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Ciliates serve as excellent indicators for water quality monitoring. However, 
their utilization is hindered by various taxonomic confusions. The ciliate genus 
Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic 
habitats, but its taxonomy has been sparsely investigated using state-of-the-
art methods. This study investigated two new Lacrymaria species from Nanhui 
Wetland, Shanghai, China, using living observation, protargol staining, and 
molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–
25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile 
vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. 
Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size 
of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 
1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses 
based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic 
but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is 
provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata 
Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose 
Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.

ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 

Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria 

dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.
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1. Introduction

Ciliates are excellent indicators for water quality monitoring and play a vital role in the 
aquatic microbial food web (Wang et al., 2022; Weisse and Montagnes, 2022). Lacrymaria ciliates 
are common raptorial microorganisms found in aquatic habitats worldwide (Kahl, 1930; 
Dragesco, 1960, 1965; Rajter et al., 2019; Wang et al., 2019). They can be easily identified by the 
bubble-like head located at the front end of their body, which is covered by short oblique kineties 
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(Lynn, 2008). The family Lacrymariidae de Fromentel 1876 includes 
four genera, namely, Lacrymaria Bory de Saint-Vincent, 1824, 
Pelagolacrymaria Foissner, 1999, Phialina Bory de Saint-Vincent, 1824, 
and Phialinides Foissner, 1988 (Lynn, 2008). In contrast to other well-
studied haptorians, such as pleurostomatids and spathidiids, research 
on the Lacrymariidae is limited, and its phylogeny remains unresolved 
(Foissner, 1988; Foissner and Xu, 2007; Rajter et al., 2019; Pan et al., 
2020; Wu et al., 2021, 2022; Chi et al., 2022; Zhang G. et al., 2022a,b,c).

Lacrymaria Bory de Saint-Vincent, 1824 is the largest and oldest 
genus of the family Lacrymariidae. It is distinguished from its 
relatives by the presence of a retractable neck (Foissner, 1983). 
However, for a long time, its closest related genus Phialina was 
considered as its synonym, which results in the affiliation of most 
Lacrymaria species needing to be re-considered. Several Lacrymaria 
species have already been transferred to Phialina, Lagynus, or 
Pelagolacrymaria in recent studies (Supplementary Table S1; Foissner, 
1983, 1987; Song and Wilbert, 1989; Sola et al., 1990; Foissner et al., 
1995, 1999, 2002; Wang et al., 2019; Jiang et al., 2023). Since the 
descriptions of most Lacrymaria species are rough and superficial, 
the species delimitation is understudied. Recent phylogenetic analysis 
of Haptoria based on either single gene locus or multiple gene loci 
has shown that Lacrymaria is not monophyletic (Wu et al., 2017; 
Huang et al., 2018; Rajter et al., 2019; Wang et al., 2019). However, 
this conclusion is not confident because only 3 out of 53 nominal 
Lacrymaria species have molecular information, and the DNA 
sequence that detached from Lacrymaria in gene trees is not reported 
along with morphometrics (Huang et al., 2018; Rajter et al., 2019).

Recent studies on haptorian ciliates in China have revealed a high 
diversity of the order Pleurostomatida (Liu et al., 2017; Pan et al., 2020; 
Wu et al., 2021, 2022; Zhang G. et al., 2022a,b,c, 2023). However, little 
attention has been given to the family Lacrymariidae. A project on ciliate 
fauna conducted in Changjiang Estuary has led to the discovery of 
various new or rarely known ciliates (Chen et al., 2022; Han et al., 2022; 
He et  al., 2022; Zhang Z. et  al., 2022a,b). As a new contribution, 
we investigated the phylogeny and taxonomy of two new Lacrymaria 
species, namely, L. songi sp. nov. and L. dragescoi sp. nov., using integrative 
methods including live observation, silver staining, and DNA sequencing. 
Additionally, we provide a brief review of the genus Lacrymaria.

2. Materials and methods

2.1. Sample collection and cultivation

Lacrymaria songi sp. nov. and Lacrymaria dragescoi sp. nov. were 
both collected on 28 September 2022 from two adjacent sites of 
Nanhui Wetland (N30°53′27.56″, E121°58′38.78″), Shanghai, China 
(Figure 1). For the habitat of L. songi sp. nov., the water temperature 
was 23.6°C, the pH was 7.43, the concentration of dissolved oxygen 
(DO) was 4.22 mg/L, and the salinity measured in the Petri dish was 
17‰; for the habitat of L. dragescoi sp. nov., the water temperature 
was 23.6°C, the pH was 7.61, the DO was 5.47 mg/L, and the salinity 
measured in the Petri dish was 20‰. All environmental parameters, 
except salinity, were measured in situ, and the salinity was measured 
when Lacrymaria species were detected in the raw cultures.

After the samples were transported to the laboratory, raw cultures 
were immediately established in Petri dishes with rice grains to 
enrich the growth of bacteria, serving as food for the ciliates. L. songi 
sp. nov. and L. dragescoi sp. nov. were detected after 3 weeks.

