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A common issue faced by the downscaled regional ensemble prediction systems
is the under-dispersiveness of the ensemble forecasts, often attributed to the lack
of spread under the initial conditions from the global ensemble. In this study, a
novel method that adopts an adaptive approach to selecting global ensemble
members for regional downscaling has been developed. Instead of using a fixed
set of pre-selected global ensemble members, the adaptive selection performs a
sampling algorithm and selects the global ensemblemembers, whichmaximizes a
fractions skill score (FSS)-based displacement between ensemble members. The
method is applied to a convective-permitting ensemble prediction system over
the western Maritime Continent, referred to as SINGV-EPS. SINGV-EPS has a grid
spacing of 4.5 km and is a 12-member ensemble that is driven by the European
Centre for Medium-Range Weather Forecasts (ECMWF) 51-member global
ensemble. Month-long trials were conducted in June 2020 to assess the
impact of adaptive selection on the ensemble forecast spread and rainfall
verification scores. In both fixed pre-selection and adaptive selection
experiments, SINGV-EPS was still under-dispersive. However, adaptive
selection improved the ensemble spread and reduced the root-mean-square
error (RMSE) of the ensemble mean in wind, temperature, and precipitation fields.
Further verification of the rainfall forecasts showed that there was a reduction in
the Brier score and a higher hit rate in the relative operating characteristic (ROC)
curve for all rainfall thresholds when adaptive selection was applied. Additionally,
the ensemble mean forecasts from adaptive selection experiments are more
accurate beyond 24 h, with a higher FSS for all rainfall thresholds and
neighborhood lengths. These results suggest that the adaptive selection is
superior to the fixed pre-selection of global ensemble members for
downscaled regional ensemble prediction.
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1 Introduction

Singapore is situated in Southeast Asia, a region often affected by
heavy rainfall that can lead to floods and landslides. While the
prediction of heavy rainfall in this tropical region by atmospheric
models is beneficial for flood planning, it is extremely challenging
due to complex interactions of deep convection with the large-scale
motions and underlying air–sea interactions. Local land–sea breeze
circulations, surface heating during the day, and delayed rainfall
response to deep convection (Mori et al., 2004; Yamanaka, 2016)
play a significant role in governing the diurnal cycle in this region
(Yang and Slingo, 2001). High-resolution numerical weather
prediction (NWP) systems still struggle to accurately predict the
location, intensity, and spatio-temporal extent of rainfall associated
with deep convection.

The accuracy of NWP forecasts can be restricted by (i) initial
condition errors: an inaccurate representation of the initial
atmospheric state due to, for example, a lack of observations
and/or limitations of data assimilation; (ii) model errors: errors
in the model formulation arising from the need to discretize the
atmospheric governing equations and conduct crude
parameterization of the unresolved physical processes. For
regional NWP, another source of error arises from the lateral
boundary conditions. These errors are difficult to quantify as
they evolve spatially and temporally. In a chaotic atmospheric
system, they can grow exponentially, leading to large forecast
uncertainties. Over Southeast Asia, which is dominated by deep
convection and highly non-linear, these uncertainties are
particularly large, and it is not trivial to estimate them.

