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Purpose: To evaluate the potential of machine learning (ML)-based radiomics
approach for predicting tumor mutation burden (TMB) in gastric cancer (GC).

Methods: The contrast enhanced CT (CECT) images with corresponding clinical
information of 256 GC patients were retrospectively collected. Patients were
separated into training set (n = 180) and validation set (n = 76). A total of
3,390 radiomics features were extracted from three phases images of CECT. The
least absolute shrinkage and selection operator (LASSO) model was used for feature
screening. Sevenmachine learning (ML) algorithmswere employed tofind theoptimal
classifier. The predictive ability of radiomics model (RM) was evaluated with receiver
operating characteristic. The correlation between RM and TMB values was evaluated
using Spearman’s correlation coefficient. The explainability of RMwas assessed by the
Shapley Additive explanations (SHAP) method.

Results: Logistic regression algorithm was chosen for model construction. The
RM showed good predictive ability of TMB status with AUCs of 0.89 [95%
confidence interval (CI): 0.85–0.94] and 0.86 (95% CI: 0.74–0.98) in the
training and validation sets. The correlation analysis revealed a good
correlation between RM and TMB levels (correlation coefficient: 0.62, p <
0.001). The RM also showed favorable and stable predictive accuracy within
the cutoff value range 6–16 mut/Mb in both sets.

Conclusion: The ML-based RM offered a promising image biomarker for
predicting TMB status in GC patients.
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Introduction

Immune checkpoint inhibitors (ICIs), represented by programmed cell death protein 1
(PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized the treatment
paradigm and shown exciting efficacy in a variety of solid tumors. Several clinical trials
have highlighted the effectiveness and safety of PD-1 inhibitors in the management of gastric
cancer (GC) patients (Kang et al., 2017; Fuchs et al., 2018; Taieb et al., 2018). However, the
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response rate of PD-1 inhibitors is only about 20% for most patients
with advanced solid tumors (Chen and Mellman, 2017). Moreover,
unlike conventional chemotherapy, some patients treated with ICIs
developed multiple novel and complex response patterns such as
delayed response, pseudoprogression and hyperprogression
(Borcoman et al., 2019). Studies have shown that for GC patients
treated with PD-1 inhibitors, the response rate was not significantly
related to expression status of PD-1/PD-L1 (De Rosa et al., 2018).
Therefore, identifying biomarkers to predict the effectiveness of PD-
1 inhibitors remains a significant issue to be addressed for PD-1
inhibitor therapy in GC, which is of great significance for screening
patients with potential benefit and reducing side effects.

By utilizing high-throughput sequencing data, The Cancer
Genome Atlas (TCGA) has categorized GC into four distinct
molecular subtypes: Epstein–Barr virus (EBV), microsatellite
instability (MSI), chromosomal instability (CIN), and
genomically stable (Cancer Genome Atlas Research, 2014).
Subsequently, the role of MSI, EBV infection and tumor
mutation burden (TMB) for prediction of treatment efficacy of
PD-1 inhibitors have also been proposed by several studies
(Topalian et al., 2016; De Rosa et al., 2018; Kim et al., 2018).

TMB is defined as the total count of nonsynonymousmutations per
one million bases within tumor tissue. Mutations in driver genes could
lead to the development and progression of tumor. In addition, the high
amount of gene mutations could facilitate the generation of neoantigen
on tumor cells. The neoantigens can be recognized by the autoimmune
system and enhance the tumor immunogenicity by activating T cells
(Gubin et al., 2015). Therefore, patients with higher TMB tend to derive
benefit from immunotherapy. Several studies have shown the potential
of TMB for serving as an important predictor for treatment response of
ICIs in various types of tumors including GC (Chan et al., 2019).
Carbone et al. reported that nivolumab was associated with a higher
response rate than chemotherapy in non-small-cell lung cancer
(NSCLC) patients with higher TMB, regardless the expression status
of PD-L1 (Carbone et al., 2017). The CheckMate 227 study reported
that patients of advanced NSCLCwith higher TMB had better response
to immunotherapy (Reck et al., 2019). In a clinical trial of toripalimab
for chemo-refractory GC, patients with higher TMB exhibited better
overall survival than those with lower TMB (Wang et al., 2019).

