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ABSTRACT 

This paper proposes a new strategy to enhance the performance and accuracy of the Spiral 

dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA 
with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA 
makes it a useful exploitation approach. However, it has limited exploration throughout the 
diversification phase, which results in getting trapped at local optima. The optimal 
initialization position for the SDA algorithm has been determined with the help of the 
chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve 
the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic 
Bacterial Foraging (HASDBF) algorithm is designed so that the chemotaxis phase of bacteria 
represents the exploration part of the search operation. In contrast, the SDA represents the 
exploitation part. 
Additionally, to improve search operation efficiency, the spiral model's radius and angular 
displacement are adaptively set according to a linear correlation concerning the fitness 
value. An additional phase, the elimination and dispersal phase, is obtained from BFA and 
added to the end of the SDA. This phase aims to improve the algorithm's final solution's 
accuracy by enhancing the algorithm's search strategy and performance. Simulation tests 
are run on unimodal and multimodal standard benchmark functions to verify the proposed 
algorithm. The proposed algorithm significantly outperforms SDA and Adaptive SDA (ASDA) 
algorithms regarding fitness value and accuracy.  
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 الشامللتحسين ل طورةخوارزمية ديناميكية لولبية متكيفة م  
 

 2*، شوان جتو عبداللە،1تازان جميل جمال

 
 ، سليمانية، العراققسم الهندسة الكهربائية، كلية الهندسة، جامعة السليمانية

 
 خلاصةال

 للاستخدام في حل المشكلات العملية (SDA) الحلزونيةيقترح هذا البحث استراتيجية فريدة لتحسين أداء ودقة خوارزمية الديناميكا 
   ـخوارزميةحجم الخطوة الديناميكي ليعتبر  .(BFA) لتغذية البكتيريةاع خوارزمية م SDA خوارزمية من خلال دمج ةالحقيقي
SDA   الاحتجاز  ؤدي إلى، مما يللخوارزمية التنويع طورخلال  في البحث مفيد. ومع ذلك، فإنه يحد من التنوع استثمارنهج م

 تيكبمساعدة استراتيجية الكيموتاك SDA قد تم تحديد الموضع الأمثل لبدء خوارزميةفللحد من ذلك, المحلية. و  في القيم المثلى
ة التغذيو  الحلزونيةوقد تم بناء خوارزمية الديناميكا  SDA. خوارزميةالتنقيبية ل قدرةالتي تم استخدامها لتحسين ال BFAلخوارزمية  

، للجراثيم الجزء التنقيبي من عملية البحث يةتيكالكيموتاك التغذية مثل مرحلةتبحيث  (HASDBF) الجرثومية الهجينة التكيفية
تم تعيين نموذج اللولب ذلك، لتحسين كفاءة عملية البحث، بالإضافة إلى  SDA. بواسطة ثماربينما يتم تمثيل جزء الاست

صول على مرحلة ضافة الى ذلك, تم الحبالاتعلق بقيمة اللياقة. المالديناميكي وزاوية الانحراف بشكل تكيفي وفقًا للترابط الخطي 
هذه المرحلة هو تحسين دقة الحل من هدف الو   SDA. وإضافتها إلى نهاية  BFA من ,تسمى مرحلة الإزالة والتشتت إضافية

لمحاكاة على اختبارات امن خلال  اختبار الخوارزمية الجديدةالنهائي للخوارزمية من خلال تحسين استراتيجية البحث وأدائها. تم 
لنتائج اظهرت االخوارزمية المقترحة. وقد  اداء للتحقق من متعددةالو  حاديةالا معياريةال قياسيةال معادلاتالمجموعة متنوعة من 

 ( فيما يتعلق بقيمة اللياقة والدقة. ASDAالتكيفية ) SDAو  SDAتفوف الخوارزمية المقترحة بشكل كبير على خوارزميات 
 

 .، خوارزمية التحسينةالجرثومي ديناميكية اللولب الحلزوني، التغذيةخوارزمية هجينة،  :رئيسيةالكلمات ال
 

