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Amplifying the Effects of Contrast Agents on Magnetic Resonance
Images Using a Deep Learning Method Trained on Synthetic Data
Alberto Fringuello Mingo, PhD, Sonia Colombo Serra, PhD, Anna Macula, MSc, Davide Bella, PhD,
Francesca La Cava, PhD, Marco Alì, PhD, Sergio Papa, MD, Fabio Tedoldi, PhD, Marion Smits, MD, PhD,

Angelo Bifone, PhD, and Giovanni Valbusa, MSc
Objectives:Artificial intelligence (AI)methods can be applied to enhance contrast in
diagnostic images beyond that attainable with the standard doses of contrast agents
(CAs) normally used in the clinic, thus potentially increasing diagnostic power and
sensitivity. Deep learning–based AI relies on training data sets, which should be suf-
ficiently large and diverse to effectively adjust network parameters, avoid biases, and
enable generalization of the outcome. However, large sets of diagnostic images ac-
quired at doses of CA outside the standard-of-care are not commonly available. Here,
we propose a method to generate synthetic data sets to train an “AI agent” de-
signed to amplify the effects of CAs in magnetic resonance (MR) images. The
method was fine-tuned and validated in a preclinical study in a murine model
of brain glioma, and extended to a large, retrospective clinical human data set.
Materials and Methods: A physical model was applied to simulate different
levels of MR contrast from a gadolinium-based CA. The simulated data were
used to train a neural network that predicts image contrast at higher doses. A pre-
clinical MR study atmultiple CA doses in a rat model of gliomawas performed to
tunemodel parameters and to assess fidelity of the virtual contrast images against
ground-truth MR and histological data. Two different scanners (3 T and 7 T, re-
spectively) were used to assess the effects of field strength. The approach was
then applied to a retrospective clinical study comprising 1990 examinations in pa-
tients affected by a variety of brain diseases, including glioma, multiple sclerosis,
and metastatic cancer. Images were evaluated in terms of contrast-to-noise ratio
and lesion-to-brain ratio, and qualitative scores.
Results: In the preclinical study, virtual double-dose images showed high degrees
of similarity to experimental double-dose images for both peak signal-to-noise ra-
tio and structural similarity index (29.49 dB and 0.914 dB at 7 T, respectively, and
31.32 dB and 0.942 dB at 3 T) and significant improvement over standard con-
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trast dose (ie, 0.1 mmol Gd/kg) images at both field strengths. In the clinical
study, contrast-to-noise ratio and lesion-to-brain ratio increased by an average
155% and 34% in virtual contrast images compared with standard-dose images.
Blind scoring of AI-enhanced images by 2 neuroradiologists showed signifi-
cantly better sensitivity to small brain lesions compared with standard-dose im-
ages (4.46/5 vs 3.51/5).
Conclusions: Synthetic data generated by a physical model of contrast enhance-
ment provided effective training for a deep learning model for contrast amplifica-
tion. Contrast above that attainable at standard doses of gadolinium-basedCA can
be generated through this approach, with significant advantages in the detection
of small low-enhancing brain lesions.

Key Words: diagnostic imaging, deep learning, amplification of image
enhancement, contrast media, novel deep learning training strategy, synthetic data

(Invest Radiol 2023;58: 853–864)

C ontrast agents (CAs) are commonly used to improve the visibility
of anatomical and pathological features in magnetic resonance

(MR) scans, thus increasing their diagnostic value. Recommended
CA doses have been determined on the basis of efficacy and safety con-
siderations (eg, for gadolinium-based contrast agents [GBCAs], the cur-
rent standard-of-care suggests a dose of 0.1 mmol Gd/kg). However,
several studies indicate that higher doses of CA may be beneficial for
detection and evaluation of smaller lesions, or in cases of low CA up-
take. Examples include leptomeningeal disease,1,2 metastatic cancer,3–8

multiple sclerosis,9–11 inflammatory demyelinating polyneuropathy,12

and pituitary adenomas.13 Moreover, higher CA dose may facilitate di-
agnosis in specific cases of meningioma or schwannoma.14

Administration of larger doses of CA involves substantial devia-
tion from standard-of-care procedures and may have safety implica-
tions, particularly in the light of recent findings on gadolinium retention
and deposition.15,16 Although substantial effort has been devoted to the
development of more sensitive MR acquisition schemes17,18 and CAs
with higher relaxivity,19,20 a promising avenue to boost image contrast
in CA-enhanced MR scans relies on processing of standard images. To
this end, it has been suggested that artificial intelligence (AI) ap-
proaches, using deep learning (DL) techniques such as convolutional
neural network (CNN) or generative adversarial network (GAN)
models, could be used on MR images to recover the contrast of a stan-
dard dose of GBCA from a lower administered dose,21–27 or to generate
an amplified “virtual” contrast, corresponding to higher doses than
those normally used, from standard contrast images.28

A neural network for this purpose is typically build by an
encoder-decoder architecture reading as input precontrast and postcontrast ac-
quired images andgenerating as output an imagewithhigher contrast enhance-
ment. The training procedure involves feeding standard contrast images to the
network and comparing the output with ground-truth high-contrast images,
while adjusting network parameters tominimize a loss function, composed
by 2 pixel wise components (mean absolute error in image and Fourier
transform domain) and a VGG-19–based perceptual component.

