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Abstract In this paper, we present a control method
for achieving biped static balance under unknown peri-
odic external forces whose periods are only known. In
order to maintain static balance adaptively in an uncer-
tain environment, it is essential to have information on
the ground reaction forces. However, when the biped is
exposed to a steady environment that provides an exter-
nal force periodically, uncertain factors on the regularity
with respect to a steady environment are gradually clar-
ified using learning process, and finally a torque pattern
for balancing motion is acquired. Consequently, static
balance is maintained without feedback on ground reac-
tion forces and achieved in a feedforward manner.

1 Introduction

1.1 Background

Static balance control is fundamental to biped motion.
Biped balance is strongly influenced by environmental
conditions, e.g., the gradient of the ground or the exer-
tion of external forces. In the static case, if all environ-
mental conditions are known, a posture that prevents
tumbling can be planned based on the relation between
the ground projection of CoG (center of gravity) and the
support polygon (Goswami, 1999). That is, the position
of CoG must be in the area above the feet when the biped
is standing on level ground with no external forces. By
selecting one such posture as a reference, balance con-
trol is feasible merely by applying position feedback con-
trol. However, when the environment contains unknown
or varying factors, such postures cannot be planned in
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advance. Besides, the reference postures planned under
nominal environmental conditions are not always ade-
quate in an actual environment. For example, a desk
light that is stably standing on a desk will tumble when
a slope is created by gradually tilting the desk. In the
case of human beings, they can adaptively adjust their
CoG with respect to the slope angle, which reduces the
possibility of tumbling.

In the literature, two approaches have been taken
to examine how such an adaptive behavior is achieved.
One is based on the motion measurement of human be-
ings. This observational approach aims to clarify a hu-
man motor control strategy in an analytic manner by
investigating measured data, i.e., joint angles, ground
reaction forces, or EMG responding to either impulsive
(Nashner, 1981; Hay and Redon, 1999; Chow et al., 2002)
or periodic external forces (Ko et al., 2001). The other
approach is based on the realization of motor behavior
by simulations or robot experiments. This constitutive
approach demonstrates what kind of behavior emerges
from a given control law and attempts to understand the
control mechanisms by constructing a motor system. In
this paper, we adopt mainly the latter constitutive ap-
proach, and we discuss a control method that produces
the adaptive changes that occur in a motion pattern in
the presence of steady unknown environmental condi-
tions.

In the field of biped robots, a criterion based on the
concept of ZMP (zero moment point) (Vukobratovic et
al., 1989) has been proposed to design walking patterns,
and lots of robots have achieved biped locomotion us-
ing this concept (Takanishi et al., 1988; Nagasaka et
al., 1999; Kuroki et al., 2003). However, this method re-
quires various parameters in the environment or in the
robot’s structure. Uncertainty in either type of parame-
ters sometimes prevents the position of ZMP from com-
ing to the reference position or trajectories. Some studies
modify the desired positional trajectories based on the
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actual ZMP position (Hirai et al., 1998; Haung et al.,
2000; Park and Cho, 2000; Nishiwaki et al., 2002; Sugi-
hara et al., 2003). Although Napoleon et al. (Napoleon et
al., 2002) discussed the stability of ZMP feedback from
the viewpoint of avoiding the inverse response of ZMP
in upright posture control, many other works did not
present enough analysis based on the dynamic equation.

Generally speaking, when an environment contains
uncertain factors such as disturbances, feedforward con-
trol does not provide sufficient performance because of
the error caused by the uncertainties. Hence, feedback
information becomes crucial. Of course, the influences
from the uncertainties must be reflected in the feedback
information. We select the ground reaction forces as such
information in balance control, because clinical medicine
uses the center of pressure (CoP) of ground reaction
forces as an index of human balance check, and devi-
ations in CoP are evaluated to understand a person’s
balancing ability. In addition, CoP is identical to ZMP
(Goswami, 1999). From these points of view, we first
consider a balance control that is based on feedback on
ground reaction forces and that seeks to maintain static
balance in environments where unknown constant ex-
ternal forces are exerted. Second, we discuss the learn-
ing of uncertain factors through motions influenced by
regular actions in a steady environment. Such unknown
factors regarding regularities in a steady environment
would be unknown before the motion begins, but would
become known through sustained motion in the envi-
ronment. For example, from our behavior on a slope, we
can learn the slope’s gradient; or, while we stays on a
ship on water that has constant rhythms, we obtain an
understanding of the periodical ship’s actions. If such
regularities in a steady environment become known, the
action from the environment would be predictable and
thus the pattern generation for motor control becomes
feasible.

