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Fungi are ubiquitous organisms that secrete different enzymes to cleave large

molecules into smaller ones so that can then be assimilated. Recent studies

suggest that fungi are also present in the oceanic water column harboring the

enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine

prokaryotes, the cell-free fraction is an important contributor to the oceanic

extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by

marine fungi remains unknown. Here, to study the cell-free enzymatic activities

of marine fungi and the potential influence of salinity on them, five strains of

marine fungi that belong to the most abundant pelagic phyla (Ascomycota and

Basidiomycota), were grown under non-saline and saline conditions (0 g/L and

35 g/L, respectively). The biomass was separated from the medium by filtration

(0.2 mm), and the filtrate was used to perform fluorogenic enzymatic assays with

substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur

moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax)

and half-saturation constant (Km) were obtained. The species studied were able

to release cell-free enzymes, and this represented up to 85.1% of the respective

total EEA. However, this differed between species and enzymes, with some of the

highest contributions being found in those with low total EEA, with some

exceptions. This suggests that some of these contributions to the enzymatic

pool might be minimal compared to those with higher total EEA. Generally, in the

saline medium, the release of cell-free enzymes degrading carbohydrates was

reduced compared to the non-saline medium, but those degrading lipids and

sulfur moieties were increased. For the remaining substrates, there was not a

clear influence of the salinity. Taken together, our results suggest that marine

fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic

pool. Our results also suggest that, under salinity changes, a potential effect of

global warming, the hydrolysis of organic matter by marine fungal cell-free

enzymes might be affected and hence, their potential contribution to the

oceanic biogeochemical cycles.
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1 Introduction

Low-molecular-weight (LMW) molecules are operationally

defined as molecules with a molecular weight below 1000 Da,

whereas high-molecular-weight (HMW) molecules compromise

those larger than 1000 Da (Benner et al., 1992; Amon and Benner,

1996; Benner, 2002). In marine ecosystems, the majority of dissolved

organic matter (DOM) is composed of LMW molecules, but the

bioavailable ones are mainly HMWmolecules (Wheeler, 1976; Amon

and Benner, 1994; Amon and Benner, 1996; Benner, 2002). In order

to take them up, microorganisms need to hydrolyze them into smaller

molecules (<600 Da) (Weiss et al., 1991).

Osmotrophy is a feeding strategy that involves the secretion of

different enzymes to transform large molecules into smaller ones

which can then be absorbed by osmosis (Richards et al., 2012;

Muszewska et al., 2017). For the fungal kingdom, osmotrophy is a

distinctive feature that has allowed them to use largely inaccessible

nutrients and conquer diverse environments (Dix andWebster, 1995;

Webster and Weber, 2007; Richards and Talbot, 2013), including

marine ones. Here, the fungal species can be obligate or facultative

(Jennings, 1983). Obligate marine fungi are only capable of living in

marine environments, while facultative species have a terrestrial

origin, but are capable of also living in them (Raghukumar, 2017).

Total extracellular enzymatic activities (EEAs) are a

combination of cell-attached and cell-free enzymatic activities

(Wetzel, 1991; Baltar, 2018). Operationally defined, cell-attached

enzymes are those retained on a 0.2 mm filter, whereas cell-free

enzymes pass this filter (Baltar, 2018). In marine environments, the

first ones are linked to the cell wall or periplasmic space, whereas

cell-free enzymes are dissolved in the immediate waters (Hoppe

et al., 2002). As cell-attached enzymes are tightly linked to the cell,

and respond to substrates outside the cell, they represent a chemical

communication with the surrounding environment (Chróst, 1990).

In contrast, cell-free enzymes are released by the cells into the

surrounding environment (Priest, 1977; Chróst, 1990; Wetzel,

1991). As these are not linked anymore to the cell, they are not

metabolically controlled by the cell (Kamer and Rassoulzadegan,

1995). However, in the case of substrate limitation, cell-free

enzymes can be used as a strategy “to find food fast”

(Chandrasekaran and Kumar, 1997), and also to utilize other

polymeric compounds which are otherwise non-usable (Chróst,

1990; Chróst, 1992). The occurrence of cell-free enzymes in marine

environments might be crucial as these can access distant

substrates, and influence the kinetics of organic matter (Kamer

and Rassoulzadegan, 1995). This mobilization might also result in

an improvement in substrate availability (Wetzel, 1991). As coined

by Baltar (2018), cell-free enzymes are a kind of “living dead”, as

they are not attached anymore to the cell, but can still perform their

respective function. Moreover, as suggested by Arnosti (2011), cell-

free enzymes can influence the carbon cycle at different times and

spaces where they were originally produced. Therefore, a

dissociation between marine microorganisms and enzymatic

activities might exist (Arnosti, 2011; D’ambrosio et al., 2014;

Baltar et al., 2016; Muszewska et al., 2017; Thomson et al., 2019).

Marine microbial EEAs contribute significantly to the

breakdown of organic substrates (Hoppe et al., 2002). The
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majority of them were originally believed to be cell-attached

rather than cell-free (Hoppe, 1983; Rego et al., 1985; Chróst,

1990; Chróst and Rai, 1993; Hoppe et al., 2002). Contrary, other

studies suggested that the cell-free EEAs can be similar to or even

higher than the cell-attached enzymatic pool (Kamer and

Rassoulzadegan, 1995; Keith and Arnosti, 2001; Baltar et al., 2010;

Duhamel et al., 2010; Allison et al., 2012; Baltar et al., 2013; Baltar

et al., 2016; Baltar, 2018). Additionally, some studies pointed out

that the sources of marine cell-free enzymes can be numerous

(Kamer and Rassoulzadegan, 1995; Allison et al., 2012; Baltar et al.,

2013), but believed to be mostly of bacterial origin (Hollibaugh and

Azam, 1983; Chróst, 1990; Hoppe and Ullrich, 1999; Obayashi and

Suzuki, 2008b; Baltar et al., 2010; Bong et al., 2013; D’ambrosio

et al., 2014; Li et al., 2019). However, in a study on the upwelling

ecosystem of Chile, Gutiérrez et al. (2011) found potential evidence

of an active contribution of marine fungi to the total enzymatic

pool, suggesting that they could also be involved in the breakdown

of organic matter in the ocean.

As shown by Vetter and Deming (1999), cell-free enzymes act at

a distance from the microorganism that originally released them,

and in the absence of dissolved organic matter, these enzymes used

particulate organic matter which provided enough hydrolysate to

support microbial growth. Therefore, cell-free enzymes might be

secreted to increase the chance of survival of the cell that originally

produced them (Chróst, 1986; Chróst and Overbeck, 1987). But

compared to the cell-attached enzymes, cell-free enzymes might

also benefit other cells of the surrounding environment (Luo

et al., 2009).

Due to anthropogenic and natural causes, salinity fluctuations

have been reported in different oceanic regions (Skliris et al., 2014).