The probabilistic approach using convective-permitting
ensembles attempts to provide an estimate of the forecast
uncertainty (Gebhardt et al., 2008; Schwartz et al., 2010; Schwartz
et al., 2014; Clark et al., 2011; Migliorini et al., 2011; Clark et al.,
2016; Cafero et al., 2019; Porson et al., 2020). These ensemble
prediction systems typically have a grid spacing that is less than
5 km, which allows convective parametrizations to be switched off,
or reduced, as deep convection starts to be resolved explicitly by the
dynamical core of the atmospheric model, thus reducing the
parametrization-related biases (Weusthoff et al., 2010; Ferret
et al., 2021 and references therein). Due to the increasing
computing power, many operational centers have implemented
and run various types of convective-permitting ensemble
prediction systems (Clark et al., 2011; Bouttier et al., 2012;
Schumacher et al., 2013; Schumacher and Clark, 2014; Hagelin
et al., 2017; Zhang, 2018; Frogner et al., 2019; Porson et al., 2020;
Ono et al., 2021; Wastl et al., 2021). These systems differ in terms of
the number of ensemble members and the approach to capturing the
various sources of uncertainties. Despite providing useful forecast
guidance, many operational centers and studies report an issue with
under-dispersiveness of the ensemble (Buizza et al., 2005; Raftery
et al., 2005; Hohenegger et al., 2008; Gebhardt et al., 2011; El-
Ouartassy et al., 2022; Lakatos et al., 2023; Manikanta et al., 2023),
where the spread of the ensemble members is too small to fully
capture the forecast uncertainty.

Typically, convective-permitting ensemble prediction systems
are downscaled using the initial and boundary conditions from a
global ensemble. However, the convective-permitting ensemble
often has fewer members than the global ensemble because of

higher computational costs in running convective-permitting
ensemble forecasts. Therefore, the driving global ensemble
members need to be chosen somehow. Existing approaches
include using a fixed selection of a subset of the global ensemble
to drive the convective-permitting ensemble, assuming each
ensemble member represents an equally likely outcome.
However, this pre-selection limits the range of the resulting
probability distribution function and may not fully capture the
uncertainty under initial conditions originating from the global
ensemble. Instead, an adaptive approach may be adopted when
selecting the members to better represent the uncertainty in the
global ensemble.

In collaboration with the United Kingdom Met Office,
Meteorological Service Singapore has implemented a basic
convective-permitting ensemble prediction system over Singapore
and the surrounding region, referred to as SINGV-EPS (Porson
et al., 2019). Preliminary investigations showed that SINGV-EPS
also suffers from under-dispersiveness, assessed by comparing the
ensemble spread with the corresponding root-mean-square error
(RMSE) of the ensemble mean (Fortin et al., 2014). The main aim of
this study is to obtain the optimal spread from the reduced number
of global ensemble members driving SINGV-EPS, which should lead
to improvements in the spread–error relationship of the SINGV-
EPS forecasts. We explore an approach that uses an adaptive
selection of members so that at each forecast time, different
members are selected, such that the ‘displacement’ between the
selected ensemble members is optimized. We focus solely on
uncertainties arising from the specification of initial and
boundary conditions; sensitivity experiments using perturbed
model physics were also conducted, but results are omitted
because that is not the focus of this paper. We attempt to answer
the following questions in this study:

1. How does the spread/uncertainty of SINGV-EPS change when
the ECMWF members are adaptively selected?

2. How does the change in spread/uncertainty impact the forecast
skill of SINGV-EPS?

The remainder of the article is organized as follows: the details
and description of experiments are discussed in Section 2. The data
used for the analysis and evaluation methods are discussed in
Section 3. The results are discussed in Section 4. The summary
and conclusions are presented in Section 5.

2 Experiment setup

2.1 SINGV-EPS description

SINGV-EPS is downscaled using the initial and lateral boundary
conditions from the European Centre for Medium-Range Weather
Forecasts (ECMWF) global model ensemble analysis and forecast
(0.2° horizontal resolution; ~18 km, with 137 vertical levels),
operating on a 364 × 342 horizontal grid with a grid spacing of
4.5 km and 80 vertical levels over the western Maritime Continent
(see Figure 1A for domain). It spans from 94.75° to 109.35°E and 5°S
to 8.05°N. It is initialized twice a day at 00:00 UTC and 12:00 UTC,
with forecast lead times up to 36 h. The dynamical core is based on

Frontiers in Environmental Science frontiersin.org02

Sharma et al. 10.3389/fenvs.2023.1281265

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1281265


the Met Office Unified Model framework, which solves a non-
hydrostatic, deep atmosphere equation set using semi-implicit,
semi-Lagrangian time stepping methods. The formulation of
SINGV-EPS is based on a regional ensemble version referred to
as MOGREPS-UK (Hagelin et al., 2017). However, SINGV-EPS uses
a different science configuration, including differing
parametrization scheme settings, compared to MOGREPS-UK.
SINGV-EPS uses a tropical configuration, while MOGREPS-UK
uses a midlatitude configuration. The main differences are discussed
in Bush et al. (2020)—the first Regional Atmosphere and Land
configuration tailored for the tropical region (RAL1-T).

