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Macrophages (MFs) are the most abundant leukocytes in mammalian ovaries

that have heterogeneity and plasticity. A body of evidence has indicated that

these cells are important in maintaining ovarian homeostasis and they play

critical roles in ovarian physiological events, such as folliculogenesis, ovulation,

corpus luteum formation and regression. As females age, ovarian tissue

microenvironment is typified by chronic inflammation with exacerbated

ovarian fibrosis. In response to specific danger signals within aged ovaries,

macrophages polarize into different M1 or M2 phenotypes, and specialize in

unique functions to participate in the ovarian aging process. In this review, wewill

focus on the physiologic roles of MFs in normal ovarian functions. Furthermore,

we will discuss the roles of MFs in the process of ovarian senescence, as well as

the novel techniques applied in this field.
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1 Introduction

The ovary is a key organ in female reproductive system. It produces oocytes and

multiple reproductive hormones including estrogen, progesterone and androgens (1).

Unlike other organs in the body, the mammalian ovary is one of the first organs to undergo

early senescence. Ovarian aging is characterized by ongoing reduction in follicle number

and steroid hormones generation, with deterioration of oocyte quantity and quality (2–4).

In humans, ovarian function usually begins to decline around age of 35 years, and

deteriorates after 37 years old, ultimately leading to endocrine dysfunction, fertility loss

and menopause (1, 3, 5). It is noteworthy that in recent years, a growing body of women opt

to postpone childbearing to the later stage of life partially due to social factors. As a result,

the decline of female fertility due to ovarian aging represents a great challenge in

reproductive medicine for which there is no reliable treatment (4, 6, 7). So far, the

molecular mechanisms underpinning ovarian aging remain unclear.
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Macrophages (MFs) are a central population of leukocytes in

the innate immune system, with high levels of heterogeneity and

plasticity in various tissues (8–11). They are the most abundant

immune cells in mammalian ovaries (8). In addition to their general

functions in infection, injury and inflammation, increasing evidence

has suggested critical roles of MFs in multiple aspects of ovarian

physiology, including folliculogenesis, ovulation, corpus luteum

formation and regression (12, 13). Notably, along with advancing

maternal age, ovarian microenvironment is characterized by

chronic inflammation with exacerbated stromal fibrosis (14–17).

In response to tissue-derived stimuli such as inflammatory

cytokines/chemokines and Th2-type cytokines, ovarian MFs can

polarize into different M1 or M2 phenotypes, and specialize in

unique functions to participate in ovarian senescence (9, 14). It has

become increasingly clear that during reproductive senescence, the

perturbation of M1 and M2 phenotypes is closely associated with

ovarian aging (8, 9, 14). Therefore, we summarize the physiologic

roles of MFs in normal ovarian functions. Moreover, we discuss the

roles of MFs in ovarian senescence, as well as novel techniques

applied in this field.
2 Overview of macrophages

MFs constitute a vital component of innate immune system,

and play important roles during infections and inflammation. They

are often distributed in multiple tissues/organs of the body (8, 18).

Previously, MFs are thought to solely originate from monocytes,

which are derived from precursors of bone marrow. Monocytes

circulate in blood for several days and ultimately migrate to specific

tissues where they differentiate into MFs. However, in addition to

monocyte-derived MFs, it has recently reported that some MFs

within tissues arise from yolk sac and fetal liver during

embryogenesis (9, 11). Notably, MFs display high levels of

plasticity, as reflected by that they phenotypically and functionally

adapt to diverse tissue-specific environments. These local MF
populations are essential for maintaining tissue homeostasis (11,

19). So far, due to MFs’ complex property, the biology of MFs is

still not fully understood.
2.1 Plasticity, polarization and phenotype
of macrophages

MFs display strong heterogeneity and plasticity in their

phenotypes and functions when exposed to various tissue

microenvironments (20). In response to microorganism,

microenvironmental stimuli/signals, MFs switch from one

phenotype to another, reflecting MFs’ plasticity (11, 14, 19).

