the Suzuki formula.

Figure 4 shows the error (34) of each Trot-
terization calculated for several N ranging from
5 to 400. Here, the horizontal axis is taken as
Ngates/L, and the exact solution S(tf , ti) was ob-
tained by integrating with sufficiently small step-
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size to guarantee asymptotic convergence below
all other error scales. We observe expected er-
ror scalings when Ngates ∝ δt−1 increases; ϵ ∝
δN−2

gates for the second-order mid-point rule and
ϵ ∝ N−4

gates for the other fourth-order formulas.
We note that these scaling exponents are larger
by one than those for a single step because we
successively operate N ∝ δt−1 ∝ Ngates steps.

Importantly, the 9-exponential formula pro-
duces less error than the Suzuki formula at a
given number of gates. When compared with
the same N , the Suzuki formula has less error
(data not shown), but it requires Ngates = 15LN
gates that are more than Ngates = 13LN of
the 9-exponential formula. This difference in
the required number of gates results in the 9-
exponential formula obtaining the best perfor-
mance, as shown in Fig. 4 In contrast, the MFT
gives larger errors than the other fourth-order for-
mula, even though it requires fewer exponentials
due to the large error coefficient in Γ5.

6 Discussion and Conclusion

We studied the generalization of Trotterization
formulas to time-dependent generators. While
the second-order formula is well-known, we de-
rived a 7-exponential fourth-order formula T7,4
and a 15-exponential sixth-order formula T15,7 as
in Eqs. (20) and (27). Remarkably, we showed
that the number seven (fifteen) of exponentials
are the minimum to make a fourth-order (sixth-
order) formula, and hence we named them the
minimum fourth-order and sixth-order formulas
(MFT and MST). Our approach can be gener-
alized to higher-order formulas. An important
application of Trotterization formulas is quantum
dynamics simulation on digital quantum comput-
ers, where reducing the number of exponentials
(i.e., quantum gates) is beneficial for suppress-
ing errors accompanied by each gate operation.
Although Trotterization-based algorithms do not
have optimal error scalings of quantum-singular-
value-transformation-based ones [13, 15, 16, 25],
they have fewer overheads and are useful in near-
term quantum computers. As demonstrated in a
single-qubit model, the MFT’s error is as tiny as
Suzuki’s fourth-order formula, even though the
MFT involves fewer exponentials. Also, the 9-
exponential formula has less error per gate than
Suzuki’s formula, as demonstrated in a many-

spin model. These formulas would also be useful
in MPS-based dynamics simulations, where fewer
exponentials could speed up the simulation. In
addition, the fourth-order formulas can be used
for estimating the errors of lower-order Trotteri-
zations [9].

Our result is limited in two ways. First, we
assumed Eq. (6) and excluded more general time
dependence A(t) = X(t)+Y (t). Equation (6) in-
cludes important applications like the adiabatic
state preparation, but it would be desirable if one
could generalize the assumption. Second, our re-
sult is currently limited to the decomposition into
two parts X and Y . In some physically relevant
models, such as the quantum Ising model with ex-
ternal fields and the Heisenberg model, the Trot-
terization for the two operators is sufficient since
those Hamiltonians can be viewed as a sum of
two operator sets, each of which consists of com-
muting operators. However, it would be useful
if one could extend the MFT to more than two
operators.

The error of the MFT was obtained as Λ5 in
Eq. (20) consisting of time-independent and -
dependent contributions. For a quantum many-
body local Hamiltonian on a lattice, both contri-
butions are proportional to the volume since they
consist of (nested) commutators between local
Hamiltonian parts. If we use some norm for the
error operator as an error estimator, it will also
be proportional to the volume. However, one is
usually interested in the evolution of a given vec-
tor v, and the error is evaluated as ∥Λ5v∥. Such
an idea was proposed to improve the error esti-
mates by Jahnke et al. [11] for time-independent
cases and generalized by An et al. [1] to the time-
dependent Suzuki formulas. A similar idea could
be used to estimate the error of the MFT. Also,
errors could be reduced by making the time step
δt adaptive [28, 29]. We leave further investiga-
tions of the time-dependent error Υ5 for future
work.
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A Magnus expansion and continuous BCH formula

The Magnus expansion [3] up to the fourth order in our notation (7) reads

Ω1 =
∫ µ+δt/2

µ−δt/2
ds1A(s1), (35)

