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PitNETs and the gut
microbiota: potential
connections, future directions

Ding Nie, Chuzhong Li and Yazhuo Zhang*

Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
The role of the gut microbiome has been widely discussed in numerous works of

literature. The biggest concern is the association of the gut microbiome with the

central nervous system through the microbiome-brain-gut axis in the past ten

years. As more and more research has been done on the relationship between

the disease of the central nervous system and gut microbes. This fact is being

revealed that gut microbes seem to play an important role from the onset and

progression of the disease to clinical symptoms, and new treatments. As a special

tumor of the central nervous system, pituitary neuroendocrine tumors (PitNETs)

are closely related to metabolism, endocrinology, and immunity. These factors

are the vectors through which intestinal microbes interact with the central

nervous system. However, little is known about the effects of gut microbes on

the PitNET. In this review, the relationship of gut microbiota in PitNETs is

introduced, the potential effects of the gut-brain axis in this relationship are

analyzed, and future research directions are presented.

KEYWORDS

intestinal flora, gut microbiota, pituitary neuroendocrine tumor (PitNET), gut-brain axis,
pituitary tumor
1 Introduction

A variety of tumors can occur within sella, including meningiomas, germ cell tumors,

and metastases, but primary tumors of the adenohypophysial gland are the most common

(1). In 2022, the World Health Organization (WHO) adopted PitNET according to tumor

cell lineage, cell type, and related characteristics to describe this type of tumor formerly

known as a pituitary adenoma (PA) (2). The process of formation of such tumors is

generally thought to be caused by the clonal amplification of a single abnormal cell caused

by a somatic genetic mutation or chromosomal abnormality, but the exact mechanism

remains unclear (3). These tumors are also known as nonfunction pituitary

neuroendocrine tumors (NF-PitNETs), prolactinoma, somatotropinoma,

corticotropinoma, thyrotropinoma, and gonadotropinoma, depending on whether they

cause hormone overproduction (4). Although these tumors are usually non-malignant,

their high prevalence, which occurs in 10% of the population, remains a threat to human

health (5). Even with the rapid development of neuroendoscopic surgery, the effective
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treatment of certain subtypes (invasive/functional) of PitNET has

been a difficult problem for clinicians (6). In the further study of the

pathogenesis and development of PitNETs and the emerging

treatment methods including chemotherapy drugs and

immunotherapy, the study of intestinal microbiota in patients

with PitNETs will naturally become an interesting direction, and

indeed some researchers including us have done so (7–10). As the

subject of extensive research in the last decade, the gut microbiota is

associated with and plays a role in the occurrence or development of

numerous diseases (11–13). With further research, the concept of

the “gut-brain axis” has been proposed, which is a bidirectional

communication system with complex signaling mechanisms,

including the vagus nerve, enteric nervous system, immune

system, and release of microbial metabolites (14, 15). These

studies have shown that the gut microbiome regulates

neurobehavioral characteristics and endocrine function and can

communicate with the central nervous system. Given the role of

PitNETs, a kind of disease of the central nervous system, in the

endocrine system, the potential association with gut microbiota is of

interest (10). However, to the best of our knowledge, the

relationship between gut microbiota and PitNETs, or even the

pituitary gland, has not been clearly defined, although the

hypothalamic-pituitary-adrenal (HPA) axis has been studied as a

hot spot pathway in the brain-gut axis for many years (16, 17).

