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ABSTRACT

Synthetic realities are digital creations or augmentations that are contex-
tually generated through the use of Artificial Intelligence (AI) methods,
leveraging extensive amounts of data to construct new narratives or real-
ities, regardless of the intent to deceive. In this paper, we delve into the
concept of synthetic realities and their implications for Digital Forensics
and society at large within the rapidly advancing field of AI. We highlight
the crucial need for the development of forensic techniques capable of
identifying harmful synthetic creations and distinguishing them from
reality. This is especially important in scenarios involving the creation
and dissemination of fake news, disinformation, and misinformation.
Our focus extends to various forms of media, such as images, videos,
audio, and text, as we examine how synthetic realities are crafted and
explore approaches to detecting these malicious creations. Additionally,
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we shed light on the key research challenges that lie ahead in this area.
This study is of paramount importance due to the rapid progress of AI
generative techniques and their impact on the fundamental principles of
Forensic Science.

1 Introduction

In the last decade, there has been a growing expectation that Artificial Intelli-
gence (AI) companies and researchers would dedicate their efforts to integrating
humans into the digital realm or the so-called Metaverse. However, while
technologies like Augmented Reality (AR) and Virtual Reality (VR) have
been topics of discussion for a long time, it is only recently that significant
technological advancements have made it possible to materialize such systems.

This version of a synthetic reality has been technically discussed at least
since the 90s [69], and this was the main vision of where AI and related
technologies would take us. However, what came as a less expected outcome
is that these very technologies would inundate our physical world with content
and creations, profoundly transforming our interactions with the virtual realm
and reshaping how we engage with one another.

This more complex notion of synthetic reality has been a topic of discussion
by the greatest minds of our time [272]. On the one hand, some hold a positive
perspective, recognizing the immense advantages it can bring in domains such
as automation, healthcare, and innovation. On the other, a group expresses
concerns about the potential perils posed by AI, such as the generation of
propaganda and untruth. They even advocate for temporary halts in AI
experimentation within laboratories [12] to allow time for legal and ethical
considerations to align with the pace of progress.

We can adopt a more pragmatic perspective and carefully embrace this
emerging paradigm. This entails rapidly adapting ourselves and our societies
and understanding and revitalizing our scientific endeavors. Hence, we redefine
the term “synthetic realities” herein as any contextual digital creation or aug-
mentation enabled by artificial intelligence methods. These techniques/models
draw upon massive amounts of data leading to a new “reality” or narrative
regardless of its intention to deceive the individual interacting with it. When
the synthetic creation harms individuals, minorities, human rights, or the rule
of law, it is paramount to devise forensic techniques to pinpoint such creations
and separate what is real from what is synthetic. As an example, consider the
creation of a fake news piece. Someone could fabricate a story from scratch
using a chatbot, illustrate it with a synthetic image and a video, and then
broadcast it to the world as if it were real via social media.
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Consequently, Forensic Science has been continually adapting to these
evolving circumstances. Rooted in the foundational principle that “every
contact leaves a trace”, coined by researcher Edmond Locard [34], Forensic
Science asserts that every interaction between individuals, objects, and places
leaves behind a trail of evidence. While this concept was initially centered
around physical traces like fingerprints, footprints, and blood, it has recently
expanded to encompass digital counterparts such as photos, audio, video, and
social media posts [190].

The revolving question around digital evidence is: “Are they fake or not?”,
as manipulating these multimedia assets can be quickly done with simple and
inexpensive tools. Moreover, credible manipulations can be used to fabricate
more believable multimedia stories. Research in Multimedia Forensics has
yielded important approaches to detecting altered media [67]. More specifically,
progress has been made in analyzing digital media (image, video, and audio),
identifying manipulations [2, 16, 42, 45, 123], tracing provenance [11, 20, 28,
47, 249], and establishing links with other digital evidence [15, 146, 178].

However, the emerging concept of synthetic reality paints an even more
unsettling scenario: around 90% of the digital content will be synthetic in the
upcoming years, meaning that almost all content will be generated synthetically
by definition [57]. The distinction between what is genuine and what is fake
takes on a new meaning. This phenomenon becomes evident in various
domains, including movies [109], social media [98, 248], marketing [214], and
education [169].

Notably, companies are now exploring the adoption of AI-generated models
to promote their products [214] or employing AI to simulate eye contact
in video conferencing software, enhancing the sense of connection during
remote interactions [98]. Schools worldwide are banning chatbots and the use
of generative AI on their networks in response to concerns about students
submitting unauthentic and potentially plagiarized work [169]. The examples
are many when thinking about how AI is shaping our reality.

Therefore, Forensic Science has to adapt yet again to this new reality. To
expose synthetic content and tell apart malicious from harmless manipulations
or even positive creations, there is one new key element: context. Contextual
information can be leveraged to understand the semantics behind media
objects. This can empower fact-checking solutions that mitigate the effect of
falsified news, misinformation, and false political propaganda. To that end,
and following a cognitive science interpretation, we can view digital objects
through three perspectives: technological artifacts, sources of information, and
platforms to convey ideas.

Traditional forensic techniques thus far have primarily focused on the first
perspective. Analysts examined an asset as a digital signal and aimed to detect
any possible artifact related to pixel-level or physical-level inconsistencies
(e.g., concerning compression, sensor noise, illumination, shadows) to establish
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its authenticity. The second perspective pertains to standard fact-checking
procedures going beyond multimedia forensics. When treating an object as a
source of information, it is essential to identify (or know) the acquisition device
and to identify the time and location where it was produced as basic steps
towards a fact-checking effort. The third perspective considers a digital object
as a platform for conveying ideas. Determining the intentional goal of the asset
leads to answering the question of why something happened. The answer to
this question and the result of forensic analyses from the other two perspectives
can reveal the ultimate goal of the falsified information. For example, it can
help identify if there is an ongoing campaign to bias public opinion, influence
the mood of a social group, or even incite a group to articulate plans for violent
acts.

The latest advancements in AI have compelled forensic techniques to navi-
gate the intricacies between these perspectives. Taking this into consideration,
we focus on studying synthetic realities in different forms of media: images,
videos, audio, and text. In the remainder of this paper, we discuss how synthetic
media is created, considering each of these modalities, and the implications for
Digital Forensics when such creations intend to harm third parties in different
ways. We explore how to detect such malicious creations and pinpoint key
research challenges that lie ahead. This is particularly significant due to the
remarkable progress of AI generative techniques in generating realistic content
and effectively concealing the typical artifacts left behind during the creation
process. Each new generative method aims at creating ever-more-believable
realities, thus directly colliding with Locard’s principle, the cornerstone of
forensics.

2 Synthetic Images

The proliferation of sophisticated synthetic and manipulated media has cap-
tured people’s attention worldwide. For forensic researchers, this surge in
synthetic reality evokes the daunting scenario reminiscent of the early days of
Digital Forensics, where image editing was recognized as a powerful tool capa-
ble of altering reality [179]. While traditional manual image-editing software
like Photoshop and GIMP continue to improve, they are being overshadowed
(or enhanced, in the particular case of Photoshop [251]) by the emergence of
powerful AI-based generative techniques. Today, it has become remarkably
effortless to transform a simple concept or idea into a realistic image, with no
requirement for drawing or painting skills to produce stunning, high-quality
results.

Amid this rapidly evolving landscape lies generative models. Generative
images have outstanding widespread applications in entertainment, as reviving
legendary artists [215]; healthcare, as aiding surgeons in developing new
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abilities [19]; and accessible tools, as serving people with disabilities [164].
However, many other harmful uses have been reported, such as nonconsensual
DeepFake porn [185], misinformation generation [276], and sophisticated types
of scams [253]. Scientific integrity researchers are also concerned that such
technology would create fraudulent synthetic images in science [78, 198] and
the medical area [160, 174], in particular.

Given the alarming potential for misuse of generative models in creating
synthetic realities, this section delves into state-of-the-art generative models
and the detection of AI-generated images, providing perspectives on the future
of synthetic images.

2.1 Image Synthesis

The accelerated research on generative approaches in recent years gave birth
to a plethora of AI models and techniques that are developed and open-
sourced to the community. They are coupled with easy-to-use environments
and applications [54, 172], allowing users to freely explore and share their
creations. The increased accessibility further expanded the hype in image
synthesis, fostering novel use cases and commercial applications that range
from outpainting famous art pieces [140] (i.e., synthetically extending the
borders of an image) to designing political campaign ads [235]. With the
increased interest in the topic from research and industry communities and the
rapid development of techniques, one can safely assume that not all synthetic
images are born equally. We can categorize existing approaches by how the
generation task is conditioned and what family of AI models they rely on.