These changes can lead microorganisms to experience osmotic and

ionic stress (Gladfelter et al., 2019), and influence their extracellular

enzymatic activities (Chróst, 1990; Caruso and Zaccone, 2000;

Salazar-Alekseyeva et al., 2022)[in revision]). Marine fungi seem

to tolerate a wide range of salinities (Jennings, 1983), but they are

probably not halophilic (Gladfelter et al., 2019). Hence, it is

currently unknown how changes in oceanic salinities might affect

fungi and their EEAs, especially, the cell-free fraction.

Compared to bacteria, marine fungi are less studied, so here we

investigated their secretion of cell-free enzymes using five species as

representatives of the most dominant marine pelagic fungal phyla:

Ascomycota, and Basidiomycota (Taylor and Cunliffe, 2016;

Amend et al., 2019; Morales et al., 2019). These species were

grown in non-saline and saline media to resemble conditions of

freshwater and marine environments, respectively. The cell-free

fraction EEA was determined and the potential effect of salinity on

the kinetic parameters such as maximum velocity (Vmax) and half-

saturation constant (Km) was analyzed.
2 Methods

The marine fungal species Blastobotrys parvus (HA 1620),

Metschnikowia australis (HA 635), Rhodotorula sphaerocarpa (HB

738), and Sakaguchia dacryoidea (HB 877) were obtained from the

Austrian Center of Biological Resources (ACBR), but were
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originally isolated from the Antarctic Ocean (Fell and Hunter, 1968;

Newell and Fell, 1970; Fell and Statzell, 1971; Fell et al., 1973). In the

case of Rhodotorula mucilaginosa, this was isolated from the

Atlantic Ocean during the Poseidon Cruise in March 2019. All

these pure isolates were maintained on yeast malt extract agar

(Wickerham, 1939; Wickerham, 1951) at room temperature, and

were renewed monthly.

To culture these species, the protocols of Salazar Alekseyeva

et al. (2021) and Salazar-Alekseyeva et al. (2023) [in revision] were

followed. One medium containing 2 g/L of glucose, malt extract,

peptone, yeast extract, and 0.5 g/L of chloramphenicol was prepared

and further divided into two media. The first one contained 35 g/L

of artificial sea salts (S9883 Sigma-Aldrich), and the second one did

not contain salts (0 g/L). In a vertical laminar airflow cabinet (Steril

Bio Ban 72), with a sterile loop, an arbitrary amount of one-week-

old pure isolates was transferred into autoclaved artificial seawater

(35 g/L sea salts S9883 Sigma-Aldrich) until an optical density of ≈ 1

at 660 nm wavelength (OD660) was reached. This was measured

with a UV-1800 Shimadzu spectrophotometer and represented a

correlation with the cell count. Per every 1 L of the autoclaved

medium, 0.01 L of this fungal dilution was added. Afterwards, 150

mL of this mixture (medium and fungal dilution) were put in Schott

bottles and incubated at 5°C on a rotary shaker (Jeio Tech ISS-7100

Incubated Shaker) until the exponential phase was reached. Three

bottles with similar OD660 values (biological triplicates) were

chosen for further analyses (EEAs and biomass).

To estimate the fungal biomass that was releasing cell-free

enzymes, 40 mL of the sample was vacuum filtered onto a pre-

weighed and combusted (450°C for 6 h) Whatman GF/F filter

(WHA1825047 Sigma-Aldrich, 47 mm diameter), and for 3 days,

this filter was dried at 80°C. Finally, the filter was weighed again,

and the fungal biomass was estimated from the difference between

the pre-weighted filter and the dried one.

To estimate the fungal abundance that was releasing cell-free

enzymes, 1.5 mL of the liquid media containing fungi was used. For

a single-cell suspension, this volume was filtered onto a

pluriStrainer Mini (43-10040-50 pluriSelect, 40 µm mesh size),

fixed with a final concentration of 0.5% glutaraldehyde for 10

minutes, and lastly frozen at −80°C until further processing. As B.

parvus has a filamentous structure, its abundance was not possible

to estimate with this method. For the other species, depending on

the OD660 value, 10 to 40 mL of the thawed sample and 5 mL of

SYBR® Green 100x (S9430, Sigma-Aldrich) were added, and

completed with Tris EDTA buffer (TE) to obtain a final volume

of 500 mL. Finally, the sample was measured with a BD Accuri™ C6

Plus Flow Cytometry set at ‘Run with limits’ of 10,000 events and

‘Medium’, and the cell abundance was estimated with the BD

Accuri C6 Software.

To determine the cell-specific biomass, 1.5 mL of sample were

filtered with a pluriStrainer Mini (43-10040-50 pluriSelect, 40 µm

mesh size) to obtain a single-cell suspension. The sample was fixed

in the dark with 0.5% (final conc.) glutaraldehyde for 10 minutes,

and subsequently frozen at −80°C until further processing. Due to

the multicellular structures of the filamentous species B. parvus, its
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cell abundance could not be determined. For the other species,

depending on the optical density, 10 to 40 mL of the sample was

diluted with TE to obtain a final volume of 500 mL which was later

stained with 5 mL SYBR® Green 100x (S9430, Sigma-Aldrich). The

cell abundance was determined using a BD Accuri™ C6 Plus Flow

Cytometry set at ‘Run with limits’ of 10,000 events and ‘Medium’

and the cell abundance was obtained with the BD Accuri

C6 Software.

To obtain the cell-free fraction, the protocols of Hollibaugh and

Azam (1983) and Kim et al. (2007) together with the suggestion of

Obayashi and Suzuki (2008a) were followed. This was obtained by

separating the biomass through vacuum filtration on Whatman

Track-Etched Membranes with a pore size of 0.22 mm
(WHA10417012 Sigma-Aldrich, 47 mm diameter). To maintain

the integrity of the cells, the pressure did not exceed 100 mbar

(Karner and Herndl, 1992).

To estimate the enzymatic activity, the protocols of Hoppe

(1983); Salazar Alekseyeva et al. (2022), and Salazar-Alekseyeva

et al. (2023) [in revision] were followed. The fluorogenic substrate

analogues 4-methylumbelliferyl b-D-glucopyranoside (M3633

Sigma-Aldrich), 4-methylumbelliferyl b-D-xylopyranoside

(M7008 Sigma-Aldrich), 4-methylumbelliferyl N-acetyl-b-D-

glucosaminide (M2133 Sigma-Aldrich), 4-methylumbelliferyl-

oleate (75164 Sigma-Aldrich), 4-methylumbelliferyl phosphate

(M8883 Sigma-Aldrich), 4-methylumbelliferyl sulfate potassium

salt (M7133 Sigma-Aldrich), N-succinyl-Ala-Ala-Pro-Phe-7-

amido-4-methylcoumarin (L2145 Sigma-Aldrich), and t-

butyloxycarbonyl-L-phenylalanyl-L-seryl-L-arginine-7-amido-4-

methylcoumarin (3107-v PeptaNova) were used to determine the

potential activity of the enzymes b-glucosidase (BGL), b-xylosidase
(BXY), N-acetyl-b-D-glucosaminidase (NAG), lipase (OLE),

alkal ine phosphatase (APA), sulfatase (SUL), leucine

aminopeptidase (LAP), and trypsin (TRY), respectively (Table 1).