Balance control in an uncertain environment has been
considered in studies of locomotion using the CPG (cen-
tral pattern generator) model (Taga, 1995; Ogihara and
Yamazaki, 2001; Lewis et al., 2003). In those studies, the
entrainment produced by the stable limit cycle in cou-
pled nonlinear dynamics of body motion and of neural
oscillators is essential for robustness against uncertain
factors, and thus there is no learning process during mo-
tion: other than state variables, no parameters change
inside the controller. In contrast to these works, we here
consider the learning of a torque pattern that the con-
troller provides as a motor command to joint actuators.
As an example of this issue, we deal with static balance
control, since dynamic motion such as locomotion would
needlessly complicate the problem in the first step of this
kind of study. Moreover, the steady environmental condi-
tion is restricted so that it applies an unknown constant
external force or unknown periodic force with a known
period. In such problem settings, we show that informa-
tion about ground reaction forces, which is indispensable

Fig. 1 Simple model of biped balance control consisting of
supporting segment and upper segment including body and
legs expressed by inverted pendulum. Notations are: sway an-
gle θ, ground reaction force at two contact points FH and FH ,
joint torque τ , mass of inverted pendulum M , external force
components Fx and Fy, internal force between two segments
fx and fy, distance from ankle joint to CoG of the inverted
pendulum L and distance from ankle joint to the tips of sym-
metrical supporting segment `. θf is an angle made by the
vectors of external force and gravitational force.

to obtain balance under uncertain environmental condi-
tions, becomes unnecessary once the uncertain factors
are learned. Then, we use the mathematical framework
of adaptive control. The adaptive control aims mainly
to manipulate unknown objects under uncertain param-
eters of manipulators (J-J. E. Slotine, 1991; Kawasaki et
al., 2003), and thus its application to locomotion con-
trol has not been reported much. Although (Chew and
Pratt, 2002) applies adaptive control to locomotion, they
do not treat dynamic situations in which unknown peri-
odic external forces are exerted.

1.2 Simple model of biped balance control

In Fig. 1, we illustrate a simple model for analysis. It
consists of an inverted pendulum representing the whole
body except the foot and a supporting segment corre-
sponding to the foot, and its motion is restricted to
the sagittal plane on level ground. A body generally
has a complex structure with many segments and joints.
However, the ankle is mainly the joint actuated against
the forces of small perturbations (Ko et al., 2001); this
is often called the ‘ankle strategy’ (Horak and Nash-
ner, 1986). In order to make the analysis simple, we con-
sider only the ankle joint for balance control and regard
the body as a single segment, i.e., an inverted pendu-
lum by assuming that the deviations of the other joints
are small. Thus, the posture is represented only by the
angles of the ankle joint.
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These two segments are connected at the ankle joint,
which is located at the center of the supporting segment
symmetrical to the anterior-posterior direction and as
low as the ground surface. The angle and angular veloc-
ity of the joint are detectable, and torque can be gener-
ated for balance control. The supporting segment con-
tacts the ground at two points only, the toe and the heel.
Here, the vertical components of ground reaction forces
FT (at the toe) and FH (at the heel) are detectable. The
friction between the supporting segment and the ground
is assumed to be so large that the supporting segment
does not slip on it. To this simple model, an unknown
external force is exerted, whose horizontal and vertical
components are Fx and Fy, respectively. This external
force represents the conditions of the environment.

If static balance is maintained, the supporting seg-
ment neither moves nor rotates. Only the inverted pen-
dulum is mobile, and its motion is described as

Iθ̈ = MLg sin θ + FxL cos θ − FyL sin θ + τ, (1)

where M is the mass of the inverted pendulum, I is the
inertial moment of the inverted pendulum around the
ankle joint, L is the length between the ankle joint and
the COG of the inverted pendulum, θ is the ankle joint
angle from the vertical direction, τ is the ankle joint
torque, and g is the gravitational acceleration.

The internal force between the two segments, fx and
fy, is described as

fx = MLθ̈ cos θ −MLθ̇2 sin θ − Fx, (2)

fy = −MLθ̈ sin θ −MLθ̇2 cos θ + Mg − Fy. (3)

From the balance of moment around the heel and toe,
the ground reaction forces, FT and FH , are described as

FT = (−τ/` + m + fy)/2 (4)

FH = (τ/` + m + fy)/2 (5)

where m is the total mass of the foot, ` represents the
distance from the ankle joint to the toe or heel. From
(4) and (5), we can obtain the relation between FH−FT

and τ ,
FH − FT = τ/`. (6)

We use this relation for the analysis in the next section.
For convenience of calculation, we transform the mo-

tion equation (1) as follows:

Iθ̈ = (Mg − Fy)L sin θ + FxL cos θ + τ

= AL sin(θ − θf ) + τ (7)

where
A =

√
(Mg − Fy)2 + F 2

x (8)

and θf , as shown in Fig. 1, is a constant that satisfies
these equations,

sin θf = −Fx/A, cos θf = (Mg − Fy)/A. (9)

Note that A as well as θf depend on an unknown external
force, i.e., Fx and Fy.