Currently, the assessment and calculation of TMB rely on the next-
generation sequencing (NGS) of primary tumor tissue or peripheral
blood samples. However, the results of sequencing of circulating tumor
DNAare easily influenced by the sample andDNAcontent. In addition,
patients in advanced disease often require multiple biopsies to
surveillance changes of TMB. The high heterogeneity of tumor
renders the biopsy samples incapable of fully representing the entire
landscape of the tumor. Moreover, high cost of NGS is unaffordable for
many patients. These reasons limit the widespread application of TMB
testing. Therefore, there is a significant necessity to discover a simple
and noninvasive approach for assessing TMB.

Currently, computed tomography (CT) servers as the most
important tool for diagnosing, preoperative staging, and treatment
efficacy assessment for GC. However, the consistency and accuracy of
image interpretation varies largely. Moreover, the analysis of CT
images predominantly depends on morphological features.
However, these features offer only constrained insights into the
underlying tumor, failing to fulfill the requirements of the
personalized and precision medicine. With the advancement of

computing power and graphic processing technologies, artificial
intelligence (AI) is being increasingly utilized to analyze large-scale
and complex data, including medical imaging such as endoscopic,
pathological, and radiological imaging (Bi et al., 2019; Hsiao et al.,
2021). Radiomics, which is a branch of AI, refers to a new data process
and mining technique that can translate images into high-through
quantitative data. The radiomics features have the capability to discern
underlying features within tumors, which reflect the characteristics of
cellular composition, protein expression, genetic mutations, tumor
microenvironment, and heterogeneity. Radiomics has been widely
applicated in the fields of tumour segmentation, early screening,
tumour staging, prognosis prediction, treatment efficacy evaluation
and surveillance (Bi et al., 2019). Moreover, multiple studies have
illustrated the value of radiomics in predicting genetic statuses and
molecular subtypes.

To date, there is still a dearth of research investigating the value
of radiomics methods for predicting TMB in GC. Thus, this study
aims to explore the value of radiomics model (RM) for evaluation of
TMB in GC.

Materials and methods

Patients

From February 2019 to March 2021, 256 consecutive GC
patients were enrolled. Based on the timing of the CT scan, the
patients were separated into training (n = 180) and validation set
(n = 76) at a ratio of 7:3.

The eligibility criteria: 1) patients with a pathologically
confirmed diagnosis; 2) CT images were acquired within 2 weeks
prior to surgery; 3) TMB testing result available 4) Imaging quality
meets the requirements of analysis: a) sufficient distention of gastric
cavity; b) No respiratory and peristaltic artifacts were observed in the
images. The exclusion criteria: 1) incomplete clinical information; 2)
patients underwent treatment prior to CT scan; 3) patients who had
other malignant disease.

FIGURE 1
Patients’ enrollment pathway.
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Our institutional ethical review board approved the conduction
of this study. The need for informed consent was waived. The
patient’s enrollment pathway is illustrated in Figure 1.

TMB testing

A NGS test was performed on genomic DNA isolated from
formalin-fixed paraffin-embedded surgically resected tumor
samples. A commercial targeted NGS-panel which contained
639 related genes was used and NGS was performed on Illumina
Nextseq 500/550 platform (Illumina Inc., San Diego, CA, USA). As
recommended by previous studies (Mishima et al., 2019; Lee et al.,
2022a), TMB ≥10 mut/Mb was used as cutoff value for defining
high-TMB, while TMB <10 mut/Mb was defined as low-TMB.

Lesion delineation and feature extraction

Abdominal contrast enhanced CT (CECT) images in three
phases were used for analyzed (Ma et al., 2017; Gao et al., 2021).
The detail of CT image acquisition protocol was shown in the
Supplementary Material S1. By using 3D Slicer software (V.5.0.2),
the volume of interest (VOI) of each tumor was delineated by
2 radiologists. Feature extraction was carried out using utilizing
PyRadiomics 2.2.0 (van Griethuysen JJM et al., 2017). For each
phase of original and filtered CECT images, 1,130 features were
extracted. The features were categorized into first order statistics,
shape, Gray Level Cooccurence Matrix (GLCM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
Neighbouring Gray Tone Difference Matrix (NGTDM) and Gray
Level Dependence Matrix (GLDM). The detail of the radiomics
features is described previously (van Griethuysen JJM et al., 2017).