SINGV-EPS does not implement additional ensemble
perturbations apart from the initial and lateral boundary
perturbations inherited from the global ECMWF ensemble
(Buizza and Palmer, 1995; Buizza et al., 1999; Palmer et al., 2009;
Leutbecher et al., 2017), which uses an ensemble of data assimilation
approaches to generate ensemble perturbations. The global ECMWF
ensemble contains 51 members (50 members and 1 control), and
SINGV-EPS currently uses a pre-selection of 12 members
(11 members and 1 control).

2.2 Adaptive selection of ensemble
members

As mentioned in Section 1, it is possible to adopt an adaptive
approach in selecting members to better represent the uncertainty
under initial conditions. This can be achieved by applying a
sampling approach based on the fractions skill score (FSS;

Gilleland et al., 2020; Roberts, N., 2008; Roberts and Lean, 2008;
Skok, G., 2015; Skok and Roberts, 2016; Skok and Roberts, 2018).
FSS compares two gridded fields and measures the degree of
correspondence as a function of the spatial scale. The forecast
and observation fields are re-gridded and converted into binary
fields based on the values in each grid cell being higher or lower than
a certain threshold. A neighborhood length N (number of grid cells)
is defined and used to convert regularly gridded fields into fractions
based on the number of grid cells within neighborhoods of size N ×
N have cell values exceeding the threshold. FSS is then expressed as

FSS N( ) � 1 − MSE N( )
MSE N( )ref

, (1)

where

MSE N( ) � 1
NxNy

∑NxNy

i�1
O N( )i,j −M N( )i,j[ ]2 (2)

and

MSE N( )ref � 1
NxNy

∑NxNy

i�1
O2

N( )i,j +M2
N( )i,j[ ]2⎡⎢⎣ ⎤⎥⎦. (3)

Here,MSE is the mean square error,MSE(N) is theMSE between the
observed and modeled fractions, and MSE(N)ref is the maximum
possible error from the two fields. O(N) and M(N) are the fields of
fractions for neighborhood length N for observations and models,
respectively; Nx and Ny are the numbers of neighborhoods in the full
domain along the longitude and latitude axes, respectively. FSS is
usually computed for a series of varying neighborhood sizes (L) and
differing thresholds.

FIGURE 1
(A)Geographical domain of interest showing the terrain elevation (m; contours) and the distribution of 12 radiosonde locations used for verification
(red); the vertical profile of ensemble spread and RMSE of the ensemblemean for 12-h (T + 12) and 36-h forecasts (T + 36) of (B) zonal wind, (C)meridional
wind, and (D) temperature fields.
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FSS can be used to estimate spatial agreement between ensemble
member pairs for different neighborhood sizes, thereby providing an
overall measure of spatial ensemble agreement for different
neighborhood sizes from all member–member comparisons (Dey
et al., 2014). The method selected to adopt here uses FSS as a direct
measure of spatial distance. Following the approach of Skok (2015),
Skok and Roberts (2016), and Skok and Roberts (2018), the proxy
for the spatial distance (d) between two fields of a variable (e.g.,
precipitation) is expressed as

d � 1 − FSS( ). 2L + 1( ), (4)
where L is an odd number representing the neighborhood radius in
model grid points that defines the neighborhood size (2L + 1) used to
calculate FSS. Here, we introduce a novel approach which uses this
formula and applies it to atmospheric fields (instead of precipitation
fields) to select the ensemble members. Note that this approach has
been modified slightly from that of Skok and Roberts (2018) who
recommended an approach that accounts for overlapping features to
provide a more accurate absolute distance measure. However, since
we are interested in relative distances rather than absolute distances,
the overlap extension is not deemed essential. For each ensemble
member (the ithmember), we perform the following steps to compute
the total displacement �d

tot
i :