1. INTRODUCTION 
 
An optimization problem's optimal solution can be achieved by using a metaheuristic, an 
iterative process of a variety of subordinate heuristics free of gradients that combine a 
simple local search approach with an advanced search method (Micev et al., 2021). 
Researchers all over the world focus on how metaheuristic algorithms can be used to solve 
problems in the real world. These algorithms draw their inspiration from biological or 
natural phenomena. Spiral dynamic algorithm (SDA), Bacterial foraging algorithm (BFA), 
Biogeography-based optimization (BBO), Cuckoo search optimization (CSO), and Galaxy-
based search algorithm (GSO) are some examples of the recently introduced algorithms 
(Passino, 2002; Simon, 2008; Yang and Deb, 2009; Hosseini, 2011; Tamura and 
Yasuda, 2011a; Sharma et al., 2019; Jawad and Hadi, 2019). These algorithms are 
becoming increasingly popular because of their efficiency and effectiveness in dealing with 
practical problems. 
As a metaheuristic algorithm, the SDA is motivated by spiral patterns in nature (Tamura 
and Yasuda, 2011a). A variety of real-world problems have been addressed through the 
application of SDA. Since its structure is simple, it can be computed quickly. Using four kinds 
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of benchmark functions with varied spiral angles, (Tamura and Yasuda, 2011b) compared 
SDA's performance to that of Differential Evolution (DE) (Kasaiezadeh et al., 2014) and 
Particle Swarm Optimization (PSO) methods (Abbas and Abdulsaheb, 2016). After 100 
experiments with various dimensions, they found that the SDA performed better than the 
PSO and DE at the spiral angle of 𝜋/2. 
Simple and effective tactics, like those used in the SDA, ensure that the algorithm's 
diversification and intensification components remain in the early and late stages of the 
trajectory, respectively. The search area is wider early in the spiral trajectory and narrows 
toward the end, where the optimal solution is situated in the center; the radius decreases 
gradually to give dynamic step size. Given that the distance from any given point on a path 
trajectory to the path's center constantly changes as its radius changes, making the radius a 
crucial convergence parameter for the method. The SDA algorithm excels due to the spiral 
dynamics model it employs. The original SDA's rotating angle and radius remained constant 
throughout the search. Therefore, when confronted with high-dimensional problems, The 
algorithm converges to and stays in local optima (Nasir et al., 2013a; Nasir et al., 2014; 
Nasir et al., 2015a). Several attempts made by researchers to improve the algorithm's 
performance yielded different versions of the algorithm that involved either modifying the 
technique of searching or using a hybrid algorithm. To prevent trapping in the local optima, 
an adaptive formulation for varying the spiral model's radius and displacement is introduced 
(Nasir et al., 2012a; Nasir et al., 2013b). They proposed that the radius and rotational 
angle continuously vary using exponential, quadratic, and linear functions. Fuzzy logic and a 
non-mathematical method were utilized to associate fitness values with the spiral's 
radius and arrive at a suitable place inside the searching area. Dimensionally distinct 
unimodal and multimodal reference functions were used to evaluate the algorithm's 
performance.  
In (Nasir et al., 2016), an enhanced version of the spiral dynamics algorithm called the 
linear adaptive spiral dynamics algorithm (LASDA) is suggested. In LASDA, a 
new mathematical equation is used to modify the angular displacement and spiral radius 
according to a linear function that shows a connection between the angular displacement, 
the fitness value, and the spiral radius. The results of LASDA are demonstrated regarding 
fitness accuracy and convergence speed to the optimal point and compared to those of SDA, 
BFA, and IBFA. It was found that the proposed method was more effective at finding the 
optimal solution. 
Many studies have used hybridization, where one algorithm is combined with another, to 
improve the algorithm's performance. For example, the research of (Nasir et al., 2012b) 
has created a combination of SDA and BFA in which the algorithm permits the bacterium 
swimming and tumbling in a spiral shape during the search. Because of this, the algorithm's 
capability for exploration was increased. On the other hand, the adaptive approaches 
described by (Nasir et al., 2012a; Nasir et al., 2013b) improved the performance by 
changing the radius and the rotation angle with each iteration. Also, based on step size 
variation, (Nasir et al., 2015b) presented a hybrid technique by merging the SDA algorithm 