2 Balance control under constant external force

2.1 Goal of control

In order to maintain body balance, both FT and FH

must be kept positive. Furthermore, the stability margin
(McGhee and Frank, 1968) will be greatest when the
weight of body is evenly distributed between the toe and
the heel. Thus, the goal of balance control here was to
converge FH −FT to zero without allowing the inverted
pendulum to fall.

2.2 PD and ground reaction force feedback control

According to (6), if we define the ankle joint torque as

τ = −KI

∫
(FH − FT )dt, (10)

then FH − FT will certainly converge to zero. However,
this control law does not result in the maintenance of
an upright posture. For example, assume that the in-
verted pendulum leans slightly to the toe side. Then,
more weight is distributed to the toe than to the heel,
i.e., FT > FH . According to (10), positive torque is ex-
erted, which make the inverted pendulum lean more to
the toe side.

To achieve our goal, we add PD (proportional and
derivative) control, which stabilizes the upright posture.
The control law we propose here is

τ = −Kdθ̇ −Kpθ + Kf

∫
(FH − FT )dt, (11)

Here, Kd, Kp, and Kf are feedback gains.

2.3 Stationary state

Analyzing the dynamics determined by the control law
(11), we introduce a new state variable τf which is de-
fined as

τf =
∫

(FH − FT )dt, (12)

Then, (11) becomes

τ = −Kdθ̇ −Kpθ + Kfτf , (13)

Substituting τ in (7) yields

Iθ̈ = AL sin(θ − θf )−Kdθ̇ −Kpθ + Kfτf (14)

On the other hand, differentiating (12) and next using
(6) and (13), we obtain

τ̇f = (−Kdθ̇ −Kpθ + Kfτf )/`. (15)

The stationary state is calculated by putting θ̈ = θ̇ = 0
and τ̇f = 0. Most importantly, FH − FT = 0 is certainly
achieved by (11), since FH −FT ≡ τ̇f = 0. On the other
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Fig. 2 Stationary posture by proposed control law (11).

hand, the stationary posture is obtained by solving the
following two algebraic equations

AL sin(θ − θf )−Kpθ + Kfτf = 0, (16)

(−Kpθ + Kfτf )/` = 0. (17)

As a result, θ = θf is satisfied at the stationary state.
This implies that the stationary posture adaptively changes
with the environmental conditions, since θf depends on
the external forces Fx and Fy. At this posture, the in-
verted pendulum orients the direction of the force result-
ing from the gravitational and external forces, as shown
in Fig. 2. This implies that the moments generated by
the two forces cancel each other out around the ankle
joint. Therefore, the ankle joint requires little torque or,
theoretically, none at all.

2.4 Stability analysis

To examine the stability of this stationary state, we re-
gard θ, θ̇, and τf as state variables, and we linearize
the differential equations around the equilibrium point,
i.e., θ = θf and τf = Kpθf/Kf . The linear differential
equation is




θ̇1

θ̇2

τ̇f


 =




0 1 0
AL−Kp

I −Kd

I
Kf

I

−Kp

` −Kd

`
Kf

`







θ1

θ2

τf


 (18)

where θ1 = θ and θ2 = θ̇. The characteristic equation of
this linear system is given by

λ3 + p2λ
2 + p1λ + p0 = 0 (19)

where

p2 =
Kd`−KfI

I`
, p1 =

Kp −AL

I
, p0 =

KfAL

I`
(20)

According to Routh-Hurwitz criterion, the necessary and
sufficient conditions to stabilize the equilibrium point are
given as

p0 > 0, p1 > 0, p2 > 0, p1p2 − p0 > 0 (21)

From these inequalities, we can derive the following con-
ditions:

Kp > AL > 0 (22)
`

I
Kd > Kf > 0 (23)

(Kd`−KfI)Kp > Kd`AL (24)

In summary, if the feedback gains are set so that (22)-
(24) hold, the stationary posture in Fig. 2 becomes lo-
cally asymptotically stable.