(i) For a two-dimensional atmospheric field (e.g., surface zonal
wind) from the ECMWF global ensemble member (i th

member) analysis (but also could be from forecasts), the
50th percentile value of the field is used as the threshold;
the grid points are assigned ones or zeroes depending on
the value being higher or lower than the threshold.
Naturally, 50% of the grid points would carry a value of
one. These values would be associated with prominent
features within the atmospheric field (since adjacent grid
points tend to have similar values in a smooth atmospheric
field and tend to cluster).

(ii) FSS is calculated for the ith ensemble member with respect to
the remaining ensemble members, so FSS is a function of two
ensemble indexes (FSSi,j).

(iii) Using Eq. 4, the displacement di,j,L is computed for different
neighborhood lengths (L being the neighborhood radius as
defined previously; 1, 3, and 5 grid points), where the distance
between each grid point is 20 km. The use of three different
neighborhood lengths enables greater discrimination when
calculating the distances. This is necessary because the low
percentile (50%) creates good spatial agreement even at the grid
scale due to the high (50%) coverage. It means that FSS =
0.5 just by random chance. Hence, the approach of calculating
the distance when FSS ~0.5 (Skok and Roberts, 2018) would
often be limited to the grid scale in this setup (i.e., L � 0; no
application of neighbourhooding), which would not account
for displacement associated with grid points exceeding the
threshold that do not overlap. The use of additional
neighborhood lengths accounts for the non-overlapping grid
points.

(iv) The displacement di,j,L is composited first over all ensemble
member comparisons (ith member to other ensemble
members; Nens − 1 since di,i,L is excluded from the

composition) and then over different neighborhood lengths

(NL), �di � ∑NL∑(Nens−1)
di,j,L

NL(Nens−1) .
(v) The mean displacement �di is computed for each of the four

variables: surface (first model level) zonal wind, meridional
wind, air temperature, and specific humidity, and the total
displacement �d

tot
i is computed by summing �di across variables.

Given that tropical convection is sensitive to near-surface
dynamical fields, we expect that the selection of these four
variables for the sampling algorithm would subsequently result
in a larger impact on the forecasted precipitation field.

After repeating for all ensemble members, the ensemble
members are then ranked according to �d

tot
i . The control is always

included, together with the first eight ensemble indexes (with the
smallest displacement), and the last three ensemble indexes (with
the largest displacement) are the selected subset of 12 members used
to drive SINGV-EPS. There is no strict requirement to select the first
eight and last three ensemble indexes; thus, the aforementioned
setup was selected based on sensitivity experiments.

2.3 Simulation period

We conducted month-long simulations in June 2020 using
SINGV-EPS. June typically occurs as the transition month
between the inter-monsoon period and the southwest monsoon
period for Singapore, so late afternoon thunderstorms are common
due to the convective heating over land and relatively near-surface
lighter winds throughout the domain. This allows for sufficient
events within the month to compute precipitation verification
statistics (Section 4). The forecasts are initialized at 12:00 UTC
(8 p.m. local time), and we discard the first 12 h of the forecast due to
spin-up. SEL and CTL refer to experiments using SINGV-EPS with
and without adaptive selection of members, respectively.

3 Data and methods

3.1 Radiosonde observations

Daily wind and temperature data from 00:00 UTC radiosonde
profiles in June 2020 have been used for verification. The data are
available from approximately 12 locations scattered around Sumatra
and theMalaysian Peninsula (Figure 1A). Although they are sparsely
distributed within the domain of interest, the radiosondes are still
useful for comparison with vertical profiles of SINGV-EPS forecasts,
particularly over land.