Ω2 = 1
2

∫ µ+δt/2

µ−δt/2
ds1

∫ s1

µ−δt/2
ds2[A(s1), A(s2)], (36)

Ω3 = 1
6

∫ µ+δt/2

µ−δt/2
ds1

∫ s1

µ−δt/2
ds2

∫ s2

µ−δt/2
ds3([A(s1), [A(s2), A(s3)]] + [[A(s1), A(s2)], A(s3)]), (37)

Ω4 = 1
12

∫ µ+δt/2

µ−δt/2
ds1

∫ s1

µ−δt/2
ds2

∫ s2

µ−δt/2
ds3

∫ s3

µ−δt/2
ds4([[[A(s1), A(s2)], A(s3)], A(s4)]

+ [A(s1), [[A(s2), A(s3)], A(s4)]]] + [A(s1), [A(s2), [A(s3), A(s4)]]]
+ [A(s2), [A(s3), [A(s4), A(s1)]]]). (38)
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For A(t) = u1(t)Z1 + u2(t)Z2, Ωn reduce to

Ω1 = ω1Z1 + ω2Z2, Ω2 = 1
2(ω21 − ω12)[Z1, Z2], Ω3 =

2∑
i=1

βi12[Zi, [Z1, Z2]],

Ω4 =
2∑

i=1

2∑
j=1

βij12[Zi, [Zj , [Z1, Z2]]], (39)

with

βi = ωi (i = 1, 2), (40)

β12 = 1
2(ω21 − ω12), (41)

βi12 = 1
6(ω21i − ω12i − ωi21 + ωi12), (42)

βij12 = − 1
12(ωij21 − ωij12 + ωj12i − ωj21i + ω21ji − ω12ji + ω1ji2 − ω2ji1), (43)

where we introduced

ωi1···iS ≡
∫ µ+δt/2

µ−δt/2
dtS

∫ tS

µ−δt/2
dtS−1· · ·

∫ t3

µ−δt/2
dt2

∫ t2

µ−δt/2
dt1uiS (tS) . . . ui1(t1). (44)

B Orthogonal polynomial expansions of continuous BCH formula
As shown in Appendix A, the continuous BCH formula is characterized by the coefficients βj , β12, βi12,
βij12, etc. Here, considering δt → 0, we derive their leading-order contributions in δt, using orthogonal
polynomials.

We introduce the orthogonal polynomials Pn(x) (n = 0, 1, 2, . . . ) with degPn = n on domain −1 ≤
x ≤ 1 that satisfy ∫ 1

−1
Pm(x)Pn(x)W (x)dx = cnδmn, (45)

where W (x) is the weight function and cn are real numbers. For example, the Legendre polynomials
correspond to W (x) = 1 and cn = 2/(2n+ 1). Using this, we expand ui(t) as

ui(µ+ s) = 1
δt

∞∑
n=1

u
(n)
i (µ)Pn−1

(
s

δt/2

)
, (46)

which implies

u
(n)
i (µ) = δt

cn−1

∫ 1

−1
dvui(µ+ vδt/2)Pn−1(v)W (v). (47)

Using the Taylor expansion for ui in Eq. (47), we obtain u(n)
i (µ) = O(δtn). Based on Eq. (46), we can

obtain the leading-order contributions of β’s in Appendix A.
For example, we obtain, for the Legendre polynomials,

βi = u
(1)
i = δt

2

∫ 1

−1
dvui(µ+ vδt/2), (48)

β12 = 2
3(u(1)

2 u
(2)
1 − u

(1)
1 u

(2)
2 ) +O(δt5). (49)

We note that βi consists of odd-order terms of δt

βi = ui(µ)δt+ u′′i (µ)
24 δt3 +O(δt5). (50)

Thus, if βi = o(δt), then βi = O(δt3).
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C Derivation of the MST
Here we derive the minimum sixth-order Trotterization formula in Theorem 2. To begin with, we
invoke the minimum sixth-order formula for time-independent operators [27], having

eβ1X+β2Y = ea1β1Xeb1β2Y ea2β1Xeb2β2Y ea3β1Xeb3β2Y ea4β1Xeb4β2Y

× ea4β1Xeb3β2Y ea3β1Xeb2β2Y ea2β1Xeb1β2Y ea1β1X +O(δt7), (51)

where

a1 = 0.39225680523878, b1 = 0.78451361047756,
a2 = 0.5100434119184585, b2 = 0.235573213359357,
a3 = −0.4710533854097566, b3 = −1.17767998417887,
a4 = 1

2 −
∑3

i=1 ai = 0.0687531682525181, b4 = 1 − 2
∑3

i=1 bi = 1.31518632068391.