Radiomics model training

To ensure the robustness and stability, interclass correlation
coefficients (ICC) of features were analyzed. Two readers
independently performed VOI segmentation on a randomly
selected group of 30 patients from the training set. The features
were regarded as stable if ICC were higher than 0.9. Next, the
correlation between features was analyzed using Spearman’s rank
test. We retained one of the two features that showed a correlation
coefficient higher than 0.9. Then, features exhibiting a statistically
significant between the high-TMB and low-TMB groups were
identified by utilizing the Mann-Whitney U test. The least
absolute shrinkage and selection operator (LASSO) model was
subsequently utilized to find features with best predictive ability.
Depending on the regularization weight λ, the LASSO method
effectively pulls all regression coefficients toward zero while
precisely assigning coefficients of numerous irrelevant features as
zero. To determine the ideal λ, we conducted a 10-time cross-
validation using a minimization criterion. The optimal λ value was
selected based on achieving the lowest cross-validation error.
Following the LASSO feature selection, seven additional machine
learning (ML) algorithms were employed for RM training: k-nearest
neighbor (KNN), decision tree (DT), random forest (RF), support

vector machine (SVM), logistic regression (LR), adaptive boosting
(AdaBoost) and naïve Bayes (NB). Figure 2 illustrates the overall
radiomics procedure.

Statistical analysis

The predictive power of ML model was determined with the
receiver operating characteristic (ROC) curve with corresponding
value of the area under the curve (AUC). The correlation between
RM and TMB value was evaluated using Spearman’s correlation
coefficient. Categorical variables were compared by the Chi-Squared
or Fisher exact tests. The Shapley Additive explanations (SHAP) was
used to visualize the MLmodel and quantify the importance of features
(Li et al., 2020). All statistical analyses were conducted using R (V.4.2.3).

Results

Patients

In total, 256 GC patients including 176 men and 80 women were
enrolled. The median age of patients was 60 years old. The overall
median value of TMB was 6.5 mut/Mb. The training set contained
60 (33.3%) high-TBM patients, while the validation set contained 19
(25.0%) high-TMB patients. The clinicopathological characteristics
of all patients have been summarized in Table 1.

In both sets, no significant differences were observed between
the high-TBM and low-TMB groups regarding age, sex, tumor site,
pathological stage, lymphovascular invasion status, perineural
invasion status and the level of four serum biomarkers.

Radiomics feature screening

The VOIs in three phases of CECT images were delineated and a
total of 3,390 features were extracted. Firstly, 2,293 features with
ICCs <0.90 were excluded. After calculating the correlation
coefficients of the remaining 1,097 features, a total of
398 redundancy features were eliminated. Next, 56 features that
showed significant differential changes of the remaining 699 features
between the high- and low-TMB groups were selected and putted into
LASSOmodel. Finally, twelve features were chosen, including 3 features
from AP (log.sigma.1.0 mm first ortder-mean, log. sigma.1.0 mm
firstorder-90-Percentile, log. sigma.1.0 mm GLSZM-Dependence
Non Uniformity), 6 features from PP (wavelet.HLL-GLSZM-zone
entropy, wavelet. LHL-NGTDM-Busyness, wavelet. HLH-firstorder-
Kurtosis, wavelet. LHH-GLRLM-Run Entropy, log. sigma.1.0 mm.
GLDM-Large Dependence Emphasis, wavelet. HHH-GLCM-joint
entropy) and 3 features from DP (maximum 3D diameter, wavelet.
HHH-GLRLM-Gray Level NonUniformity Normalized, log.
sigma.1.0 mm. GLRLM-High Gray Level Run Emphasis) (Figure 3).