The generation task defines the goal of the method and, consequently, how it
learns to map the expected input to a synthetic output image. Additionally, the
input data modality conditions the generation process into expressing particular
visual concepts and characteristics desired by the user [294]. The most common
tasks fall into text-to-image or image-to-image generation. Popularized by
recent applications such as MidJourney [172] and DreamStudio [54], text-to-
image generation involves a natural language prompt describing the desired
image. This often includes the object or concepts that should be created, the
desired artistic style, and the feeling the composition should convey. Whereas,
in image-to-image generation, guidance is provided through visual cues like
images, semantic maps, or body pose keypoints. These cues facilitate the
generation process with information that can be challenging to convey through
natural language prompts. For instance, they help capture relative element
positioning. Examples of conditioning tasks and modalities are shown in
Figure 2, including tasks like inpainting (reconstructing missing parts of an
image), image translation (converting representations while preserving content),
outpainting (generating beyond image boundaries), style transfer (blending
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Figure 1: Examples of synthetic realities. (a) Synthetic faces generated by StyleGAN2 [107]
(reproduced from [223]); (b) Synthetic art created by MidJourney [172], DALL·E 2 [205], and
Stable Difusion [211] using the prompt “The Age of Synthetic Realities”; and (c) Examples
of video Deepfakes (reproduced from [139]).

Figure 2: Examples of image synthesis conditioning. The input modality and expected
output define the type of generation task performed by the model and help express desired
characteristics in the synthesized creation. Examples created with and/or reproduced
from [60, 172, 233, 234, 287].

artistic style), scene semantic image synthesis (from a semantic map), and
body pose keypoint (content generated constrained to a body pose).

The families of AI models utilized in image generation techniques comprise
several types of architectures, with the most common being Generative Ad-
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versarial Networks (GANs), Diffusion models, and Variational Autoencoders
(VAE).

GANs [75, 192] are built on two components: a generator and a discrimi-
nator. The generator learns the underlying distribution of real examples to
generate new data, while the discriminator decides whether the input is from
the real data space. Through an adversarial training process, the discriminator
learns to identify synthetic images, while the generator progressively improves
its ability to produce high-quality images that can deceive its counterpart.
Numerous GAN variants have been developed in recent years to enhance the
performance and stability of image generation [104, 202, 295, 297]. Among
them, StyleGAN [105, 106, 108] allowed for intuitive control over the generated
image attributes by modulating the convolutional kernels at different levels
of the generator, instead of directly controlling the network input. Figure
1(a) shows examples of synthetic faces generated by StyleGAN2 [107]. Its
successor, StyleGAN-T [219], builds upon its architecture for text-guided image
synthesis. It leverages Contrastive Language-Image Pre-Training [201] (CLIP),
a powerful text encoder that aligns textual descriptions with corresponding
images. Other approaches [242, 306] follow a similar path, relying on CLIP to
integrate natural language understanding into the image synthesis process.

As an alternative to the min-max optimization game of GANs, Diffusion
models [43, 87] are trained to revert a stochastic diffusion process that
progressively adds noise to a target image. To generate new images, the
model iteratively denoises the perturbed image at each step, until a high-
quality picture is reconstructed. By relying on a deterministic denoising
function instead of adversarial learning, their training is more stable and
easier to control than GANs. On the other hand, diffusion models rely on
multiple network passes to reconstruct samples, constituting a considerably
more computationally expensive method than adversarial networks. To improve
efficiency, Stable Diffusion [211] operates on compressed latent representations
instead of pixel space, mapping the denoising function to smaller manifolds.
When considering textual prompts, Imagen [217] leverages text encoders,
such as CLIP, to combine them with multiple cascaded diffusion models to
generate high-resolution outputs from text. Similarly, DALL·E 2 presented
by Ramesh et al. [205] trains a diffusion decoder that produces images from
CLIP embeddings extracted from textual prompts.

Another prominent family of models is Variational Autoencoders
(VAE) [116]. Autoencoders follow an encoder-decoder architecture that projects
the input data into a low-dimensional latent space and learns to reconstruct
the original input from it. VAE, in turn, extends upon autoencoders by adding
a probabilistic component to the latent representation. Instead of learning
a deterministic encoding for each input, the network learns the parameters
of a probabilistic distribution that models the latent space. By doing so,
it can sample from the latent space distribution to generate new samples.
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Constraining the low-dimensional latent space further, VQ-VAE [186, 208]
uses vector quantization to learn discrete latent variables, which improves
the interpretability of the learned concepts and allows for easily manipulating
them when generating new compositions. Text-to-image Transformer models
like DALL-E [206] and CogView [49] employ VQ-VAE modules in their first
stages to encode input images into enriched visual token representations. These
tokens, selected from a codebook with a limited set of values (e.g., 8192 in
CogView [49]), are then fed into an autoregressive Transformer [254]. The
Transformer models the joint distribution of textual and visual components,
ultimately yielding coherent and semantically meaningful synthesized creations.

Each of these AI model families has its pros and cons. GANs excel at
generating sharp and visually compelling images, but they may suffer from
mode collapse and training instability issues when used in large and diverse
datasets [192]. Diffusion models offer a powerful approach to generating
high-quality visual data, but they can be computationally expensive due to
their iterative nature. VAEs provide a more straightforward training process
with a clear optimization objective, but they may generate less sharp images
than GANs and diffusion models. Nonetheless, all of them made significant
advancements in the field of image generation, enabling the synthesis of realistic
and diverse pictures. As the interest in this area increases, more advances will
come, and the realism gap between real and synthetic data will shorten to
the point that distinguishing between them will be challenging. This poses
numerous problems in assessing the reliability and authenticity of visual content
in an increasingly digital world. With this in mind, we discuss existing forensic
approaches that may help to identify synthetic creations in the next section.

2.2 Synthetic Images Detection

In contrast to old-fashioned types of image manipulation, modern synthetic
images take their realism to higher standards. Figure 3 compares classic
Digital Forensics cases with those created by generative models, showcasing
the remarkable advancement achieved. The level of refinement and potential
harm associated with these synthetic images raise concerns about the capability
of Digital Forensics to identify such content. However, we anticipate that
Locard’s exchange principle still holds for synthetic imagery, with
forensic traces taking the form of visual inconsistencies and artifacts left by
the generation process. Nevertheless, as these models continue to evolve and
new forms of counter-forensics attacks emerge, the validity of this claim may
be challenged.

In this section, our analysis focuses on examining possible traces left by
GANs and other generative models. We categorize our study based on the
types of forensic evidence utilized for detection, namely Visual Artifacts
and Noise Fingerprints.
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Figure 3: Classic manual image manipulation versus modern image synthesis. The image on
the left (a) represents a well-known case of state-level manual image manipulation, which
was misleadingly published by multiple news websites as genuine in 2008. In contrast, we
generated the image on the right (b) with MidJourney by using a prompt as simple as
“missile test”. Cases like the former one currently represent an even greater challenge to
authenticity verification.

Figure 4: Examples of generated image inconsistencies. All images were generated with
version 5.1 of the Midjourney model – the latest one released at the writing of this article.
In (a), an unnatural synthetic hand with six fingers. In (b), a synthetic wheelchair with
inconsistent design; the seat orientation does not match the wheels’ position. In (c), a
synthetic billboard with text that makes no sense and presents aberrant letters. In (d), a
synthetic paisage with cloudy skies and mountains by a lake; the highlighted cloud is not
congruently reflected on the lake’s surface. To generate these images, we used the following
prompts: (a) “lady’s hand with a ring on it”, (b) “wheelchair in a hospital”, (c) “outdoor
sign with a religious statement on it”, and (d) “realistic photo; mountains with a lake at the
bottom”.

2.2.1 Visual Artifacts

Despite the impressive realism of cutting-edge synthetic images, a closer look
reveals various aberrational results and visual inconsistencies. Borji [21] has
presented several image failures that can occur when generating synthetic
content, even with recent generative models such as DALL-E 2 [205], Mid-
journey [172], and StableDiffusion [233]. These failures may occur in the
background, reflections, lighting, shadows, text, body parts, and objects, as
depicted by Figure 4. This figure illustrates clues that have been explored by
Digital Forensics researchers to detect synthetic content.
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Farid, for instance, analyzed the 3D illumination [62] and geometric [63]
consistency of structures and objects in a photograph generated by state-of-the-
art generative models. His analysis employed classic digital forensics techniques
for on-scene illumination and 3D geometric analysis, similar to those used in
previous classic forensic works [13, 27, 189]. By doing so, Farid showed that
while the local structures in the photo may be globally consistent, they exhibit
local inconsistencies that serve as valuable clues for forensic analysts.

However, as generative models continue to evolve, it is expected that the
visual inconsistencies and artifacts observed in synthetic images will eventually
become rarer or imperceptible, as demonstrated in the case of the AI-synthetic
faces examined by Nightingale and Farid [183]. This situation asks for other
strategies that rely on other types of forensic clues, such as the noise left by
the generation processes.

2.2.2 Noise Fingerprint

As image synthesis is rapidly improving, it is crucial to employ a variety of
alternative detectors that explicitly exploit different characteristics of synthetic
images. Therefore, as an alternative to visual artifacts, noise-based detectors
have been a promising path to expose synthetic content.

