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The fabrication of silver joints was done using the pressureless sintering
technology to suit the demand of high-reliability schottky barrier diodes
(SBD). Porosity of 10.6% and shear strength of 39.6 MPa were reached under
the optimized parameters of 290°C sintering temperature and 40 min residence
time. The sintered joint demonstrated good mechanical/thermal/electrical
performance in the ultimate reliability assessment testing, including the
temperature cycling test, second sintering test, steady-state lifetime test, and
intermittent lifetime test. This study demonstrated the viability of pressureless
sintering of silver joints with good high-temperature reliability, which has
significant application potential for aeronautical high-reliability power
electronics.
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1 Introduction

With the continuous development of discrete devices for aerospace towards higher
power, higher service temperature, and faster conversion rate (Chin et al., 2010),
Schottky barrier diodes (SBD) are becoming increasingly widely used nowadays
(Ying et al., 2020; Nandi et al., 2021). Compared to the ordinary PN junction
diodes, SBD plays a more significant role in communication and energy
management systems due to the faster switching speed, higher frequency, and higher
service temperature (Zhang et al., 2014; Jiang et al., 2018). To ensure that the
performance of SBD chips is not damaged, the highly-reliable packaging is of great
significance. The surface of the Schottky chips used in SBD has a temperature sensitive
Schottky barrier structure, which is highly susceptible to be damaged during the
packaging process and leading to device short circuit failure due to its extremely
thin thickness (less than 0.1 μm). Therefore, the bonding between the chip and the
lead post is one of the most important processes in the packaging process of SBD. At
present, the mainstream bonding method for schottky chips is alloy soldering (Tai et al.,
2010; Zhang et al., 2019), such as Sn-Zn (Islam et al., 2005),Sn-Cu(El-Daly and
Hammad, 2012), and Sn-Ag-Cu(Tsao and Chang, 2010) solders. However, intrinsic
difficulties such as extreme heat stress (Igoshev et al., 2000; Igoshev et al., 2018) and
brittle intermetallic compounds (Satyanarayan and Prabhu, 2011; Wang et al., 2012)
severely limit the use of these standard technologies in the application of high-
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temperature service SBD (Hong et al., 2014; Cheng et al., 2017).
The reliability of devices could not be effectively guaranteed as
well. Due to its superior electrical and thermal conductivity
(Wang et al., 2013; Li et al., 2015), nano-silver solder paste
has been in high demand for the packaging of power
electronics (Hausner et al., 2016; Wang et al., 2021), which
could be sintered at low temperature and service at high
temperature because of the high melt point of Ag (Sakamoto
et al., 2013). Although some experts have achieved nano-silver
paste sintering joint with low porosity (Maruyama et al., 2008)
and satisfisfactory mechanical properties (Fu et al., 2014), the
silver sintering method has not been successfully used in the
packaging for SBD to the authors’ best knowledge. Furtherly, the
high-temperature lifetime performances (Mei et al., 2013) of
silvered-sintered SBD under extreme experimental conditions
has not been investigated systematically, which is extremely
important for the aerospace application scenarios.

In this study, a pressureless sintering process was employed to
produce a high-quality silver joint with outstanding long-term
service and high-reliability performance, which has been
successfully used in the aerospace SBD and has large potential
for the application of other highly-reliable power electronics.

2 Materials and methods

In this experiment, tungsten electrode columns, schottky chips
and silver paste are utilized to fabricate the SBD components. The
photogragh and joint structure of the SBD is shown in Figure 1. The
SBD is a symmetrical double-layer sandwich structure, which means
two tungsten electrode columns and the both sides of schottky chip
are joined by two layers of silver paste. The silver sintering process
has high requirements for the quality of the metallization coatings at
the joining interface, among which the silver metallization has the
best sintering performance. Therefore, to ensure the high-quality
sintering between the Schottky chip and the tungsten electrode
column, it is necessary to sequentially fabricate Ti/Ni/Ag
metallization on the surface of the tungsten electrode column

using magnetron sputtering method. This includes a 100 nm Ti
adhesive layer, a 700 nmNi barrier layer, and a 3,000 nmAg welding
layer.