3.2 ERA5 reanalysis

ERA5 (reference) is a fifth-generation ECMWF global atmospheric
retrospective reanalysis dataset available from 1959, with a horizontal
resolution of 0.25° × 0.25°. The data on 6-hourly instantaneous wind
and temperature have been used to evaluate model forecast errors. The
model forecasts have been interpolated into the reanalysis grid for
verification. While ERA5 may not be able to represent the winds
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associated with high-resolution, local storms in the tropics (Campos
et al., 2022), it is still the best available dataset over the Southeast Asia
region (Bell et al., 2021) for verifying domain-wide fields.

3.3 GPM-IMERG rainfall

The Global PrecipitationMeasurement Mission (GPM) is a joint
mission between NASA and JAXA, which provides next-generation
rainfall products (Hou et al., 2008). The rainfall product obtained
from the IntegratedMulti-satellitE Retrievals for GPM (Final; GPM-
IMERG HHv06B; Huffman et al., 2019) has been used for the
verification of precipitation forecasts. The spatial resolution and
temporal resolution of GPM-IMERG data are 0.1 and 30 min,
respectively. Several studies have evaluated the quality of the
GPM product over different regions. Some have highlighted an
underestimation of heavy rainfall events and rainfall over oceanic
regions (Kahn and Maggioni, 2019; Tan et al., 2019). For the
Maritime Continent region, studies have shown that GPM is a
reliable satellite-derived precipitation dataset, e.g., during the
Malaysian flood event in 2014–2015 (Tan et al., 2019) and in
representing the diurnal variation in rainfall over Singapore (De
Silva et al., 2021).

4 Results and discussion

4.1 Ensemble spread and RMSE: horizontal
wind, temperature, and rainfall

It is a common practice to compare the ensemble spread and RMSE
of the ensemble mean. For a perfectly reliable and large ensemble, the
two quantities should be approximately the same (Leutbecher and
Palmer, 2008). As mentioned previously, SINGV-EPS was found to be
severely under-dispersive, partly due to the simplicity of its initial
implementation. Figures 1B, C display the 12-h forecasts of zonal
and meridional wind RMSE values with respect to radiosonde
observations, and the corresponding ensemble spread, averaged over
30 forecasts in June 2020.We note that the ensemble spread of the 12-h
forecasts from CTL and SEL is virtually indistinguishable, with
negligible differences except those higher than 300 hPa. The RMSE
values from CTL and SEL are also similar. Comparing the ensemble
spread andRMSE of the 12-h forecasts, the RMSE value is notably larger
than its ensemble spread, indicating severe under-dispersiveness of
SINGV-EPS. For longer lead times (36-h forecasts), we note that there is
an increase in the ensemble spread and a reduction in RMSE when
adaptive selection is applied. The results are similar for temperature; the
application of adaptive selection resulted in an increase in the ensemble
spread and a reduction in RMSE for 36-h forecasts (Figure 1D). The
improvement in spread and reduction in RMSE for zonal wind,
meridional wind, and temperature fields are statistically insignificant
at the 12-h lead time but significant at the 90% confidence level at the
36-h lead time for zonal winds and temperature fields (not shown).

Next, we assess the spatial distributions of RMSE with respect to
ERA5 reanalysis and ensemble spread for 500-hPa zonal winds of the
36-h forecasts. Figures 2A–D show that the ensemble spread in the 36-h
forecasts is too small compared to RMSE over the full SINGV-EPS
domain for both CTL and SEL. The higher values of RMSE are

