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Purpose: The relationship between diabetes mellitus and keratoconus remains 
controversial. This study aimed to assess the potential causal relationships among 
type 2 diabetes, glycemic traits, and the risk of keratoconus.

Methods: We used a two-sample Mendelian randomization (MR) design based on 
genome-wide association summary statistics. Fasting glucose, proinsulin levels, 
adiponectin, hemoglobin A1c (HbA1c) and type 2 diabetes with and without body 
mass index (BMI) adjustment were used as exposures and keratoconus was used 
as the outcome. MR analysis was performed using the inverse-variance weighted 
method, MR-Egger regression method, weighted-mode method, weighted 
median method and the MR-pleiotropy residual sum and outlier test (PRESSO).

Results: Results showed that genetically predicted lower fasting glucose were 
significantly associated with a higher risk of keratoconus [IVW: odds ratio 
(OR)  =  0.382; 95% confidence interval (CI)  =  0.261–0.560; p  =  8.162  ×  10−7]. 
Genetically predicted lower proinsulin levels were potentially linked to a higher risk 
of keratoconus (IVW: OR  =  0.739; 95% CI  =  0.568–0.963; p  =  0.025). In addition, 
genetically predicted type 2 diabetes negatively correlated with keratoconus (IVW: 
BMI-unadjusted: OR  =  0.869; 95% CI  =  0.775–0.974, p  =  0.016; BMI-adjusted: 
OR  =  0.880, 95% CI  =  0.789–0.982, p  =  0.022). These associations were further 
corroborated by the evidence from all sensitivity analyses.

Conclusion: These findings provide genetic evidence that higher fasting glucose 
levels are associated with a lower risk of keratoconus. However, further studies 
are required to confirmed this hypothesis and to understand the mechanisms 
underlying this putative causative relationship.
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1. Introduction

Keratoconus is the most common type of ectatic corneal disease. It is defined as progressive 
corneal thinning causing corneal protrusion, uneven astigmatism, and impaired vision, which 
can result in legal blindness if left untreated (1–4). The incidence of keratoconus varies from 
1:2000 cases as documented in 1986 (5) to 1:375 cases recorded in 2016 (6). The increasing 
prevalence of keratoconus underscores the significance of identifying the risk factors associated 
with its development.
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Keratoconus is a complex disease that involves a mixture of 
environmental and genetic factors (7, 8), but its exact etiology remains 
elusive. Studies on the effects of diabetes mellitus (DM) on the 
incidence of keratoconus differ significantly. Seiler et al. (9) was the 
first to demonstrated that DM is a protective factor against 
keratoconus. Three other studies also found similar results, with a 
considerably lower rate of DM in patients with keratoconus than in 
non-keratoconus controls (10–12). However, some conflicting studies 
have shown that the prevalence of DM is greater in patients with 
keratoconus than in the control group (13, 14). A recent meta-analysis 
by Hashemi et al. (15) revealed an unclear correlation between DM 
and keratoconus. The reasons for these contradictory study results 
may be  due to innate biases or confounders in the observational 
studies, such as clinic-based case-control recruitment, small sample 
sizes, reverse causality, and demographic trait heterogeneity.

Mendelian randomization (MR) is a reliable approach for 
estimating the causal contribution of reported genetic instrumental 
variables to the disease outcomes of interests (16, 17). MR is less 
vulnerable to the impact of reverse causality or confounding factors 
than conventional observational research (17, 18). We used this MR 
study to determine the causal effect of genetically predicted type 2 
diabetes and multiple glycemic traits on the risk of keratoconus in 
European populations.