2.2. Morphological observation

Live cells were observed using bright field and differential 
interference contrast microscopy (Olympus BX53) at magnifications 
of 100–1,000. The ciliary pattern was revealed using the protargol 
preparation method (Wilbert, 1975). The protargol reagent was 
manually synthesized following the method described by Pan et al. 
(2013). Counts and measurements of stained specimens were 
performed at a magnification of 1,000, and drawings were made at the 
same magnification with the aid of a camera lucida. Terminology and 
systematics are explained by Lynn (2008) and Vd’ačný et al. (2011).

2.3. DNA extraction, PCR amplification, and 
DNA sequencing

Five cells of each species were isolated from the raw cultures using 
sterile micropipettes and washed at least five times with filtered (0.22 μm) 
habitat water to remove contaminants. Genomic DNA was extracted by 
a DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) using 
one-quarter of the volume recommended by the manufacturer’s 
instructions as described by Shao et al. (2023). The SSU rRNA gene was 
amplified by PCR using the primers 18S-F (5’-AAC CTG GTT GAT CCT 
GCC AGT-3′) and 5.8S-R (5′- TAC TGA TAT GCT TAA GTT CAG 
CGG-3′) (Medlin et al., 1988; Sogin, 1989). The cycling parameters were 
as follows: an initial denaturation of 3 min at 95°C, followed by 30 cycles 
of 30 s at 95°C, 20 s at 56°C, and 1.5 min at 72°C, with a final extension of 
5 min at 72°C. The PCR products were, then, purified, cloned, and 
sequenced, following the method described by Chen et al. (2022). The 
sequencing data were assembled using SeqMan v7.1 (DNAStar), and 
sequence similarities were calculated using BioEdit v.7.2.5 (Hall, 1999).

2.4. Phylogenetic analyses

The SSU rRNA gene sequences of Lacrymaria songi sp. nov. and 
L. dragescoi sp. nov. were aligned with 52 other sequences downloaded 
from GenBank, including three metopids as outgroup taxa, namely, 
Clevelandella panesthiae (KC139719), Metopus palaeformis 
(AY007450), and Nyctotherus ovalis (AJ222678). The alignment was 
performed using the MUSCLE algorithm on the Web Server 
Guidance1 with default settings (Sela et  al., 2015). Maximum 
likelihood (ML) analyses were conducted using RAxML-HPC2 
(Stamatakis, 2014) on XSEDE v.8.2.11 on the CIPRES Science 
Gateway2 under the GTRGAMMA model with 1,000 bootstraps. 
Bayesian inference (BI) analysis was performed using MrBayes v.3.2.7 
(Ronquist et  al., 2012) on the same platform under the 
GTR + I + Γmodel, which was selected by jModelTest 2 via the Akaike 
Information Criterion (Darriba et al., 2012). Markov chain Monte 
Carlo simulations were run for 1,000,000 generations, and trees were 
sampled every 100 generations with a burn-in of 2,500 trees (25%). 
The tree topology was visualized using Figtree v1.4.4 (Rambaut, 2018).

The support of the dataset for competing phylogenetic hypotheses 
was evaluated using the approximately unbiased (AU) test to test the 

1 http://guidance.tau.ac.il/ver2/

2 http://www.phylo.org
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monophyly of the genus Lacrymaria (Shimodaira and Hasegawa, 2001). 
The site-wise likelihoods for the resulting constrained topology and the 
non-constrained ML topology were calculated using RAxML v.8.2.11 
under a partitioned GTR + GAMMA model (Yang, 1996; Stamatakis, 
2014). The same model was used to estimate the site likelihoods for those 
trees prior to conducting the AU test. The scores of each constraint tree 
were compared with the unconstrained ML result using the AU test 
option implemented in CONSEL (Shimodaira and Hasegawa, 2001).

3. Results

Subclass Haptoria Corliss, 1974.
Family Lacrymariidae de Fromentel, 1876.
Genus Lacrymaria Bory de Saint-Vincent, 1824.

3.1. Lacrymaria songi sp. nov.

3.1.1. Diagnosis
Size: approximately 180–340 × 20–25 μm in vivo. Body shape: 

highly variable depending on the state of contraction, ranging 
from a vase-shaped body in the contracted state to fusiform to 

clavate in the extended state. Neck: flexible, occupying half of the 
body length and up to two-thirds of body length when swimming, 
and neck beating 92 times/min when preying. Extrusomes have 
two types: type I—approximately 10 μm long, rod-shaped, mostly 
arranged in bundles, scattered in main body, and attached to oral 
bulge; type II—approximately 4 μm long, rod-shaped, scattered 
in main body and 12–16 somatic kineties. Single terminally 
located contractile vacuole. Two macronuclear nodules. 
Brackish habitat.

3.1.2. Type locality
A muddy tidal flat of Nanhui Wetland (N30°53′27.56″, 

E121°58′38.78″), Shanghai, China.

3.1.3. Type specimens
A protargol slide (registration no. TJ2022090805-1) with the 

holotype circled in black ink and one paratype slide (TJ2022090805-2) 
are deposited in the Laboratory of Protozoology, Ocean University 
of China.

3.1.4. Dedication
The species is named in honor of Prof. Weibo Song, Ocean 

University of China, in recognition of his outstanding contribution 
to Ciliatology.