3 Balance control under periodic external force

3.1 Goal of control

A feature of the control law in the previous section ex-
ists in the feedback on ground reaction forces. Once the
stationary state is achieved, however, the adequate pos-
ture in the current environment becomes known from the
stationary posture. If this posture is memorized in the
controller, balance is maintained only by positional con-
trol without feedback on ground reaction forces, which
was essential information in an uncertain environment.
Now, we extend the external force from constant to pe-
riodic, and aim to compose a control law for the periodic
external forces that dispenses the information on ground
reaction forces after learning it. For this purpose, we con-
struct an ankle joint torque from two terms as

τ = [F.F ] +
[
−Kdθ̇ −Kpθ + Kf

∫
(FH − FT )dt

]
(25)

The first term compensates the periodic external forces
in a feedforward manner, while the second term is the
same as (11), including the feedback on the ground re-
action force. We will compose a learning rule such that
the second term gradually decreases.

3.2 Linear parameterization on unknown parameters

We construct the feedforward term by estimating the
periodic external force. Here, we assumed that the period
of the periodic external force Te is known. Then, the
external force is expanded to a Fourier series

Fx =
n∑

k

(
α

(x)
k Sk + β

(x)
k Ck

)
(26)

Fy =
n∑

k

(
α

(y)
k Sk + β

(y)
k Ck

)
(27)

where, Sk = sin kωet, Ck = cos kωet, ωe = 2π/Te. Sub-
stituting (26) and (27) into (1), we obtain

Iθ̈ −MLgS −
n∑

k

(
α

(x)
k Sk + β

(x)
k Ck

)
LC

+
n∑

k

(
α

(y)
k Sk + β

(y)
k Ck

)
LS = τ (28)
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where C = cos θ and S = sin θ. The left-hand side can be
written in the linear parameterization form on unknown
parameters,

Y σ = τ (29)

Y =
[
θ̈, S, S0C,C0C,S0S,C0S,

· · · , SnC, CnC, SnS, CnS] (30)

σ =
[
I,−MgL,−Lα

(x)
0 ,−Lβ

(x)
0 , Lα

(y)
0 , Lβ

(y)
0 ,

· · · ,−Lα(x)
n ,−Lβ(x)

n , Lα(y)
n , Lβ(y)

n

]T

(31)

By learning, we estimate the unknown parameters.

3.3 Control and learning method

We define a new unknown parameter, φ, based on σ in
the above equation,

φ = KIσ (32)

KI =
Kd`

Kd`−KfI
(33)

Using the estimated value of this parameter, i.e., φ̂, we
propose a control law as

τ = Yrφ̂−Kds (34)

Yr =
[
θ̈r, S, S0C, C0C, S0S, C0S,

· · · , SnC,CnC, SnS, CnS] (35)

θ̇r = −Kp

Kd
θ (36)

s = θ̇ − θ̇r − Kf

Kd
τf (37)

In addition, we define the learning law of φ̂ as

˙̂
φ = −ΓY T

r s (38)

where, Γ is a positive definite diagonal matrix. Note that
the first term does not contain feedback information on
the ground reaction forces, and that the second term
−Kds is the same as the right-hand side of (25).

3.4 Behavior analysis

3.4.1 Assumptions In order to make the analysis sim-
ple, we assume the following:

A1 The periodic external force whose period is known is
bounded and differentiable.

A2 In the initial state, φ̂(0) = 0.
A3 The supporting segment neither moves nor rotates

by this control without a learning law.
A4 The learning law does not cause tumbling under as-

sumption A3.

Assumption A2 eliminates the action of the first term
in (34) in the initial state. Assumption A3 implies that
the control law (11) can maintain the balance against
the periodic external force satisfying Assumption A1.
Then, the magnitude of the external forces not causing
the tumble is evaluated by A in (22)-(24) in the no-
learning case. Finally, assumption A4 excludes the case
where the leaning results in tumbling; the validity of this
assumption will be examined by the simulation.

Under these assumptions, we show that the second
term decreases by the learning law, and next that the
learning law has no effect on the torque profile under
some conditions.

3.4.2 Decrement of the feedback term Consider the fol-
lowing function as a candidate Lyapunov function:

V =
1
2
KIIs2 +

1
2
φ̄T Γ−1φ̄(≥ 0) (39)

where, φ̄ = φ̂−φ. Assumption A3 ensures static balance.
This implies that (22)–(24) holds, and hence KI > 0.
Differentiating (39), we obtain

V̇ = KIIsṡ + ˙̂
φ

T

Γ−1φ̄, (40)

and, from the definition of Yr,

Iθ̈r −MLgS −
n∑

k

(
α

(x)
k Sk + β

(x)
k Ck

)
LC

+
n∑

k

(
α

(y)
k Sn + β

(y)
k Ck

)
LS = Yrσ (41)