According to the targeted substrate, the enzymes were classified as

cleaving carbohydrates (BGL, BXY, and NAG); lipids, phosphorus

and sulfur moieties (OLE, APA, and SUL, respectively), and

proteins (LAP and TRY). Consistently, methylcoumaryl amide

(MCA) (A9891 Sig-ma-Aldrich) and methylumbelliferone (MUF)

(M1381 Sigma-Aldrich) were used to normalize the emitted

fluorescence by the potential activities mentioned. Both,

substrates analogues and standards were dissolved in 2-

methoxyethanol. Briefly, in sterile 96 well microplates with F

bottom and low protein binding (XT64.1, Carl Roth), 300 mL of

only liquid culture was added as blank. Moreover, 15 mL of the

respective standard was added to 285 mL of liquid culture. For

MCA, the final concentrations were 100 mM, 50 mM, 10 mM, and 1

mM, and for MUF, 2000 mM, 1000 mM, 100 mM, and 50 mM. Finally,

30 mL of the respective fluorogenic substrate was added to 270 mL of
liquid culture and serially diluted to obtain 12 final concentrations

from 1000 to 0.5 mM, except trypsin, from 500 to 0.2 mM. The

volume was completed with an additional 150 mL of liquid culture.

All these enzymatic assays were done with biological triplicates, The

emitted fluorescence was measured hourly with FluoroLog®Horiba

at an excitation wavelength of 365 nm and an emission wavelength
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of 445 nm for 3 hours (T0, T1, T2, and T3). Between measurements,

the microplates were incubated in the dark at 5°C.

To calculate the kinetic parameters such as maximum velocity

(Vmax) and half-saturation constant (Km), the hydrolysis rates

obtained from the change of fluorescence over time in the samples

with the fluorogenic substrate, were fitted directly to the Michaelis–

Menten equation using nonlinear least-squares regression analysis in

RStudio (Huitema and Horsman, 2018). For the biomass-specific

activity, the Vmax was normalized by the dry weight [mmol/g

biomass*h], and for the cell-specific activity, it was normalized by

the cell abundance [amol/cell*h]. The Vmax and Km values provided

in this study refer only to the cell-free fraction, as the total EEA values

are from Salazar-Alekseyeva et al. (2023) [in revision]. The

percentage of the cell-free fraction to the total EEA (cell-attached

plus cell-free) was calculated by comparing the cell-free rates from

this study to the total rates from the mentioned study of Salazar-

Alekseyeva et al. (2023) [in revision], all of them normalized by the

biomass. To evaluate the distribution of the obtained data, Shapiro-

Wilk test was used. Additionally, the significance between fungal

species of these kinetic parameters and percentages was analyzed with

one-way Analysis of Variance (ANOVA). Finally, Tukey’s Honestly

Significant Difference (Tukey’s HSD) and Student-T were performed

to identify significance at species level. All statistical analysis were ran

in RStudio.
3 Results

Remarkably, all the studied fungal species were capable to release

cell-free enzymes to enzymatically hydrolyze carbohydrates

(Figure 1), lipids, phosphorus and sulfur moieties (Figure 2), and

proteins (Figure 3). Generally, the contribution of cell-free enzymes

to the total EEA (Vmax) varied among the fungal species, as well as

between the non-saline and saline conditions (Figure 4 and Table 2),
Frontiers in Fungal Biology 04
similar to the Km values (Table 3). The percentage of cell-free enzyme

secretion represented up to 85.1% of the total EEA (Figure 5).
3.1 Cleavage of carbohydrates

3.1.1 b-glucosidase
In all the fungal species studied, the Vmax of cell-free BGL was

significantly higher in the non-saline than in the saline medium (t-

test; p < 0.001; Figure 1.1), but there was no significant difference in

the Km (t-test; p= 0.3; Table 3). The highest Vmax value was detected

in S. dacryoidea under non-saline conditions (t-test; p < 0.001; 1.7 ±

0.6 mmol/g biomass*h and 87.9 ± 29.0 amol/cell*h). The percentage

of cell-free relative to the total BGL by S. dacryoidea only

represented 1.0 ± 0.4% and 2.6 ± 1.5% in the non-saline and

saline medium, respectively (Figure 5A). In contrast, in the two

species of the genus Rhodotorula, R. mucilaginosa under non-saline

conditions and R. sphaerocarpa under saline conditions, the BGL

rates were low, but the proportion of cell-free fraction represented

78.3 ± 14.3%, and 73.6 ± 13.7%, respectively, of the total BGL. For

the remaining species, the contribution of cell-free to the total BGL

activities ranged between 16.0% and 52.1%.

3.1.2 b-xylosidase
Similar to BGL, in all the fungal strains, the Vmax of cell-free

BXY was significantly higher under non-saline than under saline

conditions (t-test; p= 0.005; Figure 1.2), but no significant difference

was detected in the Km (t-test; p= 0.5; Table 3). In the non-saline

medium, the highest Vmax values were detected for R. sphaerocarpa

and S. dacryoidea (t-test; p= 0.001), with values of 0.3 ± 0.2 mmol/g

biomass*h and 12.4 ± 6.7 amol/cell*h, and 0.2 ± 0.2 mmol/g

biomass*h and 11.7 ± 8.5 amol/cell*h, respectively. Consistent

with what was observed for BGL, even though S. dacryoidea

exhibited one of the highest Vmax, the contribution of the cell-free

fraction to the total EEA was low with percentages of 2.4 ± 1.9% and

2.2 ± 0.8% under non-saline and saline conditions, respectively

(Figure 5B). For the remaining fungal strains, the contribution of

cell-free to the total BXY varied between 10.4 and 51.8%.

3.1.3 N-acetyl-b-D-glucosaminidase
Similar to BGL and BXY, the Vmax of cell-free NAG was

significantly higher in the non-saline than in the saline medium

for all the species studied (t-test; p < 0.001; Figure 1.3). However, as

shown in Table 3, there was no significant difference in the Km for

all the species (t-test; p= 0.3), except for B. parvus, where it was

significantly higher under saline conditions (t-test; p= 0.02; 631.5 ±

141.5 mM). When the Vmax was normalized by the biomass, B.

parvus had the highest Vmax under non-saline conditions (t-test; p <

0.001; 0.6 ± 0.1 mmol/g biomass*h). But when the Vmax was

normalized by the cell abundance, R. sphaerocarpa exhibited the

highest Vmax also in this medium (t-test; p= 0.003; 12.7 ± 3.8 amol/

cell*h). The contribution of the cell-free fraction to the total NAG

varied from 12.5 to 68.8% (Figure 5C).
TABLE 1 Enzymes targeted with fluorogenic substrate analogues of
three categories, and their respective fluorogenic standards (MUF
methylumbelliferyl, and MCA methylcoumarylamide).