FIGURE 1

Sampling sites (A–D). (A) A part of the map of China showing the location of Shanghai. (B) A satellite image of Shanghai showing the location of 
Nanhui Wetland. (C) Photograph of the sampling site in a tidal flat of Nanhui Wetland (N30°53′27.56″, E121°58′38.78″) from where Lacrymaria songi sp. 
nov. was collected. (D) Photograph of the sampling site in the tidal flat of Nanhui Wetland (N30°53′5.39″, E121°53′37.03″) from where Lacrymaria 
dragescoi sp. nov. was collected.
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3.1.5. SSU rRNA gene sequence
The SSU rRNA gene sequence of L. songi sp. nov. has been 

deposited in GenBank (accession no. OR689566) with 1,641 bp long 
and GC content of 42.41%.

3.1.6. Description
Cell: highly contractile, when fully extended cell size in vivo 

approximately 180–340 × 20–25 μm and length:width ratio of 11:1 
(Figures  2A, 3A–C) and when contracted, cell size approximately 
65–102 × 28–40 μm and length:width ratio of 3:1 (Figures 2D, 3D). 
Body shape fusiform to clavate with flexible neck, occupying half of 
body length, and up to two-thirds of body length when swimming. 
The posterior end tapered and tail-like when free swimming but vase-
shaped with neck retracting into trunk and the posterior end broadly 
tapered when contracted (Figures 2A,D,H, 3A,E,J,K).

Two ovoidal macronuclear nodules centrally located with a 
filament connected to each other, each approximately 
12–20 × 8–13 μm in vivo and approximately 10–32 × 6–21 μm after 
protargol staining (Figures 2G, 3I,M and Table 1). Two micronuclei 
detected only in 1 out of 30 stained individuals, respectively, located 
at subapical of each macronuclear nodule (Figure  2G, 3M). 
However, micronucleus not detected in live cells. Single contractile 
vacuole terminally located, variable in shape, ranging from rounded 

to obovate, approximately 11 × 17 μm during diastole, pulsating 
every 5 min (Figure  3E). Two types of extrusomes: type 
I approximately 10 μm long, rod-shaped, straight or slightly curved, 
mostly arranged in bundles, scattered in main body, and attached 
to oral bulge; type II approximately 4 μm long, rod-shaped, straight 
or slightly curved, scattered in main body (Figures 2C,F, 3G,H,L,P). 
Both types of extrusomes easily detected after protargol staining but 
only type I  detectable in vivo. Two types of colorless cortical 
granules: type I  dot-like, approximately 0.4 μm in vivo, densely 
arranged in five or six rows between kineties in peripheral region 
of cortex, this character may vary slightly with body contraction; 
type II dot-like to oval-shaped, approximately 0.8 μm in vivo, only 
distributed along somatic kineties deep in cortex (Figures 2B,E, 
3N,O). Cytoplasm colorless or grayish, containing numerous 
globular granules (<4 μm in diameter) in trunk, rendering neck 
hyaline and trunk opaque (Figure  3L). Locomotion usually by 
swimming fast with neck swinging; when preying, neck extends 
forward and backward and retracts rapidly, beating approximately 
92 times per minute, whereas trunk moves in a small range 
(Supplementary Video S1).

Somatic cilia approximately 9 μm long, densely arranged in 12–16 
(13 on average) somatic kineties. Somatic kineties slightly spiral in 
vivo when cell extended but broadly spiral in contracted individuals 

FIGURE 2

(A–H) Morphology of Lacrymaria songi sp. nov. from life (A,B,D,E,H) and after protargol staining (C,F,H). (A) Typical extended individual arrow points to 
the contractile vacuole. (B) Two types of cortical granules; type I is marked by an arrowhead and type II is marked by an arrow. (C) Two types of 
extrusomes. (D) Shape variants in one individual. (E) Arrangement of cortical granules on the cell surface; type I is marked by an arrowhead and type II 
is marked by an arrow. (F) The anterior end of the ciliary pattern. (G) Ciliary pattern of the holotype specimen; arrowhead points to a long type of 
extrusome, arrow points to a short type of extrusome, and red dots indicate micronuclei. (H) Shape variants in different individuals. Scale bars: 100  μm 
in (A,H); 5  μm in (C); 50  μm in (D,G).
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and protargol preparations (Figures 3A,D,I). Each kinety composed 
of 3–6 (4.4 on average) dorsal brush dikinetids anteriorly 
(Figures 2F,G, 3F), and 80–184 somatic monokinetids posteriorly with 
some dikinetids irregularly interspersed (Figure 2F and Table 1). Head 
kineties densely spirally arranged, with cilia approximately 10 μm 
long. Circumoral kinety is composed of approximately 28 circumoral 
dikinetids (Figures 2E,F).

3.2. Lacrymaria dragescoi sp. nov.

Syn. Lacrymaria olor sensu Dragesco, 1966, pr. p. Figure 11b.