Subtracting (41) from (28),

I(θ̈ − θ̈r) = τ − Yrσ (42)

is obtained. On the other hand, differentiating (12) and
using (6),

τ̇f =
1
`
τ (43)

Multiplying IKf/Kd by (43) and subtracting it from
(42), we obtain

I(θ̈ − θ̈r − Kf

Kd
τ̇f ) = (1− IKf

Kd`
)τ − Yrσ (44)
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Furthermore, multiplying both sides of the above equa-
tion by KI and using (37), (33), (32) and (34),

KIIṡ = Yrφ̄−Kds (45)

Substituting (40) for this equation yields

V̇ = sYrφ̄−Kds
2 + φ̄T Γ−1 ˙̂

φ

= φ̄T (Y T
r s + Γ−1 ˙̂

φ)−Kds
2 (46)

but, using (38), we finally obtain

V̇ = −Kds
2 ≤ 0 (47)

To show that V̇ converges to 0, we show the uniform
continuity of V̇ . All we have to do is to show the bound-
edness of V̈

V̈ = −2Kdsṡ (48)

Because V ≥ 0 and V̇ ≤ 0, V is bounded, implying that
s and φ̄ are also bounded. The boundedness of φ̄ leads to
the boundedness of φ̂. From assumption A1, on the other
hand, the dynamics become differentiable with respect to
θ, θ̇, τf , φ̂, and t, and the solution of this equation is also
differentiable (Wiggins, 1990). Furthermore, assumption
A3 leads to the boundedness of θ and of θ̇. Thus, the
boundedness of θ̇r and that of Yr are proven by using,
respectively, (36) and (35). In (45), ṡ is bounded since
KI and I are constants. The boundedness of V̈ is derived
from the boundedness of s and of ṡ.

Using the Lyapunov-like lemma (J-J. E. Slotine, 1991),
we conclude that V̇ converges to 0, implying that s → 0.

3.4.3 Change in torque profile by learning From assump-
tion A2, the torque is generated by (13) before learning.
Then, the dynamic behavior is determined by (1), (13)
and (43). Eliminating τ in (1) and (13) using (43), the
behavior of this equation is represented by the following
two equations:

Iθ̈ = MgL sin θ + Fe(t) + `τ̇f (49)

Kfτf − `τ̇f = Kdθ̇ + Kpθ (50)

Here, the effect of the external force is summarized in
Fe(t) after linearization.

Next, we consider dynamic behavior after learning.
Then, a new constraint s = 0 is formed by the learning
law. Therefore, the dynamics are determined by (1), (43)
and the new relation,

−Kdθ̇ −Kpθ + Kfτf = 0 (51)

Eliminating τ in the same manner, we obtain the dy-
namics as follows:

Iθ̈ = MgL sin θ + Fe(t) + `τ̇f (52)

Kfτf = Kdθ̇ + Kpθ (53)

Consequently, the difference in the dynamics originates
from whether the controller dynamics is described by

α

Fig. 3 External force in simulation. α is a time-varying pa-
rameter that define the dynamics of the external force. The
external force in the left figure is equivalent to those that
is exerted to the inverted pendulum on the slope with the
gradient α.

(50) or by (53). In order to examine what effect this
difference brings to torque generation, we calculate the
transfer function from the external force Fe to the joint
torque τ , since the reason why the joint torque is re-
quired is that the external force disturbs the balance.
The transfer function before learning Hb is

Hb(p) =
Kf (p2I −MgL)(1− p `

Kf
)

p`(pKd + Kp)
(54)

while the one after learning Ha is

Ha(p) =
Kf (p2I −MgL)
p`(pKd + Kp)

(55)

Here p represents the differential operator, and the cal-
culation is made after linearization around the upright
posture.

If Kf À `, then we can regard that |p`/Kf | ¿ 1
and hence Hb(p) and Ha(p) are approximately the same.
Thus, the same torque profiles are produced from the ex-
ternal force, implying that the torque profile is invariant
independently of the learning.

3.4.4 Storing torque pattern We have shown in Sect.
3.4.2 that the second term in (34), including the feedback
on ground reaction forces, decreases by the learning law.
We have also shown, in Sect. 3.4.3, that learning result
has no effect on the torque profile if Kf À `.

These findings establish the following scenario. At
first, the torque consists of feedback information includ-
ing the information on the ground reaction forces. How-
ever, the feedback term decays as the learning process
continues, while the feedforward term, in the sense that
it contains no feedback information on the ground reac-
tion forces, grows. Because the torque profile is invari-
ant, the feedback term is copied to the feedforward term
according to the learning. Consequently, the balance is
kept without the feedback on ground reaction forces that
was important to behave in an uncertain environment. In
other words, the torque pattern that enables balancing
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Fig. 4 Results of PD control. Top: time course of ankle joint
angle θ and the parameter α in Fig. 3. Bottom: time course
of ground reaction force FH and FT that is required to keep
the foot segment still. Negative ground reaction force implies
that PD control did not avoid the tumbling with respect to
periodic external force in this simulation.

against the periodic external force is internally gener-
ated.