In this direction, Marra et al. [162] investigated statistics-based techniques
to detect potential noise fingerprints left by GANs on their generated content.
By utilizing photo response non-uniformity (PRNU) analysis, similar to camera
attribution methods, they discovered a correlation between residual noise
patterns and specific GAN models. Furthermore, Marra et al. demonstrated
the feasibility of differentiating between distinct GAN models used for image
synthesis through residual noise analysis, enabling GAN model attribution.

In a similar study, Mandelli et al. [159] revealed that comparable residual
noise patterns could be leveraged to identify GAN-generated scientific images,
indicating the potential extension of this approach to other image types beyond
natural images. These findings emphasize the applicability of residual noise
analysis in detecting and identifying synthetic images, contributing to the field
of Digital Forensics. Noise signatures allied with visual clues were explored
in tandem by Kong et al. [118], showing that combining different evidence
might be the way forward in dealing with the challenges of synthetic realities
detection.

In a more recent investigation, Corvi et al. [40] examined the presence of
fingerprints left by state-of-the-art generative models, including GAN-based
and Diffusion-based models. Their findings reveal that no generative model
appears to be completely artifact-free at present. Both GAN-generated
and Diffusion-generated images exhibit anomalous periodic patterns in the
Fourier spatial domain.
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However, as highlighted by Gragnaniello et al. [76], such artifacts may be
challenging to detect when post-processing operations are applied, such as
image resizing and compression. These operations are frequently employed on
social media platforms to save storage and speed up sharing, further compli-
cating the identification of these visual irregularities. Besides investigating
how post-processing operations impact synthetic image detectors, researchers
have also identified the potential for synthetic image detectors to be deceived
through counter-forensics attacks.

2.2.3 Counter Forensics

In a recent study that challenges noise-based detection methods, Osakabe et al.
[188] developed a GAN model that can generate images without “checkerboard
artifacts”, a specific type of artifact in the Fourier domain that is common in
synthetic images. They achieved this by incorporating a fixed convolutional
layer into every upsampling and downsampling layer of the GAN architecture.
Remarkably, their model successfully fooled a detector that previously identified
fake images with 92% accuracy, reducing the accuracy to a mere 12%.

Similarly, Cozzolino et al. [41] demonstrated that synthetic image detectors
could be fooled by transferring residual noise fingerprints from real cameras
onto GAN-generated images. This process produces a spoofed image that can
avoid accurate GAN detectors and camera-model identifiers, causing the image
to be misattributed as originating from the transferred camera model.

As counter-forensic attacks indicate, synthetic image detection presents
multiple research challenges to ensure media integrity and prevent images from
being used by a malicious actor.

2.3 Challenges and Directions

As with classic edited images, creating synthetic realities using cutting-edge
generative models has sparked ethical debates and raised concerns about
their use. Once again, Digital Forensics plays a crucial role in this debate
by investigating ways to detect the traces of artificial intelligence techniques
left in these images. While most synthetic images can be identified through
a close look into scene inconsistencies and object aberrations, as depicted in
Figure 4, the advancement of image synthesis will inevitably render these
visual incongruences invisible to the naked eye.

Consequently, researchers also rely on new types of fingerprints inherently
left by the generation process, such as specific patterns on the Fourier spatial
spectrum and residual noise analysis. Some of these artifacts can be compared
to the PRNU noise left by camera sensors. They can aid forensic analysis
not only in detecting fake images but also in identifying the specific genera-
tive model used to render them (source attribution). However, traces alone



12 Cardenuto et al.

provide a vulnerable target for synthetic image detection, as they can easily
be manipulated to deceive accurate fake image detectors. Such attacks may
involve common post-processing operations or sophisticated techniques like
camera noise transference. Therefore, it is imperative for forensic researchers
to develop robust techniques capable of detecting and distinguishing these
artifacts, even in the presence of common post-processing operations or more
sophisticated attacks.

A more challenging and socially responsible aspect of forensics involves
preventing the harmful applications of synthetic images. Given the ease with
which such content can be created and shared, it is essential for forensics
researchers to design traceable techniques whose synthetic images can be
readily distinguished. Traceable evidence would assist analysts in swiftly
identifying the source and author of such content, thereby preventing its
widespread dissemination. In this vein, researchers have developed deep
learning-based watermarking approaches [3, 65, 151] to identify synthesized
content. These methods use encoder layers to imbue watermark information
in the image pixels without perceptually altering its content. For successfully
marking creations, researchers aim to be robust to most online alterations,
such as compression, cropping, and intensity changes. Unfortunately, most
approaches act from the generator’s perspective, either adapting existing
models or adding external components in the generation process to enable
watermarking. This might be viable for well-established and commercial
applications (e.g., Midjourney [172]) but will be hardly used with open-sourced
models that are trained and distributed by the community.

3 Synthetic Videos

The ability to generate realistic and useful videos holds immense value across
various application domains such as entertainment, virtual reality, and ed-
ucation [207, 257]. Undoubtedly, video generation techniques have made
significant positive contributions in these domains. The advancements have
opened up new avenues for creativity, synthetic realities, and immersive expe-
riences. However, it is essential to acknowledge that along with their benefits,
these techniques also raise potential security concerns. Synthesize realistic
videos can be exploited for malicious purposes, such as financial fraud and
the dissemination of fake news. Consequently, ensuring the integrity and
authenticity of digital content becomes increasingly critical.

Generally speaking, video synthesis can be divided into video generation
and text-to-video synthesis. Previous methods for video generation mainly
employ GANs [244, 250, 257] and VAEs [128, 281] to generate videos. But
with the advent of diffusion models, recent methods explore them to generate
more realistic videos [18, 205, 226, 256, 283]. On the other hand, text-to-video
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synthesis incorporates text information to guide the model in generating video
content that is responsive to specific demands. Analogously, previous text-
to-video synthesis methods have resorted to GANs [136, 191] and diffusion
models [6, 59, 84, 86, 111], achieving exceptional generation quality in terms
of fidelity, resolution, and temporal consistency.

In this section, we provide a review of the methods for video generation,
text-to-video synthesis, synthetic video detection and discuss their challenges.
We further outline possible future research directions for synthetic video
generation and detection techniques.

3.1 Video Generation

In the pursuit of advancing video synthesis, previous research has extensively
explored diverse generative models, including Generative Adversarial Networks
(GANs) [218, 257], autoregressive models [232, 281], and implicit neural
representations [227, 292]. However, recent attention has been drawn to
the exceptional achievements of diffusion models in visual data synthesis.
Several notable works propose outstanding video generation methods and
investigate their practical applications [18, 92, 256, 273]. For instance, a
pioneering work on diffusion video generation [88] primarily focuses on network
architecture modifications to extend image synthesis to video. The 3D U-
Net is adopted [38] and achieves outstanding generation results in two cases,
including unconditional and text-conditional video generation. For longer
video generation, they apply an autoregressive approach, where subsequent
video segments are conditioned on the preceding ones. Another example of a
diffusion video generation work [283] adopts frame-by-frame video generation
models. To evaluate different prediction strategies, the authors conduct an
ablation study to determine whether predicting the residual of the next frame
yields superior results compared to predicting the actual frame. Besides,
MM-Diffusion [213] introduces a technique that employs a pair of denoising
autoencoders to facilitate the joint generation of audio and video content.
VideoFusion [153] presents an innovative approach involving a decomposed
diffusion process, which separates the noise associated with each frame into
a shared base noise across all frames and a variable residual noise along the
temporal axis. TaleCrafter [74] utilizes the Low Rank Adaptation (LoRA)
module to devise a personalized image generation system. This system adeptly
accommodates various new characters, supporting layout adjustments and
localized structural edits.

Furthermore, Hoppe et al. [92] introduced the Random Mask Video Dif-
fusion (RaMViD) technique, which can be utilized for both video generation
and infilling tasks. The unmasked frames are used to enforce conditions on
the diffusion process, while the masked frames undergo diffusion through the
forward process. By employing this training strategy, RaMViD demonstrates
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outstanding video generation quality. These recent advancements in diffusion-
based video generation highlight the potential of this family of models to push
the boundaries of video synthesis, addressing the challenges of generating
realistic and diverse video content in synthetic realities.

3.2 Text-to-video Synthesis

Text-to-video models are highly data-hungry, which require massive amounts
of data to learn caption relatedness, frame photorealism, and temporal dy-
namics [72]. However, video data resources are comparatively more limited
in terms of style, volume, and quality. This scarcity of video data poses sig-
nificant challenges for training text-to-video generation models. To overcome
these challenges, additional controls are often incorporated to enhance the
responsiveness of generated videos to user demands [166, 191, 267].

Early text-to-video generation models heavily relied on convolutional GAN
models combined with Recurrent Neural Networks (RNNs) to capture temporal
dynamics [136, 191]. Despite the introduction of complex architectures and
auxiliary losses, GAN-based models exhibit limitations in generating videos
beyond simplistic scenes involving digit movements or close-up actions. To
that end, recent advancements in the field have aimed to extend text-to-video
generation to more diverse domains using large-scale transformers [288] or
diffusion models [86]. Furthermore, Follow-Your-Pose [158] designs a novel
training scheme that can utilize readily obtained datasets and the pre-trained
text-to-image model to generate character videos with controllable poses.
Tune-A-Video [273] proposes One-Shot Video Tuning, presenting a tailored
spatiotemporal attention mechanism and an efficient one-shot tuning strategy.
During inference, it employs DDIM inversion to provide structure guidance
for sampling. These approaches provide promising directions for generating
more complex and realistic video content by leveraging the expressive power
of these advanced network architectures.