3.2.1. Diagnosis
Size: approximately 210–400 × 25–35 μm in vivo. Body shape: 

highly variable depending on the state of contraction, ranging from a 
vase-shaped body in the contracted state to fusiform to clavate in the 
extended state. Neck: flexible, occupying half of the body length, and 
accounting for two-thirds of the body length when swimming, and 
neck beating 30 times/min when preying. Extrusomes have two types; 
type I—approximately 13 μm long, rod-shaped, mostly arranged in 
bundles, scattered in main body and attached to oral bulge; type 

II—approximately 3 μm long, rod-shaped, scattered in main body, and 
14–17 somatic kineties. Single terminally located contractile vacuole. 
One macronuclear nodule. Brackish habitat.

3.2.2. Type locality
A tidal flat of Nanhui Wetland (N30°53′5.39″, E121°53′37.03″), 

Shanghai, China.

3.2.3. Type specimens
A protargol slide (registration no. TJ2022090807-1) with the 

holotype circled in black ink and one paratype slide (TJ2022090807-2) 
are deposited in the Laboratory of Protozoology, Ocean University of 
China, Qingdao, Shandong, China.

3.2.4. Dedication
The species is named in honor of Prof. Jean Dragesco, in 

recognition of his contributions to Ciliatology.

3.2.5. SSU rRNA gene sequence
The SSU rRNA gene sequence of L. dragescoi sp. nov. has been 

deposited in GenBank (accession no. OR689567) with 1,642 bp long 
and GC content of 42.75%.

FIGURE 3

Photomicrographs of Lacrymaria songi sp. nov. from life (A–E,I–K,M–O) and after protargol staining (F–H,L). (A) A representative individual. (B,C) 
Different free-swimming individuals show shape variants. (D) A completely contracted individual. (E,J,K) Individuals in different contraction states; 
arrow in (E) points to the contractile vacuole. (F) Details of the anterior portion showing the anterior somatic kineties. (G) Details of the cytoplasm; 
arrowhead points to a short extrusome. (H) Details of the cytoplasm; arrowhead points to long extrusomes. (I) A representative specimen showing 
ciliature and nuclear apparatus. (L) Details of the cytoplasm; arrow points to extrusomes. (M) Details of the cytoplasm; arrowheads point to 
micronuclei. (N,O) Details of cytoplasm in the middle of the body; arrows point to two different cortical granules. (P) Head structure arrows point to 
extrusomes. Ma, macronuclear nodules. Scale bars: 100  μm in (A–C); 30  μm in (D); 50  μm in (E,H,J); 23  μm in (I); 12  μm in (F).
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3.2.6. Description
Cells: highly contractile; when fully extended, cell size of 

approximately 210–400× 25–35 μm in vivo and length:width ratio of 
10:1 (Figures 4A, 5A,B); when contracted, cell size of approximately 
100–170 × 36–44 μm and length:width ratio of 3:1 (Figures 4C, 5E). 
Body shape fusiform to clavate with flexible neck, occupying half of 
the body length and accounting for two-thirds of the body length 
when swimming. The posterior end tapered and tail-like when free 
swimming but vase-shaped with neck retracting into trunk, and 
posterior end sharply rounded when contracted (Figures  4A–C, 
5A,D,E).

Nuclear apparatus centrally located, comprising one oval-
shaped macronucleus, approximately 17–25 × 6–9 μm in vivo and 
approximately 20–40 × 7–24 μm after protargol staining (Figures 4H, 
5H,I and Table  1). Micronucleus undetected in vivo or after 
protargol staining. Single contractile vacuole terminally located, 
variable in shape, ranging from rounded to obovate, approximately 

17 × 12 μm during diastole, and pulsating every 3 min (Figures 4A, 
5A). Two types of extrusomes: type I approximately 13 μm long, 
rod-shaped, straight or slightly curved, mostly arranged in bundles, 
scattered in main body, and attached to oral bulge; type II 
approximately 3 μm in size, rod-shaped, straight or slightly curved, 
scattered in main body (Figures  4D,F,H, 5H,I). Both types of 
extrusomes easily detected after protargol staining but only type 
I detectable in vivo. Two types of cortical granules: type I dot-like, 
approximately 0.4 μm in vivo, in the peripheral region of cortex 
densely arranged in seven or eight rows between kineties, this 
character may vary slightly with body contraction; type II dot-like 
to oval-shaped, approximately 0.7 μm in vivo, only distributed along 
somatic kineties deep in cortex; both types of cortical granules 
colorless (Figures  4E,G, 5F,G). Cytoplasm colorless or grayish, 
containing numerous globular granules (< 2.6 μm in diameter) in 
trunk, rendering neck hyaline and trunk opaque (Figure  5H). 
Locomotion usually by swimming fast with neck swinging; when 

TABLE 1 Morphometric characteristics of Lacrymaria songi sp. nov. (the upper line) and L. dragescoi sp. nov. (the lower line) based on protargol stained 
specimens.a