Predictive performance of radiomics model

To determine the optimal classifier for the establishment of RM,
seven other ML algorithms were employed for model training. As
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shown in Table 2, the AUCs of LASSO, KNN, DT, RF, SVM, LR,
AdaBoost and NB were 0.82, 0.70, 0.80, 0.69, 0.79, 0.89, 0.75 and
0.65 respectively. Hence, the LR model [AUC: 0.89, 95% confidence
interval (CI): 0.85–0.94] was selected for construction of the RM.
The predictive ability of RMwas confirmed in the validation set with
AUC of 0.86 (95% CI: 0.74–0.98).

Spearman correlation analysis showed that RM and TMB level
had a good correlation (R coefficient: 0.62, p < 0.001, Figure 4A).
Furthermore, as a consensus on a universally accepted cutoff value
for high-TMB in GC was lacking, we proceeded to examine the
predictive efficacy of RM across a variety of TMB cutoff values,
ranging from 1 to 20 mut/Mb. As show in Figure 4B, the RM showed
favorable accuracy within the cutoff value range 6–16 mut/Mb in
both sets with AUCs greater than 0.70. In addition, the difference of
AUCs between two sets were less than 0.10, indicating the robust
stability of the RM (Figure 4C).

Explainability of radiomics model

In order to assess the significance of features and enhance the
comprehensibility of the RM, the SHAP values for the chosen
features were calculated and displayed in the training dataset.
Figure 5 shows that a positive SHAP value suggests a strong
probability of detecting high TMB. (Figure 5).

Discussion

In the current study, we proposed a ML-based CECT RM as a
noninvasive image biomarker of TMB status in patients with GC.
The RM exhibited precise discriminatory ability in both the training
and validation sets.

Due to highly intratumoral heterogeneity, GC has distinctive
characteristics in signal conducting metabolism, proliferation,
invasiveness and treatment response, which allow for the
increasing of phenotypic and functional differences in the
progression of tumorigenesis. Therefore, intratumoral
heterogeneity plays an important role in tumor progression,
therapy resistance, and disease recurrence (Dagogo-Jack and
Shaw, 2018). Through high-throughput algorithms, the radiomics
method is capable of extracting invisible high dimensional features
from medical images and thus allowed quantitative analysis, which
facilitating the deciphering of distinct phenotypic differences within
tumors (Aerts et al., 2014). Accumulating evidence has
demonstrated the promising potential of radiomics methods for
characterizing gene mutation status and tumor heterogeneity. Rossi
et al. proposed a RM for detection epidermal growth factor receptor
(EGFR) mutation for NSCLC patients (Rossi et al., 2021). Gao et al.
reported that a radiomics signature based on CECT images could
effectively predict expression status of human epidermal growth
factor receptor 2 in GC (Ma et al., 2022). Tian et al. established a RM
to predict TP53 status in laryngeal squamous cell carcinoma patients
(Tian et al., 2022). Nevertheless, studies focus on the correlation
between radiomics and TMB status are still rare. Wang et al.
reported that radiomics features such as wavelet filtered first-
order, GLRLM, GLCM and GLSZM features were correlated with
the level of TMB in early-stage lung adenocarcinoma. However,
their study employed a singular threshold value for high-TMB
(4 mut/Mb), and only include 51 patients (Wang et al., 2019). To
the best our knowledge, this is the first study that investigated the
value of radiomics method for TMB prediction in GC.

Several studies have demonstrated that first order features were
significantly associated with tumor mutation status of tumor
(Sacconi et al., 2017; Song et al., 2020). According to a previous
systematic review, it was also found that the first order statistics were

FIGURE 2
Flowchart of radiomics analysis.

Frontiers in Genetics frontiersin.org04

Ma et al. 10.3389/fgene.2023.1283090

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1283090


TABLE 1 Characteristics of the study population.