However, modeling high-dimensional videos and addressing the scarcity of
text-video datasets present considerable challenges in training text-to-video
generation models from scratch. To tackle this issue, most approaches adopt
a transfer learning paradigm, leveraging pre-trained text-to-image models to
acquire knowledge and improve performance. For instance, CogVideo [91]
builds upon the pre-trained text-to-image model CogView2 [50], while Imagen
Video [86] and Phenaki [255] employ joint image-video training techniques to
leverage pre-existing visual representations. In contrast, Make-A-Video [226]
focuses on learning motion solely from video data, reducing the reliance on
text-video pairs for training.

Another key consideration in video synthesis is the high computational cost
associated with generating high-quality videos. To mitigate this issue, latent
diffusion has emerged as a popular technique for video generation, as it offers
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a computationally efficient alternative [6, 18, 59, 84]. Various powerful but
computational-efficient methods, such as MagicVideo [303], which introduces
a simple adaptor after the 2D convolution layer, and Latent-Shift [6], which
incorporates a parameter-free temporal shift module, have successfully utilized
latent diffusion for video synthesis. Additionally, PDVM [291] adopts a novel
approach of projecting the 3D video latent space into three 2D image-like
latent spaces, further optimizing the computational cost of the video generation
process.

Despite the active research in text-to-video generation, existing studies have
predominantly overlooked the interplay and intrinsic correlation between spatial
and temporal modules. These modules play crucial roles in understanding
the complex dynamics of videos and ensuring coherent and realistic video
generation.

3.3 Synthetic Video Detection

Again, detecting synthetic videos relies on the fingerprints left by generative
models, which have been explored extensively in the context of synthetic image
detection. Existing research in synthetic image detection has shown promise
by identifying inconsistencies in illumination and geometric structure [62, 63],
as well as specific noise patterns in the Fourier domain [40]. However, the
extension of image-based detection techniques to videos is still in its early
stages.

One straightforward approach for extending image-based detection to
videos is through frame-level voting, where each frame is individually analyzed
and classified as real or synthetic. However, exploiting temporal information,
such as temporal coherence, presents a significant challenge. The temporal
domain contains valuable cues that can aid in distinguishing synthetic videos
from real ones. For instance, temporal coherence refers to the consistent
motion and flow of objects across frames in a real video. Detecting such
temporal fingerprints could provide valuable insights into the authenticity
of a video. The temporal coherence, which is a significant challenge in the
field of video synthesis [268], shall also be vital for synthetic video detection.
Consequently, exploiting the temporal inconsistency can be utilized to identify
generated videos. Currently, there is no existing method specifically designed
for detecting video synthesis. However, there have been relevant work on
detecting Deepfake videos using generic architectures. For instance, 3DCNN
[296], RNN [5], LSTM [33], and temporal transformer [177] have been widely
employed for video-level Deepfake detection. Additionally, some studies focus
on detecting deepfake videos by examining specific temporal artifacts like lip
movement [82], rPPG artifacts [199], and head pose inconsistency [284]. Thus,
how to explore the temporal artifacts (e.g., unnatural motions) in generated
videos to detect video synthesis is an intriguing task.
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This temporal aspect of video analysis introduces additional complexities
compared to image analysis. Generated video content can exhibit various
artifacts due to the processing techniques employed, including both handcrafted
designs and deep neural networks. These artifacts, including blur, compression
artifacts, and noise, can be intentionally or unintentionally injected during the
video generation process. Consequently, these artifacts may pose significant
obstacles to the detection of synthetic videos, particularly when the detection
model is trained solely on high-quality video data.

To address this challenge, detection models need to be highly generalized to
handle data from different domains. The models must be capable of recognizing
and adapting to various levels of quality, distortion types, and content sources.
This requirement calls for the application of domain generalization techniques,
which enable the model to generalize well beyond the training data distribution.
By training the model on a diverse range of video data, encompassing different
quality levels, distortion types, and content sources, the detection system can
become more robust and effective in identifying synthetic videos across a wide
range of scenarios.

Overall, the extension of image-based detection techniques to videos
presents a meaningful yet challenging direction for research. Leveraging
temporal fingerprints and addressing the presence of artifacts in generated
videos require novel approaches and further exploration. Developing detection
models that can effectively analyze and distinguish synthetic videos while
being adaptable to various domains will play a crucial role in combating the
increasing threat of synthetic videos in today’s digital landscape.

3.4 Challenges and Directions

Recent advancements in diffusion models have revolutionized text-to-video
synthesis, achieving remarkable capabilities that surpass previous state-of-
the-art approaches and deliver unprecedented generative performance. This
breakthrough has significantly enhanced the quality and fidelity of generated
videos. However, as we delve deeper into this domain, it becomes evident that
there is a need for further research and development.

Despite the demonstrated success in generated image content in the past
few years, video generation is still in its infancy. As we have discussed, the
challenges of video generation mainly lie in the following three aspects: (1)
lacking large-scale, diverse, and in-the-wild video datasets; (2) demanding
computational costs; and (3) unstable in synthesizing coherent content from
both spatial and temporal perspectives.

In the realm of synthetic video detection, existing methods predominantly
focus on identifying face forgery, where the manipulation targets primarily
involve facial features and expressions. However, to address the evolving
landscape of synthetic videos and their potential threats, it is imperative
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to explore detection techniques that encompass a broader range of scenes
and contexts. Detecting synthetic videos with diverse scenes, objects, and
backgrounds poses an interesting avenue for future advancements in forensic
research. By expanding the scope of detection techniques, we can develop
robust and comprehensive methods that effectively identify and mitigate the
risks associated with the increasing sophistication of synthetic videos.

4 Synthetic Audio

Synthetic realities in audio are an emerging technology transforming how we
experience sound. From augmented and virtual reality to interactive audio
installations, synthetic realities offer a new dimension to our auditory senses.
These immersive audio experiences create a simulated environment that can
transport listeners to different worlds, trigger emotions, and enhance story-
telling. With the advancements in audio technology and the increasing demand
for immersive experiences, synthetic realities are poised to revolutionize the
entertainment, gaming, and education industries. While the rise of synthetic
audio technology has brought about significant benefits to various fields, it also
presents a considerable threat to the integrity of our society. One of the most
concerning implications is the potential misuse of this technology by malicious
actors, who can exploit it for nefarious purposes such as telecommunication
fraud. Cai et al. [25] have highlighted the dangers of using generative models
to create fake audio that can deceive individuals and organizations, leading to
financial losses and reputational damage. The use of synthetic audio in such
fraudulent activities underscores the urgent need for developing robust and
reliable methods for detecting and mitigating the harms of this technology. In
this section, we propose to survey synthetic realities in audio and dive into
the possibilities and challenges of this rapidly evolving field.

4.1 Synthetic Audio Generation

Audio synthesis is a vital and rapidly evolving research area with a wide range
of applications, including text-to-speech (TTS), speech enhancement, voice con-
version, and binaural audio synthesis. In the field of TTS, previous works have
extensively utilized deep learning-based architectures such as WaveNet [187]
and Clarinet [194], as well as transformer models like FastSpeech [209] and
Neural TTS [134], and variational autoencoder (VAE) approaches such as
MultiSpeech [79] and Hierarchical VAE [94]. Recently, diffusion models have
gained prominence in addressing TTS problems, with notable contributions
from WaveGrad [29], DiffWave [120], Gradient Flow [195], and Diffusion
TTS [100]. Recently, PromptTTS [81] introduces an innovative approach for
speech synthesis. By utilizing a prompt containing both style and content at-
tributes, the system successfully generates speech with remarkable accuracy in
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terms of style manipulation and overall speech quality. DiffVoice [147] involves
a two-step process. Initially, speech signals are encoded into a latent represen-
tation at the phoneme rate, employing a variational autoencoder that benefits
from adversarial training. Subsequently, a joint modeling of duration and latent
representation is achieved through the implementation of a diffusion model.

Speech enhancement techniques aim to improve speech recognition system
performance by mitigating the impacts of ambient noise. The advancement of
generative models has led to the development of various approaches for speech
enhancement. These include GAN-based methods like MetricGAN [71] and
Speech Enhancement GAN [144], as well as diffusion-based models such as
Storm [130], Conditional Diffusion [149], and Cold Filter [285]. These models
have exhibited general and robust speech enhancement performance.

Voice conversion, another critical task in speech synthesis, aims to trans-
form the voice of one speaker into that of another. Different approaches have
been explored for voice conversion, including transformer-based models (Voice-
Filter [96]), GAN-based methods (CycleGAN-VC [103], VoiceGAN [93]), and
VAE-based techniques (ACVAE [102] and Neural Voice Cloning [35]). These
methods facilitate the manipulation of speaker characteristics while maintain-
ing the linguistic content of the speech. In recent study, FreeVC [132] focuses
on achieving superior waveform reconstruction quality. This is accomplished
through the integration of strategies aimed at extracting pristine content infor-
mation from data, all without the necessity of relying on textual annotations.