The Ag paste used in the experiment is NanoTach-X paste
purchased from Tianjin polytechnic university. To lay the
foundation for the subsequent exploration of the silver paste
sintering process, some nessesarry characterization and testing
experiments are conducted on the silver paste, such as thermal
gravimetric analysis (TGA) and differential scanning calorimetry
(DSC) tests. The steps of the pressureless sintering method used in
this experiment are as follows (Figure 2A): first, dispensing the silver
paste to the upper surface of the tungsten electrode column, then
place the Schottky chip face up on the tungsten electrode after
dispensing, and then dispensing silver paste to the front of the
Schottky chip, and finally place another tungsten electrode column

FIGURE 1
Photograph and the schematic of sintered SBD sample.

FIGURE 2
Schematic of the pressureless silver sintering process: (A)
schematic of silver paste dispensing and device assembly; (B)
schematic of sintering process curve.
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above the chip. After assembly, it is placed in a dedicated sintering
equipment for sintering. As shown in Figure 2B, the sintering
process includes three steps: pre-heating, sintering, and cooling.
No additional pressure is applied throughout the sintering process to
prevent the unwanted damage to the upper surface of schottky chips
and the further electrical performance failure of the SBD.

The cross-section morphology of the joint was observed by
scanning electron microscopy (SEM, ZEISS-SUPRA55) and the
porosity of the joint was calculated by ImageJ software. Shear
tests (DAGE-4000PXY) were performed under the crosshead
speed of 0.2 mm/s to evaluate the joint strength, and the fracture
surface feature of the sintered joint was also characterized by SEM.
Besides, the ultimate reliability assessment testing mainly included
the temperature cycling test, second sintering test, steady-state
lifetime test, and intermittent lifetime test. Temperature cycling
test means performing −65–175°C temperature cycles on the SBD
sample. The second sintering samples were obtained after 500°C and
600°C temperature second sintering. The steady state life span test
means exposing the SBD to the environment of 85°C for 1,000 h; and
the intermittent life span test means performing 6,000 power on/off
cycles on the SBD at 85°C temperature.

3 Results and discussion

According to the TGA and DSC curves as shown in Figure 3A,
the weight content of terpilenol in silvepaste is 11.59% and it can be
effectively volatilized at the temperature of 250°C. Due to the
accumulating effect of nanoparticles, the micromorphology of the
silver paste consisted of flaky particles with an average size of
1.43 um, as illustrated in Figures 3B, C.

For pressureless sintering, a pre selected parameters
combination of 290°C/30 min based on the literature and the
characteristics of the silver paste were utilized to examine the
viability of the selected silver paste in connecting schottky chips
and tungsten electrode columns.

SEM image in Figure 4A shows the typical microstructure of the
silver sintered joint. Metallurgical bonding could be observed
between the schottky chip and tungsten electrode column, and
the thickness of the effective sintered layer was uniform.
According to the magnification image in Figure 4B, the sintered
silver paste showed the porous structure and the Ti/Ni/Ag
metalization coatings remained stable. After calculation, the
porosity of this joint was 14.1% and the shear strength was

FIGURE 3
Characterization of the silver paste: (A) TGA and DSC curves of the silver paste; (B) SEM images of the silver paste; (C) size distribution of the silver
paste particles.

FIGURE 4
Cross-section morphologies of the sintered joint: (A) image at ×200 magnification; (B) image at ×5,000 magnification.
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FIGURE 5
Morphorlogies and properties of the sintered joints at different temperatures with 30 min residence time: (A–D) cross-sections at 230°C–290°C; (E)
porosities at 230°C–290°C; (F) shear strengths at 230°C–290°C.

FIGURE 6
Morphorlogies and properties of the sintered joints at different residence time at 290°C sintering temperature: (A–D) cross-sections with
20–50 min; (E) porosities with 20–50 min; (F) shear strengths with 20–50 min.
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34.3 MPa, indicating the feasibility of selected silver paste and
pressureless sintering method.