(52)

Note that this Yoshida formula is known to have a large error coefficient [18]. To reduce the coefficient
with adding more exponential, one can use the Blanes and Moan formula [2], like we derived the
9-exponential formula in the main text.

Now we consider its time-dependent generalization, for which

S

(
µ+ δt

2 , µ− δt

2

)
= exp (β1X + β2Y + β12[X,Y ] + β112[X, [X,Y ]] + β212[Y, [X,Y ]]

+β1112[X, [X, [X,Y ]]] + β2212[Y, [Y, [X,Y ]]]
+(β1212 + β2112)[X, [Y, [X,Y ]]]) +O(δt7), (53)

according to the Magnus expansion, where β12 = O(δt3), and βi12 and βij12 are O(δt5). We aim to
decorate the right-hand side of Eq. (51) so that the left-hand side coincides with Eq. (53).

To reproduce the six commutator terms in the exponent of Eq. (53), we introduce six unknown
variables to consider

Φ = e(a1β1+u4)Xe(b1β2+u3)Y e(a2β1+u2)Xe(b2β2+u1−z)Y e(a3β1−w)Xe(b3β2+z)Y e(a4β1+w)Xeb4β2Y

× e(a4β1+w)Xe(b3β2+z)Y e(a3β1−w)Xe(b2β2−u1−z)Y × e(a2β1−u2)Xe(b1β2−u3)Y e(a1β1−u4)X , (54)

where we impose as working hypotheses that u1, . . . , u4 are O(δt2), and w and z are O(δt3). Applying
BCH-type formulas repeatedly and using Eq. (51), we obtain

Φ = exp (β1X + β2Y + c12[X,Y ] + c112[X, [X,Y ]] + c212[Y, [X,Y ]]
+c1112[X, [X, [X,Y ]]] + c2212[Y, [Y, [X,Y ]]] + c1212[X, [Y, [X,Y ]]]) +O(δt7), (55)

where c12, c112, . . . , c1212 are second-order polynomials in terms of the unknowns u1, . . . , u4, w, and z.
Using Eq. (52), these polynomials are given by

c12 = 0.804600434314477u1β1 − 0.21548638952244u3β1 − 0.56902722095512u2β2 + u4β2, (56)
c112 = −0.28451361047756β2u

2
2 + 0.804600434314477u1β1u2 − 0.56902722095512u4β2u2

− 0.157118466580002zβ2
1 + 0.804600434314477u1u4β1 − 0.21548638952244u3u4β1

+ 0.5u2
4β2 − 0.161938460199746wβ1β2, (57)

c212 = 0.402300217157238β1u
2
1 + 0.804600434314477u3β1u1 − 0.161938460199745wβ2

2

− 0.10774319476122u2
3β1 − 0.56902722095512u2u3β2 − 0.489977318150775zβ1β2, (58)

c1112 = −0.0118215295615413u1β
3
1 + 0.00856168382290096u3β

3
1 + 0.0562690326323137u2β2β

2
1 , (59)

c2212 = 0.0160325321433039u2β
3
2 + 0.0641595078732893u1β1β

2
2 + 0.065376134206464u3β1β

2
2 , (60)

c1212 = 0.0115567664079044u1β2β
2
1 + 0.0538195677848599u3β2β

2
1 + 0.112538065264628u2β

2
2β1. (61)
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Figure 5: Error ratio between those evaluated by the spectral and Frobenius norm for Trotterization formulas. The
parameters and legends are all shared by those in Fig. 2.

Thus our problem is reduced to solving the following set of six equations,

c12 = β12, c1112 = β1112, c2212 = β2212, c1212 = β1212 + β2112, (62)
c112 = β112, c212 = β212, (63)

for u1, . . . , u4, w, and z. Due to the linearity and independence, Eqs. (62) can be uniquely solved for
u1, . . . , u4 under our assumptions β1 = Θ(δt) and β2 = Θ(δt). Then, substituting these solutions to
Eqs. (63), we have two linear and independent equations for w and z, which can also be uniquely
solved. Thus we have proved that Φ with these solutions coincides with the exact propagator S(µ −
δt/2, µ+ δt/2) up to the sixth order of δt.