The performance of DL is strongly dependent on the size and
quality of the training data set used to model the data distribution.
www.investigativeradiology.com 853
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Training data sets should be large enough and sufficiently diverse to
avoid bias and enable generalization. They should also include data ac-
quired under a variety of different experimental conditions, sometimes
outside standard protocols and typical patient populations. Alas, this
kind of data sets is not always available or easily attainable. By way
of example, training and validating an AI tool for the prediction of
stronger image contrast would require a large set of images acquired
at CA doses outside the range of recommended ones in patients with le-
sions of very different type and conspicuity.

Synthetic data are being increasingly used to implement AI appli-
cations in the clinical arena29,30 with the aim of overcoming the scarcity
of real-world training data. Synthetic data can be generated from pertur-
bation of real data, or by using physical or AI-driven generative models.
Synthetic data can be used to enrich and extend existing data sets, thus
improving generalizability and reproducibility of AI approaches, or
even to replace real-world data when these are not available.31,32

Here, we describe a DL approach based on synthetic training data
to boost image contrast in CA-enhanced MR images. Specifically, we le-
verage a physical model to simulate different levels ofMR image contrast
from a GBCA, and we apply the resulting data sets to train a CNN (as
originally proposed by Lee et al33) to predict contrast at GBCAdoses sev-
eral times larger than those used in the clinical practice. Unlike previous
work on virtual amplification of image contrast,28 our method does not
require acquisition of data outside the standard of care and dedicated
prospective clinical studies, but can leverage standard data sets. This fa-
cilitates enormously the development and extension of AI-based
contrast-boosting methods to a variety of applications.

We developed and assessed our AI tool within a translational ap-
proach in 2 steps. First, in order to test and refine the simulation strategy,
FIGURE 1. Scheme of simulation, training, and inference strategy. The simulati
precontrast and standard-dose images through analytical computation. The t
images as input for a CNN, whereas standard-dose images are used as output
relative to the CA used to create input images. Finally, the inference strategy u
precontrast and standard-dose images. To illustrate this process, a clinical case

854 www.investigativeradiology.com
we performed a preclinical study in a rat model of glioma in which
we collected a full data set comprising both standard (0.1 mmol Gd/kg)
and double-dose images. The virtual double-contrast images generated
by a neural network trained with synthetic data were quantitatively and
qualitatively evaluated against real double-dose images to assess fidel-
ity and to fine-tune model parameters. Moreover, the validity of the ap-
proach was assessed against ex vivo histological data.

In a second step, our AI tool was implemented in a retrospective
clinical study, where 1990 examinations from patients with a variety of
brain diseases were leveraged to generate synthetic images to train the
deep network. Quantitative and qualitative analyses of the AI-enhanced
images were presented and discussed in terms of potential benefits
for detection and evaluation of small lesions in brain conditions such
as metastatic cancer and multiple sclerosis.

MATERIALS AND METHODS

Study Design
The purpose of the present study was to train a CNN to virtually

double the effects of the CA. To this end, we started from a data set com-
prising images acquired before CA administration (hereafter named as
“pre-CA”) and after 0.1 mmol Gd/kg of GBCA (hereafter named “stan-
dard”), and applied the well-established theory of MR signal to com-
pute half-dose images. Pre-CA and half-dose images were then used
as input to a DL network (see below), whereas standard-dose images
were used as ground-truth to train the network to amplify image con-
trast. See Figure 1 for a scheme of the proposed strategy.

We entertain the hypothesis that, when applied to standard-dose
images, the trained network reliably predicts the contrast that would be
on process is based on a physicalmodel to generate half-dose images from
raining strategy involves the use of precontrast and synthetic half dose
. The network is trained to predict the contrast for a double dose of CA,
ses the trained model to generate a virtual double-dose image from
is presented in the row of images at the bottom.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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generated by a double-dose of CA. This hypothesis was tested experi-
mentally in a preclinical study in laboratory animals, where doses above
standard-of-care can be administered to generate ground-truth high-
contrast images. Experimental high-dose images in the preclinical
model were also leveraged for tuning of hyperparameters. Notably, for
the generation of a training data set, our approach requires only
pre-CA and standard-dose images, thus making the model applicable
in the clinical arena, where data obtained at CA doses above standard-
of-care are scarce.
Physical Model
Magnetic resonance image signal in a contrast-enhanced imag-

ing study can be described using a mathematical expression that de-
pends on the following: MR sequence protocol (gradient echo, spin
echo, magnetization prepared gradient echo, etc); imaging parameters
(echo time [TE], repetition time [TR], and flip angle [α]); tissue param-
eters (proton density, diamagnetic longitudinal time [T10], transverse
relaxation time [T20]); and finally, the local CA's concentration (c), its
longitudinal (r1), and transverse (r2) relaxivity.