2. Methods

2.1. Study design

To estimate the causal relationships between exposure to type 2 
diabetes and glycemic traits and the risk of keratoconus, we performed 
a two-sample MR analysis based on summary statistical data from 
genome-wide association study (GWAS). We used type 2 diabetes 
with and without adjustment for body mass index (BMI) and four 
glycemic traits: fasting glucose, proinsulin levels, adiponectin, and 
hemoglobin A1c (HbA1c) as exposures. Keratoconus was used as an 
outcome measure. Applying MR analyses requires the following three 
essential assumptions (Figure 1): (1) genetic instrumental variables 
must be closely linked to exposure; (2) genetic instrumental variables 
are irrelevant to any confounders influencing the exposure-outcome 

link and (3) genetic instrumental variables affect outcomes merely 
through their effect on exposure.

This study adhered to the principles of the Declaration of Helsinki. 
This study was approved by the Institutional Review Board of the Eye 
Hospital of Wenzhou Medical University as it used only publicly 
available data.

2.2. Genetic instruments for type 2 
diabetes and glycemic traits

Intake of diets high in sugar are associated with insulin resistance, 
hyperglycemia and obesity (19, 20). In the present, insulin resistance 
(adiponectin levels), hyperglycemia (HbA1c and fasting glucose), and 
β-cell dysfunction (proinsulin levels) were selected as glycemic traits. 
GWAS summary datasets of adiponectin, fasting glucose and 
proinsulin levels were acquired from the MRC-IEU OpenGWAS 
project software1 (21). These three glycemic traits were derived from 
different GWASs, including adiponectin (GWASID: ieu-a-1; 
n = 39,883) (22), fasting glucose (GWASID: ieu-b-114; n = 133,010) 
(23) and proinsulin levels (GWASID: ebi-a-GCST001212; n = 10,701) 
(19). The selections of genetic instrumental variables for HbA1c were 
based on a large GWAS meta-analysis involving 123,665 participants 
of European ancestry without diabetes (24).2 The summary statistics 
for type 2 diabetes were obtained from a meta-analysis of GWAS of 
European ancestry (25). The studies conducted meta-analyses with 
and without adjustment for BMI. Single nucleotide polymorphisms 
(SNPs) for type 2 diabetes were obtained from the MRC-IEU 
OpenGWAS project (21), including type 2 diabetes adjusted for BMI 
(GWASID: ebi-a-GCST007516; n = 298,957) and unadjusted for 
BMI  (GWASID: ebi-a-GCST007517; n = 298,957) (25). Detailed 
information of type 2 diabetes and every glycemic trait is presented in 
Table  1. All SNPs chosen as instrumental variants were strongly 
associated with the relevant exposure and reached Genome-wide 
significance (p < 5 × 10−8). The variants were then trimmed using 

1 https://gwas.mrcieu.ac.uk/

2 www.magicinvestigators.org/downloads

FIGURE 1

Diagram of MR principles investigating the causal relationship between type 2 diabetes, glycemic traits and keratoconus. Instrumental variable 
assumptions: Assumption 1: genetic instrumental variables must be closely linked to exposure. Assumption 2: genetic instrumental variables are 
irrelevant to any confounders influencing the exposure-outcome link. Assumption 3: genetic instrumental variables affect outcomes merely through 
their effect on the exposure.
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linkage disequilibrium (r ≤ 0.001 within a distance of 10,000 kb for 
variants at the same locus). The F-statistic was used to quantify the 
instrumental strength for each candidate SNP and SNPs with F > 10 
were retained. Effect estimates of SNP associated with type 2 diabetes 
were categorized as unadjusted and adjusted for BMI. The final 
independent SNPs determined as genetic instruments for each 
exposure were shown in Supplementary Tables S1, S2.