Indeed, the balance would be kept by directly mem-
orizing the time course of the torque pattern, e.g., by
the discrete-time sampling, but here the torque is repre-
sented by the weighted sum of basis functions, i.e., the
components of Yr. Then, the information on the environ-
ment is integrated with the weight of the basis functions.
In practice of biped balance, the high-frequency torque
is seldom required since the external force with high fre-
quency is cut by the low-pass property of the pendulum
dynamics. In such a case, we can approximate the torque
pattern with small number of the Fourier series. Then,
the number of Fourier coefficient that should be learned
becomes small and less storage space is required in a
mathematical point of view.

This is advantageous in that it requires less storage.
The time evolution of the torque during the learning

has not been discussed in this section because of the
nonlinearity of the dynamics. However, we evaluate it
using simulation in the next section.

4 Simulations

In computer simulations, we use a two-link model as il-
lustrated in Fig. 2. The parameters are set as follows:
M = 2, L = 0.5, ` = 0.05, I = 5ML2/4. We define the
periodic external force as

Fx = MgL sinα (56)

Fy = MgL(1− cosα) (57)

α

(rad)

(s)
θ
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Fig. 5 Results of feedback control of ground reaction forces.
Top and middle graph represent the same variables as in Fig.
4. Bottom: the time course of ankle joint torque.

α =
π

18
(1− cos 2πfet) (58)

where we set fe = 0.2 so that the period of the external
force becomes 5. As illustrated in Fig. 3, this external
force equivalently expresses the gravitational effect on
a slope whose gradient is α. This implies that, when
α = αg, θ = −αg is the preferable posture, because
the inverted pendulum orients the direction of the force
resulting from the gravitational and external forces, and
then FT and FH become equal.

In simulations, the differences among a conventional
PD control, the control law (13), and the control law
(34) plus the learning law (38) are examined. The pa-
rameters are set as Kd = 500, Kp = 1000, Kf = 25,
Γ = diag[100, · · · , 100], n = 10. Note that the common
parameters have the same values to clarify the effects of
new terms or new dynamics. The results are shown in
Fig. 4, Fig. 5, and Fig. 6, respectively.

In the case of PD control, the ankle joint angle θ
stays around 0 due to the high feedback gain (Fig. 4
top). However, ground reaction forces FT and FH that
are required to prevent the foot segment from rotating
often take negative values (Fig. 4 bottom), indicating
that tumbling would occur for the usage of high-gain PD
control in an actual situation.
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Fig. 6 Results of feedback control of ground reaction forces
with learning. The graphs represents time course of the same
variables as in Fig. 5. In the bottom graph, however, the
component of the ankle joint torque, i.e., the first and second
term in (34) is also illustrated. As the learning progresses, the
second term is gradually replaced by the first term.

When, on the other hand, we introduce feedback on
ground reaction forces, the ankle joint angles are ad-
justed according to the periodic external forces (Fig. 5
top). Owing to this behavior, the ground reaction force
never takes a negative value (Fig. 5 middle). The bot-
tom graph in Figure 5 shows the torque profile in this
simulation. Comparisons of these results indicate the im-
portance of the ground reaction force feedback in con-
trolling biped balance in an uncertain environment.

Furthermore, we add the learning law to our control
law. As shown in Fig. 6, the profiles of the ankle joint
angle (top), ground reaction forces (middle), and total
ankle joint torque (bottom) do not change so much, and
balance is kept all the same. However, as shown in the
bottom graph of Fig. 6, we can observe the change in the
components of ankle joint torque: the term that includes
the feedback on the ground reaction forces decreases,
while the term that doesn’t include it increases to occupy
almost all of the total ankle joint torque.

In summary, although information on the ground re-
action forces is essential to maintaining balance adap-
tively in an uncertain environment, it becomes unneces-
sary once the uncertain factors regarding to the regular-

environment

periodic external force

(0)

Controller without GRF feedback

GRF feedback controller
Copy

Fig. 7 Block diagram of control scheme. GRF denotes
ground reaction force, and p is a differential operator.

ity in a steady environment, which here corresponds to
the constant parameters expressing the periodic external
forces, are learned. Then, a torque pattern adequate to
the current environment is internally generated.