Based on surface markers and biological activities, MFs are

commonly divided into two distinct subpopulations, including

classically activated (M1) and alternatively activated (M2) MFs

(19, 21). Traditionally, M1 MFs are induced by pro-inflammatory

signals, such as interferon-g, tumor necrosis factor-a (TNF-a),
granulocyte-macrophage colony stimulation factor (GM-CSF), or

lipopolysaccharide. In contrast, M2 MFs are induced by anti-
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inflammatory signals such as IL-4, IL-13 and IL-10. Besides, IL-21

and IL-33 can also drive M2 polarization. Under the stimulation of

various stimuli, M2 MFs can be further divided into four subsets,

M2a, M2b, M2c and M2d (12, 19). Specifically, M2a subset is

induced by IL-4 or IL-13, whereas M2b subset is induced by

immune complexes, Toll-like receptor (TLR) ligands, or IL-1

receptor agonists (IL-1Ra). M2c subset is induced by

glucocorticoids, IL-10 or TGF-b. Finally, M2d subset, also known

as tumor-associated macrophages, is induced by TLR ligands, A2

adenosine receptor agonists, or IL-6 (11, 12).
2.2 Function of macrophages

Typically, activated MFs express a variety of receptors, including

co-stimulatory and antigen presenting molecules (e.g. CD80, CD86,

major histocompatibility complex I/II), chemotactic/activating

cytokine receptors, pattern recognition receptors, and opsonic

receptors (12). MFs perform diverse functions during inflammation,

infection and injury (22–24). Firstly, they defense against

microorganisms by engulfing pathogens, and removing dying cells.

Secondly, they process and present antigens to helper T-cells and

stimulate them. Thirdly, they produce various cytokines, chemokines,

growth factors and enzymes to recruit immune cells, as well as to

facilitate vasculogenesis, tissue remodeling and repair (11, 20).

With MFs polarization into M1 and M2 phenotypes, they

exhibit enormous functional heterogeneity (11, 20). Specifically,

M1 MFs have a pro-inflammatory phenotype. They generate

various chemokines and pro-inflammatory cytokines, such as

TNF-a, IL-1a/b, IL-6, IL-12, IL-18 and IL-23, and possess

enhanced antigen-presentation capabilities to participates in

adaptive immune response (11). Additionally, M1 MFs produce

lysosomal enzymes and inducible nitric oxide synthase (iNOS) to

eliminate pathogens (21). By stark contrast, M2 MFs have an anti-

inflammatory phenotype. They produce anti-inflammatory

cytokines including IL-10 and transforming growth factor b
(TGF-b), fibroblast growth factor (FGF) and platelet-derived

growth factor (PDGF), which facilitate inflammation resolution,

tissue repair and fibrosis (11, 19, 21). Moreover, diverse M2

subpopulations perform differential functions (11, 12). M2a

subset suppresses inflammation and promotes tissue remodeling/

repair through producing IL-10 and TGF-b (21). M2b subset

simultaneously secretes pro-inflammatory and anti-inflammatory

cytokines including IL-1b, IL-6, TNF-a and IL-10, which are

responsible for immune regulation (25, 26). In contrast, M2c

subset can phagocytose apoptotic bodies and repair injured

tissues (25, 27). Also, they exert a strong anti-inflammatory effect

via releasing TGF-b and IL-10 (11). M2d subset produces TGF-b,
IL-10, and vascular endothelial growth factor (VEGF), which

promotes tumor angiogenesis and metastasis (28).
3 Macrophages and ovarian function

MFs are the most abundant immune cells in mammalian

ovaries. The number and distribution of these cells change during
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ovarian cycles (8, 29). Accumulated evidence has revealed that MFs

are key players in various aspects of ovarian physiology (12, 13, 30).