2.3. GWAS summary statistics for 
keratoconus

Genetic variants associated with keratoconus were acquired from 
the first large scale GWAS. Importantly, we used the first stage meta-
analysis comprising of 2,116 cases and 24,626 controls of European 
ancestry (26).3

2.4. Statistical analysis

For each relevant exposure, we  performed two-sample MR 
analyses using R version 4.1.0 (R Foundation for Statistical 
Computing, Vienna, Austria). The methods based on the 
TwoSampleMR version 0.5.6 R package included the inverse-variance 
weighted (IVW) (27), weighted mode (28), weighted median (29), MR 
pleiotropy residual sum and outlier (MR-PRESSO) test (30), and 
MR-Egger regression methods (31). IVW is a major method for 
assessing the relationships among type 2 diabetes, glycemic traits, and 
keratoconus (32). Causal analysis of type 2 diabetes and keratoconus 
were categorized as unadjusted and adjusted for BMI. If the IVW 
approach indicated an association (p < 8.333 × 10−3 = 0.05/6, taking 
into account multiple testing for six exposures and one outcome) and 
the five MR methods had effects in a consistent direction, the results 
were regarded as statistically significant. p < 0.05, but greater than the 
significance threshold after Bonferroni correction; the five MR 
methods had effects in a consistent direction suggesting a potential 
association. For sensitivity analysis, the Egger intercept calculation 

3 https://www.ebi.ac.uk/gwas/

(31), MR-PRESSO global test (30), the Cochran’s Q test (33), and the 
leave-one-out analysis (28) were used to estimate the strength of these 
identified associations.

3. Results

3.1. MR analysis of fasting glucose and risk 
of keratoconus

The results showed that a genetically predicted higher fasting 
glucose level was considerably associated with a lower risk of 
keratoconus (Table 2): IVW [odds ratio (OR) = 0.382; 95% confidence 
interval (CI) = 0.261–0.560; p = 8.162 × 10−7]. The uniform direction 
of the fasting glucose level effect indicates that it has a protective 
impact against keratoconus. The scatter plots of the MR analysis in 
Figure 2A demonstrate the effective levels of associations between 
fasting glucose and keratoconus. Even after Bonferroni adjustment, 
the IVW and MR PRESSO results remained statistically significant 
(p <  8.333 × 10−3). The Egger intercept indicated no horizontal 
pleiotropy effects (p = 0.220 > 0.05). Heterogeneity from the Cochran’s 
Q test was not statistically significant (p = 0.858 > 0.05). No outliers 
were detected in the leave-one-out analysis (Figure 2B). Furthermore, 
no horizontal pleiotropic outliers were identified to distort these 
results using MR-PRESSO (global test p = 0.862 > 0.05). Collectively, 
these results support the inverse causal relationship between low 
fasting glucose levels and keratoconus occurrence.

3.2. MR analysis of proinsulin levels and risk 
of keratoconus

Genetically predicted proinsulin levels were found to 
be potentially inversely linked to the incidence of keratoconus 
(Table 2): IVW (OR = 0.739; 95% CI = 0.568–0.963; p = 0.025). The 
proinsulin levels effect in consistent direction indicated that it has 
a potential protective effect against keratoconus. The scatter plots 
of the MR analysis in Figure 3A demonstrate the effective level of 
the associations between proinsulin levels and keratoconus. The 
MR-Egger intercept provided no support for directional pleiotropy 
(p = 0.693 > 0.05). Heterogeneity from Cochran’s Q test was not 

TABLE 1 Description of GWAS summary statistics for type 2 diabetes and glycemic traits.

Phenotype PMID Accession Sample 
size

Number of 
SNPs

Population 
ethnicity

Study

Adiponectin 22479202 The MRC IEU (GWASID: ieu-a-1)a 39,883 2,675,209 Mixed Dastani et al. (22)

Fasting glucose 22885924 The MRC IEU (GWASID: ieu-b-114)a 133,010 64,432 European Scott et al. (23)

Proinsulin levels 21873549
The MRC IEU (GWASID: ebi-a-

GCST001212)a
10,701 2,479,861 European

Strawbridge et al. 