Category ID Enzyme Standard

Carbohydrates

BGL b-glucosidase MUF

BXY b-xylosidase MUF

NAG N-acetyl-b-D-
glucosaminidase

MUF

Lipids, phosphorus and
sulfur moieties

OLE Lipase MUF

APA Alkaline phosphatase MUF

SUL Sulfatase MUF

Proteins

LAP Leucine
aminopeptidase

MCA

TRY Trypsin MCA
The abbreviations of the respective enzyme used throughout the text are given in the
column ID.
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3.2 Cleavage of lipids, phosphorus and
sulfur moieties

3.2.1 Lipase
The Vmax values were significantly higher in the saline than in

the non-saline medium for all the fungal strains (t-test; p= 0.05;

Figure 2.1). The Km, however, was not significantly different

between both media (t-test; p= 0.4; Table 3). S. dacryoidea

exhibited significantly higher Vmax than the other species (t-test;

p < 0.001), with values of 32.1 ± 6.5 mmol/g biomass*h and 1676.5 ±

333.4 amol/cell*h under non-saline conditions, and 54.2 ± 30.3

mmol/g biomass*h and 8319.8 ± 3229.3 amol/cell*h under saline

conditions. The contribution of cell-free to the total OLE oscillated

from 8.6 to 85.1% where the highest percentages corresponded to

species with generally low OLE activity, such as M. australis, R.

mucilaginosa, and R. sphaerocarpa (Figure 5D).

3.2.2 Alkaline phosphatase
The Vmax of cell-free APA was significantly higher under non-

saline than under saline conditions for all the fungal strains (t-test;

p< 0.001; Figure 2.2), but no significant difference was detected in

the Km (t-test; p= 0.6; Table 3). Normalizing APA activity to the

biomass revealed a significantly higher Vmax in M. australis under

both, non-saline and saline conditions (t-test; p < 0.001; 10.1 ± 5.5
Frontiers in Fungal Biology 05
mmol/g biomass*h and 5.9 ± 1.1 mmol/g biomass*h, respectively).

Normalizing the Vmax to the cell abundance exposed S. dacryoidea

in the saline medium as the species with the highest Vmax (t-test; p <

0.001; 132.5 ± 21.1 amol/cell*h). The contribution of cell-free to the

total APA varied between 16.9 and 41.7% (Figure 5E).

3.2.3 Sulfatase
All the marine fungal strains expressed cell-free SUL activity

with no significant difference between the Vmax in the non-saline

and saline medium (t-test; p= 0.5; Figure 2.3). The highest SUL

activity detected among all the fungal strains was in S. dacryoidea

under saline conditions (t-test; p= 0.04; 0.4 ± 0.2 mmol/g biomass*h

and 64.6 ± 28.6 amol/cell*h). Contrary, in the case of the Km, these

values were significantly higher under saline than under non-saline

conditions for all the species (t-test; p< 0.001; Table 3). The

proportion of the cell-free fraction of SUL to the total SUL

activity varied between 18.5 and 82.3% (Figure 5F).
3.3 Cleavage of proteins and peptides

3.3.1 Leucine aminopeptidase
There was no significant difference in the Vmax nor the Km of cell-

free LAP between the non-saline and saline medium for none of the
BA

FIGURE 1

Maximum velocity (Vmax) of the cell-free enzymatic activity obtained from the filtrate of biological triplicates of the fungal strains B. parvus, M. australis,
R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea grown under non-saline (light green) and saline (dark green) conditions, and normalized by the
(A) dry weight in mmol/g biomass*h and by the (B) cell abundance in amol/cell*h. For B. parvus, B was not possible to calculate, so it is represented
by “N/A”. The substrates hydrolyzed denoted the use of carbohydrates by (1) b-glucosidase (BGL), (2) b-xylosidase (BXY), and (3) N-acetyl-b-D-
glucosaminidase (NAG). Moreover, Tukey’s HSD was calculated by salinity where * represents p < 0.05; ** p < 0.01; and *** p < 0.001.
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BA

FIGURE 3

Maximum velocity (Vmax) of the cell-free enzymatic activity obtained from the filtrate of biological triplicates of the fungal strains B. parvus, M. australis,
R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea grown under non-saline (light green) and saline (dark green) conditions and normalized by the
(A) dry weight in mmol/g biomass*h and by the (B) cell abundance in amol/cell*h. For B. parvus, B was not possible to calculate, so it is represented by
“N/A”. The substrates hydrolyzed denoted the use of proteins by (1) leucine aminopeptidase (LAP), and (2) trypsin (TRY). Moreover, Tukey’s HSD was
calculated by salinity where * represents p < 0.05; ** p < 0.01; and *** p < 0.001.
BA

FIGURE 2

Maximum velocity (Vmax) of the cell-free enzymatic activity obtained from the filtrate of biological triplicates of the fungal strains B. parvus, M. australis,
R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea grown under non-saline (light green) and saline (dark green) conditions, and normalized by the
(A) dry weight in mmol/g biomass*h and by the (B) cell abundance in amol/cell*h. For B. parvus, B was not possible to calculate, so it is represented by
“N/A”. The substrates hydrolyzed denoted the use of lipids, phosphorus and sulfur moieties by (1) lipase (OLE), (2) alkaline phosphatase (APA), and (3)
sulfatase (SUL), respectively. R. mucilaginosa did not exhibit any SUL activity under non-saline conditions, so it is also represented by “N/A”. Moreover,
Tukey’s HSD was calculated by salinity where * represents p < 0.05; ** p < 0.01; and *** p < 0.001.
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fungal species (t-test; p= 0.4; Figure 3.1 and t-test; p= 0.9; Table 3,

respectively). The highest LAP activity detected among all the fungal

strains was in R. mucilaginosa under saline conditions (t-test; p <

0.001; 2.0 ± 0.7 mmol/g biomass*h and 206.8 ± 63.6 amol/cell*h). The
Frontiers in Fungal Biology 07
highest contribution of cell-free LAP to the total LAP activity was also

detected in R. mucilaginosa (20.6 ± 6.3%). The other fungal species

exhibited generally a low contribution of cell-free LAP activity to the

total LAP activity ranging from 0.1 to 10.9% (Figure 5G).
B

A

FIGURE 4

Cell-free enzymatic activities by fungal species: B. parvus, M. australis, R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea for b-glucosidase (BGL),
b-xylosidase (BXY), N-acetyl-b-D-glucosaminidase (NAG), lipase (OLE), alkaline phosphatase (APA), sulfatase (SUL), leucine aminopeptidase (LAP), and
trypsin (TRY), under non-saline (0 g/L), and saline (35 g/L) conditions. (A) Sum of all cell-free Vmax in mmol/g biomass*h and (B) Percentage of all
cell-free Vmax in %.
TABLE 2 Main location (≥50%), cell-attached (CA) or cell-free (CF), of the enzymes degrading carbohydrates by b-glucosidase (BGL), b-xylosidase
(BXY), and N-acetyl-b-D-glucosaminidase (NAG); lipids, phosphorus and sulfur moieties by lipase (OLE), alkaline phosphatase (APA), and sulfatase (SUL),
respectively; and proteins by leucine aminopeptidase (LAP) and trypsin (TRY).