Lastly, binaural audio synthesis [131, 210] focuses on transforming mono
audio signals into binaural audio, which enables accurate sound localization
and immersive auditory experiences. NFS [129] is trained to predict the
temporal delays and amplitude scales associated with diverse early reflections.
It achieves more efficient memory utilization and computational expenses. By
simulating the perception of sound through two ears, binaural audio synthesis
contributes to creating a more realistic and interactive auditory environment.

Overall, the continuous advancements in deep learning, generative models,
and various synthesis techniques have significantly expanded the possibilities
and applications of audio synthesis, enhancing the quality, naturalness, and
versatility of synthesized speech and audio.

4.2 Synthetic Audio Detection

Existing methods for synthetic audio detection can be categorized into two
different streams: feature-based and image-based methods [14]. Feature-based
approaches describe the audio through signal features such as Mel frequency
cepstral coefficient (MFCC) and constant Q cepstral coefficient (CQCC) [245,
282]. These features are then fed into typical classifiers (e.g., support vector
machines) [275] and deep neural networks [170]), which are trained to detect
synthetic audio. Image-based methods, on the other hand, utilize either
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spectrogram images [64, 142] computed from the audio signal and use them
as the input for deep neural networks to extract discriminative information
for synthetic audio detection. The aforementioned techniques have also been
widely applied to deepfake detection related to synthetic audio [31] (more
detail can be found in Section 7.3.2).

4.3 Challenges and Directions

Despite the progress made in synthetic audio detection, there are still challenges
to overcome. One of the critical challenges is the availability of large datasets
of synthetic audio that can be used to train detection models effectively [241].
Generating a large dataset of synthetic audio can be time-consuming and
resource-intensive. Additionally, the increasing complexity and sophistication
of synthetic audio algorithms may require more advanced detection methods
that can keep up with these advancements.

While there are challenges to overcome, such as the availability of large
datasets and the need for more advanced detection methods, recent research
has shown promising results in developing more effective detection techniques.
As synthetic audio technology advances, it is essential to continue developing
and improving detection methods to prevent the misuse of deepfake audio and
ensure that this technology is used safely and responsibly.

5 Synthetic Text

Large Language Models (LLMs) have revolutionized artificial intelligence,
marking a significant milestone in the field. Since the rise of GPT models [22,
203], competitors from other companies like Google and Microsoft have also
developed their own LLM, including Gopher [204], GLaM [55], LaMDA [243],
Megatron-Turing NLG [228], Chinchilla [90], PaLM [37], BloombergGPT [274].
Some open-source models have also been released, including Jurassic-1 [141],
GPT-J [264], GPT-NeoX [17], BLOOM [220], OPT [298], LLaMA [246], and
OpenAssistant [121]. Although there are many variants of LLMs models, most
of them have the same architecture of the GPT-2 model [203], which is an
auto-regressive model (decoder-only transformer) that generates the next word
based on previous inputs.

Figure 5 illustrates how these models have reached a quality comparable
to humans, even in highly complex tasks such as poem writing, as both
poems seem to be written by an excellent poet. The widespread adoption
of LLMs has been observed across diverse domains, including Medicine [237],
Journalism [161], and Science [247]. These powerful tools possess immense
potential to enhance human capabilities in various areas, ranging from code
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What kind of thoughts now, do
you carry
In your travels day by day
Are they bright and lofty
visions,
Or neglected, gone astray?

Matters not how great in fancy,
Or what deeds of skill you’ve
wrought;
Man, though high may be his
station,
Is no better than his thoughts.

Catch your thoughts and hold
them tightly,
Let each one an honor be;
Purge them, scourge them,
burnish brightly,
Then in love set each one free.

(a) Poem “Thoughts” - Human Version.

In the realm of silent contemplation,
Thoughts weave their intricate
creation.
Whispers of ideas, ethereal and
vast,
A symphony of musings from the
past.

They flutter like butterflies in the
mind,
Seeking connections, truths to find.
Embrace the thoughts that come
your way,
For within their essence, you may
find,
The power to shape your world,
your mind.

In the realm of thoughts, oh, so
grand,
Unleash your creativity, take a
stand.
Let them flow, let them soar,
And in their symphony, discover
more.

(b) Poem “Thoughts” - LLM Version.

Figure 5: Human versus Machine poem writing. (a) is a public-domain poem entitled
Thoughts from Myra Viola Wilds; (b) is a poem written by chatGPT when asked to write a
poem entitled ‘Thoughts’.

development (e.g., GitHub Copilot1) to combating online hate speech and
harassment (e.g., Cohere Classify 2).

While they offer numerous benefits, there is also a risk of them being
used to produce harmful content, either deliberately by malicious actors or
inadvertently due to their inherent flaws. In this section, we will investigate
potential flaws and damaging applications of LLMs through a forensic lens.
Our exploration will encompass the emergence of threats, machine-generated
text detectors, and the underlying research challenges.

5.1 Large Language Models Threats

Text generation, like any form of machine-generated content, possesses inher-
ent scalability, granting it the power to be employed in both beneficial and

1https://github.com/features/copilot
2https://txt.cohere.com/content-moderation-classify/

https://github.com/features/copilot
https://txt.cohere.com/content-moderation-classify/
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detrimental ways. While AI-generated text may still exhibit semantic flaws or
hallucinations [4], it has become increasingly difficult to differentiate between
human and machine-generated text. This convergence of quality between
human and AI-generated text poses a significant concern, particularly in the
hands of malicious actors.

In a comprehensive study about computer-generated text threat modeling,
Crothers et al. [44] categorize various types of attacks facilitated by large
language models (LLMs). They group these attacks into four primary threats:
(1) Facilitating Malware and Social Engineering; (2) Spam and Harassment;
(3) Online Influence Campaigns; and (4) Exploiting AI authorship. While we
will enumerate some of these threats within this section, it is worth noticing
that LLMs have opened up a wide range of possibilities for malicious actors,
extending beyond the scope of our enumerated list.

5.1.1 Facilitating Malware and Social Engineering

This threat makes use of LLMs for facilitating scalable and customizable scams,
making them a significant threat in the realm of malware and social engineer-
ing [73]. By leveraging techniques like fine-tuning and prompt engineering,
malicious actors can generate tailored scams that are highly convincing and
appealing to specific targets or communities. For instance, by incorporating
social media data from a target’s profile, such as their interests, lifestyle, and
social connections, LLMs can create more sophisticated and personalized scams
that manipulate individuals into taking harmful actions or providing sensitive
information.

Another notable threat within this category is Data Poisoning. It involves
the injection of exploitable data into the training process of LLMs or fine-tuning
them with malicious intent. Schuster et al. [222] demonstrated a possible attack
that poisons code-completion models (e.g., GitHub Co-pilot), making them
include code vulnerabilities in their output, which attackers can later exploit.
Such attacks open an important discussion about training datasets, as they
are often gathered from the web without any rigorous curation.

5.1.2 Spam and Harassment

This threat weaponizes LLMs through trolls and hateful communities to propa-
gate toxic content, disseminate misinformation, and target specific communities
for harassment. An example of such an attack is the creation of GPT-4chan,
as highlighted by Yannic Kilcher in his video “This is the worst AI ever” [114].
Kilcher fine-tuned GPT-J using data collected from the /pol/ channel on
4chan, a controversial online platform forum channel. The resulting model
was used to interact with users on the same channel, encapsulating the offen-
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sive, nihilistic, and trolling nature that characterizes many /pol/ posts [114].
Kilcher’s experiment raised the alarm to the scientific community on the ease
with which LLMs can be misused and the potential consequences of such
actions [126]. It emphasized the need for careful consideration and ethical
responsibility when deploying and sharing LLMs, as they can be harnessed to
amplify harm and propagate hateful ideologies.

5.1.3 Online Influence Campaigns

The utilization of LLMs for spreading fake news and manipulating public opin-
ion has emerged as a significant concern. Political campaigns, in particular,
could be a perilous case through the use of LLMs. Bai et al. [7] have demon-
strated the susceptibility of individuals to persuasion on political matters when
exposed to tailored messages generated by LLMs. Malicious actors could use
this phenomenon in a devastating scenario to influence elections and other
democratic processes.

5.1.4 Exploiting AI authorship

An intriguing threat posed by LLMs is the generation of academic articles. One
can recall the case of SCIgen (2005), in which MIT graduate students developed
a system that could automatically generate computer science papers, demon-
strating the vulnerability of academic conferences to such submissions [236].
There is a growing concern that LLMs could be exploited to generate much
more sophisticated fake articles than SCIGen, compromising scientific integrity.
Research integrity experts fear that paper mills3 will improve their production
in quality and quantity by using LLMs [247].