Encouragingly, a large body of research seems to hint at a

relationship between PitNETs and gut microbes. In solid tumors

such as lung cancer and melanoma, changing the composition of a

patient’s gut microbiota based on fecal microbial transplantation or

antibiotic administration can enhance the efficacy of immune

checkpoint blocking (ICBs) (18). A study showed the antitumor

effects of ICB therapy in Cushing’s disease mice (19). The role of gut

microbes in the treatment of central nervous system diseases such as

depression has been demonstrated (20). These studies have led to

the belief that gut microbes may be new therapeutic targets for

PitNETs. This review reviews the research progress of the

relationship between gut microbiota and PitNETs and

summarizes the possible mechanism of gut microbiota

involvement in PitNETs.
2 Intestinal flora in patients
with PitNETs

We reviewed all the English literature up to October 2023 and

found a total of 5 studies exploring the relationship between gut

microbiota and PitNETs (7–10, 21). Of these five studies, four of the

main studies were in patients with somatotropinoma, while Hu, Et

al. described the microbiota of patients with invasive/non-invasive

tumors and revealed the difference in microbiome composition

between the two groups (Table 1). In these studies, the authors all

described the intestinal microbiota composition of patients with

PitNETs, revealing that the diversity of intestinal microbiota in

PitNETs patients is different from that in the normal population.

The richness and diversity of intestinal microbiota species can

reflect the health or disease status of the human body and can
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even be used as predictors of disease prediction (22, 23). Lin et al.

used a resume random forest classifier model to distinguish patients

with Growth hormone (GH)-secreting pituitary tumor from

healthy controls based on gut microbiota composition (9). Serdar

et al. successfully distinguished individuals with abnormally high

levels of insulin-like growth factor-1 (IGF-1) and accurately

identified patients with acromegaly by using a machine learning

model using microbiome composition (7). Hu, J. et al. established a

classification model and identified 10 species that could be used to

predict the occurrence of PitNETs, including Oscillibacter sp. 57_20,

Fusobacterium mortiferum, and Clostridium innocuum (10). With

the development of metagenomic sequencing and the expansion of

sample sizes, for example, as the gut microbiome is an early

predictor of disease in other types of diseases, this same effect

may be applied to patients with PitNETs (24, 25). This allows for

earlier diagnosis and treatment. Regrettably, only one of these

studies, involving animal experiments, made a preliminary

exploration of the relationship between gut microbiota and

PitNETs but was limited to the observation of phenomena that

didn’t reveal a possible pathway (8). At the same time, considering

all literature reports, the description of intestinal flora composition

in patients with different types of PitNETs remains to be explored

by researchers. It is worth mentioning that Gavin et al. studied

sphenoidal sinus flora in pituitary apoplexy patients and observed

differences in the diversity of sphenoidal sinus flora between

pituitary apoplexy patients and NF-PitNETs patients (26). Ye

et al. recently sequenced 16SrRNA from PitNET tissues and

speculated that the pathogenesis and development of tumors may

be related to the behavior of bacteria in tumors (27). These studies

mean that the microbes associated with PitNETs may not be limited

to the gut, and future prospective studies are warranted.
3 Gut microbiota and the
gut-brain axis

The known gut microbiota in healthy people is not less than 1000

species, with more than 3 million genes (28). Similar to a fingerprint,

each individual has its unique gut microbiota as determined by host

genotype, initial colonization by vertical transmission at birth, and

dietary habits (29–31). At the same time, age, living environment, and

the use of antibiotics can affect the structure of intestinal microbiota

(22). For decades, it has been studied scientifically as a key factor in

the maintenance of human health and the mechanism of disease

occurrence and development and has been confirmed in numerous

studies (32, 33). So far, studies on gut microbiota and disease have

been divided into several mainstream models (Figure 1). First,

researchers sought to characterize changes in the composition and

distribution of the gut microbiota in disease states. For example, Birol

et al. described differences in gut microbiota composition between

patients with idiopathic focal epilepsy and healthy volunteers (34). As

sequencing methods have updated (from 16SrRNA to

metagenomics), researchers have moved from a genus level of the

gut microbiota to a more precise species level providing a basis for

further exploration (35). The second model is to conduct animal
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TABLE 1 Intestinal flora associated with PitNETs.

ndings Limitation Country Year Reference

ficant alterations in the microbial community among PA patients.
enrichment of Clostridium inoculum, along with the reduced abundance of
acter sp. 57_20 and Fusobacterium mortiferum, were observed both in the IPA
PA groups compared to the control group.

No animal level
studies, no
mechanism
studies

China 2022 (10)

b-diversity of intestinal microbiota was different among the three groups.
e genus level, Bacteroides, Biautia, Enterococcus, Megamonas, as well as other
were differentially represented among the three groups.