Carbohydrates Lipids, phosphorus and sulfur moieties Proteins

Enzyme BGL BXY NAG APA SUL OLE LAP TRY

Condition N S N S N S N S N S N S N S N S

B. parvus CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CF

M. australis CA CA CA CA CF CA CA CA CA CF CF CF CA CA CA CA

R. mucilaginosa CF CA CF CA CA CA CA CA
N/
A

CF CF CF CA CA CA CA

R. sphaerocarpa CF CF CA CF CA CF CA CA CA CF CA CF CA CA CA CA

S. dacryoidea CA CA CA CA CF CA CA CA CA CA CA CF CA CA CA CA
fr
ontiersin
These were investigated in five marine fungal isolates B. parvus, M. australis, R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea grown under non-saline (N) and saline (S) conditions. R.
mucilaginosa did not exhibit any SUL activity under non-saline conditions, so it is indicated below by “N/A”.
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3.3.2 Trypsin
There was no significant difference between the Vmax obtained

in the non-saline and the saline medium (t-test; p= 0.08; Figure 3.2).

However, as shown in Table 3,M. australis, R. mucilaginosa, and R.

sphaerocarpa exhibited a significantly higher Km in the saline than

in the non-saline medium (t-test; p= 0.04). The contrary occurred

for B. parvus and S. dacryoidea (t-test; p= 0.003). Similar to APA,

TRY activity normalized by the biomass resulted in a significantly

higher Vmax for M. australis in both media than for the remaining

species (t-test; p< 0.001). However, normalizing the Vmax to cell

abundance revealed that S. dacryoidea in the saline medium

exhibited a higher Vmax than the other fungal species (t-test;

p < 0.001; 14.1 ± 2.4 amol/cell*h). Interestingly, TRY was the only

enzyme studied where a significant difference in the contribution of

cell-free TRY activity to the total TRY activity was detectable

between the non-saline and saline medium (Figure 5H). The

contribution of the cell-free fraction to the total TRY activity was

significantly higher under saline with 16.5 to 84.9% than under non-

saline conditions with 2.5 to 10.4% (t-test; p < 0.001).
3.4 Cleavage of proteins and peptides

Compared to the other EEAs tested, the contribution of cell-free

OLE to the cell-free enzymatic pool was significantly higher (t-test;

p < 0.001; Figure 4). Cell-free OLE exhibited the highest Vmax

values, and these were mainly found in S. dacryoidea and B. parvus.

Contrarily, the contribution of cell-free TRY to the cell-free
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enzymatic pool was significantly lower than the other EEAs

(t-test; p < 0.001; Figure 4).
4 Discussion

4.1 Release of cell-free enzymes by pelagic
fungal strains

It is remarkable that all the species studied of marine pelagic

fungi, B. parvus,M. australis, R. mucilaginosa, R. sphaerocarpa, and

S. dacryoidea, released cell-free enzymes. These species seem to be

versatile as they exhibited a spectrum of cell-free enzymes capable of

hydrolytically cleaving carbohydrates, proteins, lipids, and moieties

of phosphorus and sulfur at a distance from the cell that originally

produced them. Nonetheless, species and enzymes were affected

differently by salinity changes.

4.1.1 Release of cell-free enzymes
cleaving carbohydrates

Cellulose is a polymeric substrate that cannot be transported

across the fungal cell wall, requiring at least partial extracellular

hydrolysis (MacDonald and Speedie, 1982). The release of cell-free

b-glucosidase by fungi has been reported in terrestrial species like

Sporotrichum thermophile (Bhat et al., 1993; Gaikwad and

Maheshwari, 1994) and marine species associated with decaying

estuarine and marine plants (MacDonald and Speedie, 1982),

driftwood (MacDonald and Speedie, 1982), mangroves (Pointing
TABLE 3 Average and standard deviation of Km in µM calculated from the cell-free enzymatic activity fraction of biological triplicates of five marine
fungal isolates B. parvus, M. australis, R. mucilaginosa, R. sphaerocarpa, and S. dacryoidea grown under non-saline (N) and saline (S) conditions.

Species
B. parvus M. australis R. mucilaginosa

R.
sphaerocarpa

S. dacryoidea

Condition N S N S N S N S N S

Carbohydrates

BGL
288.7 ±
111.1

472.6 ±
171.1

466.8 ±
59.3

366.7 ±
98.7

363.3 ±
215.8 8.3 ± 4.1

26.6 ±
4.8

12.1 ±
5.3

635.9 ±
81.3

398.1 ±
81.5

BXY
40.2 ±
24.0

13.7 ±
8.7

10.5 ±
3.3 6.7 ± 2.6

11.4 ±
2.9

16.7 ±
11.2 6.7 ± 1.6 8.7 ± 3.7

16.2 ±
6.4

25.0 ±
14.8

NAG
100.9 ±
27.1

648.6 ±
120.5

39.4 ±
7.8

27.4 ±
7.4

214.0 ±
57.9

294.0 ±
127.9 0.8 ± 0.2 6.6 ± 1.8

39.8 ±
18.9

13.8 ±
4.4

Lipids, phosphorus and
sulfur moieties

APA
24.4 ±
8.6

300.9 ±
161.4

117.8 ±
37.8

47.5 ±
7.8

379.3 ±
173.9

115.9 ±
64.0

27.7 ±
13.3 1.3 ± 0.4 4.3 ± 2.0 9.2 ± 3.7

SUL
32.4 ±
15.2

384.7 ±
146.8

121.5 ±
65.1

413.7 ±
200.8 N/A

566.0 ±
189.3 1.1 ± 0.3 1.5 ± 0.6

345.4 ±
135.5

572.9 ±
171.8

OLE
60.9 ±
16.1

59.8 ±
21.6

404.1 ±
203.3

161.7 ±
63.1

430.4 ±
165.6

602.2 ±
222.8 3.3 ± 1.4

146.1 ±
32.7

15.8 ±
4.2

61.2 ±
18.9

Proteins

LAP
316.1 ±
154.8

66.2 ±
24.8

48.0 ±
14.4

109.4 ±
3.3

74.1 ±
12.6

108.0 ±
44.2

133.2 ±
19.0

109.8 ±
26.2

347.5 ±
146.3

462.7 ±
140.1

TRY
136.1 ±
79.8 3.1 ± 1.9

10.7 ±
5.0

58.3 ±
6.4

12.2 ±
2.9

13.2 ±
7.3

15.6 ±
1.9 3.2 ± 0.4

333.6 ±
119.7

83.1 ±
43.9
fron
The substrates used were indicative of cleavage of carbohydrates by b-glucosidase (BGL), b-xylosidase (BXY), and N-acetyl-b-D-glucosaminidase (NAG); lipids, phosphorus and sulfur moieties
by lipase (OLE), alkaline phosphatase (APA), and sulfatase (SUL), respectively; and proteins by leucine aminopeptidase (LAP), and trypsin (TRY). R. mucilaginosa did not exhibit any SUL
activity under non-saline conditions, so it is indicated below by “N/A”.
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et al., 1999), sediments (Elyas et al., 2010), and macroalgae (Lee

et al., 2019). In the present study, the level of secretion of cell-free b-
glucosidase differed among the species studied (Table 2). Compared

with the rest of the fungal species, S. dacryoidea was the species that

exhibited the highest Vmax of cell-free (Figure 1.1), but the lowest

cell-free contribution to the total BGL (Figure 5A). This low cell-

free contribution to the total b-glucosidase activity has also been

reported for species like Trichocladium achrasporum (MacDonald

et al., 1985). For the other fungal species tested except the ones of

the genus Rhodotorula, R. mucilaginosa and R. sphaerocarpa, the

cell-free fraction represented up to 30.8% of the total EEA

suggesting that the b-glucosidase activity is mainly cell-associated

(Table 2 and Figure 5A). This is consistent with previous reports on

other marine fungi species (MacDonald and Speedie, 1982;

MacDonald et al., 1985; Pointing et al., 1999).