5.2 Detection Methods

A few detection methods have been proposed for LLMs generated content.
One of the pioneering approaches is GROVER, proposed by Zellers et al. [293].
GROVER was capable of generating fluent and highly realistic fake articles
using LLMs, which motivated the authors to explore detection techniques for
such content. Zellers et al. found that employing the same model used for
generating the text achieved higher detection accuracy compared to using a
different one. Their results demonstrated an impressive accuracy rate of 92%
in detecting LLM-generated fake articles.

However, over the past few years, models’ ability to generate text has signif-
icantly advanced, raising a bigger challenge. One recent approach, DetectGPT,

3Potentially illegal organizations that offer ghostwritten fraudulent or fabricated
manuscripts [23].
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introduced by Mitchell et al. [175], aims to address this challenge by detect-
ing whether a given passage is generated by a specific model. The method
is based on the hypothesis that AI-generated text exhibits a more negative
log probability curvature compared to human-written text. To validate this
hypothesis, Mitchell et al. proposed an approximation method for estimating
the Hessian trace of the log probability function for both model-generated and
human-written text, yielding promising results. However, a limitation of their
approach is the requirement of knowing the specific generator model, which
may not always be feasible in practice.

In recent research efforts, there has been a specific focus on ChatGPT-
generated text due to its global attention. In [176], Mitrović et al. focused on
detecting short texts such as online reviews. They employed a transformer-
based model and applied an explanation method (SHAP [150]) to gain insights
into distinguishing between human-written and machine-generated text. They
found that detecting machine-generated text becomes more challenging when it
is paraphrased from human text, where a human provides the initial text and
asks the model to improve it. Additionally, the authors noted that ChatGPT
tends to use uncommon words, exhibits politeness and impersonality, and lacks
human-like emotional expressions. Another related study [259] explored the
AI ability in text paraphrasing using GPT-3 and T5 models. They generated
machine-paraphrased text and evaluated human performance in detecting
these generated texts. The study showed that humans could not accurately
detect GPT-3 paraphrased text, with accuracy only slightly above random
(53%).

In response to concerns about AI-generated text, several proprietary tools
have emerged to address the detection of AI-authored content. One such tool
is GPTZero, which has gained attention in the media as a promising method
for identifying AI-generated text [239]. However, we were unable to locate the
source code or a scientific article detailing their approach. Similarly, numerous
applications have been developed claiming to detect AI-generated text, such
as GPTkit,4 Illuminarty,5 OpenAI’s AI Text Classifier,6 and AICheatCheck.7
However, many of these tools lack comprehensive studies on the reliability of
their detection methods.

In an effort to facilitate the detection of ChatGPT-generated content, Yu
et al. [290] released a large dataset specifically designed for the identification
of ChatGPT-written abstracts. This dataset includes over 35,000 synthetic
abstracts generated by ChatGPT, comprising fully generated texts, polished
outputs, and mixtures of human-written and machine-generated abstracts.
Additionally, the dataset contains more than 15,000 human-written abstracts

4https://gptkit.ai/.
5https://illuminarty.ai/en/text/ai-generated-text-detection.html.
6https://platform.openai.com/ai-text-classifier.
7https://www.aicheatcheck.com/.

https://gptkit.ai/
https://illuminarty.ai/en/text/ai-generated-text-detection.html
https://platform.openai.com/ai-text-classifier
https://www.aicheatcheck.com/
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for comparison. The results of their detection experiments demonstrated the
ability to identify content that was entirely generated by ChatGPT. How-
ever, the task becomes more challenging when the generated text is mixed
with human-written content. This work provides a valuable dataset into the
complexities of detecting machine-generated text, particularly in scenarios
involving a combination of human and AI-authored content.

A potential solution to address the misuse of LLMs is the use of text
watermarks [77, 117]. Grinbaum and Adomaitis [77] argue that machine-
generated long texts should include a watermark to indicate their source
and ensure transparency. In [117], Kirchenbauer et al. propose embedding
watermarks by modifying the sampling rules of next-word prediction. They use
a hash function and pseudo-random generator to assign random colors (green
and red) to words in the vocabulary. During next-word prediction, words from
the red list are prohibited from appearing. However, they acknowledge the
difficulty of a watermarking low-entropy text, as substituting a prohibited red
word in such cases could result in poor quality output with high perplexity. To
address this, they suggest a soft rule that encourages substituting red words in
a high-entropy text. A third party familiar with the hash function and random
generator can easily determine the colors of words by computing them. This
detection method does not require knowledge of the specific generation model,
making it a cheaper and more straightforward approach.

Although watermarking shows promise as a solution, it is important to
consider that it modifies the output text. The method proposed in [117]
evaluates quality based on perplexity, but there is a possibility that the
meaning and semantics of the output may be altered due to the watermarking
process.

5.3 Challenges and Directions

Detecting machine-generated text versus human-written text poses increas-
ing challenges as LLMs continue to improve their ability to mimic human
language [8]. Several challenges in this regard are highlighted below:

• Generalization: Detection methods often lack generalizability, meaning
that a method developed to detect text generated by one specific model
may not easily transfer to detecting text generated by another model.
However, in real-world scenarios, prior knowledge about the specific
model generating the text is typically unavailable.

• Mixed reality: Existing detection methods struggle when it comes to
identifying machine-generated text that is mixed with human-written text.
The combination of both types makes it more difficult to differentiate
between them.
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• Adaptability: LLMs demonstrate high adaptability to given prompts,
making it challenging for methods that rely on finding patterns in the
generated text. Models can exhibit different personalities8 and respond
differently based on prompts, such as ChatGPT’s ability to adopt various
tones depending on the prompt (e.g., DAN9), even faking emotions and
swear words10. This adaptability further complicates detection efforts.

Despite these challenges, the remarkable capabilities of LLMs also present
great research opportunities for detecting synthetic text. Some potential
directions include:

• Differentiating machine-generated from human-written text:
Achieving this requires collaborative efforts between humans and ma-
chines. Humans can contribute their technical knowledge of how models
operate and how humans typically express themselves, facilitating the
development of detection methods.

• Attributing the source model of generated text: Just as humans
exhibit distinct writing styles, different language models may possess
unique traits when generating text. By differentiating text generated by
different models, researchers can gain insights into the behaviors of each
model and identify each model’s fingerprint.

• Fact-checking machine-generated text: LLMs often struggle with
generating factual content due to limited training data and the prevalence
of fictional stories in their training corpus. In addition, after models
are trained, the knowledge stored in these models can quickly become
outdated. Conducting fact-checking on machine-generated text is crucial
to ensure the reliability of AI-generated information.

6 NERFs and Metaverse

Neural Radiance Fields (NeRF) have emerged as an effective method for im-
plicit volumetric scene representation, enabling learning from multiple viewing
angles [173]. NeRF has been successfully applied in various domains, including
transparent object grasping [99], scene understanding and reasoning [258, 302],
and clear representations in challenging scenarios [80, 97, 157]. Recent NeRF
variants, such as NeRF-W [163] and Ha-NeRF [32], have demonstrated their
ability to reconstruct scenes from input with various perturbations. We can
also see these developments as an example of synthetic realities, especially
when we consider the possibility of totally synthesizing new “worlds”.

8https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/chatgpt
9https://www.mlyearning.org/dan-chatgpt-prompt/

10https://metaroids.com/learn/jailbreaking-chatgpt-everything-you-need-to-know/

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions#system-role
https://www.mlyearning.org/dan-chatgpt-prompt/
https://metaroids.com/learn/jailbreaking-chatgpt-everything-you-need-to-know/
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6.1 NeRF for Metaverse Applications

In the context of metaverse applications, NeRF has been utilized in virtual
concerts [48] and metaverse platforms for architecture and urban planning [10].
However, challenges remain, such as the need for real-time rendering of complex
scenes with multiple dynamic objects and efficient methods to handle large and
challenging scenes. Further research is necessary to address these challenges
and to explore new use cases for NeRF in metaverse development.

One significant challenge to NeRF’s applicability in metaverse development
is its reliance on pre-computed camera parameters for scene representation.
Several methods, such as NeRF [271] and BARF [143], have been proposed
to optimize camera parameters and scene representation. However, avoiding
interference from undesired scenes during camera parameter optimization
remains an unsolved problem.

A potential research area for the future is building an occlusion-free scene
reconstruction based on inaccurate or even unknown camera parameters,
enabling greater flexibility in the use of NeRF for scene representation, leading
to more effective applications in computer vision and graphics [173]. In a
metaverse, where scenes are typically composed of multiple dynamic objects,
avatars, and user interactions, occlusion-free scene reconstruction based on
NeRF would enable a more thorough scene representation, resulting in more
immersive and realistic virtual environments.

Moreover, an occlusion-free scene reconstruction based on NeRF that does
not rely on accurate camera parameters would enable greater flexibility in
metaverse development, allowing designers to create and share virtual spaces
more efficiently [10]. Finally, optimizing NeRF-based methods for real-time
rendering of complex scenes with multiple dynamic objects would enable
seamless user interactions in a metaverse, leading to a more responsive and
interactive virtual environment [48].