No mechanism
studies

China 2022 (8)

nts with GHPA had reduced microbiota diversity and increased levels of
acter and Enterobacter genera.
g association between Enterobacter and GH/IGF-1 axis in disease.

No animal level
studies, no
mechanism
studies

China 2022 (9)

e was good agreement between fecal and oral microbiota in patients with
galy.
microbiota diversity was significantly increased in patients with acromegaly.
e fecal microbiota, the Firmicutes/Bacteroidetes ratio was lower in patients with
galy than in healthy controls

No animal level
studies, no
mechanism
studies

Turkey 2022 (7)

nificantly lower bacterial diversity in the patients with acromegaly.
roidetes phylum was pre-dominating in the patient group, and Firmicutes/
idetes ratio was altered significantly.

No animal level
studies, no
mechanism
studies

Turkey 2021 (21)

owth hormone-secreting pituitary; NFPA, growth hormone-secreting pituitary adenoma; PA, pituitary adenoma; GH, growth hormone; IGF-1, insulin-like growth
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experiments after fecal microbiota transplantation (FMT) based on

describing the differences in intestinal microbiota composition

between the disease group and the healthy group, to explore the

influence of intestinal microbiota on the body. The study of Li et al.

can serve as a typical case (36). First, they described differences in the

composition of the gut microbiota between patients with unruptured

intracranial aneurysms (UIA) and healthy people, then fed a mixture

of fecal bacteria from both groups to mice that had undergone

aneurysmal induction surgery, and finally found a significant

increase in aneurysm rupture in mice fed stool from patients with

UIA. Furthermore, they finally isolated Hungatella hathewayi and

introduced taurine as an intermediate substance, suggesting that

supplementation with Hungatella hathewayi and taurine could

prevent the development of UIAs (36). Such studies of isolating

individual strains have gradually become mainstream and are a key

step in further exploring the impact of gut microbiota on disease. In

addition, the researchers also fed the experimental animals a mix of

antibiotics to achieve the consumption of intestinal microbiota and

compared the experimental result of intestinal flora consumption and

non-consumption, to illustrate the impact of intestinal microbiota on

disease or physiological status (37). These three models cover most of

the reported studies and are important ways to explore the

relationship between gut microbiota and the human body.

As more and more research has been devoted to the gut

microbiome, its interaction with the brain has come into focus in

neuroscience (38). Robust evidence shows that gut microbes are

linked to the central nervous system through at least three

mechanisms: neural, endocrine, and immune signaling (39).

Recently, Needham et al. reported that the gut microbial metabolite
Frontiers in Endocrinology 04
4-ethylphenol (4EP) can enter the mouse brain after sulfation to 4-

ethylphenol (4EPS), disrupting oligodendrocyte and myelination

pattern maturation in the brain, and increasing anxiety-like

behavior in mice (40). Javier et al. took a different approach, they

found that Lactobacillus rhamnosus (JB-1) increased the expression of

gamma-aminobutyric acid (GABA) receptors in the cerebral cortex

of mice and had beneficial effects in the treatment of depression and

anxiety, while subphrenic vagotomy prevented the antianxiety and

antidepressant effects of Lactobacillus and GABA changes (41). In

studies involving brain tumor diseases, Giuseppina et al. found that

changes in gut microbiota caused by antibiotic treatment could affect

the growth of glioma in mice, induce early damage to natural killer

(NK)cells, and induce changes in microglial phenotype (42). On the

other hand, changes in the nervous system can also cause changes in

the gut microbiota (34, 43, 44). In conclusion, the most prominent

communication pathways in the gut-brain axis are the vagus nerve,

tryptophan metabolites, and microbial metabolites (14, 45). The

communication network between the gut and the central nervous

system is complex and needs to be explored.
4 Possible mechanisms linking gut
microbiota to PitNETs