(19)

HbA1c 28898252 The MAGIC websiteb 123,665 2,586,698 European Wheeler et al. (24)

Type 2 diabetes 

(adjusted for BMI)
29632382

The MRC IEU (GWASID: ebi-a-

GCST007516)a
298,957 131,045 European Mahajan et al. (25)

Type 2 diabetes 

(unadjusted for BMI)
29632382

The MRC IEU (GWASID: ebi-a-

GCST007517)a
298,957 190,208 European Mahajan et al. (25)

aThe MRC IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/).
bThe MAGIC website (www.magicinvestigators.org).
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statistically significant (p = 0.337 > 0.05). No outliers were detected 
in the leave-one-out sensitivity analysis (Figure 3B). Furthermore, 
no horizontal pleiotropic outliers were found in the MR-PRESSO 
test to distort these results (global test p = 0.335 > 0.05). In 
combination, these results support a potential negative 
relationship between low proinsulin levels and the occurrence 
of keratoconus.

3.3. MR analysis of type 2 diabetes and risk 
of keratoconus

IVW analyses showed that genetically predicted levels of type 
2 diabetes were potentially inversely associated with keratoconus 
(Table  2): BMI-adjusted: OR = 0.880; 95% CI = 0.789–0.982; 
p = 0.035; BMI-unadjusted: OR = 0.869; 95% CI = 0.775–0.974; 

TABLE 2 Mendelian randomization estimates for associations between type 2 diabetes, glycemic traits and keratoconus.

Method No. of 
SNPs

Forest plots OR 95% CI p p-het p-
intercept

p-
global

Adiponectin

IVW 13 0.771 0.560–1.063 0.113 0.008

Weighted median 13 0.800 0.559–1.145 0.223

MR-Egger 13 0.762 0.473–1.226 0.286 0.942

Weighted mode 13 0.820 0.573–1.175 0.266

MR-PRESSO 13 0.771 0.560–1.063 0.139 0.036

Fasting glucose

IVW 30 0.382 0.261–0.560 8.162 × 10–7 0.858

Weighted median 30 0.466 0.267–0.815 6.298 × 10–3

MR-Egger 30 0.612 0.267–1.402 0.256 0.220

Weighted mode 30 0.444 0.251–0.786 0.011

MR-PRESSO 30 0.382 0.276–0.529 2.836 × 10–6 0.862

HbA1c

IVW 37 0.728 0.378–1.404 0.344 0.004

Weighted median 37 0.846 0.389–1.843 0.692

MR-Egger 37 0.534 0.146–1.953 0.349 0.588

Weighted mode 37 0.751 0.321–1.753 0.463

MR-PRESSO 37 0.728 0.378–1.404 0.350 0.005

Proinsulin levels

IVW 7 0.739 0.568–0.963 0.025 0.337

Weighted median 7 0.697 0.492–0.986 0.043

MR-Egger 7 0.729 0.375–1.416 0.393 0.963

Weighted mode 7 0.604 0.357–1.021 0.129

MR-PRESSO 7 0.739 0.568–0.963 0.066 0.335

Type 2 diabetes (adjusted for BMI)

IVW 54 0.880 0.789–0.982 0.022 0.339

Weighted median 54 0.864 0.723–1.031 0.105

MR-Egger 54 0.819 0.648–1.035 0.100 0.497

Weighted mode 54 0.863 0.719–1.036 0.104

MR-PRESSO 54 0.880 0.789–0.982 0.026 0.370

Type 2 diabetes (unadjusted for BMI)

IVW 51 0.869 0.775–0.974 0.016 0.208

Weighted median 51 0.858 0.717–1.026 0.091

MR-Egger 51 0.774 0.591–1.014 0.069 0.359

Weighted mode 51 0.872 0.726–1.047 0.121

MR-PRESSO 51 0.869 0.775–0.974 0.020 0.225

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; MR, Mendelian randomization; IVW, inverse-variance weighted; PRESSO, pleiotropy residual sum and outlier; 
p-het, p-value for heterogeneity using Cochran’s Q test; p-intercept, p-value for MR-Egger intercept; p-global, p-value for MR-PRESSO global test.
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p = 0.016. The uniform direction of the impact of type 2 diabetes 
indicated that it has a potential protective effect against 
keratoconus. The scatter plots of the MR analyses in Figure 4A 