Figure 5 illustrates the effect of sintering temperature on the
joint porosity and shear strength. The cross-sections of all
samples sintered at different temperatures revealed a porous
structure, however the porosity was highly dependent on the
sintering temperature. With the temperature rising from 230°C
to 290°C, the bonding area of the sintered Ag layer and Ag
coating gradually increased. Three distinct sections of the
sintered layer were chosen for the porosity calculation, which
revealed a decreasing trend from 25.8% to 11.7%. At low
temperatures, the organic components of the silver paste
could not be completely removed and the structure was
amorphous. Due to the low activation energy, surface
diffusion was the predominant diffusion mode at lower
temperatures. When the temperature rised, the complete
volatilization of organic dispersant led to the densification of
silver layer. Besides, the atom diffusion mechanism changed to

grain boundary diffusion, which could improve the density of
sintered layer as well. Shear strength was influenced by the joint
porosity, which reached 35.2 MPa with the lowest porosity of
11.7% at 290°C. However, the considerable heat input resulting
from the high temperature may be detrimental to the quality of
the joint. Some researchers have claimed that a higher
temperature (>290°C) will lead to the oxidation of substrate
and silver joint, which decreased the shear strength and joint
stability (Chua and Siow, 2016). Therefore, we chose 290°C as
the optimal sintering temperature in our testing.

The morphologies of sintered layers with varying residence
times are depicted in Figure 6 a through d at the sintering

FIGURE 7
Fracture morphorlogy and temperature cycle test results: (A–C) fracture surface of the sintered joint; (D) temperature cycling curve; (E) fracture
surface after temperature cycle test; (F) magnification of (E).

TABLE 1 Material properties of the simulation model.

Material properties W Substrste Silver sintered layer Schottky chip

Density (tonne/mm3) 1.925 × 10−8 8.4 × 10−9 3.21 × 10−9

Young’s modulus (MPa) 344,700 Listed in Table 2 501,000

Poisson ratio 0.28 0.37 0.45

Thermal conductivity (W/(m°C)) 173 240 370

Specific heat capacity (mJ/(tonne°C)) 1.3×108 2.34×108 6.9×108

Coefficient of thermal expansion (/°C) 4.5 × 10−6 Listed in Table 3 3.4 × 10−6

TABLE 2 Young’s modulus of sintered Ag layer at different temperatures.

Temperature (°C) −40 0 25 60 120 150

Young’s modulus (GPa) 9.01 7.96 6.28 4.52 2.64 1.58
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temperature of 290°C. With the residence time increasing from
20 min to 50 min, the porosity droped from 19.4% to 8.7% for the
growing of Ag particles, as shown in Figure 6E. However, the shear

strength showed a trend of first rising and then falling, which can be
found in Figure 6F. At the range of 20–40 min, the shear strength
rised for the density increasing and reached the highest of 39.6 MPa
with 40 min residence time, which has exceeded the shearing
strength level of Au80Sn20 alloy soldering SBD joint (30 MPa).
When the residence time further increased, the shear strength
reduced to 36.5 MPa because of the coarsening effect of Ag
grains. Therefore, 40 min was chosen as the optimal residence
time for sintering.

The fracture surface morphology is shown in Figure 7A–C to
investigate the fracture behavior of the sintered joint. For the
290°C/40 min sintered sample after shear test, a large number of
shearing dimples could be observed, indicating the fracture
occurred inside the sintered silver layer because the bonding
strength of the sintered silver layer was superior to the bonding
strength between sintered silver layer and Ag coatings. The
sintering neck was thick and dense, showing the excellent
bonding effect under this parameter.

To meet the demand of extreme temperature resistance of
SBD, temperature cycling test was conducted to evaluate the high
and low temperature reliability. Figure 6D exhibits the
temperature cycling test conditions in detail. A complete
temperature cycle consisted of a low temperature period
at −65°C for 15 min and a high temperature period at 175°C
for 15 min. The heating time and cooling time were both 30 s.
After 500 temperature cycles, a shear test was performed on the
sintered silver joint and the fracture surface was observed. The
joint strength after temperature cycling test was 37.9 MPa,
reaching 95.7% of the sintered joint, indicating the silver joint
had great temperature cycling resistance. Based on the fracture
surfaces of Figures 7E, F, the fracture occurred mostly between
the sintered silver layer and the Ag metalization coating, and the

FIGURE 8
Simulation results of the temperature cycling sample: (A)
simulation model; (B, C) equivalent stress and creep results.