4.1 Endocrine system

The HPA axis is the most interesting part of the gut-brain axis

when we want to explore the relationship between gut microbiota

(46). Proper functioning of the HPA axis is essential for
Test group Control group

16SrRNA/Metagenomics

Study results
Differential flora analysis

FMT

Study results
Animal level analysis

Bacterial culture

Fecal bacteria mixture

Antibiotics Empty capsule

Study results
Animal level analysis

1 2

3

Experimental Scheme 1

Experimental Scheme 2

Experimental Scheme 3

1

2

3
Laboratory animal

Laboratory animal

Differential flora

FIGURE 1

The main models of gut microbiota research. (Green arrow, experimental scheme 1, human fecal samples were collected and sequenced to analyze the
characteristics of intestinal microbial composition and metabolism analysis. Red arrow, experimental scheme 2, based on experiment scheme 1, fecal
bacteria were transplanted into experimental animals, and the corresponding index changes were observed at the animal level fecal. Blue arrow,
experimental scheme 3, Depletion of gut microbes through antibiotics, and studies were conducted in normal and germ-free animals antibiotics.).
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maintaining mental and physical health (47). When the function of

the HPA axis is abnormal, it will affect the health status of the

human body, and a large number of previous studies have proved

that it is closely related to depression, bipolar disorder, depression,

and other mental diseases (47, 48). In the initial stage of life,

microorganisms have the function of regulating the stress

response of the HPA axis (49). Social bias in germ-free (GF) and

antibiotic-treated (ABX) mice have been reported to be associated

with increased levels of the stress hormone corticosterone, which is

produced primarily by activation of the HPA axis, and these

changes are primarily through changes in neural activity rather

than neural circuitry, whereas Enterococcus faecalis promotes social

activity and reduces corticosterone levels in mice after social stress

(16). Patients with Cushing’s disease and acromegalyhave a varying

prevalence of psychiatric disorders, according to a systematic

literature review of neuropsychological conditions in patients with

PitNETs (50, 51). In addition, prolactinoma patients had a higher

frequency of depressive symptoms, anxiety, and feelings of hostility

(52, 53). This is due to the pituitary tumor itself, treatment, and/or

long-term effects of hormonal changes on the hypothalamic-

pituitary terminal organ axis (54). Especially in Cushing’s disease,

the onset of psychiatric symptoms may be caused by changes in

cortisol levels in the body (55). Excessive cortisol secretion, as an

indicator of abnormal HPA axis function, can aggravate the

symptoms of mental disorders (56). Numerous preclinical studies

have demonstrated that colonization of certain types of bacteria can

improve psychiatric symptoms (57–59). For example,

Bifidobacterium infantile has been shown to improve behavioral

deficits and restore basal norepinephrine (NA) concentrations (60).

Messaoudi et al. showed that treatment with Lactobacillus helveticus

R0052 and Bifidobacterium longum R0175 improved mental status

and reduced cortisol levels (61). Therefore, whether gut microbes

can improve the mental status of patients with PitNETs and

improve hormone secretion in patients with functional PitNETs

is an interesting entry point, and the HPA axis may be the key. At

the same time, whether abnormal hormone secretion of functional

PitNETs and gut microbiota can be linked through the HPA axis is

the next research focus.

Somatotropinoma is characterized by excessive secretion of GH

and increased circulatingIGF-1 concentration (62). The studies

mentioned above have confirmed that the gut microbiota

composition of patients with somatotropinoma is specific and

correlated with GH/IGF-1 levels (7, 9). In animal studies, the

researchers found whether GH or IGF-1 levels were reduced in

GF mice (63–65). In turn, supplementation of GF mice or suckling

piglets with gut microbiota caused corresponding increases in GH

and IGF-1 levels (66, 67). Either the change of GH/IGF-1 and

intestinal microbiota will lead to the change on the other side (68).

It is reasonable to believe that the association between

somatotropinoma and intestinal microbiota is related to the

change in GH/IGF-1 level.