with the BFA. In light of the bacterial swimming mechanism, they offered two different 
approaches. The first involves the bacteria swimming in a spiral to find the optimal value, 
while the second involves a random process. With a random strategy, the bacteria can swim 
freely about their current location, increasing their probability of discovering the best 
possible value. In spiral swimming, however, the spiral itself determines the search 
direction. According to the supplied data, the spiral swimming strategy is superior to the 
random swimming method.  
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To enhance the SDA's exploration capabilities, (Nasir et al., 2015a) adopted a BFA 
elimination dispersal approach. The issue of settling on local optima can be reduced by 
expanding the capacity of the search space to discover more suitable solutions. The strategy 
was evaluated using a variety of benchmark function tests and analyses. Furthermore, by 
instructing the bacteria to swim spirally, the authors have created a hybrid technique 
combining SDA and BFA (Nasir et al., 2013a). Two distinct hybrid methods were developed 
by sequentially combining SDA and BFA. The SDA or BFA is carried out initially, and the other 
is carried out. According to (Nasir et al., 2012b), this method can solve the algorithm's high-
dimensionality problem. The first hybrid approach that has been presented can provide a 
higher level of fitness accuracy, but it suffers from a significant computational time 
disadvantage as it takes longer to complete the SDA and BFA stages than the original SDA. 
The method was created by incorporating spiral search patterns into the exploration and 
chemotaxis phases. The bacteria are progressively led in a spiralling pattern toward the 
optimal solution at each round of the search process. The proposed method is a development 
of the first hybrid technique presented by (Nasir et al., 2013a). In the first phase, bacteria 
utilize chemotaxis for exploration, whereas in the second phase, they employ spiral 
movement for exploitation. The hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) 
combines the spiral-dynamic algorithm (SDA) with the bacterial chemotaxis utilized in the 
bacterial foraging algorithm (BFA) (Goher et al., 2017).  To solve the limitations found 
when using the SDA or BFA methods separately, HSDBC took advantage of the convergence 
speed and fitness accuracy of SDA and the chemotactic approach of BFA. Results comparing 
the proposed approach to the original BFA and SDA algorithms showed its ability to improve 
the outcomes for highly nonlinear systems. 
Further, a new hybrid approach that combines SDA and BFA is introduced by (Kasruddin 
et al., 2022). By adding a spiral model to the chemotaxis of the BFA algorithm, the 
exploration and exploitation capabilities of both algorithms are improved, resulting in 
greater fitness accuracy for the SDA and quicker convergence time for the BFA, in addition 
to greater fitness accuracy. The suggested method has been shown to have superior results 
compared to competing algorithms in benchmark function tests. Furthermore, the work of 
(Matajira et al., 2018) presented a performance analysis of the Stochastic Spiral 
Optimization (SSO) method and an objective comparison of five population-based 
optimization techniques.  Performance tests showed that the stochastic spiral dynamic 
enhances the algorithm's exploration and exploitation characteristics, resulting in fewer 
errors in a number of benchmark functions. 
Motivated by the simplicity and effectivity of the SDA algorithm and its successes in real-
world applications, the main target of this study is to improve the SDA optimization method 
and test and validate its performance using several benchmark functions. This research 
introduces a new approach combining the spiral dynamic with the bacteria foraging method. 
In this proposed algorithm, three techniques have been used: 
1. Chemotaxis strategy of bacterial foraging is used to find the optimum initialization point 
of the dynamic spiral algorithm. 
2. To improve the search efficiency, the spiral model's radius and angular displacement are 
adaptively set according to a linear correlation with regard to the fitness value. 
3. An additional phase, called the elimination and dispersal phase, obtained from BFA, is 
added to the end of SDA. 
Tests on different benchmark functions showed that this new proposed method is more 
effective than the original SDA and adaptive SDA (ASDA) algorithms, as shown in subsequent 
sections.      
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2. SPIRAL DYNAMIC ALGORITHM AND BACTERIA FORAGING ALGORITHM 