(BMI-unadjusted) and Figure 5A (BMI-adjusted) demonstrate the 
effective level of the associations between type 2 diabetes and 
keratoconus. The MR-Egger intercept test did not show any 

FIGURE 2

MR analysis and leave-one-out analysis of the causal effect of fasting glucose on keratoconus. (A) Scatter plots for MR analyses of the causal effect of 
fasting glucose on keratoconus. Each line shows the slope corresponding to the estimated MR effect each method. (B) Leave-one-out analysis of the 
causal effect of fasting glucose on keratoconus. Every black dot represents the IVW MR method applied to estimate the causal effect of fasting glucose 
on keratoconus, with particular variant excluded from the analysis. The red point represents the IVW estimate using all SNPs.

FIGURE 3

MR analysis and leave-one-out analysis of the causal effect of proinsulin levels on keratoconus. (A) Scatter plots for MR analyses of the causal effect of 
proinsulin levels on keratoconus. Each line shows the slope corresponding to the estimated MR effect each method. (B) Leave-one-out analysis of the 
causal effect of proinsulin levels on keratoconus. Every black dot represents the IVW MR method applied to estimate the causal effect of proinsulin 
levels on keratoconus, with particular variant excluded from the analysis. The red point represents the IVW estimate using all SNPs.
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directional pleiotropy (BMI-unadjusted: p = 0.359; BMI-adjusted: 
p = 0.497). Heterogeneity from Cochran’s Q test was not 
statistically significant (BMI-unadjusted: p = 0.208; BMI-adjusted: 

p = 0.339). The leave-one-out analysis identified no outliers 
(Figure  4B: BMI-unadjusted; Figure  5B: BMI-adjusted). 
Furthermore, MR-PRESSO analysis did not identify horizontal 

FIGURE 4

MR analysis and leave-one-out analysis of the causal effect of type 2 diabetes unadjusted for BMI on keratoconus. (A) Scatter plots for MR analyses of 
the causal effect of type 2 diabetes unadjusted for BMI on keratoconus. The slope of each line corresponds to the estimated MR effect per method. 
(B) Leave-one-out analysis of the causal effect of type 2 diabetes unadjusted for BMI on keratoconus. Each black point represents the IVW MR method 
applied to estimate the causal effect of type 2 diabetes unadjusted for BMI on keratoconus, excluding that particular variant from the analysis. The red 
point represents the IVW estimate using all SNPs.

FIGURE 5

MR analysis and leave-one-out analysis of the causal effect of type 2 diabetes adjusted for BMI on keratoconus. (A) Scatterplots for MR analyses of the 
causal effect of type 2 diabetes adjusted for BMI on keratoconus. The slope of each line corresponds to the estimated MR effect per method. 
(B) Leave-one-out analysis of the causal effect of type 2 diabetes adjusted for BMI on keratoconus. Each black point represents the IVW MR method 
applied to estimate the causal effect of type 2 diabetes adjusted for BMI on keratoconus, excluding that particular variant from the analysis. The red 
point represents the IVW estimate using all SNPs.
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pleiotropic variants, distorting these results with global test 
p > 0.05 (BMI-unadjusted: p = 0.225; BMI-adjusted: p = 0.370). All 
together, these results support type 2 diabetes is potentially 
inversely associated with the incidence of keratoconus.

4. Discussion

To the best of our knowledge, this study is the first to describe 
the causal associations between type 2 diabetes, glycemic traits, 
and the risk of keratoconus using MR analysis. This study 
provided evidence of a causal relationship between higher fasting 
glucose levels and a lower incidence of keratoconus. Meanwhile, 
our findings imply that increased proinsulin levels potentially 
decrease the risk of keratoconus. In addition, type 2 diabetes was 
related to a decreased incidence of keratoconus irrespective of 
whether type 2 diabetes was adjusted or unadjusted for BMI.