Table 1 summarizes the roles of MFs subsets in normal

ovarian function.
3.1 Roles of macrophages in
folliculogenesis and follicular atresia

Human and animal studies have suggested an abundant

presence of MFs in thecal layer of growing follicles (9). Ovarian

MFs contribute to follicular growth via their derived cytokines and

growth factors, involving VEGF, hepatocyte growth factor (HGF),

FGF, epidermal growth factor (EGF), TGF-a/b, insulin-like growth
factor (IGF), IL-1b and IL-6 (Figure 1). These factors promote

proliferation of granulosa cells, vascular growth, follicle

development and production of steroid hormones, whereas

inhibit apoptosis of granulosa cells in the ovary (9, 12, 37, 38).

Additionally, recent studies have identified distinct MFs

subpopulations in mouse ovaries, which play essential roles in

ovarian homeostasis and functions (9, 31, 39). It is revealed that

in young mouse ovaries, the proportion of CD11c+ M1 MFs

increases significantly around developing follicles, while the

proportion of CD206+ M2 MFs does not. Moreover, depletion of

CD11c+ M1 MFs using diphtheria toxin injection in mice leads to

follicular impairment, vasculature impairment and ovarian

hemorrhage, whereas depletion of CD206+ M2 MFs does not

(31). This implies that M1 subset plays an important role in

maintenance of follicles development and ovarian physiology.
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In mammalian ovaries, only a fraction of primordial follicles

achieve ovulation, while more than 99% of follicles undergo atresia

(40). Studies have revealed that ovarian MFs increasingly infiltrate

granulosa cell layers surrounding atretic follicles (9, 41). This

migration/recruitment event is mediated by IL-33, which is

mostly generated by endothelial cells adjacent to atretic follicles

(42, 43). The infiltrated MFs facilitate granulosa cell apoptosis and

follicle atresia by secretion of TNF-a (44) (Figure 1). Subsequently,

these cells are responsible for removing apoptotic cells and

degrading atretic follicles through production of matrix

metalloproteinases (MMPs) like MMP-3[9] (Figure 1).
3.2 Roles of macrophages in ovulation,
corpus luteum formation and regression

A surge of luteinizing hormone (LH) secreted by pituitary gland

initiates ovulation, which involves preovulatory follicles rupture at

the apex and extrude cumulus cell-oocyte complex (45). Animal

studies have revealed that ovarian MFs actively participate in

ovulation (12), as colony stimulation factor-1 knockout female

mice with elimination of MFs demonstrate compromised

ovulation (46). During ovulatory process, LH surge facilitates

production of multiple chemoattractants by granulosa cells, such

as chemokine (C-X-C motif) ligand 10, C-C-motif ligand-20,

monocyte chemoattractant protein-1 (MCP-1), IL-1 and IL-6. As

a result, a large number of ovarian MFs are recruited to

preovulatory follicles by the chemoattractants (34, 47). These cells

promote ovulation through secreting MCP-1 and pro-inflammatory

cytokines like IL-1b, IL-6 and TNF-a, which simultaneously

amplify recruitment effects (Figure 1). Besides, recruited MFs

produce MMPs like MMP-1 and MMP-19 contributing to

extracellular matrix (ECM) breakdown, which facilitates follicle

rupture and oocyte extrusion (9, 45) (Figure 1).

Following ovulation, the remains of ovarian follicles undergo

tissue remodeling, involving luteinization of follicular theca cells

and granulosa cells, and vascularization, to develop a corpus luteum

(CL) (48). The CL functions as a temporary endocrine structure

through generation of high levels of progesterone and moderate

levels of estradiol and inhibin A (9, 48). Evidence from human and

animal models has suggested a close relationship between ovarian

MFs and CL development and function (9, 32, 49, 50). Upon

stimulation of chemokine MCP-1 and C-C-motif ligand-2 (CCL-2),

and GM-CSF, MFs accumulate and exhibit an activation status in

theca-lutein layer of CL (49, 50). They support vascularization of

luteal cells and synthesis of progesterone through releasing of FGF,

VEGF and MMPs (9, 51) (Figure 1). It is worth noting that

disruption of M2 phenotype polarization in TGF-b-deficient
female mice leads to impaired luteinization and reduced

progesterone production in CL, implying that M2 subset is a key

player in developing CL (9, 35). If the oocyte is not fertilized, the CL

subsequently undergoes degeneration. This process is also called

luteolysis, which is set off by prostaglandin F2a (PGF2a) (32).