 
Algorithms for optimization have been used in a wide range of applications (Madinehi et 
al., 2011). This section briefly summarizes the initial versions of the dynamic spiral 
algorithm (SDA) and the bacterial foraging algorithm (BFA). The SDA is based on natural 
evolution, whereas the BFA is based on the foraging strategies of E. Coli bacterial cells.  
 
2.1 Spiral Dynamic Algorithm  

 
Motivated by natural spiral patterns such as the form of DNA molecules and hurricanes, 
tornadoes, and galaxies, (Tamura and Yasuda, 2011b; Tamura and Yasuda, 2011c) 
presented the dynamic spiral algorithm in 2011. The logarithmic spiral method was first 
applied to problems of two dimensions. SDA is easy to implement due to its simple structure 
and low computational requirements. Early in the process, when a better solution has yet to 
be located, diversification is used to execute a wide-ranging examination of the search space. 
Once the algorithm has finished its initial exploration, it will look for a more probable answer 
close to the optimal solution. The term "intensification" describes trying to find the best 
possible solution. When the path of a spiral moves exponentially to its center, this provides 
a natural model for the diversification and intensification procedures used in SDA (Tamura 
and Yasuda, 2011a). Fig. 1 illustrates how the logarithmic spiral adapts to exploration and 
exploitation. It is evident that diversification occurs in the early stages, and the size of the 
small steps becomes smaller towards the End when intensification takes place. The SDA 
search starts at the point of initial and moves on to the next point counterclockwise until it 
reaches the inner layer of the spiral's center. As the search locations get closer to the spiral's 
center, the step size in this process will gradually decrease. As a result, the SDA can find 
globally optimal solutions to various uni-modal and multi-modal problems. The SDA 
converges faster since it always has the highest fitness, leading the spiral search to the best 
possible solution at each iteration. 
A mathematical model of SDA in n-dimension is defined as:  
 
𝑥𝑖(𝑘 + 1) = 𝑆𝑛(𝑟, 𝜃)𝑥𝑖(𝑘) − [𝑆𝑛(𝑟, 𝜃) − 𝐼𝑛]𝑥∗, 𝑖 = 1,2, … … , 𝑚           (1) 

 

where 𝜃 is the rotational angle, which can range from 0 and 2π, 𝐼𝑛 is the identity matrix, 𝑥∗ 
is the center of the spiral, k is the number of iterations, r is the spiral radius, which can range 
from 0 to 1 while multiplying the radius by the composition of a rotational 𝑛 × 𝑛 matrix 

𝑅𝑛 using the addition of the two axes yields 𝑆𝑛 that 𝑆𝑛(𝑟, 𝜃) = 𝑟 𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . . 𝜃𝑛,𝑛−1 ) , 

where rotation 𝑛 × 𝑛 matrix is 𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . . 𝜃𝑛,𝑛−1 ) . The general mathematical 𝑛 

dimensional spiral model employing 𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . . 𝜃𝑛,𝑛−1 ) is as follows: 

𝑅(𝑛)(𝜃1,2, 𝜃1,3, … . . 𝜃𝑛,𝑛−1 ) = ∏ (∏ 𝑅𝑛−𝑖,𝑛+1−𝑗
(𝑛)

(𝜃𝑛−𝑖,𝑛+1−𝑗)𝑖
𝑗=1 )𝑛−1

𝑖=1           (2) 

In general, the performance of SDA is determined by the r and θ parameters. The algorithm 
may converge towards local optima, and increasing the number of iterations will not be 
beneficial to find a better solution. In addition, when the size of the spiral model's matrix 
increases, the computational time required to solve problems of high dimension grows. 
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                (a) Early spiral (25 points)                       (b) after Spiral (25 points)  
 

Figure 1. The Spiral Trajectory (Tamura and Yasuda, 2011c) 

 
2.2 Bacterial Foraging Algorithm  
 
A biologically based algorithm known as the BFA was introduced by (Passino, 2002). 
Escherichia coli (E. Coli) bacteria use an adaptation technique to obtain nutrients or food 
sources throughout their lifetimes. The method is also referred to as a bacterial foraging 
strategy.  
There are typically three distinct stages of a BFA strategy. The initial and most visible stage 
of BFA is called chemotaxis, consisting of swimming and tumbling movements. An initial 
search action known as a "tumble" involves each bacteria taking a random one-step forward 
from its initial location. 𝜃𝑖(j, k, l) where i, j, k, and l represent the ith bacteria, the indexes for 
chemotactic activity, reproduction, and elimination-dispersal, respectively. The ith bacteria 
modify their swimming action if the nutrient level at the current position 𝜃𝑖(j+1, k, l) is more 
significant than that at the original location 𝜃𝑖(j, k, l). If the ith bacterium's new position 
𝜃𝑖(j+1, k, l) has a lower nutrient level than its initial position 𝜃𝑖(j, k, l), it will tumble again to 
change the direction of its initial search. 
Below is a mathematical expression for the recent position of the ith bacteria following the 
tumbling movement 
 
𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖) ∅(𝑗)              (3) 

 
where C(i) represents the step size of ith bacterium and ∅(𝑗) is a random direction of unit 
length. A bacterium will swim if the position after the tumble is better than the position 
before the tumble, and it will take one or more steps parallel to the direction of the tumble. 
If the bacteria's new position is preferable to its initial one, it will keep going to swim in that 
direction. The mathematical expression of the ith bacteria's new location after the swim 
action is represented as: 
 
𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) + 𝐶(𝑖) = ∅(𝑗)              (4) 
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The reproductive phase follows Chemotaxis. Once the maximum chemotactic  
𝑁𝑐 is reached, the bacteria are divided into two groups, one for weaker bacteria and another 
for stronger bacteria, based on their fitness. The fitness of a bacterium is based on how close 
it is to the global optimal position. The healthiest member of the bacterial population is the 
one with the highest nutritional content. The ith bacteria's health is calculated as follows: 
 

𝐽ℎ𝑒𝑎𝑙𝑡ℎ=
𝑖 ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)𝑁𝑐 +1

𝑗=1                     (5) 

 
The ith bacterium is the most robust member of the population by having the lowest 
cost value. When all the bacteria have been sorted, the first group will contain the healthiest 
half of the bacteria. The second group of bacteria, as opposed to that, are at a poor fitness 
level. After that, the bacteria that exhibited the greatest fitness levels are precisely replicated 
in the first group, so the new bacteria have the same characteristics as their origins. Finally, 
a method known as "elimination and dispersal" is employed, at which several healthy 
bacteria that are still present are eliminated. 
In contrast, the others are dispersed randomly throughout the search space. This way, the 
bacteria will have a better chance of being clustered around the most nutrients or the best 
global solution. The original BFA algorithm and pseudocode are detailed (Passino, 2002; 
Das et al., 2009; Abraham et al., 2008). 
 
3. THE PROPOSED HASDBF ALGORITHM  
 
One alternative approach to enhance algorithm performance is to combine more than two 
algorithms. This strategy builds a new algorithm by combining the best features of each 
algorithm. It is expected that a hybrid approach will result in a more accurate algorithm and 
performs better than the original algorithms in different applications (Biswas et al., 2007; 
Nasir et al., 2013a; Nasir et al., 2015b; Nasir et al., 2016; Goher et al., 2017; Jadon et 
al., 2017; Stretch et al., 2018; Al-Araji and Al-Zangana, 2019; Jawad and Hadi, 2019). 
SDA has a quick computation time and speed of convergence, but its accuracy is low. 
Furthermore, SDA can easily be trapped at a local optimum solution. Whereas BFA has a high 
accuracy level but is slow in convergence speed and computation time. A new strategy of 
hybridizing the SDA and BFA algorithms is proposed in this section to enhance the 
performance and accuracy of SDA and to use the SDA to address actual world issues more 
effectively. The proposed HASDBF algorithm combines SDA and BFA to create a better 
balance between the two algorithms' exploration and exploitation phases. This algorithm is 
constructed so that the chemotaxis phase of bacteria represents the exploration part of the 
search operation, while the SDA represents the exploitation part. The bacteria chemotactic 
property has been used to improve the SDA’s exploration phase to find the optimal 
initialization position for the SDA algorithm. 
Additionally, to improve the search operation efficiency, the spiral model's angular 
displacement and radius are adaptively specified in accordance with a linear dependence on 
the fitness of each bacteria. The fitness accuracy and speed of convergence of an algorithm 
can be improved by including this strategy in the spiral model. The linearly adoptive 
relationship is mathematically formulated as follows:    
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𝑟𝑙𝑎 =
𝑟𝑙−𝑟𝑢