The relationship between DM and keratoconus remains 
controversial owing to the conflicting results from multiple studies. 
Several studies have shown an inverse relationship between DM 
and the risk of keratoconus, suggesting a protective role in the 
development of keratoconus (9–12). In contrast, other studies that 
have demonstrated a positive correlation or no association between 
DM and keratoconus (2, 13, 34, 35). In the present study, 
we discovered that higher fasting glucose levels were associated 
with a lower risk of keratoconus, but there was no discernible effect 
of HbA1c levels. HbA1c represents the average level of blood 
glucose during the previous two to 3 months (36). Previous studies 
have reported that genetically predicted fasting glucose and HbA1c 
levels are inconsistent and there is significant disagreement in the 
diagnosis of DM (37–39). Our findings indicate that adiponectin 
does not protect against keratoconus. Adiponectin, an endocrine 
hormone mainly generated and released by adipocytes, has no 
causal impact on glucose homeostasis and type 2 diabetes, and 
correlations among them in observational designs may be caused 
by the underlying confounding factors reported by Chen et al. (40). 
The precursor of insulin, proinsulin, is secreted in increased 
quantities when pancreatic β-cells are stressed, and prior studies 
have demonstrated that increased proinsulin could serve as a signal 
to those with prediabetes (41). In particular, our results indicate 
that proinsulin serves as a protective factor for keratoconus and 
increases proinsulin levels, thereby reducing the risk of 
keratoconus. An elevated proinsulin-to-insulin ratio in the blood 
has been postulated as a potential marker of type 2 diabetes for 
more than 20 years (42). Notably, our study supported an accordant 
trend that is elevated fasting glucose, increased proinsulin levels 
and type 2 diabetes are all negatively related to the incidence 
of keratoconus.

These interesting findings raise concerns regarding how and 
why fasting glucose levels affect keratoconus. These mechanisms 
may include modifications in corneal biomechanics and collagen 
crosslinking, changes in the extracellular matrix structure, 
oxidative stress, proteolytic activity, and increased inflammation 
(43). Here, we  postulate on a theoretic level that DM protects 
keratoconus by altering the biomechanics of the cornea and 
increasing collagen cross-linking. A few studies have shown that 

the expression and activity of LOX, a copper amine oxidase that 
triggers the collagen cross-linking (44), increased in skin collagen 
(45, 46), rat retinal endothelial cells (46), and ARPE-19 cells (47) 
under hyperglycemic states. Moreover, the cornea has detected to 
contain the Lysyl oxidase (LOX) enzyme (48). Therefore, if LOX 
expression is upregulated in corneal cells under hyperglycemia, this 
could explain why individuals with DM have a lower risk of 
developing keratoconus (43). In addition, diabetes may protect 
against keratoconus through non-enzymatic approaches. Advanced 
glycation end product (AGE)-mediated crosslinking increases 
corneal stromal collagen cross-linking, thus strengthening corneal 
stiffness (44). Nevertheless, the underlying mechanisms of this 
association need to be assessed more comprehensively.

The use of MR analysis to evaluate large-scale databases using 
standard procedures is one of the main advantages of this study. 
The MR method is far less vulnerable to biases or confounders than 
observational studies. However, this study has some limitations. 
First, because individuals of European ancestry participated in this 
study, our findings applying to other races needs further 
investigation. Second, further laboratory research is required, 
because the effects of fasting glucose on keratoconus development 
have not yet been experimentally explored. Third, we only took into 
account BMI when selecting the instrumental variables for type 2 
diabetes in this two-sample MR design. However, no discernible 
differences were observed between the unadjusted and adjusted 
BMI models, making multivariate MR a more practical method.

Our findings concluded that the relationship between low 
fasting levels and a high risk of keratoconus is causal. Furthermore, 
higher proinsulin levels decrease the risk of keratoconus. These 
findings, utilized in clinics, indicate that a rational sugar diet strategy 
may be  favorable in controlling keratoconus. However, further 
studies are required to confirm this hypothesis and to comprehend 
the mechanisms underlying this putative causative relationship.
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