FIGURE 9
Results of the reliability test and the comparation of sintered sample: (A) second sintering; (B) steady-state lifetime test; (C) intermittent lifetime test.
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sintering neck was narrower than in Figure 7C, indicating that
the pores in the Ag layer were larger. In addition, no dimples in
the shearing direction were observed indicating that the sample’s
flexibility decreased during temperature cycling. The thermal
stress was caused by the differential in thermal expansion
coefficients between sintered Ag, schottky chip, and W
substrate. The pores in the sintered layer developed and
accumulated, causing the joint to become brittle and lose
strength.

Simulation with finite elements was utilized to assess the
stress distribution of the temperature-cycling sample more
precisely. Abaqus software was used to construct a finite
element simulation model and emphasize the silver sintered
layer, as illustrated in Figure 8A. Table 1 lists the material
parameters of the sintered layer-Schottky chip and the W
substrate. Due to the influence of porosity structure on the
material characteristics, the silver sintered layer lacked pores.
Two temperature cycles were included to the simulation model
and the thermal state was identical to that of the temperature
cycling test.

The equivalent stress and creep cloud maps are illustrated in
Figures 8B, C. At the edge of sintered Ag layer which contacted with
the schottky chip and W substrate, the stress and creep
concentration phenomenon could be found. Under the
temperature cycling situation, these edges were more prone to
cracking and became the weakest and most vulnerable areas,
which was consistent with the experimental result that broke
between the sintered silver layer and Ag coating.

In addition to the temperature cycling test, further stringent
reliability tests were conducted to determine the quality of the
sintered joint of SBD. To evaluate the high-temperature
resistance of the sintered sample, second sintering test was
performed at the temperatures of 500°C and 600°C,
respectively. The shearing strength of the second sintered
samples were 39.2 and 38.9 MPa, which were basically the
same as the sintered sample, indicating the joint had great
capablity of withstanding second high temperature processing,
as illustrated in Table 4. A large number of sintering necks were
pulled out according to Figure 9A, showing the fracture location
were still inside the sintered layer. To determine the long-term
dependability of silver sintered joints, a 1,000 h steady-state
lifespan test was conducted at 85 °C under rigorous conditions.

The shearing strength of the joint after test was 38.6 MPa, which
was only 1 MPa less than the joint before this test. As shown in
Figure 9B, some fracture sections were lack of sintering necks,
indicating the fracture occurred at the bonding area between
sintered layer and Ag coating. Due to the thinner sintering necks,
tested joint strength was slightly lower than that of the sintered
joint. Intermittent lifetime test was also performed to evaluate the
joint reliability under cyclic electric stress. The tested sample was
connected to the specific circuit system and was applied by
periodic electric stress. One cycle included 3 min of power on
time and 3 min of power off time. After 6,000 cycles at 85°C
temperature, the joint strength was still 38.3 MPa, reaching 96.7%
of the sintered joint. As demonstrated by the morphologies in
Figure 9C, the thinning of sintering necks and the disappearance
of shearing features on fractured sintering necks led to a
reduction in strength, which was comparable to the results of
a steady-state lifespan test.

4 Conclusion

In this paper, a high-quality silver joint is used for resistance
to high temperatures. The pressureless sintering method was
used to create schottky barrier diodes. Temperature and
residence time during sintering were two major parameters
that influenced the porosity and shear strength of joints.
Under the optimal conditions of 290°C and 40 min, a porosity
of 10.6% and a shear strength of 39.6% were produced. The
sintered joint performed exceptionally well in mechanical/
thermal/electrical testing, including the temperature cycling
test, the second sintering test, the steady-state lifetime test,
and the intermittent lifetime test. This study demonstrated the
viability of pressureless sintering of silver joints with good high-
temperature reliability, which has significant application
potential in aeronautical SBD and other power electronics
such as MOSFET and IGBT.
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TABLE 3 Coefficient of thermal expansion of sintered Ag layer at different temperatures.

Temperature (°C) −50 0 50 100 150 200

Coefficient of thermal expansion (/°C) 20.3 21.1 27.2 24.5 29.7 35.1

TABLE 4 Comparison of shear strengths before and after stringent reliability tests.

Status of the
joint

290°C/40min As-
sintered

After 500°C second
sintering

After 600°C second
sintering

After 1,000 h steady-
state lifespan test

After intermittent
lifetime test

Shear
strength (MPa)

39.6 39.2 38.9 38.6 38.3
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