Like cellulose, xylan also cannot penetrate the cell due to its

polymeric structure (Biely, 1985; Lenartovicz et al., 2003; Collins
Frontiers in Fungal Biology 09
et al., 2005), so b-xylosidases can be cell-attached or cell-free

(Lenartovicz et al., 2003). Reese et al. (1973) reported that in the

early growth stages of fungal cultures, xylosidases were cell-

attached, but later on, these enzymes were released into the

medium either by true secretion or cell lysis. Interestingly, similar

to BGL, although S. dacryoidea displayed one of the highest Vmax

values (Figure 1.2), cell-free b-xylosidase was low compared to the

total EEA (Figure 5B). Hence, we conclude that b-xylosidases
released by the studied marine fungi species were also mostly cell-

attached (Table 2). This was also found for some widespread fungi

species like Cryptococcus albidus (Defaye et al., 1992), Aspergillus

fumigatus (Lenartovicz et al., 2003), Thermomyces lanuginosus

(Singh et al., 2003), Aureobasidium pullulans (Ohta et al., 2010),

and some other species (Reese et al., 1973).

In the study of Matsumoto et al. (2004), Verticillium lecanii,

originally isolated from Lecanium corni, produced extracellular N-

acetyl-b-D-glucosaminidase from shrimp waste. Fungi can degrade
B C

D E F

G H

A

FIGURE 5

Contribution of cell-free enzymatic activity as a percentage to the total extracellular enzymatic activity normalized by the biomass for the enzymes
(A) b-glucosidase (BGL), (B) b-xylosidase (BXY), (C) N-acetyl-b-D-glucosaminidase (NAG), (D) lipase (OLE), (E) alkaline phosphatase (APA), (F) sulfatase
(SUL), (G) leucine aminopeptidase (LAP), and (H) trypsin (TRY) of biological triplicates of the fungal strains B. parvus, M. australis, R. mucilaginosa,
R. sphaerocarpa, and S. dacryoidea. The species R. mucilaginosa did not exhibit any SUL activity under non-saline conditions, so it is represented by
“N/A”. According to the salinity, non-saline (light green) and saline (dark green), Tukey’s HSD was performed and * represents p < 0.05; ** p < 0.01;
and *** p < 0.001.
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chitin and use it as a carbon and nitrogen source (Gaderer et al.,

2017), but in contrast to bacteria, fungi can also use it as a building

block for the synthesis of new chitin (Edson and Brody, 1976).

Thus, the number of chitinases produced by fungi has been related

to their chitin content and growth mode (Hartl et al., 2012). For

instance, as the cell wall of filamentous fungi consists of 10 to 20%

of chitin (Ruiz-Herrera, 1991), the number of chitinases is normally

10 to 30 (Seidl, 2008; Kubicek et al., 2011). The cell wall of yeast

fungi consists of only 0.5 to 5% of chitin (Garcia-Rubio et al., 2020),

so the number of chitinases might be lower in yeast than in

filamentous fungi. Even though the overall N-acetyl-b-D-

glucosaminidase activity was low, compared with other species, B.

parvus, a filamentous species, exhibited the highest Vmax of cell-free

(Figure 1.3) similar to what was reported by Salazar-Alekseyeva

et al. (2022) and Salazar-Alekseyeva et al. (2023) [in revision]. As

shown in Table 2, the main location of N-acetyl-b-D-

glucosaminidase might be cell-attached.

Marine microorganisms require diverse substrates which are

normally polymeric (Wang et al., 2016). In these environments,

carbohydrates are the largest macromolecular compound class of

DOC (Benner et al., 1992). According to Biely (1985),

microorganisms that compete for carbon sources, secrete enzymes

that are mainly cell-attached. As mentioned above, cellulose, chitin,

and xylan are polymeric structures, so for these carbohydrates,

fungal cell-attached enzymes might dominate the hydrolytic

cleavage of this abundant macromolecular compound class.
4.1.2 Release of cell-free enzymes cleaving
lipids, phosphorus and sulfur moieties

Lipids are high energy sources (Parrish, 2013), and also building

blocks for organisms (Bergé and Barnathan, 2005), so the

degradation of lipids like phospholipids might be a means to

obtain both, carbon and phosphorus (Celussi and Del Negro,

2012). According to Singh and Mukhopadhyay (2012) and Duarte

et al. (2021), the majority of lipases in fungi were released into the

extracellular medium. In the studies of Papanikolaou et al. (2007)

and Louhasakul et al. (2016), the marine yeast Yarrowia lipolytica,

produced only cell-attached lipase, but in the study of Scioli and

Vollaro (1997) this same species produced both, cell-attached and

cell-free OLE. In another study, other 9 marine yeast strains,

including one used in our study, R. mucilaginosa, produced cell-

attached lipase, and only Aureobasidium pullulans produced cell-

free lipase (Wang et al., 2007). Table 2 and Figure 5D indicate that

the lipase activity of M. australis and R. mucilaginosa was mainly

cell-free, whereas for the species R. sphaerocarpa, and S. dacryoidea

the cell-free fraction depended mainly on the salinity, where higher

percentages of cell-free enzymatic activity were found under saline

conditions. B. parvus was the only species where the majority of

lipase activity was cell-attached. Hence, we suggest that the release

of cell-free lipase might be species-specific and dependent on

the salinity.

Phosphorus is an essential element required for many biological

processes (Colman et al., 2005; Paytan and McLaughlin, 2007;
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Brembu et al., 2017; Lockwood et al., 2022). In aquatic

environments, low phosphate concentrations have been related to

the expression of alkaline phosphatase (Hassan and Pratt, 1977;

Colman et al., 2005; Srivastava et al., 2021). However, in carbon-

limited environments, microorganisms might use APA not only to

obtain phosphate, but also to access the carbon moieties from

organic matter (Hoppe and Ullrich, 1999; Colman et al., 2005). In

bacteria, APA is generally located in the periplasmatic space,

whereas in fungi, it is generally attached to the cell surface

(Chrost et al., 1984). In soil studies, six fungal species, one of

them a widespread fungus as it is Aspergillus niger, released

approximately 22% of extracellular alkaline phosphatase (Tarafdar

et al., 2002). These authors suggested that this low release was

related to the fungal structure, and a low membrane permeability

for this enzyme (Tarafdar et al., 2002). Our study on marine fungi

also suggests that APA activity is mostly cell-attached (Table 2), as

the activities of the cell-free APA fraction amounted to at most

41.7% of the total APA activity (Figure 5E).