In summary, an occlusion-free scene reconstruction based on NeRF has
the potential to significantly benefit metaverse applications by enabling more
thorough scene representation, flexibility in scene creation and sharing, and
real-time performance and scalability. Further research in this area could
lead to even more effective applications of NeRF in the context of metaverse
development.

6.2 Challenges and Limitations

Despite the progress achieved thus far, there are also some challenges and
limitations to consider when using NeRF in metaverse development. One
significant challenge is the reliance on pre-computed camera parameters for
scene representation [308], making it infeasible when the pre-computation is not
possible. This can limit the flexibility of scene creation and sharing. Although
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some solutions [143, 271] have been proposed to optimize camera parameters
along with scene representation, avoiding interference from undesired scenes
during camera parameter optimization remains an unsolved problem [307].

Another limitation of NeRF is its computational cost. NeRF-based methods
require significant computational resources and can suffer from slow rendering
times [180], limiting their real-time performance for complex scenes. This
can be a considerable challenge for metaverse applications, where real-time
performance is critical for a seamless user experience.

Moreover, NeRF-based methods may not be suitable for all types of scenes.
Scenes with complex geometry, occlusions [308], and dynamic objects [197]
can pose challenges for NeRF-based methods, leading to incomplete scene
representation and rendering. Though several image restoration methods [156,
260–263, 269] have been proposed, they are far from being practical solutions
for NeRF and its variants. Therefore, it is essential to carefully evaluate the
suitability of NeRF-based methods for a given scene and application.

Besides, there are also some potential adverse impacts regarding its broader
societal implications. One potential concern is the potential for NeRF-based
metaverse applications to become addictive and negatively impact mental
health. The immersive and interactive nature of metaverse environments,
combined with the potential for NeRF to create highly realistic and detailed
scenes, could create a compelling and addictive experience for users. This could
negatively impact mental health [252], including addiction, social isolation, and
other adverse effects associated with prolonged use of virtual environments.

Another potential concern is the impact of NeRF-based metaverse ap-
plications on social dynamics and inequality [154]. NeRF-based metaverse
applications could potentially exacerbate existing social inequalities and create
new ones. For example, access to high-quality hardware and internet connec-
tivity could become a barrier to participation in these environments, further
marginalizing disadvantaged communities.

Last, using NeRF-based metaverse applications has raised significant con-
cerns from both privacy and forensic perspectives [277]. These applications
have the potential to collect and store vast amounts of personal data, which
could be exploited for targeted advertising, surveillance, and other forms of
data mining, leading to further erosion of individual autonomy and privacy.
This could result in new forms of digital inequality and harm. Furthermore,
the difficulty of collecting and preserving evidence in the NeRF and Metaverse
contexts has been discussed in recent literature [110, 270]. Traditional forensic
techniques may not be applicable in these virtual environments, where data are
decentralized, and ownership is often unclear, making the determination of the
chain of custody for digital assets within the Metaverse a complex and challeng-
ing task. Additionally, the potential for manipulating digital evidence within
these environments raises concerns about the reliability and authenticity of
such evidence, particularly with the use of deepfakes and synthetic media [277].
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Therefore, there is a pressing need to develop new forensic techniques and
tools to address these challenges and ensure the integrity and reliability of
digital evidence in the NeRF and Metaverse contexts.

7 DeepFakes

In the context of synthetic realities, one particular example of utmost attention
is deepfakes. Deepfakes are synthetic media that are digitally manipulated
to replace one person’s identity or personal traits convincingly with that
of another. Therefore, when synthetic media comprises the replacement of
someone’s biometric traits, we are referring to a deepfake. It is typically
present in images, audio samples, and videos.

7.1 Deepfake Images

7.1.1 Deepfake Image Generation

The issue of falsified image contents has been a long-standing problem in the
image forensics area. With the emergence of deep learning, numerous powerful
learning-based models are able to generate the so-called deepfake images with
a high level of realism. In recent years, various deepfake techniques have been
proposed, including image inpainting/removal, image composition, entire im-
age synthesis, image translation, and text-to-image. Image inpainting/removal
is used to fill in image regions with convincing content. Meanwhile, image
composition, which encompasses object placement, image blending, image har-
monization, and shadow generation, involves cutting out the foreground from
one image and pasting it onto another image. Entire image synthesis involves
the generation of images entirely by generative models such as GAN [75], VAE
[115, 116], and diffusion models [229, 231]. Image translation, on the other
hand, enables the transfer of an image’s style, such as converting a sketch
image to a colored image. With the rapid development of diffusion models, the
images generated based on text prompts are becoming increasingly realistic.
Despite their remarkable quality, deepfake images can be misused for malicious
purposes, leading to various security issues such as fake news and fraud.

7.1.2 Deepfake Image Detection

Deepfake image detection methods can be broadly classified into two categories:
image-level and pixel-level detection. While image-level methods aim to identify
the authenticity of the entire input image, pixel-level methods localize the
manipulated regions. Traditional detection methods for detecting image
manipulation in image inpainting/removal and image composition, rely on
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capturing artifacts based on prior knowledge, such as lens distortions [167], CFA
artifacts [66], noise patterns [155], compression artifacts [61], etc. Learning-
based methods have improved the detection performance by capturing noise
prints [304], JPEG features [265], High-frequency (HF) artifacts [310], and
forgery boundary [53]. Additionally, detecting manipulated images generated
through entire image synthesis, image translation, and text-to-image is another
challenging problem. Various methods propose to extract visual artifacts [165],
color artifacts [168], specific GAN fingerprints [289], and spectral features [58]
for generated image detection. Nevertheless, these methods have limitations
in generalizing across different GANs. To address this issue, more general
methods such as CNN and generalization methods have been proposed [266,
278]. As image manipulation technology continues to advance, deepfake image
detection is an essential field of research to prevent the spread of misinformation
and protect the integrity of visual media.

7.1.3 Challenges and Future Work

Despite significant progress in deepfake image detection, there are still several
challenges that need to be addressed. One of the main challenges is the
generalization of deepfake detection models to unseen datasets and scenarios,
which is crucial for practical applications. Another challenge is the robustness
of these models against anti-forensics techniques such as recapturing and
adversarial attacks. Moreover, the industry is now somewhat ahead of academia
in terms of deploying deepfake detection technologies in real-world settings
(e.g., ChatGPT). This gap can be narrowed by updating and creating more
up-to-date deepfake databases, as most existing ones are somewhat outdated
in the research community. Additionally, many deepfake detection models are
not explainable, making it difficult to understand how they make decisions.
Future work should aim to develop explainable models that can provide clear
and interpretable justifications for their decisions. Overall, addressing these
challenges can lead to more reliable and effective deepfake image detection
systems in the future.

7.2 Deepfake Video

7.2.1 Deepfake Video Generation

Recently, deepfake videos typically refer to manipulated face videos. Face infor-
mation plays a vital role in human communication [70]. However, the spread
of deepfake videos on social media platforms can result in significant security
concerns due to the potential dissemination of disinformation and misinforma-
tion, posing tangible and pressing security concerns. Generally speaking, there
are four primary categories of deepfake videos, which are identity swap, face
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reenactment, attribute manipulation, and entire synthesis [119]. These videos
are generated using powerful generative models such as GAN [75], VAE [115,
116], and diffusion models [229, 231], which are capable of producing highly
sophisticated videos. Identity swap replaces the original face regions with
target faces, while face reenactment transfers the source facial expression to the
target one. Attribute manipulation can alter specific facial features like hair,
eyeglasses, nose, etc. With the advent of foundation models, entire synthesized
videos can be generated. Powerful deep learning tools have been used to create
sophisticated deepfake video datasets like UADFV [284], DF-TIMIT [122],
FaceForensics++ [212], DFD [56], DFDC [51], Celeb-DF [139], DF-Forensics-
1.0 [101], ForgeryNet [83], FFIW [305], KoDF [127], and FakeAVCeleb [112].
As deepfake techniques continue to evolve, it is crucial to develop effective
methods for detecting deepfake videos and preventing their malicious use.

7.2.2 Deepfake Video Detection

To counteract malicious deepfake attacks, many detection methods have been
proposed. Traditional methods mainly focus on hand-crafted features, such as
lack of eye-blinking [137] and warping artifacts [138]. However, these methods
are not accurate enough. Learning-based methods such as convolutional neural
networks (CNN) [1, 36, 182, 240], recurrent neural networks (RNN) [216], and
vision transformer (ViT) [85], have been proposed to achieve more promising
detection performance. Afchar et al. [1] designed MesoNet and MesoInception4
to detect Deepfake and Face2Face videos automatically. Besides, some generic
networks such as Xception Net [36], Efficient Net [240], and Capsule Net [182]
have been demonstrated effective on deepfake detection tasks. Subsequent
works have employed RNN [216] and ViT [85] to further improve forgery
detection accuracy. Other methods capture spatial artifacts [30, 124, 135, 184,
224, 300], frequency artifacts [118, 171, 200], and biological signals [39, 199] to
perform deepfake detection. Follow-up works [26, 133, 145, 152, 225, 301, 309]
focus on improving the generalization capability and robustness of the model.
Temporal information has also been exploited in many deepfake video detection
methods based on typical generic networks such as 3DCNN [296], LSTM [5, 89],
RNN [33, 216], and ViT [113]. Combining spatial and temporal information
can achieve more reliable detection and improve the model’s generalization
capability.