1+
𝑐1

𝑐2|𝑓(𝑥𝑖(𝑘))− 𝑚𝑖𝑛 𝐽|
 
+ 𝑟𝑢                                                                                                            (6) 

 
where 𝑟𝑙𝑎 is the radius of the linear adaptive spiral, linear adaptive angular displacement is 
𝜃𝑙𝑎  , positive constants are 𝑐1and 𝑐2 , while the absolute value of a point′s fitness is |𝑓(𝑥𝑖(𝑘)), 

𝑚𝑖𝑛 𝐽 is the best fitness at the current iteration. Within the range [0,1], 𝑟𝑢 and 𝑟𝑙  specify a 
spiralling path's largest and smallest radius at a certain point. For the angular displacement 
that is linearly adaptive 𝜃𝑙𝑎 , the same formula is used for the linearly adaptive spiral radius 
𝑟𝑙𝑎. In the range [0,2π], 𝑟𝑙  and 𝑟𝑢  can be changed to  𝜃𝑙  and 𝜃𝑢 , respectively. 
 

Table 1. The HASDBF Parameters and Description 

 

 
Elimination and dispersal is an additional phase implemented to enhance the algorithm's 
search strategy and overall performance, with a special emphasis on the accuracy of the final 
result. BFA is used to obtain the elimination and dispersal phases. The SDA structure is 
maintained the same as the original in the HASDBF; nonetheless, the bacteria chemotaxis 
strategy determines the optimum location for its initialization. In addition, the ((1/5)  ×  𝑚) 
points with the greatest value of fitness, such as the best value of fitness (x*), are kept and 
saved to be used later for elimination and dispersal phase once the maximum number of 
iterations ( 𝑘𝑚𝑎𝑥) have been completed. If the largest amount of elimination and dispersal 
(𝑁𝑒𝑑) is not achieved, then a total of (𝑚 − ((1/5)  × 𝑚)) new search points are generated at 
random and redistributed into a viable part of the search area at new places together with 
the removal of the previous search nodes (𝑚 − ((1/5)  × 𝑚)). 
From the previous iteration, Both the fittest search points and the best point (x*) are 
retained to direct the remaining points' spiralling motion and to hasten their convergence 
to an optimal position in this current period, while the entire set of search points is 
regenerated. Continuous iterations are performed until the largest quantity of cycles of 
elimination and dispersal (𝑁𝑒𝑑) is achieved.  
 
 
 
 

Parameter Description Parameter Description 
𝑓(𝑥𝑖(𝑘)) Fitness of 𝑖th point in 𝑘th 

generation 
𝑟 Spiral radius to be replaced by the 

linear adaptive formulae 
𝑠 Number of bacteria 𝑚 Number of search point 
𝐶 Bacteria step size 𝑘𝑚𝑎𝑥 Maximum number of iteration 
𝑁𝑐  Number of chemotaxis 𝑘 Index of number of iterations 
𝑁𝑠 Number of swims 𝑥𝑖(𝑘) Position of 𝑖th point in 𝑘th generation 
𝑖 Index of the number of 

search points 
𝐼𝑛 Identity matrix with 𝑛 × 𝑛 dimension 

𝑝𝑖
𝑛(𝐵𝑒𝑠𝑡) Optimum bacteria location 

found in the exploration 
phase 

𝜃𝑖,𝑗 Search point angular displacement on 
𝑥𝑖 − 𝑥𝑗 the plane around the point of 

origin 
𝑥∗ Centre point of a spiral 

model or global best position 
𝑅𝑛 Composition of rotational 𝑛 × 𝑛 matrix 

based on a combination of all two axes 
𝑛 Number of dimensions 𝑁𝑒𝑑  Elimination and dispersal steps 



Journal of Engineering Number 11         November 2023 Volume 29 
 

 

211 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The proposed 

HASDBF algorithm’s 

flowchart 

Start 

Check fitness 

𝑓(𝑥𝑖(𝑘 + 1, ℎ) < 𝑓(𝑥𝑖(𝑘, ℎ) 

Swim on a similar direction as tumble 

𝑥𝑖(𝑘 + 1, ℎ) = 𝑥𝑖(𝑘 + 1, ℎ) +  𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ×  𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Initialize Variables 

Randomly place bacteria 𝑥𝑖(𝑘, ℎ) in search space 

Bacteria tumble randomly 

𝑥𝑖(𝑘 + 1, ℎ) = 𝑥𝑖(𝑘, ℎ) + 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ×  𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Compute   𝑓(𝑥𝑖(𝑘 + 1, ℎ) 