Characteristics Min Max Mean M SD CV n

Body length 88.0 187.0 129.9 123.0 28.2 21.7 30

104.0 194.0 143.0 142.0 21.4 14.9 28

Body width 15.0 39.0 25.8 26.0 6.0 23.3 30

28.0 58.0 37.3 35.0 7.5 20.0 28

Body length: width, ratio 3.1 7.7 5.2 5.0 1.0 19.5 30

2.1 5.4 4.0 4.0 0.8 19.3 28

Head height 9.0 14.0 11.4 11.0 1.2 10.6 30

7.0 11.0 9.3 9.0 1.0 11.1 28

Head width 5.0 10.0 7.4 7.0 1.4 19.4 30

6.0 10.0 7.5 7.5 1.2 15.3 28

Anterior body end to Ma, 

distance

31.0 115.0 52.3 47.5 17.7 33.9 30

42.0 105.0 65.2 64.5 14.0 21.4 28

Ma, lengthb 10.0 32.0 17.7 15.5 6.4 36.5 30

20.0 42.0 30.4 29.0 6.6 21.5 28

Ma, widthb 6.0 15.0 9.9 8.5 3.0 30.0 30

7.0 24.0 14.2 14.0 4.3 30.3 28

Extrusome length, type I 7.0 16.0 11.2 11.0 2.0 17.8 21

9.0 20.0 13.2 13.0 2.6 19.9 26

Somatic kineties, number 12.0 16.0 13.4 13.0 1.0 7.4 30

14.0 17.0 15.1 15.0 0.7 4.6 28

Dikinetids in anterior portion of 

somatic kinety, number

3.7 5.2 4.4 4.3 0.4 9.1 28

4.3 5.8 5.1 5.1 0.4 7.9 27

Somatic ciliary rows, distance in 

between

0.3 1.0 0.8 0.8 0.2 23.0 30

2.8 5.5 4.2 4.0 0.7 17.4 28

Kinetids, distance in between 1.8 4.2 2.7 2.7 0.6 21.2 30

0.5 0.9 0.7 0.7 0.1 15.8 28

Kinetids per somatic kinety, 

number

80.0 184.0 125.7 121.0 22.0 17.5 28

118.0 223.0 156.6 156.0 22.4 14.3 26

All measurements in μm.  
aCV, coefficient of variation (%); M, median; Ma, macronuclear nodule; Max, maximum; Mean, arithmetic mean; Min, minimum; n, number of individuals investigated; SD, standard deviation.  
bData for Lacrymaria songi sp. nov. are from the anterior macronuclear nodule.
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preying, neck extends forward and backward and retracts rapidly, 
beating approximately 30 times per minute, whereas trunk moves 
in a small range (Supplementary Video S2).

Somatic cilia approximately 8 μm long, densely arranged in 14–17 
(15 on average) somatic kineties. Somatic kineties slightly spiral in vivo 
when cell extended but broadly spiral in contracted individuals and 
protargol preparations (Figures 4H, 5A,E,I). Each kinety composed of 
3–6 (5.1 on average) dorsal brush dikinetids anteriorly and 118–223 
somatic monokinetids posteriorly with some dikinetids irregularly 
interspersed (Figures  4F,H, 5I and Table  1). Head kineties densely 
spirally arranged, with cilia approximately 8 μm long. Circumoral kinety 
composed of approximately 30 circumoral dikinetids (Figures 4F,I).

3.3. Sequence comparison and molecular 
phylogeny

The nucleotide similarities of the SSU rRNA gene sequences between 
Lacrymaria species range from 94.45 to 99.62%. L. songi sp. nov. differs 
from congeners except for L. dragescoi sp. nov. by 25–66 nucleotides, with 
sequence identities ranging from 95.69 to 98.43%. L. dragescoi sp. nov. 
differs from congeners except for L. songi sp. nov. by 6–60 nucleotides, 
with sequence identities ranging from 96.08 to 99.62% (Figure 6).

The topologies of the ML and BI trees were basically congruent 
with varying levels of support; therefore, only the ML tree is presented 

in Figure 7. As shown in the ML tree, Lacrymaria songi sp. nov. and 
L. dragescoi sp. nov. fall in the core of Lacrymaria, and the family 
Lacrymariidae is recovered as a monophyletic group (Figure 7). The 
genus Lacrymaria is non-monophyletic with Lacrymaria sp. 
(MF474345) groups with Phialina. The AU test also refutes the 
monophyly of Lacrymaria (AU > 0.05). In the ML tree, L. dragescoi sp. 
nov. groups with Lacrymaria marina pop1 (MF474343) with high 
support (ML/BI, 100%/0.99), forming a sister clade to L. songi sp. nov. 
Then, they depict a monophyletic group that is sister to a clade formed 
with very weak support by Lacrymaria olor clone 1–5 (MN30553–
MN30557) and Lacrymariidae (LN869967).

4. Discussion

4.1. A brief review of the genus Lacrymaria 
Bory de Saint-Vincent, 1824

Lacrymaria is easily recognized by its long, contractile, and 
flexible neck. However, the history of Lacrymaria is marked by 
confusion. Both Lacrymaria and its relative Phialina were originally 
defined based on misinterpreted oral features. Phialina has also 
experienced abandonment and re-activation (Bory de Saint-Vincent, 
1824; Foissner, 1983). Currently, there are approximately 53 nominal 
species within the genus Lacrymaria (Supplementary Table S1). 