observed over Sumatra and off the eastern coast of the Malay
Peninsula. However, the ensemble spread appears somewhat
uniform (less than 3 m/s) in both experiments. Figure 2E shows
domain-averaged RMSE, ensemble spread, and spread–error ratio
from CTL and SEL as a function of forecast lead time. We note
that SINGV-EPS is under-dispersive (spread–error ratio less than 1)
within the 12–36-h forecast lead time window since the ensemble
spread increases at roughly the same rate as RMSE during this window.
However, as the lead time increases, the difference in ensemble spread
and RMSE between SEL and CTL becomes more pronounced; the use
of adaptive selection in SEL clearly improves the ensemble spread and
reduces RMSE of the ensemble mean. The improvement in the
ensemble spread for 850-hPa zonal winds is statistically insignificant
at 12-h forecast lead time but significant at the 90% confidence level at
longer lead times (18 h and beyond). The reduction in RMSE is
statistically insignificant at the 12-h and 18-h forecast lead times but
significant at the 85% confidence level for longer lead times (24 h and
beyond; not shown). These results were similar for 500-hPa meridional
winds and precipitation forecasts verified against GPM data
(Supplementary Figures S1, S2). In the following Section 4, we focus
on the verification of precipitation forecasts since it has a closer
relationship with deep convection and a high impact on the
weather in the region.

4.2 Probabilistic forecast verification

4.2.1 Brier score
The Brier score (BS; Brier, 1950) measures the average squared

difference of the forecast probability of an event and the actual outcome
(0 if absent; 1 if present). A smaller BS value implies that the forecast
probabilities match closer to the observed outcomes obtained from
observations. Figure 3 shows that there is generally an increase in BS
with lead time across all four thresholds, indicating a deterioration in
ensemble forecast skill with lead time. This result is not surprising since
the forecast errors are expected to increase with lead time in a chaotic
atmospheric system. The difference of SEL and CTL is more apparent
for lower thresholds of rainfall and is only clear after a lead time of 30 h
for higher rainfall thresholds. The smaller BS value in SEL compared to
that in CTL suggests that applying adaptive selection in SINGV-EPS
can improve the ensemble-derived forecast probability products. The
reduction in BS is statistically significant at the 90% confidence level at
longer forecast lead times (30 h and beyond) for rainfall thresholds of
1 and 2 mm/6 h (not shown).

4.2.2 Relative operating characteristic curve
ROC represents the efficiency of a forecast system in which the hit

rate (HR) is plotted as a function of the false alarm rate (FAR). It
highlights the capability of an ensemble prediction system to
distinguish occurrences and non-occurrences (Buizza et al., 2005).
An ROC curve that bows toward the top left corner (larger area under
the ROC curve; AUC) indicates that HR is high and FAR is low, which
is desirable. A curve aligned along the diagonal indicates that there is
no distinction between HR and FAR, and therefore, the model has no
skill. Typically, a model is considered skillful if the AUC value is larger
than 0.5 (Mason and Graham, 1999). Figure 4A shows that the ROC
curve derived from 36-h forecasts from SEL (for an accumulated
rainfall threshold of 2 mm/6 h) bows closer to the top left corner
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compared to that from CTL. The improvement in ROC is statistically
significant at the 90% confidence level for the 36-h forecast (not
shown). Figure 4B shows that forecasts from both CTL and SEL are
skillful, but in general, the AUC value for CTL is smaller than that for
SEL across all lead times and rainfall thresholds. It implies that HR is
higher and FAR is lower in the ensemble forecasts when adaptive
selection is applied in SINGV-EPS.

4.3 Deterministic forecast verification

Apart from performing probabilistic forecast verification of the
ensemble, the ensemble mean rainfall forecast skill is also further

evaluated using FSS (Roberts and Lean, 2008). It varies from 0
(worst) to 1 (best) with respect to a reference dataset (usually an
observational dataset). Typically, a forecast is considered skillful if
the FSS value is larger than 0.5. The FSS value of the ensemble
forecast mean from CTL and SEL have been computed with respect
to GPM data (accumulated 6-h rainfall). Figures 5A–D show the FSS
value for different lead times and thresholds as a function of
increasing neighborhood length. We note that the FSS value is
larger than 0.5 for rainfall thresholds of 1 and 2 mm at all lead times
across all neighborhood lengths in CTL and SEL. The FSS value does
not differ substantially between CTL and SEL when the forecast lead
time is shorter. However, at longer lead times (beyond 24 h), the
ensemble mean forecasts from SEL are more accurate, with a higher