5 Discussion

Control schemes in which feedforward control replaces
feedback control have been proposed in many works (Kawato
et al., 1987; Gomi and Kawato, 1993; J-J. E. Slotine,
1991). Especially, along the lines of feedback error learn-
ing, Gomi et al. (Gomi and Kawato, 1992) propose a
model of vermis in spinocerebellum that acts as an adap-
tive feedback controller for human posture control. The
learning in those works is a kind of supervised learning
that requires explicit reference signals for desired mo-
tions. In our framework, however, these reference sig-
nals are not indispensable: the torque pattern is self-
organized with respect to external forces. Such a con-
figuration is possible by virtue of feedback of the force
(ground reaction forces) information as well as the static
nature of biped balance control. The goal of balance con-
trol is generally to keep the position of CoP of ground
reaction forces at a constant desired position without
falling over even in the midst of disturbances (see the
next paragraph). Therefore, balancing motions are not
given as explicit reference signals, but emerges as a result
of positional feedback of CoP. Then, the construction of
control scheme including force signal requires some mod-
ification of mathematical treatments to prove the con-
vergence of the learning dynamics. In addition, to cope
with a disturbance, in our framework the feedforward
controller learns the dynamics not only of the controlled
object but also of the environment represented by a peri-
odic external force. Thus, the stationary condition is re-
quired to accomplish the learning. After the learning, the
feedforward controller works as a motion pattern gener-
ator that directly outputs the torque required achieving
balance under the periodic external force.

The analysis in this paper requires some assump-
tions about the biped-balancing model. However, some
of those assumptions can be removed. First, the shape
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of a supporting segment can be extended to that of a
normal one, with unequal horizontal distance from the
ankle joint to the heel and toe as well as various dis-
tances from the ankle joint to the ground level. These
extensions can be seen in the Appendix. Second, the as-
sumption that the foot contacts the ground at two points
can be removed; making FH − FT = 0 is equivalent to
controlling the CoP to the midpoint of the supporting
segment. The CoP position from the midpoint of the
supporting segment, PCoP , is given as

PCoP =
FH − FT

FH + FT
· `. (59)

When the motion of the supporting segment is slow,
FH + FT is approximately equal to the total mass (M +
m)g. Therefore, (11) becomes

τ = −Kdθ̇ −Kpθ + K ′
f

∫
PCoP dt, (60)

where K ′
f is constant, satisfying

K ′
f = K(M + m)g/`. (61)

This expression implies that, even though the foot seg-
ment contacts the ground at many points, our feedback
control and learning laws are feasible if the position of
CoP is detectable. Thirdly, based on the above consider-
ation that the balance control law in this paper is equiv-
alent to the feedback control of the CoP position, the
extension to three-dimensional balance control is not dif-
ficult.

We here considered motion pattern learning based on
regularities in the environment. In our framework, a new
motion pattern should be learned for even slight change
in environmental conditions. One possible method to re-
duce amount of the information processing on the learn-
ing is to retrieve, from a variety of stored motion pat-
terns, an adequate pattern that matches an environmen-
tal pattern already experienced. Although this strategy
reduces the need for massive memory space to store
many kinds of movements for all environmental condi-
tions, the patternization of motor behaviors is a com-
mon strategy observed in biological motions. The motion
pattern selection strategy requires a recognition process
that determines whether a new pattern should be learned
or the memorized pattern should be retrieved for given
environmental conditions. This topic is beyond the scope
of this paper, but it is an important problem to address.

6 Conclusion

In this paper, we have considered balance control in a
steady environment, which contains an unknown regu-
larity such that constant and periodic external forces are
exerted. The control scheme we have proposed here is de-
picted in Fig. 7.In order to maintain balance adaptively

against unknown external forces, information on ground
reaction forces is crucial. However, because the external
forces are periodic and their periods are known, the reg-
ularity observed in the steady environment (that is, the
periodicity) is learned and is incorporated into the con-
troller through the balancing motion. As a result, the
adaptive balance control dispenses feedback information
on the ground reaction forces. While this information
is being learned, the output of the feedback controller
for the ground reaction force is copied to the feedfor-
ward controller in the sense that this controller does not
contain the feedback on the ground reaction forces. The
output of the feedforward controller is constructed by
the weighted sum of the basis functions that mainly ex-
pand the external forces, and hence the weight is stored
as new knowledge of the current environment.

For future works, we are considering the experimen-
tal verification of this theory, its extension to an external
force having an unknown period, and its application to
locomotion control.

A Appendix: Extension to normal foot shape

A.1 Extensional model

The model for biped balance is generalized to a normal
foot shape, as shown in Fig. 8. Notations are as follows:
`T and `H are the horizontal distances from the ankle
joint to, respectively, the toe and heel; `G is the horizon-
tal distance from the ankle joint to the CoG of the foot;
and `A is the ankle joint height.