Intestinal microbiota performs various physiological functions

in thyroxine metabolism (69, 70). Gut microbiota can directly affect

thyroid hormone levels through its deiodinase activity and thyroid-

stimulating hormone inhibition (71). It can also indirectly affect

thyroid hormone synthesis by affecting iodine absorption (71).
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Therefore, it is worth exploring whether there is a relationship

between the inappropriate secretion of thyroid-stimulating

hormone in thyrotropinoma patients and intestinal flora.

The use of Ames mice provides an animal model lacking several

pituitary hormones, including GH, thyroid-stimulating hormone,

and prolactin(PRL) (72). The study by Denise et al. showed a

change in gut microbiota composition in Ames mice compared to

controls (72). Patients with PitNETs are likely to have endocrine

dysfunction before or after surgery, manifested by the disturbance

of one or more hormones (1, 73). What is the effect of this on the

gut microbiota of these patients?
4.2 Immune system

The presence of gut microbiota can promote the development

of the innate immune system (74). For instance, the gut microbiota

is involved in the maturation of innate lymphocytes (ILCs) (75).

Furthermore, a large number of literature has shown the presence of

intestinal flora in both humoral and cellular immunity (76, 77).

Takeshi et al. reported that 11 microbiota, including

Parabacteroides distasonis and Parabacteroides Johnsonii, could

co-induce CD8+T cell expression in mice and effectively inhibit

tumor growth (78). Intestinal microbiota can promote the

induction of immunoglobulin A (IgA) B cells and plasma cell

differentiation (79). Reliable studies have also demonstrated that

gut microbiota can affect the levels of immune effectors such as

interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF),

and participate in the process of disease occurrence or development

(80–84). In PitNETs, the distribution of immune cells varies among

subtypes. Studies showed that macrophages, T lymphocytes, and

other immune cells were more infiltrated in functional PitNETs

than in NF-PitNETs (85, 86). In a study of pituitary tumors,

researchers found that IFN-a significantly inhibited the secretion

of functional pituitary adenoma hormones (87). TNF-a in invasive

pituitary adenoma can promote pathological osteoclast formation

by directly inducing osteoclast differentiation, leading to

inflammatory bone destruction (88). Qiu et al. reported that

serum levels of IL-4, IL-5, and IL-17 were significantly increased

in patients with pituitary adenoma, and IL-17 may be an important

marker related to tumor invasiveness (89). In our previous study, it

was demonstrated that the gut microbiota of patients with

somatotropinoma can affect the immune indexes of tumor mouse

models, which is that intestinal microbes from patients with

somatotropinoma promoted the growth of subcutaneous tumors

in mice and up-regulated the number of programmed cell death-

ligand 1 (PD-L1) positive cells in tumor tissue (8). In other types of

brain tumors, gut microbiota can also affect tumors through the

immune system (42). In addition, in a hot area of research called

immune checkpoints, Kemeny et al. used anti-PD-L1 treatment to

successfully reduce plasma adrenoceptor ticotropic hormore

(ACTH) levels, delay tumor growth, and improve mouse survival

in a model of Cushing’s disease (19). A large body of research

evidence also suggests that there is a close relationship between gut

microbiota and the response to immune checkpoint therapy. For

example, bifidobacterium can enhance the therapeutic effect ofPD-
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L1 inhibitors on mouse melanoma, while enhancing dendritic cell

function and CD8+T cell-mediated anti-tumor mechanisms (90).
4.3 Metabolism and metabolites

The gut microbiota is capable of producing and releasing active

metabolites that act as signaling molecules in the brain-gut axis

(91). Bacterial metabolites such as dopamine, serotonin/

norepinephrine GABA, acetylcholine, and histamine can also act

as neurotransmitters in the central nervous system (91, 92).