FIGURE 4

(A–H) Morphology of Lacrymaria dragescoi sp. nov. from life (A–C,E,G) and after protargol staining (D,F,H). (A) A typical extended individual; arrow 
points to the contractile vacuole. (B) Shape variants between different individuals. (C) Shape variants of the same individual. (D) Two types of 
extrusomes. (E) Two types of cortical granules; type I is indicated by red arrow and type II is indicated by red arrowheads. (F) Anterior end of ciliary 
pattern showing the head kineties and somatic kineties. (G) Arrangements of the cortical granules on the cell surface; type I is indicated by red arrow 
and type II is indicated by red arrowheads. (H) Ciliary pattern of the holotype specimen; arrowhead points to the long type of extrusomes and arrow 
points to the short type of extrusomes. Scale bars: 100  μm in (A,B); 50  μm in (C); 5  μm in (D); 25  μm in (H).
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However, only 12 species have been investigated through live 
observation and silver staining. Furthermore, those Lacrymaria 
species without infraciliature data have mostly not been rediscovered 
since their original reports raised questions about their validation 
and affiliations.

Lacrymaria bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, 
and L. ovata Burkovsky, 1970 do not possess a contractile neck 
(Kahl, 1930; Gelei, 1954; Burkovsky, 1970a; Alekperov, 1984). This 
indicates that they should be removed from Lacrymaria. There are 
three genera of Lacrymaria with an acontractile neck, namely, 
Pelagolacrymaria Foissner et al., 1999, Phialina Bory de St. Vincent, 
1824, and Phialinides Foissner, 1988. In terms of ciliary patterns, 
L. lanceolata and L. ovata lack a monokinetid circle and a dikinetid 
circle between the head and the trunk. Therefore, they should 
be assigned to the genus Phialina as new combinations, i.e., Phialina 
lanceolata nov. comb. and Phialina ovata nov. comb. However, the 
affiliation of L. bulbosa cannot be determined presently due to its 
unknown ciliary pattern.

Lacrymaria sapropelica Kahl, 1927 and L. urnula Kahl, 1930 both 
have a furrow encircling the neck-like region, which indicates that 
they should belong to the family Lagynusidae (Jiang et al., 2023). Since 
their ciliary patterns have not been investigated, further investigation 
is needed to determine their exact affiliations, particularly through 
protargol staining and SSU rRNA gene sequencing.

The molecular phylogeny of Lacrymaria was initially investigated 
by sequencing the SSU rRNA gene of L. marina Kahl, 1933 (Gao et al., 
2008). Subsequently, Rossi et al. (2016), Huang et al. (2018), and Rajter 

et al. (2019) sequenced nine new SSU rRNA gene sequences of the 
genus and found that Lacrymaria was likely a non-monophyletic 
genus. However, none of those sequences were reported with the 
morphological data, which cast doubt on these results.

4.2. Comments on Lacrymaria songi sp. 
nov.

Previous studies indicate that the following characteristics can 
be used for the circumscription of Lacrymaria species: the number of 
somatic kineties, the number of macronuclear nodules, the number 
and position of micronuclei, the number and position of contractile 
vacuoles, and characteristics of the extrusomes (Foissner, 1983; 
Dragesco and Dragesco-Kernéis, 1986; Song and Wilbert, 1989; 
Foissner et al., 1995; Rajter et al., 2019; Wang et al., 2019).

Lacrymaria olor (Müller, 1786) Bory de Saint-Vincent, 1824 
resembles L. songi sp. nov. in body size, the number of somatic kineties, 
and the shape of the posterior end (Foissner et al., 1995). However, 
L. olor can be clearly distinguished from L. songi sp. nov by the location 
of the micronucleus (a micronucleus located between the two 
macronuclear nodules vs. two micronuclei located at the subapical of 
each macronuclear nodule) and habitat (freshwater vs. brackish water).

In terms of body length and shape, four species should 
be compared with Lacrymaria songi sp. nov., namely, L. clavarioides 
Alekperov, 1984, L. inflata Vuxanovici, 1959, L. maurea Dragesco, 
1965, and L. metabolica Bünger, 1908 (Table 2). Among them, only 

FIGURE 5

Photomicrographs of Lacrymaria dragescoi sp. nov. from life (A–H) and after protargol staining (I). (A) A representative individual; arrow points to the 
contractile vacuole. (B) An extended individual. (C) An individual that is seeking prey; arrow points to a large food vacuole. (D) An individual with a neck 
somewhat extended for searching for food. (E) A completely contracted individual, arrowhead infers to the head. (F,G) Details of the cell surface in the 
middle of the body; arrows point to the two different cortical granules. (H) Details of the cytoplasm; arrows point to extrusomes. (I) The holotype 
specimen showing the ciliature and nuclear apparatus. Ma, macronucleus. Scale bars: 100  μm in (A–D); 50  μm in (E); 30  μm in (I).
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L. inflata has a terminally located contractile vacuole, which is similar 
to L. songi sp. nov., but the shape of the posterior end (round vs. 
pointed) and the habitat of L. inflata (freshwater vs. brackish water) 
are different from those of L. songi sp. nov. Compared with L. songi sp. 
nov., L. clavarioides has more somatic kineties (20–25 vs. 12–16) and 
lives in a freshwater habitat (vs. brackish water), L. maurea has a rather 
short neck (vs. occupying up to two-thirds of the body length when 
swimming), and L. metabolica has a round-shaped tail (vs. pointed) 
and lives in freshwater (vs. brackish water) (Kahl, 1930; Vuxanovici, 
1959; Dragesco, 1965; Alekperov, 1984).