From the balance of moment, the relation between
ground reaction forces and ankle joint torque is given as

FT = − 1
2`

τ + mT g +
`H

2`
fy − `A

2`
fx (62)

FH =
1
2`

τ + mHg +
`T

2`
fy +

`A

2`
fx (63)

where 2` = `T + `H , fx and fy are defined in (2) and
(3), and mT and mH are the weight of the foot segment
placed on the toe and heel, respectively:

mT =
`H + `G

2`
m, mH =

`T − `G

2`
m (64)

In addition, we can consider not only external force but
also external torque τe, which is also unknown and is ex-
erted to the inverted pendulum. Then, the motion equa-
tion of the inverted pendulum is given as

Iθ̈ = (Mg − Fy)L sin θ + FxL cos θ + τe + τ

= AL sin(θ − θf ) + τe + τ (65)

Now, we define the ankle joint torque as (11) (or
(13)). Then we discuss the stationary state and its sta-
bility.
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A.2 stationary posture

From (62) and (63), we obtain

τ̇f =
1
`
τ + (mH −mT )g +

`T − `H

2`
fy +

`A

`
fx (66)

Here, τf is defined in (12). The stationary states can
be calculated by setting the dot term to zero in (13),
(65), and (66). At the stationary state, fx = −Fx and
fy = Mg−Fy are satisfied. Thus, the stationary state is
expressed by the solutions of these algebraic equations:

AL sin(θ̄ − θf ) + τe + τ̄ = 0 (67)

1
`
τ̄ + (mH −mT )g +

`T − `H

2`
(Mg − Fy)− `A

`
Fx = 0

(68)

where variables with a bar indicate constant values in the
stationary state. From (67) and (68), non-zero torque

τ̄ = −(mH −mT )g`

−1
2
(`T − `H)(Mg − Fy) + `AFx (69)

is necessary to maintain the stationary posture. Substi-
tuting the above equation to (62) and (63), we obtain

FT = FH =
1
2
(mH + mT )g +

1
2
(Mg − Fy) (70)

This equation means that the CoP stays at the midpoint
of the foot segment. In the case of a normal foot shape,
the moment around the midpoint of the foot segment is
cancelled by slanting the body segment, whose posture,
i.e., θ̄, is determined so that the moment caused by ex-
ternal force, external torque, and ankle joint torque are
cancelled, as denoted by (67). This strategy requires a
non-zero torque of the ankle joint at the stationary state.

e

Fig. 8 Extended model with general foot shape. Notations
are the same as in Fig. 1 besides external moment τe, hori-
zontal distance from ankle joint to heel `H , to toe `T and the
CoG of the foot segment `G and the ankle joint height `A

A.3 stability

The angle of the ankle joint at the stationary state,
which should satisfy the algebraic equations (67) and
(68), is denoted by θ = θ̄. We linearize (7) and (66)
around the stationary state:

Iθ̈ = (AL cos(θ̄ − θf )−Kp)θ −Kdθ̇ + Kfτf (71)

τ̇f =
1
`
(−Kdθ̇ −Kpθ + Kfτf )

−`T − `H

2`
MLθ̈ sin θ̄ +

`A

`
MLθ̈ cos θ̄ (72)

Here, fx and fy are linearized around θ = θ̄:

f̄x = MLθ̈ cos θ̄ − Fx (73)

f̄y = −MLθ̈ sin θ̄ + Mg − Fy (74)

The charactoristic equation of this linear differential equa-
tion are given as

λ3 + p2λ
2 + p1λ + p0 = 0 (75)

where

p2 =
Kd`−Kf (I + δ(θ̄))`

I`
, (76)

p1 =
Kp −AL cos(θ̄ − θf )

I
, (77)

p0 =
KfAL cos(θ̄ − θf )

I`
(78)

δ(θ̄) =
ML

`
(
1
2
(`T − `H) sin θ̄ − `A cos θ̄) (79)

Thus, the necessary and sufficient conditions under which
the stationary state becomes locally stable are expressed
using the Routh-Hurwitz method as

Kd > (
I

`
+ δ(θ̄))Kf (80)

Kp > AL cos(θ̄ − θf ) (81)

Kf > 0 (82)

(Kd −Kfδ(θ̄))(Kp −AL cos(θ̄ − θf ))

>
I

`
KpKf (83)

In the case of the simple model in Fig. 1, θ̄ = θf and
δ(θ̄) = 0. Then (80)-(83) are equivalent to (22)-(24).
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