Sulfur is also an essential element required for numerous

biological molecules (Klotz et al., 2011; Helbert, 2017). In marine

environments, polysaccharides can be highly sulfated (Kloareg and

Quatrano, 1988; Wang et al., 2016; Helbert, 2017), probably as a

physiological adaptation to the high environmental ionic strength

(Kloareg and Quatrano, 1988; Aquino et al., 2005; Aquino et al.,

2011; Ciancia et al., 2020). In these environments, the cleavage of

sulfate groups might be necessary not only to obtain sulfur, but also

to access the carbohydrates (Schultz-Johansen et al., 2018; Hettle

et al., 2022). For the widespread fungi species Neurospora crassa,

cell-attached, and cell-free sulfatase were reported by Scott and

Metzenberg (1970). We also found these two types of extracellular

enzymes in our studied marine fungi species. Interestingly, all the

species, except B. parvus, released a higher percentage of cell-free

enzymes in the saline than in the non-saline medium (Table 2 and

Figure 5F). Therefore, fungi might be capable to secrete cell-free

sulfatase as a strategy to remove sulfates and gain access to other

carbohydrates (Salazar-Alekseyeva et al. 2023) [in revision]).

4.1.3 Release of cell-free enzymes cleaving
proteins and peptides

Grazing and viral lysis are the main sources of proteins and

peptides released into the seawater (Repeta, 2015). Proteases

hydrolytically cleave them to obtain both, carbon and nitrogen (Li

et al., 2019), and this can take place inside or outside the cell (Pantoja

et al., 1997; Gupta et al., 2002). Nitrogen is an essential element,

especially for the growth and function of enzyme-dependent

microorganisms (Allison, 2005). Hydrolysis rates are mainly

influenced by the size and chemical structure of the substrate,

where peptides are hydrolyzed much faster than proteins (Pantoja

and Lee, 1999). Bacterial leucine aminopeptidase has been widely

reported to be mainly cell-attached in seawater (Pantoja et al., 1997;

Obayashi and Suzuki, 2008b; Bong et al., 2013), as well as in

freshwater (Chróst and Rai, 1993; Millar et al., 2015). Remarkably,

in all the marine fungal strains studied, this was the only enzyme

where the majority of enzymatic activity was cell-attached (up to

79.4%) in both non-saline and saline medium (Table 2 and
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Figure 5G). S. dacryoidea, however, exhibited the lowest contribution

of cell-free to the total LAP activity (Figure 5G). Trypsin also

exhibited a high cell-attached enzymatic activity (up to 89.6%), but

only under non-saline conditions (Figure 5H).

4.1.4 Influence of salinity on cell-free enzymes in
marine fungi

Diverse environmental factors can influence microbial cells, and

also the subsequent secretion of enzymes (Chróst, 1990). In the case

of cell-free enzymes, as these are released from the cell into the

ambient water, their fate will depend on the conditions of the water

(Hoppe and Ullrich, 1999; Baltar, 2018). Therefore, cell-free

enzymes might be susceptible to degradation and chemical

changes (MacDonald and Speedie, 1982; Wetzel, 1991).

Enzymes are strongly associated with water as it tends to bind to

the hydrophobic groups located on the enzyme surface (Saenger,

1987; Kornblatt and Kornblatt, 2002; Zaccai, 2004; Rezaei et al.,

2007). This allows the enzyme to maintain its native structure, and

hence, it can function properly (Kuntz Jr, 1971; Saenger, 1987;

Karan et al., 2012). As salts promote ionic and hydrophobic effects,

salinity is considered an important environmental factor that can

influence the solubility and stability of enzymes (Baxter, 1959;

Lanyi, 1974; Karan et al., 2012) and thus, their functions (King,

1986; Caruso and Zaccone, 2000). Though, the magnitude of these

effects will depend on the salt concentration as well as the chemical

composition of the enzyme (Sinha and Khare, 2014). Some marine

studies have reported salinity as an important environmental factor

influencing microbial enzymatic activity (Caruso and Zaccone,

2000; Salazar-Alekseyeva et al. 2023)[in revision]). However, the

influence of salinity on fungal cell-free enzymatic activities has not

been reported yet. Based on our results, we suggest that the salinity

effect on the kinetic parameters such as maximum velocity (Vmax)

depends on the enzyme as well as on the species (Figures 1–5).

Under saline conditions simulating marine environments, we found

that the Vmax of the enzymes BGL, BXY, NAG, and APA was

reduced, with only one exception, the APA of S. dacryoidea. This

reduction was different for each species, similar to what was

reported for the total EEA by Salazar-Alekseyeva et al. (2023)

[in revision].

Certain enzymes can be salt-tolerant or halophilic (Larsen,

1967). Here, amino acid residues located on the enzyme surface

tend to bind to hydrated cations (Lanyi, 1974; Jin et al., 2019). This

creates a large multilayered shell that keeps the enzyme hydrated

(Karan et al., 2012), and also allows it to adopt a flexible

conformational structure (Baxter, 1959; Hutcheon et al., 2005;

Sinha and Khare, 2014; Karan et al., 2020). In the present study,

under saline conditions, we detected potentially halophilic cell-free

enzymes which were APA, SUL, and TRY for S. dacryoidea, SUL for

R. mucilaginosa, and OLE for all the species (Figures 2, 3). S.

dacryoidea is a widespread species (Fell et al., 1973; Gadanho et al.,

2003; Allen et al., 2004; Francis et al., 2016), that has been identified

as a potentially facultative marine species adapted to varying

salinities Salazar-Alekseyeva et al. (2023) [in revision]. As the

available nutritional sources are found in high concentrations of
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osmolytes, fungi probably evolved enzymes to successfully compete

for their uptake with other microorganisms (Gladfelter et al., 2019;

Gonçalves et al., 2021). Curiously, cell-free lipase was the only

enzyme where the Vmax of all the studied fungal species was

enhanced under saline conditions (Figure 2.1). Comparable

results were supported by Kiran et al. (2009) showing that the

production of lipase and other biosurfactants by the marine fungi

Aspergillus ustus isolated from a symbiosis with a marine sponge,

was higher under saline conditions. In the lipases of a pathogenic

species, Candida rugosa, structural differences in the flap, substrate-

binding pocket, and mouth of the hydrophobic tunnel, were

responsible for three isoenzymes with different substrate

specificity and catalytic properties (Mancheño et al., 2003).

Moreover, the species Yarrowia lipolytica was reported to encode

lipase isoenzymes with different substrate specificities (Fickers et al.,

2005). On the other hand, interestingly, trypsin was the only

enzyme that exhibited a higher percentage of cell-free activity

under saline than under non-saline conditions (Figure 5H). In

coastal seawater, cell-free trypsin has been reported to be between

40 to 80% of the total trypsin activity (Obayashi and Suzuki, 2008b).