Specifically, dopamine acts as both a neurotransmitter and a

hormone in the hypothalamic-pituitary axis (93). First, chronic

dopamine deficiency is associated with the formation of pituitary

tumors and many sites in the dopamine-D2 –second receptor-

second messenger pathway may be involved (94, 95). Second,
Frontiers in Endocrinology 06
dopamine binds to dopamine receptor type 2 (D2DR) in the

anterior pituitary gland, thereby inhibiting hormone secretion

and cell division in the anterior pituitary gland (93). Finally,

dopamine agonists (DAs), by binding to D2DR, lead to the

inhibition of hormone secretion and tumor shrinkage in different

pituitary tumor tissue types (96). As another important substance,

short-chain fatty acids (SCFAs) are produced by the gut microbiota

during the fermentation of part ial and non-digested

polysaccharides (97). Wang et al. showed that SCFAs decreased

cyclic adenosine monophosphate (cAMP) levels and subsequently

protein kinase A(PKA) activity in the anterior pituitary cells of

dairy cows. Inhibition of PKA activity decreased cyclic-AMP

response binding protein (CREB) phosphorylation, which

inhibited GH and PRL gene transcription (98). Furthermore,

patients with PitNETs often have metabolic disorders associated

with impaired glucose tolerance including insulin sensitivity (99–
Gut microbiota 

Intestinal epithelium

Adrenal glands

Hypothalamus

Pituitary gland

PitNET

Hormone

Neurotransmi�ers 

Vagus nerve

Immune factors

Immune cells
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FIGURE 2

Potential mechanism of association between gut microbiota and PitNET. The interaction between gut microbes and PitNET may be mediated by
immune factors, metabolites, hormone secretion, and neurotransmitters. Blue arrow, metabolites of gut microbes can not only affect PitNET by
affecting immune factors, HPA axis hormone secretion, but also directly affect PitNET. Green arrow, gut microbes affect immune factors, which in
turn affect immune cells in the tumor microenvironment, and ultimately PitNET. Red arrow, gut microbes release neurotransmitters that affect
PitNET through the vagus pathway. Black arrow, PitNET, and the hormones it secretes can affect the composition or metabolism of gut microbes.
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101). A variety of gut microbes regulate insulin sensitivity, like

Firmicutes, which can produce butyrate and increases insulin

sensitivity (102, 103). At the same time, microbial metabolites are

usually associated with immunity, hormone levels, and so on, which

is a complex mechanism of joint action (104–107).
5 Gut microbes and other
neuroendocrine tumors

Neuroendocrine tumor (NET) is a heterogeneous group of

tumors originating from different neuroendocrine organs or cells

(108). In addition to PitNETs, the NETs in other organs have also

been linked to gut microbes (109). By studying stool samples from

18 patients with rectal neuroendocrine tumor (RNET) and 40

controls, Hu et al. found that patients with RNET had aberrant

depletion and attenuated connection. Finally, they suggest that this

disordered ecological structure may contribute to the disease-

causing process of this tumor (110). In gastroenteropancreatic

neuroendocrine tumors (GEP-NETs), the researchers found a

significant decrease in bacterial species and an increase in fungi

in the patients’ gut microbes. These changes may participate in the

disease process by influencing the tumor microenvironment (111).

Similar to the study of PitNETs, although little has been reported so

far, the relationship between gut microbes and NETs has gradually

become a focus of researchers and the tumor microenvironment

may be a key factor.
6 Conclusion

Patients with different types of PitNETs have their

characteristics of intestinal microbial composition and can be

distinguished by this characteristic. As a specific type of brain

tumor, PitNETs are closely related to hormone secretion,

metabolism, and the immune system. These factors are the

mediators of the connection between the gut microbiota and the
Frontiers in Endocrinology 07
central nervous system, so, the link between PitNETs and gut

microbes may be mediated by metabolites, hormones, and

immune molecules. Thus, the future exploration of the

relationship between the two parties is promising, such as

whether intestinal microbes are involved in the occurrence and

development of PitNETs, whether intestinal microbes can affect the

clinical symptoms of PitNETs, and the influence of intestinal

microbes on the immunotherapy of PitNETs, but it also means

more work and challenges (Figure 2). According to current

research, immunity and metabolism are perhaps the most

important areas of concern. Expanding the number of cases and

further studying the effect of intestinal microbes on tumors and its

mechanism based on animal models may be the direction of

further research.
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