Ovarian MFs are found to polarize towards M1 phenotype that

facilitate PGF2a production through secretion of TNF-a, thereby
promoting luteolysis, indicative of importance of M1 subset in CL
TABLE 1 Roles of macrophage subsets in normal ovarian function and
ovarian aging.

Macrophage
subsets

Effects
on
normal
ovarian
function

Effects on
ovarian aging

References

M1 Promote
vascular
growth,
follicle
development
Promote
luteolysis
Induce
primordial
follicles
activation

Impair oocyte
quality
Increase atretic
follicle number
Reduce growing
follicle number

Ono et al. (31)
Orecchioni
et al. (19)
Care et al. (32)
Skarzynski et al.
(33)
Xiao et al. (34)

M2 Promote
luteinization,
progesterone
production
Maintain
follicles in a
dormant
status

Promote ovarian
ECM deposition
and fibrosis
Improve growing
follicle number,
oocyte quality,
AMH and estrogen
levels
Reduce atretic
follicle number

Ingman et al.
(35)
Zhang et al.
(14)
Xiao et al. (34)
Umehara et al.
(36)
ECM, extracellular matrix; AMH, anti-mullerian hormone.
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regression (19, 32, 33) (Figure 1). Conversely, if the oocyte is

fert i l ized and implantat ion occurs , human chorionic

gonadotropin produced by syncytiotrophoblast prevents MFs

accumulation, resulting in the CL maintenance (12).
4 Macrophages and ovarian aging

As a key reproductive organ in females, the ovary, however, ages

early in life (2, 3, 39). Until now, the mechanisms underlying

ovarian aging have not been fully elucidated. The studies of

ovarian MFs in both mice and humans are constrained, as their

number is very small and they display high heterogeneities in

phenotypes (9, 34). Recently, the advance of high-throughput

sequencing techniques has made it possible to investigate ovarian

MFs at the single-cell level. Using these novel technologies,

emerging studies highlight critical roles of MFs in ovarian aging

(9, 39). Table 1 summarizes the roles of MFs subsets in ovarian

aging process.
4.1 Macrophages dictates the inflammatory
milieu within the aging ovary

Mounting evidence suggests that ovarian aging in mammals is

associated with a sterile chronic inflammation in ovaries, which

adversely affects ovarian function and oocyte quality (14, 16, 17, 52,

53). Recent studies have revealed that as female C57BL/6 mice age

(from two to eighteen months old), levels of pro-inflammatory

cytokines, including TNF-a, IL-1a/b and IL-6, were significantly

elevated in serum and ovary (53). Furthermore, similar alterations

were seen in levels of inflammasome genes, involving nucleotide-

binding domain and leucine rich repeat containing family, pyrin
Frontiers in Endocrinology 04
domain containing 3 (NLRP3) and apoptosis-associated speck-like

protein containing a CARD (ASC). They are capable of boosting

production of pro-inflammatory cytokines IL-1b and IL-18 (53).

Notably, the increased levels of these pro-inflammatory cytokines

and inflammasome genes are found to be closely related to declined

follicle reserve along with reproductive senescence (53, 54)

(Figure 2). Nonetheless, the mechanisms underlying persistent

inflammatory condition in aged ovaries remain elusive.