Variable Training set (n = 180) Testing set (n = 76)

High-TMB (n = 60) Low-TMB (n = 120) P High-TMB (n = 19) Low-TMB (n = 57) P

Age 0.55 0.69

< 65 39 (65.0) 83 (69.2) 12 (63.2) 33 (57.9)

≥ 65 21 (35.0) 37 (30.8) 7 (36.8) 24 (42.1)

Sex 0.73 0.40

Male 41 (68.3) 85 (70.8) 11 (57.9) 39 (68.4)

Female 19 (31.7) 35 (29.2) 8 (42.1) 18 (31.6)

Tumor Site 0.26 0.29

Upper-Middle 23 (38.4) 32 (26.7) 7 (36.9) 16 (28.0)

Lower 17 (28.3) 37 (30.8) 10 (52.6) 25 (43.9)

Overlap 20 (33.3) 51 (42.5) 2 (10.5) 16 (28.1)

Pathologic T stage 0.34 0.74

T1-2 13 (21.7) 34 (28.3) 4 (21.1) 10 (17.6)

T3-4 47 (78.3) 86 (71.7) 15 (78.9) 47 (82.4)

Pathologic N stage 0.92 0.98

N0 16 (26.7) 38 (31.7) 6 (31.6) 16 (28.1)

N1-3 44 (73.3) 82 (68.3) 13 (68.4) 41 (71.9)

Pathologic TMN stage 0.78 0.88

I 9 (15.0) 25 (20.8) 3 (15.8) 7 (12.3)

II 11 (18.3) 21 (17.5) 6 (31.6) 15 (26.3)

III 39 (65.0) 71 (59.2) 9 (47.4) 33 (57.9)

IV 1 (1.7) 3 (2.5) 1 (5.3) 2 (3.5)

LVI 0.25 0.88

Negative 46 (76.7) 82 (68.3) 14 (73.7) 41 (71.9)

Positive 14 (23.3) 38 (31.7) 5 (26.3) 16 (28.1)

PNI 0.49 0.40

Negative 44 (73.3) 82 (68.3) 14 (73.7) 36 (63.2)

Positive 16 (26.7) 38 (31.7) 5 (26.3) 21 (36.8)

CEA 0.54 0.31

≥ 5.0 μg/mL 7 (11.7) 18 (15.0) 5 (26.3) 9 (15.8)

< 5.0 μg/mL 53 (88.3) 102 (85.0) 14 (73.7) 48 (84.2)

CA19-9 0.59 0.87

≥ 27 U/mL 13 (21.7) 22 (18.3) 4 (21.1) 11 (19.3)

< 27 U/mL 47 (78.3) 98 (81.7) 15 (78.9) 46 (80.7)

CA242 0.27 0.54

≥ 20 U/mL 10 (16.7) 13 (10.8) 3 (15.8) 6 (10.5)

< 20 U/mL 50 (83.3) 107 (89.2) 16 (84.2) 51 (89.5)

CA72-4 0.49 0.47

(Continued on following page)
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the most reliable features for assessing tumor heterogeneity
(Traverso et al., 2018). Three first order features (Kurtosis, mean
and 90 Percentile) were selected in our RM. GLCM describes the
second-order joint probability of two pixels with a certain spatial
relationship in an image region. GLSZM quantifies gray level zones
of image. Entropy is one of the most important features of GLCM
and GLSZM. Joint entropy quantifies the level of the randomness or
variability in neighborhood intensity values. Higher value of the
joint entropy of the GLCM reflects the existence of diverse spatial
relationships between pixels and therefore suggests a more
heterogenicity within tumor. Zone entropy quantifies the level of
uncertainty or randomness present in the distribution of zone sizes

and gray levels. A higher value of zone entropy also serves as an
indicator of increased heterogeneity within the texture patterns.
Trebeschi et al. reported that GLSZM-Zone Entropy could be a
predictor of immunotherapy efficacy of melanoma and NSCLC
(Trebeschi et al., 2019). Lee et al. also found that entropy was the
most crucial feature for prognostic prediction in breast cancer (Lee
et al., 2022b). In line with previous studies, joint and zone entropy
were identified as the key features for predicting TMB status in GC.
In addition, due to the potential for larger tumors to possess a
greater number of gene mutations, the maximum 3D diameter was
selected in our RM. Wavelet transformed features have been
suggested to be associated with gene mutation status by several
studies. Liu et al. reported that 3D Wavelet decomposition could
predict EGFR mutation in NSCLC. Song et al. reported Wavelet-
LHH-GLDM-Large Dependence High Grey Level Emphasis was
significant associated with ALK rearrangement in lung cancer (Song
et al., 2020). Of note, six wavelet filtered features were included in
our sRM, which decompose the original images in three different
directions andmay further reflect the spatial heterogeneity of tumor.
Hence, our RM presents promising insights into the tumor
microenvironment, demonstrating strong explanatory power for
predicting TMB status.