Check max swim 

𝑠 < 𝑁𝑠 

Check max pop 

𝑖 < 𝑚 

No 

Set optimum locations found in Chemotaxis as initial locations in spiral 

𝑥𝑖(0) ∊  𝑝𝑖
𝑛 (𝐵𝑒𝑠𝑡) 
  

Compute    𝑓(𝑥𝑖(𝑘, ℎ)) 

Set    𝑥∗ = 𝑥𝑖𝑔
(0)  as center of spiral  

𝑖𝑔 = 𝑎𝑟𝑔 min𝑖 𝑓(𝑥𝑖(0)) ,   𝑖 = 1,2, … , 𝑚 

Spirally more the search point 1 Step ahead. 

𝑥𝑖(𝑘 + 1, ℎ) = 𝑆𝑛(𝑟, 𝜃) 𝑥𝑖(𝑘, ℎ) − (𝑆𝑛(𝑟, 𝜃) −  𝐼𝑛)𝑥∗ 

Check fitness 

𝑓(𝑥𝑖(𝑘 + 1, ℎ) < 𝑓(𝑥𝑖(𝑘, ℎ)) 

Check max pop 

𝑖 < 𝑚 

Check max iteration 

 𝑘 < 𝑘𝑚𝑎𝑥 

Set   𝑥𝑖𝑔
(ℎ + 1) = 𝑥𝑖𝑔

(𝑘 + 1, ℎ)  as center of spiral 

End 

Check max 

Yes 

𝑖 = 𝑖 + 1  

Set    𝑥∗ = 𝑥𝑖𝑔
(𝑘 + 1, ℎ)  as center of spiral 

𝑖𝑔 = 𝑎𝑟𝑔 min𝑖 𝑓(𝑥𝑖(𝑘 + 1, ℎ)) ,        𝑖 = 1,2, … , 𝑚 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

No 

𝑠 = 𝑠 + 1  

𝑖 = 𝑖 + 1  

𝑘 = 𝑘 + 1  

ℎ = ℎ + 1  

elimination & dispersal 

ℎ < 𝑁𝑒𝑑 



Journal of Engineering Number 11         November 2023 Volume 29 
 

 

212 

With this technique, the algorithm can avoid getting stuck on localized optimal solutions and 
instead achieves the global best solution. Despite adding a new phase to the structure, the 
parameters of HASDBF are set in the same way as in SDA, making it effortless for the user to 
select the suitable parameters for achieving the best performance. The HASDBF notations 
and parameters are listed in Table 1, whereas Fig. 2 shows the algorithm’s flowchart. 

 
4. VALIDATION WITH BENCHMARK FUNCTIONS 

 
In this part, the suggested algorithm is verified via simulation tests using five standard 
benchmark functions, including two benchmarks that are unimodal (Sphere and 
Rosenbrock) and three benchmarks that are multimodal (Ackley, Rastrigin, and Griewank). 
The evaluation uses the benchmark functions presented in (Abdel-Rahman, 2004; Biswas 
et al., 2007; Dasgupta et al., 2009; Blondin et al., 2018). f (x) = 0 is the optimal fitness 
value for all benchmark functions. Comparisons among SDA, ASDA, and HASDBF using five 
benchmark functions are provided to demonstrate the enhanced HASDBF's performance. 
After exhaustive testing, the optimal parameter values were determined using a trial-and-
error approach with various values for the initial parameters across the whole set of 
benchmark functions. The algorithms were compared fairly by setting the sum of all fitness 
evaluations to the same value. 
The parameters used for SDA are r = 0.95, 𝜃 = 0.785, and for both SDA and HASDBF 
algorithms are m=20 and 𝑘𝑚 = 50. The testing requirements for the ASDA radius are 𝑟𝑙 =0.1, 
𝑟𝑢 = 1, 𝑐1 = 1, and 𝑐2 = 1, while for ASDA angle is defined as 𝜃𝑙  = 0.1, 𝜃𝑢 = 6.283, 𝑐1 = 1, and 
𝑐2= 1, which are the same adaptive values used in HASDBF. The BFA parameters for this 
function are s=20, 𝑁𝑐 = 20, C=0.01, 𝑁𝑠 = 10, and 𝑁𝑒𝑑 = 2. n=4 and variable 𝑥𝑖  is in the range [-
10,10] for all algorithms.  
 