As a result, the release of cell-free enzymes into the surrounding

water might be an advantage in marine environments allowing

fungi to access substrates away from them.

In the open ocean, microbial cell-free enzymatic activities have

been reported to be lower than in nearshore waters (Li et al., 2019).

The reason for this might be the input of terrestrial substrates

(Allison et al., 2012; Millar et al., 2015) and other organisms that

stimulate the enzymatic activities in coastal waters (Li et al., 2019).

For marine aggregates, Ziervogel and Arnosti (2008) stated that

salinity or other chemical and physical factors can affect the lifetime

of cell-free enzymes, as longer active lifetimes were found in

nearshore waters than in offshore waters of the Gulf of Mexico.

Our results indicate that salinity can influence the kinetics of cell-

free enzymes, but marine fungi might be capable to produce

different enzymes adapted to different salinities. For instance, in a

study of fungi inhabiting mangrove forests, one fungal species was

able to secrete two enzymes under saline conditions, and a different

one in the absence of salt (Li et al., 2002). As proposed by Zaccai

(2004), each enzyme might evolve a stable form specific to an

environment, so isoenzyme expression might be a strategy to adapt

to different salinities (Arfi et al., 2013; Salazar-Alekseyeva et al.

2023) [in revision]). From our study, it appears that the marine

fungi species are adapted to a wide range of salinities, probably with

different enzymes, also known as isoenzymes, capable to perform

the same reaction under different salinities.
4.2 Location of marine fungi enzymes

The location of extracellular enzymes, either cell-attached or

cell-free, influences the degradation and subsequent utilization of

the substrates (Parawira et al., 2005), and this might depend on the

lifestyle (Traving et al. , 2015). For particle-associated

microorganisms, cell-free enzymes could be favourable due to
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their proximity to the substrates (Vetter et al., 1998). Contrarily, for

free-living microorganisms, cell-attached enzymes could be

beneficial (Chróst, 1990; Traving et al., 2015) as the substrates in

marine environments are generally highly diluted (McCarthy et al.,

1996; Amon and Benner, 2003). For fungi, the location might be

specially important (Dubovenko et al., 2010). In the case of marine

fungi, a high secretion of CAZymes was associated with a

preferential particle-associated lifestyle (Baltar et al., 2021). In the

present study, we found that the majority of EEAs were cell-

attached (Table 2), which suggests a free-living lifestyle. However,

salinity might have influenced the switch to cell-free. For example,

under non-saline conditions, the release of SUL and OLE was

mainly cell-attached, but under saline conditions, the main

location of these enzymes changed to cell-free. As mentioned

before, highly sulfated polysaccharides are present in marine

environments (Kloareg and Quatrano, 1988; Wang et al., 2016;

Helbert, 2017), so a high salinity might induce a higher expression

of cell-free enzymes like sulfatase. This also suggests that the fungal

lifestyle might depend on the available substrates.

Unlike bacteria, fungi are capable to penetrate solid substrates

(Raghukumar, 2017), specially the filamentous ones (Souza et al.,

2015). In the present study, B. parvus was the only species that had

this structure, and the majority of its EEAs were cell-attached

(Table 2). These enzymes are capable of degrading substrates

until they can be assimilated by the cells that originally

synthesized them (MacDonald and Speedie, 1982; Biely, 1985;

Grant and Rhodes, 1992; Confer and Logan, 1998; Lenartovicz

et al., 2003; Collins et al., 2005). As the hyphal growth has been

highlighted as an important characteristic to colonize substrates

(Zalar et al., 2005), B. parvus might be using cell-attached enzymes

to hydrolytic cleave them.

In marine environments, as bacteria and fungi might have

similar functions like decomposers and their close spatial

proximity, might lead to antagonistic or synergistic interactions

(Velicer, 2003; Romanı ́ et al., 2006). In marine bacteria, the direct

release of cell-free enzymes has been reported as a response to the

presence of substrate (Alderkamp et al., 2007), starvation

(Albertson et al., 1990; Alderkamp et al., 2007; Bong et al., 2013),

changes in the cell permeability (Chróst, 1990), or due to cell decay

(Baltar et al., 2019). However, when the substrate becomes limited,

but the secretion of cell-free enzymes by marine fungi remains

unknown. In freshwater studies, Millar et al. (2015) reported

contributions of microbial cell-free enzymatic activities of 15.5,

32.6, 32.9, 82.5, and 24.4% for BGL, NAG, APA, SUL, and LAP,

respectively, of the total EEA. In contrast, Kamer and

Rassoulzadegan (1995) and Baltar (2018) suggested that the

marine microbial cell-free fraction can represent up to 100% of

the total EEA. These authors reported microbial cell-free enzymatic

activities ranging from 0, 37, and 34% for BGL, APA, and LAP,

respectively, and up to 100% of the total EEA (Baltar et al., 2010;

Baltar et al., 2013; Baltar et al., 2016). In the present study, we report

that depending on the species and also on the salinity, the fungal

cell-free fraction can vary from 0.1 to 85.1% of the total EEA with

some enzymes more likely to produce cell-free enzymes like OLE

and SUL.
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4.3 Potential environmental implications

Climate change is influencing the freshwater input from ice,

riverine, and precipitation into oceans, hence, also its salinity (Myers

et al., 1990; Munk, 2003; Reid et al., 2009; Hutchins and Fu, 2017;

Kohler et al., 2020). The desalination of the oceans, also known as

ocean freshening, can intensify the stratification which decreases the

vertical mixing of the water column and affects the transport of

nutrients (Reid et al., 2009; Balaguru et al., 2016; Hutchins and Fu,

2017). As suggested by Arnosti et al. (2014), nutrient availability can

influence the magnitude and distribution of extracellular enzymatic

activities. Accordingly, a different nutrient availability might lead to

expression of other enzymes, which might also influence the

potential role of marine fungi in the oceanic biogeochemical

cycles. Moreover, most marine fungi are adapted to tolerate high

salinity (Jennings, 1983), so salinity can influence the fungal

community composition (Rojas-Jimenez et al., 2019). Our results

indicate that the studied marine fungal species might be adapted to

different salinities, but their extracellular enzymatic activities, both,

cell-attached and cell-free, might be affected by salinity.
5 Conclusions

Based on our results, the marine fungi species studied are

capable to secrete an array of cell-free enzymes, and this can

represent up to 85.1% of the respective total EEA. Though, it is

important to consider that some of these high values were found in

fungal strains and enzymes with low total EEA, so their

contribution to the cell-free enzymatic pool might be minimal

compared to others. Additionally, the release of these extracellular

enzymes can be influenced by environmental parameters such as

salinity, despite being species-specific. As fungi are undeniably

widespread in marine environments, their cell-free enzymes

might also be an important part of the oceanic enzymatic pool.

Nonetheless, as oceans are complex and diverse ecosystems, other

abiotic and biotic variables should also be included in future studies.
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