FIGURE 2
Spatial variation in ensemble spread and RMSE of the ensemble mean for 36-h forecasts of 500 hPa zonal wind for (A, B) CTL and (C, D) SEL; and (E)
time evolution of domain-averaged ensemble spread (SPREAD), root-mean-square error of ensemble mean (RMSE), and spread–error ratio (SPR/RMSE).

FIGURE 3
Brier score for rainfall (RF) threshold exceeding 1, 2, 4, and 8 mm/6 h for forecasts from CTL (red) and SEL (blue) as a function of forecast lead time.

Frontiers in Environmental Science frontiersin.org06

Sharma et al. 10.3389/fenvs.2023.1281265

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1281265


FSS value at all rainfall thresholds and neighborhood lengths. This
suggests that the application of adaptive selection in SINGV-EPS led
to an improvement in the ensemble mean rainfall forecast.

5 Summary

In this study, we test a novel method of adaptively selecting
global ensemble members to drive a regional convective-permitting
ensemble prediction system over the western Maritime Continent,

referred to as SINGV-EPS. In the control experiment, SINGV-EPS is
downscaled using the first 11 odd-numbered global ensemble
members (plus the control member), while in the adaptive
selection experiment, the 11 global ensemble members (plus the
control member) are selected based on a displacement-based
algorithm to improve the spread of the initial conditions of
SINGV-EPS and therefore the spread in the forecasts. The
experiments were conducted in June 2020, a period where
convection activity is prevalent. The results are summarized as
follows:

FIGURE 4
(A) Relative operating characteristic (ROC) curve for rainfall (RF) thresholds exceeding 2 mm/6 h for 36-h forecasts fromCTL (red) and SEL (blue); (B)
area under the curve (AUC) for rainfall thresholds exceeding 1, 2, 4, and 8 mm/6 h as a function of forecast lead time.

FIGURE 5
Mean fractions skill (FSS) score of 18-h, 24-h, 30-h, and 36-h forecasts fromCTL (red) and SEL (blue) for rainfall thresholds exceeding 1, 2, and 4 mm/
6 h as a function of the FSS spatial scale (in km).
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(a) A comparison of SINGV-EPS forecasts with radiosonde
observations and ERA5 reanalysis data showed that SINGV-
EPS is under-dispersive. Applying adaptive selection increased
the ensemble spread and reduced the RMSE values of the
ensemble mean for zonal wind, meridional wind, and
temperature fields. This difference becomes more
pronounced for longer forecast lead times, shown for up to 36 h.

(b) A comparison of SINGV-EPS forecasts with satellite-derived
precipitation showed that applying adaptive selection also
improved the ensemble forecasts of precipitation. With adaptive
selection, the Brier score was reduced for all rainfall thresholds,
particularly for longer lead times. The relative operating
characteristic curve had a larger deviation from a discriminant
with no skill, indicating that the ensemble forecasts had a higher hit
rate and lower false alarm rate for all rainfall thresholds. The
fractions skill score of the ensemble mean was also larger when
adaptive selection was applied. This was consistent across all
rainfall thresholds, spatial scales, and lead times.

Future research will focus on addressing the inherent under-
dispersiveness in SINGV-EPS, through sensitivity studies either with
initial and boundary condition perturbations, model physics
perturbations, or other post-processing techniques, such as bias
correction methods. To this end, various methods used in Tenant
(2015), McCabe et al. (2016), and Porson et al. (2020) may be
suitable candidates for testing. Further work is currently underway
to perform centering of SINGV-EPS on a deterministic high-
resolution data assimilation analysis, which should complement
the efforts to improve the dispersiveness of the ensemble.
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