Table 2. Statistical results obtained by using standard benchmark functions 

 
As shown in Table 2, 30 runs of the benchmark functions were simulated and analyzed 
statistically by recording their mean and standard deviation (SD). The mean and standard 
deviation demonstrate the average accuracy and consistency of the outcome (To’aima et 
al., 2015; George et al., 2018). If the mean value is smaller, the solution is more accurate 
and more closely approximates the global optimal solution, while a smaller standard 
deviation indicates that the generated solutions are more tightly clustered around the mean 
value and the reverse. In other words, it demonstrates the algorithm's robustness to obtain 

Function  SDA ASDA HASDBF 
Ackley Mean 6.1940 4.9154 1.9456 

 SD 1.7888 2.0211 1.3787 
Rastrigin Mean 28.3191 28.1583 16.5829 

 SD 13.7267 18.1503 11.6128 
Sphere Mean 11.4310 6.0320 1.2044E-07 

 SD 7.5710 7.1676 5.9208E-07 

Griewank Mean 0.1867 0.0558 0.0410 
 SD 0.1504 0.0654 0.0449 

Rosenbrock Mean 1577.7127 9314.5572 642.9292 
 SD 5576.1038 11582.5266 1011.3268 
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the targeted solution. The statistical performance measures indicate that The HASDBF 
converged to a near-optimum solution for all benchmark functions. 
On the other hand, the proposed HASDBF has significantly outperformed SDA and ASDA in 
terms of accuracy and speed of convergence in all benchmark functions. The proposed 
algorithm outperforms the SDA for Ackley, Rastrigin, Sphere, Griewank, and Rosenbrock 
functions by 68.59%, 41.44 %, 99.99%, 78.04%, and 59.25%, respectively. Similarly, the 
proposed algorithm outperforms the ASDA by 60.42 %, 41.12 %, 99.99%, 26.52%, and 
93.10%, respectively. 
Fig. 3 shows the convergence graphs for the three methods tested on the benchmark 
functions. The graphs clearly show that the HSDBF significantly outperformed SDA and 
ASDA in terms of accuracy and speed of convergence. In contrast to the original SDA and 
ASDA, the proposed strategy effectively prevented premature SDA convergence and 
achieved a more optimal solution. 
Finally, the statistical and convergence evaluations indicate that the suggested HASDBF 
algorithm outperformed SDA and ASDA. By combining SDA and BFA, HASDBF can achieve 
faster convergence to the optimal point than competing methods. 
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(c) Sphere 

 
(d) Griewank 

 

(e) Rosenbrock 
 
 

Figure 3. Convergence plot for benchmark functions. 
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5. CONCLUSIONS 
 

A new Hybrid adaptive spiral dynamic bacterial foraging algorithm, HASDBF, has been 
proposed. SDA has adapted the chemotactic technique of bacteria through spiral tumble and 
swim actions to improve its exploring method. Moreover, a linear function-based adaptation 
approach that establishes a connection between angular displacement, spiral radius, and 
fitness function value has been provided to improve search operation efficiency. A new 
phase has been added at the end of the spiral to prevent early convergence and obtain 
accelerated convergence. This new phase, the elimination and dispersal phase, was taken 
from the BFA. By incorporating these three schemes, the SDA successfully avoided trapping 
in local optima points, resulting in faster convergence. The proposed algorithm, tested on 
different singular and plural modes common benchmark functions, outperformed the SDA 
regarding fitness value and exactness. The proposed HASDBF outperformed the SDA for 
Ackley, Rastrigin, Sphere, Griewank, and Rosenbrock functions by 68.59%, 41.44%, 99.99%, 
78.04%, and 59.25%, respectively. 
Similarly, the HASDBF algorithm outperforms the ASDA by 60.42%, 41.12%, and 99.99%, 
respectively, 26.52% and 93.10%. In conclusion, the proposed HASDBF algorithm surpasses 
SDA and ASDA regarding convergence speed, accuracy, and efficiency. The proposed 
HASDBF algorithm promotes fast and accurate optimization results if utilized to solve real-
world engineering problems. 
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