There are five more species possessing two macronuclear nodules, 
namely, Lacrymaria australis Foissner, 1990, L. binucleata Song and 
Wilbert, 1989, L. issykkulica Alekperov, 1997, L. parva Vuxanovici, 
1962, and L. pulchra Wenzel, 1953. They can be  separated from 
L. songi sp. nov. by the body size, the number of somatic kineties, and 
the position of contractile vacuoles (for details, refer to Table 2; Kahl, 
1930; Wenzel, 1953; Vuxanovici, 1962; Song and Wilbert, 1989; 
Foissner and O'donoghue, 1990; Alekperov and Asadullayeva, 1997).

4.3. Comments on Lacrymaria dragescoi 
sp. nov.

In terms of body length and shape, a single contractile vacuole, 
and a single macronucleus, 14 species should be  compared with 
Lacrymaria dragescoi sp. nov. These species are L. acuminata 
Vuxanovici, 1962, L. acuta Kahl, 1933, L. affinis Bock, 1952, 
L. delamarci Dragesco, 1960, L. elongata Vuxanovici, 1963, L. filiformis 

(Maskell, 1886) Foissner, 1983, L. foliacea Vuxanovici, 1962, L. lagynus 
Gelei, 1954, L. marina Kahl, 1933, L. rotundata Dragesco, 1960, 
L. salinarum Kahl, 1928, L. trichocystus Dragesco, 1960, L. versatilis 
(Quennerstedt, 1865) Borror, 1963, and L. vitrea Vuxanovici, 1959.

Lacrymaria dragescoi sp. nov. closely resembles L. marina Kahl, 
1933 regarding the general morphology, such as body size, body 
shape, habitat, and characteristics of extrusomes. However, L. dragescoi 
sp. nov. can be clearly distinguished from L. marina by the number of 
somatic kineties (14–17 vs. 19–23; on average 15 vs. 20) (Table 3 and 
Song and Packroff, 1997).

Lacrymaria delamarci, L. lagynus, L. rotundata, L. vitrea, and 
L. versatilis have a single terminally located contractile vacuole, which 
is the same as L. dragescoi sp. nov. However, the tail shape of the 
former four species is round (vs. pointed in L. dragescoi sp. nov.), and 
L. lagynus and L. rotundata are clearly distinguished from L. dragescoi 
sp. nov. by the number of somatic kineties (28–30, 30 vs. 14–17). 
Moreover, L. vitrea differs from L. dragescoi sp. nov. by the habitat 
(freshwater vs. brackish water) (Gelei, 1954; Vuxanovici, 1959; 
Dragesco, 1960; Borror, 1963). Unlike L. dragescoi sp. nov., L. versatilis 
has a wider neck when extended (two-thirds of body width vs. less 
than one-third of body width in L. dragescoi sp. nov.), which clearly 
distinguishes them (Borror, 1963).

Other similar congeners with two macronuclear nodules can 
be distinguished from Lacrymaria dragescoi sp. nov. by the location or 
the number of contractile vacuoles, the habitat, and the number of 
somatic kineties (for details, refer to Table 3).

Lacrymaria olor sensu Dragesco, 1966, pr. p. (Figure  11b) 
resembles L. dragescoi sp. nov. in habitat and most morphological 

FIGURE 6

Nucleotide differences between Lacrymaria songi sp. nov., Lacrymaria dragescoi sp. nov., and other Lacrymaria species. Two new sequences in our 
present study are the first two rows. Numbers indicate the position of nucleotides. Missing sites are indicated by dashes (−).
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characteristics (Dragesco, 1966). However, the new species is 
smaller (211–398 μm long vs. 300–500 μm long) and has fewer 
somatic kineties (14–17 vs. 16–20). Since these differences cannot 

clearly separate them, we tentatively assign L. olor sensu Dragesco, 
1966, pr. p. (Figure  11b) as a synonym of L. dragescoi sp. nov. 
(Dragesco, 1966).

FIGURE 7

Phylogenetic tree based on SSU rRNA gene sequences, displaying the phylogenetic positions of Lacrymaria songi sp. nov. and L. dragescoi sp. nov. 
(red). Numbers near branches denote bootstrap values for maximum likelihood (ML) and posterior probabilities for Bayesian inference (BI). “–” indicates 
the disagreement between ML and BI trees. GenBank accession numbers are provided after species names. The scale bar corresponds to three 
substitutions per 100 nucleotide positions.