Recently, it has been proposed that MFs are responsible for age-
associated inflammation within the ovary (9, 14, 39). In comparison

with reproductively young mice (2-month-old), there is a

conspicuous increase in the MFs proportion within ovaries from

reproductively aged mice (12-month-old), which were driven by

CCL-2 and chemokine ligand-5 (16, 53). These cells showed an

activation status reflected by secreting high levels of pro-

inflammatory cytokines including IL-1, IL-6 and TNF-a,
exacerbating granulosa cell apoptosis and follicular depletion (9,

53) (Figure 2). In addition, other mouse studies demonstrated the

presence of a hyperactivated form of MFs, multinucleated giant cells,

in ovarian stroma over the course of reproductive ageing (15, 16).

However, the mechanisms underlying activation status of ovarian

MFs as females age remain poorly understood. Several studies in

mouse models have revealed that excessive accumulation of

incompletely digested cell debris like lipofuscin, and low molecular

weight hyaluronan fragments from ECM, might be the drivers of

intensive activation status of MFs during ovarian aging (54–56).
4.2 Macrophages contribute to ovarian
fibrosis during reproductive aging

In addition to chronic inflammation, stromal fibrosis within

ovaries is another hallmark of mammalian ovarian senescence (16,
FIGURE 1

Roles of ovarian macrophages in normal ovarian functions. In mammalian ovaries, the macrophages contribute to ovarian physiological events, such
as folliculogenesis, ovulation, corpus luteum formation and regression, through production of multiple cytokines and mediators.
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57). Ovarian stroma is broadly considered as non-follicular

components of the ovary, including immune cells, blood vessels,

nerves, and ovary-specific components like spindle-shaped stromal

cells, stem cells and ECM (39, 57–59). It serves as an essential

supporting tissue for maintaining ovarian homeostasis and

functions (9). Previous works in mice and humans have shown

an increase in stromal fibrosis and an excessive deposition of ECM

components in reproductively old ovaries, which are associated

with reduced follicle number, impaired follicle development and

ovarian dysfunction (16, 60). Besides aging-related increase of

fibrosis, a marked increase in monocyte recruitment and a shift in

MFs phenotype towards M2 were found within ovaries from

reproductively aged mice (18 months) relative to young mice (3

months). Subsequently, the monocyte-derived MFs and M2

subpopulation become more predominant with reproductive

aging. They promote ovarian ECM deposition and fibrosis by

secreting high levels of TGF-b, FGF, PDGF as well as pro-

inflammatory cytokines like IL-6 (9, 14) (Figure 2). Moreover,

recent transcriptomics data from ovarian aging models of

cynomolgus monkey has further confirmed these findings (61).
4.3 Macrophage polarization is associated
with ovarian aging

Recent animal studies have revealed that shifted MFs

subpopulations with different phenotypes resulting from their

polarization play critical roles in ovarian senescence (17, 62, 63)

(Figure 2). It has been found that in ovaries of young female ICR

mice at 8 weeks old, M1 phenotype mainly functions in primordial

follicles activation, while M2 phenotype functions in maintenance

of follicles in a dormant status (34). They perform differential
Frontiers in Endocrinology 05
functions through MFs-derived distinct extracellular vesicles

(EVs) (34). Notably, with female ICR mice aged at 10 months

old, the percentage of M1 phenotype within ovaries was increased

relative to young females, which is accompanied by an elevated

expression of several pro-inflammatory genes including IL-6, TNF-

a, IL-17, iNOS, ASC andNLRP3. By contrast, M2 phenotype did not

show significant changes (34). Furthermore, the addition of M2-

derived EVs into these old mice could enhance M2 phenotype

proportion, which ultimately rescued growing follicle number,

oocyte quality, serum anti-mullerian hormone and estrogen

levels. Meanwhile, it could reduce atretic follicle number, and

levels of pro-inflammatory genes expression involving IL-1b, IL-6,
iNOS and TNF-a. This implies that the perturbed dynamics of M1