7.2.3 Challenges and Future Work

Deepfake video creation and detection have seen significant success in recent
years, but many issues remain unresolved. While accurate and secure, deepfake
detectors lack interpretability, limiting their applications in practical scenarios.
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Localizing forgery regions and forgery frames is also a crucial yet understudied
task. Additionally, the two-player nature of face forgery and forgery detection
means that attack techniques will continue to become more powerful, thereby
calling for more general detection methods. Furthermore, deepfake videos often
involve audio manipulation, which is largely overlooked in existing methods.
Therefore, more visual-audio joint datasets and multi-modal detectors are
expected in future works.

7.3 Deepfake Audio

7.3.1 Deepfake Audio Generation

Deepfake audio refers to manipulated or synthetic audio created using deep
learning techniques. The aim of deepfake audio is to impersonate the speaker’s
speech characteristics, such as accent, timbre, and intonation, by learning from
target voice resources. Traditional methods for audio manipulation involve
removing, duplicating, copying within an audio sample, or pasting and insert-
ing fragments into other audios. Deep learning-based speech synthesis makes
the generated audio more realistic and difficult to distinguish from real ones.
Subsequent models based on likelihood algorithms, such as WaveNet [187] and
WaveGlow [196], have been developed to perform audio generation. However,
these methods often require conditional information and may fail to generate
long signal sequences. Recent waveform generative models, such as GAN [52,
125, 280] and VAE [193], take advantage of various auxiliary losses, thereby
achieving superior generation performance. On the other hand, recent dif-
fusion models (e.g., DiffWave [120]), have exhibited remarkable generation
performance even in challenging unconditional and class-conditional waveform
generation scenarios. In the context of text-to-speech tasks, diffusion models
can be classified into: acoustic model (e.g., Diff-TTS [100]), vocoder (e.g.,
DiffWave [120]), and end-to-end framework (e.g., FastDiff [95]). The promising
results of diffusion models indicate their potential to revolutionize the field of
audio generation and synthesis.

7.3.2 Deepfake Audio Detection

Automatic Speaker Verification (ASV) systems [181] currently detect manip-
ulated audio through three tasks: logical access (LA), physical access (PA),
and speech deepfake (DF) [279]. The LA task focuses on detecting synthetic
speech injected into a communication system, while the PA task includes
acoustic propagation and real physical factors. The DF task aims to detect
deepfake speech circulating on social media platforms. Traditional methods
for detecting deepfake audio involve analyzing the spectrogram of the audio
and exposing audio inconsistencies, such as abrupt changes in frequency or
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amplitude. These methods are based upon the assumption that synthetic
audios have unique frequency and amplitude patterns. However, recent deep
learning deepfake techniques raise the difficulty in identifying authenticity
and call for the design of deep learning countermeasures. Generally speaking,
deep learning methods can be categorized into feature-based, image-based,
and waveform-based [24, 238]. Feature-based methods utilize critical digital
signal features, such as Mel-frequency cepstral coefficients (MFCCs) [148],
constant Q cepstral coefficient (CQCC) [282], and energy, to detect deepfake
audio. Image-based methods apply the spectrogram image of the signal to
conduct inconsistency detection. Waveform-based methods aim to analyze the
raw waveform of the audio signal instead. To facilitate the development of
deepfake audio detection models, numerous databases, such as M-AILABS
Speech [230], GAN based synthesized audio dataset [299], Half-Truth [286],
and H-Voice [9] have been created. Overall, deepfake audio detection is a
challenging but important task that requires the constant development and
refinement of detection methods.

7.3.3 Challenges and Future Work

Despite recent advancements in synthetic audio generation, there are still sev-
eral challenges that need to be addressed. As generation techniques continue
to evolve, deepfake audio will become increasingly difficult to distinguish by
both human and AI-based detectors. Even worse, existing detection methods
have shown poor robustness to compression, encoding, and noise. Addition-
ally, current deepfake audio detection methods suffer from inefficient training
datasets and overfitting issues [279], resulting in limited generalization capa-
bility. Moreover, most detection methods extract specific features (such as
MFCC, CQCC, and, energy) to conduct deepfake detection. However, it is
challenging to extract appropriate features for specific detection tasks. How
to effectively combine various features for more robust detection opens an
important research path forward. Last but not least, it is crucial to conduct
further research on the ethical implications of deepfake audio, such as its
potential for misuse and its impacts on audio professionals.

8 Conclusion and Final Thoughts

Trust plays a fundamental role in our society. Citizens entrust infrastructures,
services (including education and health), media (including social networks
nowadays), the judiciary system (including law enforcement), and political
decision-making in general. Democracies are endangered when citizens no
longer trust the system and their elected representatives.
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Unfortunately, trust can be tampered with through influence or disinforma-
tion. Although disinformation has probably always existed in human history
(e.g., spreading rumors to influence elections), the message’s quality and scale
were low, restricting its impact. However, in our contemporary digital world,
disinformation (also coined fake news) with greater realistic content spreads
at an unprecedented scale on the Internet through alternative media without
any filtering by the traditional mainstream channels. With the advance of
Artificial Intelligence (AI) technologies, all sorts of media (text, images, and
audio) can be synthetically generated. More particularly, recent generative AI
models trained on very large datasets can produce more plausible and realistic
content.

Distinguishing truth from falsity is becoming even more difficult, and the
difference between reality and fiction is getting thinner daily. We are now
facing the Era of Synthetic Realities. Disinformation exploits cognitive
biases (e.g., anchoring bias, third-person effect, authority bias, bandwagon
effect, to mention a few) [46], which are systematic errors in judgment that
humans can make, and because of this, synthetic realities represent a threat
to our society.

Synthetic realities are now generated by criminals and hostile agents for
various malicious operations, including: political disinformation and state
espionage (e.g., fake social network profiles), national security (e.g., facilitating
a military coup), financial fraud (e.g., CEO scam impersonation), blackmail
(e.g., ransomfake), defamation (e.g., revengeporn), plausible deniability of
Forensic evidence.

As human beings, because of cognitive biases, citizens will never stop falling
for disinformation. A way to fight head on is to create tools to analyze digital
content prior authentication by human experts. We anticipate some factors of
utmost importance when developing new solutions.

The first one involves exploring the context of a digital asset as much as
possible, even with limited training data. The second one involves efforts on
robustness and interpretability, as decisions must be intelligible to human
beings. The final one consists in being conscious of the incompleteness of
individual methods and orchestrating decision-making fusion methods to
combine different telltales for final detection.

1. Limited training data. Data-driven approaches often rely upon large
amounts of training data. This problem may become critical in the
rapidly evolving scenario of fake information. New forms of falsification,
unknown to the forensic analyst, are proposed daily, preventing the
timely collection of all relevant training data. We discuss this issue by
posing the problem as an open-set recognition problem [221]; that is,
we need to define a suitable model for pristine data and analyze false
information by looking for inconsistencies concerning this model. If
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possible, researchers also need to consider few-shot learning approaches
that only require a tiny amount of labeled data to update to new threats.

2. Robustness and Interpretability. Being robust to wide-spectrum
and unforeseen conditions is a basic system requirement, but it becomes
central in a forensic environment featuring two active players. Robustness
to adversarial attacks is paramount nowadays, especially when data-
driven methods are applied, in light of the many literature findings that
emphasize their vulnerability. Besides using basic solutions, we pose
that reliability by relying on interpretable machine learning is necessary.
We advocate for strategies that help us understand why a learning-
based system behaves a certain way and provides the observed answers.
Methods should also include semantics and context to support the entire
decision-making process.

3. Fusion. Combining different methods toward a unified detection frame-
work is very promising. As discussed in prior art for image forgery
detection [68], fusion in different learning stages (early, middle, or even
late-stage) plays a fundamental role within dynamic and adversarial
setups. We envision learning strategies combining different telltales as a
promising way forward.

Therefore, some driving research questions involve challenges in:

• Detection: is it possible to detect plausible and realistic digital content
(e.g., text generated by large-scale language models, synthetic images,
and voices generated by generative models)?

• Attribution: is it possible to accomplish source attribution by assigning
manipulated digital content to a known type of attack vector?

• Explainability: is it possible to automatically uncover cues or inconsis-
tencies in digital content to corroborate falsity, as discussed above?

• Context and fusion: how to incorporate context? How to combine
different telltales?

Many other challenges will play out in the coming years as synthetic realities
become ever more realistic, directly affecting fundamental pillars of our society,
such as democratic values, individual freedom, and social tolerance. In this
paper, we strived to discuss some of these challenges and what lies ahead, but
it was just the tip of the iceberg.

Only an orchestrated effort of government representatives, society at large,
and researchers will be able to curb such threats. We believe possible ex-
plorations might lie in regulatory acts, education investments, and scientific
research for more powerful detection methods.
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