D Spectral norm
In the main text, the Frobenius norm in the error definition (30). To emphasize this norm choice, we
rewrite Eq. (30) as

ϵF =
∥∥∥∥S (µ+ δt

2 , µ− δt

2

)
− T

∥∥∥∥
F
, (64)

where ∥A∥ =
√

tr(A†A). Note that 2ϵF represents the trace distance of S and T . We can also consider
the spectral norm

ϵS =
∥∥∥∥S (µ+ δt

2 , µ− δt

2

)
− T

∥∥∥∥
S
, (65)

where ∥A∥S coincides with the largest singular value of A. We confirm that both choices give quali-
tatively similar results in the benchmark calculation presented in Fig. 2. We illustrate, in Fig. 5, the
error ratio obtained for the same simulation, where we observe that the different choice results only in
a constant factor independent of the algorithm and time step.

E Details on Γ5 and Γ′
5

Here we supplement more details on the time-independent errors Γ5 and Γ′5. According to Ref. [17],
each symmetric Trotterization formula has the following relation,

e(A+B)h+C1h+C3h3+C5h5+··· = eAa1heBb1h · · · eBbqheAaq+1h, (66)
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where h is the time step and

C1 =(ν − 1)A+ (σ − 1)B
C3 =α[A, [A,B]] + β[B, [A,B]]
C5 =γ1[A, [A, [A, [A,B]]]] + γ2[A, [A, [B, [A,B]]]] + γ3[B, [A, [A, [A,B]]]]

+ γ4[B, [B, [B, [A,B]]]] + γ5[B, [B, [A, [A,B]]]] + γ6[A, [B, [B, [A,B]]]].

(67)

Each fourth-order formula is obtained by choosing ai’s and bi’s so that C1 = C3 = 0, in which case the
Trotter error is proportional to C5 in the leading order:

e(A+B)h − eAa1heBb1h · · · eBbqheAaq+1h = h5C5 +O(h7). (68)

We have q = 3 for the Forest-Ruth-Suzuki formula and q = 4 for Omelyan’s Forest-Ruth formula,
for which we have different values of γ1, . . . , γ6. Omelyan’s Forest-Ruth formula has more degrees
of freedom that are fine-tuned to decrease an error quantifier

∑6
i=1 |γi|6 [17]. The time-independent

contributions Γ5 and Γ′5 are given, in the leading order of δt, by h5C5 under the substitution of
Ah → β1X and Bh → β2Y (or the other assignment Ah → β2Y and Bh → β1X).

Now we explain why the filled and open symbols for the MFT in Fig. 3 deviate significantly in the
large µ region. We recall that

β1 = δt, F = σx, β2 = µδt, G = σz, (for ■), (69)
β1 = µδt, F = σz, β2 = δt, G = σx, (for □), (70)

where we used
∫ µ+δt/2

µ−δt/2 f(t)dt = δt and
∫ µ+δt/2

µ−δt/2 g(t)dt = µδt. In Fig. 3, we set δt = 0.1/
√

1 + µ2 so
β1 ∼ 0.1/µ and β2 ∼ 0.1 for ■ whereas β1 ∼ 0.1 and β2 ∼ 0.1/µ for □ when µ ≫ 1. This asymmetry
gives rise to the difference in the error of the MFTs. As discussed in the main text, the dominant
contribution of the error comes from the time-independent part Γ5, which is h5C5 in the present
notation. Therefore, the errors in the leading order are obtained by substituting Ah → β1(−iF ) and
Bh → β2(−iG) as

Γ5 ∼

(−i)5γ4
0.15

µ [σz, [σz, [σz, [σx, σz]]]] for ■, µ ≫ 1
(−i)5γ1

0.15

µ [σz, [σz, [σz, [σx, σz]]]] for □, µ ≫ 1
, (71)

where we used Eqs. (69) and (70) and the asymptotic behaviors of β1 and β2 in µ ≫ 1. Note that we
obtain the observed µ−1 scaling for both cases. Interestingly, the difference between these cases comes
from the imbalance of γ4 and γ1, which are [17]

γ1 = −0.0004138, γ4 = +0.0046844, (72)

and thus differ by a factor of 10. This is why we observed a magnitude difference between ■ and □ in
Fig. 3.

For generic values of µ, µ-dependence of δt and more than one coefficients γ1, · · · , γ6 come into play.
This may cause a peak near µ ∼ 1 in Fig. 3, but we do not go into more detail since this should depend
on the model and parameters.
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