and M2 subpopulations are actively involved in ovarian functional

decay with reproductive senescence (34) (Figure 2). However,

another recent study showed inconsistent results using C57BL

mouse models with advanced reproductive age at 12-16 months

old. This work revealed high expression levels of inflammatory

chemokines (CCL-2, CCL-3, and CXCL-2), pro-inflammatory

cytokines TNF-a and IL-6, and Th2-type cytokines IL-4 and IL-

13 in the aged ovarian stroma, which drove MFs polarization. As a

result, there were increase numbers of both M1 and M2

subpopulations, while M2 number was more predominant within

ovarian stroma of old mice. These cells promoted ovarian fibrosis

by stimulating fibrotic collagen deposition (Figure 2). Following

suppression of the M2 subpopulation by antifibrosis drug (BGP-

15), it was observed that ovarian fibrosis was reversed, and ovarian

function and female fertility were finally improved (36). The

discrepancy of these findings may be due to dynamic changes of

M1/M2 phenotype in different stages of ovarian aging. In early

phase, M1 phenotype is dominant and plays a pro-inflammatory

role, whereas in late phase, M2 phenotype is more predominant and
FIGURE 2

Roles of ovarian macrophages and their subsets in ovarian aging process. In the early stage, M1 phenotype subset is dominant and plays a pro-
inflammatory role by secreting pro-inflammatory cytokines, including TNF-a, IL-1a/b, IL-6, IL-18, which in turn boost elevated expression of
inflammasome genes like NLRP3 and ASC. In the late stage, M2 phenotype subset is more predominant and participates in ECM deposition and
stromal fibrosis, ultimately leading to ovarian fibrosis.
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participates in inflammation resolution, tissue remodeling and

repair in aging ovaries (9, 14, 64) (Figure 2). Thus, regulation of

the balance of MFs polarization may be a potential therapeutic

strategy for reproductively aged women to restore ovarian function

and fertility.

Until now, most studies on ovarian MFs during aging are

focused on animals, while human studies are still scarce, probably

due to difficulties in obtaining human samples (17, 65). A recent

human study has shown that in comparison to premenopausal

women (30-50 years old), MFs number was remarkably higher in

ovarian stroma in women at early (55-59 years old) and late

menopausal (60-85 years old) stages. These MFs produce high

levels of interleukin 16 (IL-16), a pro-inflammatory and

chemotactic cytokine, indicative of an inflammatory role of

ovarian MFs during female aging (66). Therefore, more

investigations in human models are still required to elaborate the

roles of different MFs phenotypes during ovarian aging.

Remarkably, recent studies have successfully applied single-cell

RNA sequencing (ScRNA-seq) technology to transcriptomic

analysis of ovaries, follicles as well as MFs subpopulations (61,

67). Diverse methods have been further derived from ScRNA-seq,

involving massively parallel single-cell RNA sequencing (MARS-

seq), CEL-seq, Drop-seq, and Slide-seq (68–71). Additionally, in

vivo imaging techniques, like intravital two-photon imaging and

multichannel spinning-disk confocal intravital microscopy, will

allow researchers to track ovarian MFs subpopulations and

investigate their polarization behaviors in real time within aging

ovaries (72–74). Hence, these advanced technologies may assist an

in-depth understanding of the roles of different MFs subsets in

ovarian senescence.
5 Conclusion and perspectives

Ovarian MFs play pivotal roles in normal ovarian functions

and ovarian aging. During reproductive senescence, danger signals

within aged ovaries induce MFs polarization into different M1/M2

phenotypes. Perturbation of balance of M1/M2 phenotypes in aged

ovaries dictates chronic inflammatory milieu concurrent with

stromal fibrosis, leading to follicular loss and ovarian dysfunction.

To regulate the balance between M1 and M2 subsets might be a
Frontiers in Endocrinology 06
promising therapeutic strategy for women with advanced

reproductive age. Future studies are still needed to further unravel

the roles of MFs in ovarian aging and develop a new approach to

ameliorate ovarian decay.
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