TABLE 2 Comparison of Lacrymaria songi sp. nov. with congeners that possess two macronuclear nodules.a

Species Body 
length, μm

No. of SK CV, position Contractible 
neck

Shape of 
posterior 
end

Habitat Data source

L. songi sp. nov. 178–338 12–16 Terminal Present Pointed Brackish water Present work

L. australis 46–60 6 Subterminal Present Pointed Freshwater Foissner and O'donoghue 

(1990)

L. binucleata 30–50 8–12 Subterminal Present Pointed Freshwater Song and Wilbert (1989)

L. clavarioides 250–300 20–25 Subterminal – Pointed Freshwater Alekperov (1984)

L. inflata – 12–18 Terminal Present Round Freshwater Vuxanovici (1959)

L. issykkulica 40–60 12–15 Terminal – Pointed Freshwater Alekperov and 

Asadullayeva (1997)

L. maurea 280 – Subterminal – Pointed Marine Dragesco (1965)

L. metabolica 55–100 – Subterminal – Round Freshwater Kahl (1930)

L. olor 300–500 13–16 Subterminal and 

middle

Present Pointed Freshwater Foissner et al. (1995)

L. parva 35–40 8–10 – – Round Freshwater Vuxanovici (1962)

L. pulchra 50–80 4–5 Terminal Present Pointed Freshwater Wenzel (1953)

aSK, somatic kineties; CV, contractile vacuoles. –, data not available.
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4.4. Phylogenetic analyses

With the addition of Lacrymaria songi sp. nov. and L. dragescoi sp. 
nov., the family Lacrymariidae is still monophyletic and the genus 
Lacrymaria is non-monophyletic, which is consistent with previous 
studies (Huang et al., 2018; Rajter et al., 2019; Wang et al., 2019).

Lacrymaria songi sp. nov. and L. dragescoi sp. nov. are both depicted 
in the core of Lacrymaria (Figure 7). L. dragescoi groups with L. marina 
population 1 and then clusters with L. songi sp. nov., which corresponds 
well with their morphological characteristics. With the addition of two 
new sequences, however, two populations of L. marina did not cluster 
together. Although the morphology of the two L. marina populations 

TABLE 3 Comparison of Lacrymaria dragescoi sp. nov. with congeners that possesses single macronucleus.a

Species Body 
length, μm

No. of 
SK

CV, position Contractile 
neck

Shape of 
posterior end

Habitat Data source

L. dragescoi sp. 

nov.

211–398 14–17 Terminal Present Pointed Brackish water Present work

L. acuminata 125 – Posterior quarter – Pointed Freshwater Vuxanovici (1962)

L. acuta 180–200 36–40 Subterminal Present Pointed Brackish water Kahl (1933)

L. affinis 230–250 – Subterminal – Pointed Marine Bock (1952)

L. cohni 70–90 12 Subterminal Present Round Marine Buitkamp and 

Wilbert (1974)

L. conifera 50–70 18–20 – – Round Marine Burkovsky (1970b)

L. delamarci 140–180 – Terminal – Round Marine Dragesco (1960)

L. elongata – – Anterior and terminal – Round Freshwater Vuxanovici (1963)

L. exigua 40–70 – Anterior half and terminal 

of the body

Present Round Freshwater Vuxanovici (1962)

L. filiformis 120–160 10 Subterminal Present Pointed Freshwater Foissner (1983)

L. flagellifera 60 17 Terminal – Round – Gellért (1957)

L. foliacea – – Subterminal – Pointed Freshwater Vuxanovici (1962)

L. fusus 60 – Posterior third – Pointed Freshwater Vuxanovici (1962)

L. kahli 600–1,000 – Terminal Present Pointed Marine Dragesco (1960)

L. lagynus 100–150 28–30 Terminal Present Round Freshwater Gelei (1954)

L. lata 32 7–8 on 

one side

Terminal – Round Freshwater Vuxanovici (1962)

L. marina 200–300 19–23 Terminal Present Pointed Marine Song and Packroff 

(1997)

L. minima 60 – Subterminal – Pointed – Kahl (1930)

L. minuta 45 22–24 Subterminal – Pointed Marine Dragesco (1963)

L. nana 40–60 13 Subterminal Present Pointed Freshwater Song and Wilbert 

(1989)

L. oblonga 70 6–8 on 

one side

One in posterior quarter, 

one in anterior third

– Round Freshwater Vuxanovici (1962)

L. perlucida 45 – – – Round Freshwater Vuxanovici (1963)

L. pumilio 40–80 10 Terminal – Round Freshwater Foissner (1983)

L. rotundata 80–150 30 Terminal – Round Marine Dragesco (1960)

L. salinarum – – Subterminal – Pointed Marine Kahl (1930)

L. subsphaerica 30–50 8–9 on 

one side

Terminal – Round Freshwater Vuxanovici (1962)

L. trichocystus 500 38 Subterminal – Pointed Marine Dragesco (1960)

L. vaginifera 30–40 7–9 Terminal Present Round Freshwater Song and Wilbert 

(1989)

L. versatilis 200–250 20 Terminal – Pointed Marine Borror (1963)

L. vitrea – – Terminal – Round Freshwater Vuxanovici (1959)

aCV, contractile vacuoles; SK, somatic kineties. –, data not available.
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was not reported yet, we found that they are from different habitats, i.e., 
L. marina population 1 was collected from brackish water, while 
L. marina population 2 was collected from marine water. Therefore, 
both molecular data and the habitat imply that the two populations of 
L. marina are different species. Concerning the brackish habitat, 
L. marina population 1 is likely misidentified.
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