Although TMB is a promising predictor for ICIs treatment
response, highly varying distributions of TMB have been
observed among different types of tumors. Consequently, the
optimal TMB cutoff for each cancer type demonstrates significant
variation (McNamara et al., 2020). McGrail et al. reported that one-
size-fits-all high-TMB cut point could not applied for predicting

TABLE 1 (Continued) Characteristics of the study population.

Variable Training set (n = 180) Testing set (n = 76)

High-TMB (n = 60) Low-TMB (n = 120) P High-TMB (n = 19) Low-TMB (n = 57) P

≥ 6.9 U/mL 12 (20.0) 19 (15.8) 4 (21.1) 8 (14.0)

< 6.9 U/mL 48 (80.0) 101 (84.2) 15 (78.9) 49 (86.0)

FIGURE 3
Screening of significant features by LASSO model (A) Ten time cross-validation for tuning parameter selection. (B) LASSO coefficient profiles.

TABLE 2 Predictive performances of different machine learning classifiers.

Model AUC Accuracy Sensitivity Specificity

LASSO 0.82 0.79 0.77 0.81

LR 0.89 0.85 0.88 0.83

SVM 0.79 0.74 0.82 0.71

RF 0.69 0.59 0.55 0.62

DT 0.80 0.77 0.72 0.80

KNN 0.70 0.72 0.65 0.75

NB 0.65 0.57 0.60 0.55

AdaBoost 0.75 0.72 0.70 0.73
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ICIs efficacy for all types of tumors (McGrail et al., 2021). Several
cutoff values have been used to define high TBM in GC by different
studies (Wang et al., 2019; Duan et al., 2022). In 2020,
pembrolizumab was approved for the treatment of metastatic GC
with high-TMB (≥10 mut/Mb) by the US Food and Drug
Administration. Wang et al. employed a threshold of 12 mut/Mb,
which represented the upper 20th percentile of TMB, to delineate
high-TMB cases (Wang et al., 2019). Therefore, additional research
is necessary to establish the optimal threshold values of TMB for
predicting the response to ICIs within distinct tumor types. In this
case, we assessed the predictive capability of our RM across various
TMB cut-off values. The results indicated that the RM exhibited a
promising and stable predictive accuracy within the range of
6–16 mut/Mb.

Ono et al. reported that serum CEA level was associated with
higher TMB in NSCLC (Ono et al., 2020). Kasi et al. found that the

ratio of CA19-9/CEA could identify MSI in colorectal cancer (Kasi
et al., 2020). However, in this study, we observed no correlation
between TMB and the levels of four commonly used serum
biomarkers in GC.

This study has some limitations. Firstly, similar to other
retrospective studies, the potential for selection bias exists in the
current analysis due to the limited subset of patients who underwent
NGS test. Secondly, the assessment of radiomics features might lack
consistency across scanners and institutions due to variations in the
parameters employed by each. Thirdly, 3D lesion segmentation on
three phases CECT images is a computationally complex and time-
intensive task. Fourthly, this study was conducted in a single center.
Therefore, our RM should be further validated by larger prospective
multicenter studies.

In summary, our study showed the potential of three phases
CECT-based radiomics approach to predict TMB status in GC. The

FIGURE 4
The predictive ability of radiomics model. (A) Correlation between radiomics model (RM) and tumor mutation burden (TMB) values. (B) The AUCs of
RM at different threshold values of TMB. (C) Difference of AUCs between the training and validation sets with RM at different threshold values of TMB.

FIGURE 5
The Shapley additive explanations (SHAP) plot of features impact on predicted probability.
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RM exhibited good predictive efficiency and may provide an easy-
to-use non-invasive image biomarker for prediction and surveillance
of TBM in GC.
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