Focusing on spin echo as a representative example, the MR sig-
nal equation can be written as:

S ¼ S0 1 − e
−TR 1

T10
þ r1c

� � !
e
−TE 1

T20
þ r2c

� �

This expression can be linearized with respect to the local concentration
c to its first-order approximation. Then, under the assumption of Tofts
model34–37 that pharmacokinetic processes are linear in this range of
doses (between half and full dose) and that local concentration scales
linearly with the dose (ie, the local concentration at half dose is one half
the concentration at standard dose), the MR signal of half dose images
can be calculated as follows:

Shalf dose≅Spre þ f S0, TE, TR, T10, T20, r1, r2ð Þ chalf dose

¼ Spre þ Sstandard dose−Spre
chigh dose

chalf dose ¼ Spre þ Sstandard dose−Spre
2

where S is the MR signal precontrast, at half dose or standard dose as
indicated in the subscripts, and c is the local concentration of CA at half
dose or standard dose as indicated in the subscripts.
TABLE 1. MRI Acquisition Parameters Used in the Preclinical and Clinical

Protocol Preclinical

Machine and B0

Bruker Pharmascan
70/10 Scanner 7 T

Bruker Biospe
47/30 Scanner 3

Modality T1-weighted T1-weighted
Sequence 2D spin echo 2D spin echo
TR 360 ms 400 ms
TE 5.51 ms 14.3 ms
FOV 32 � 32 mm 32 � 32 mm
Matrix size 256 � 256 256 � 256
Planar resolution 125 � 125 μm 125 � 125 μm
Slice thickness 0.75 mm 1.2 mm

B0, the static magnetic field; TR, repetition time; TE, echo time; FOV, field of view

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
Data Sets

Preclinical Study
Procedures were conducted according to the national and inter-

national laws on experimental animal research (L.D. 26/2014; Directive
2010/63/EU) and under a specific Italian Ministerial Authorization
(project research number 384/2021-PR).

Forty-eight male Wistar rats (Charles River Laboratories, Calco,
Italy), aged 7–8 weeks (250–300 g body weight), underwent a surgical
procedure to induce a glioma by orthotopic injection of C6 rat glioma
cells.38,39 Rat glioma cells were supplied by Sigma Aldrich (ECACC)
and cultured in DMEMF-12 medium supplemented with 10% fetal bo-
vine serum, 2 mM glutamine, 100 IU/mL penicillin, and 100 μg/mL
streptomycin. For tumor induction, cells were collected, washed 2 times
with PBS, and finally a total number of 106 cells were resuspended in
10 μL of DMEM F-12.

Rats were subcutaneously injected with carprofen (5 mg/kg)
1 hour before the surgery. Anesthesia was induced with sevoflurane
gas and then maintained systemically with Rompun (5 mg/kg) and
Zoletil (20 mg/kg). Each rat was then mounted on the stereotaxic appa-
ratus to identify the injection site (0.8 mm anterior, 3.2 mm lateral to
bregma and 6 mm ventral to bone). The injection was carried out by
using a Hamilton syringe with needle's tip (25 gauge) cut in order to
yield more accurate cells release, at a rate of 1 μL/min. The volume
was releasedmanually via repeated administrations of 1 μL each 60 sec-
onds. The needlewas carefully and slowly removed 15minutes after the
end of the injection to avoid cell dispersion.

In a timewindow ranging between 7 and 16 days after tumor induc-
tion, 44 animals that survived tumor induction procedure and did not show
severe clinical signs40 underwent contrast-enhanced MR imaging for a
total of 2/3 sessions. Each examination was recorded 24–48 hours apart.

A total of 121 examinations (acquired at 3 T or 7 T and pooled
together) were collected from the 44 animals, each composed of a pre-
CA, a standard-dose image, and a double-dose image. For each exami-
nation, an additional image corresponding to the administration of half
the standard dose (“half dose”) was generated applying the simulation
strategy described previously.

Magnetic resonance imaging was performed on 2 different pre-
clinical scanners (Bruker Biospin, Ettlingen, Germany): Biospec 47/30
operating at 3 T equipped with a 4-channel rat head surface coil and
Pharmascan 70/10 operating at 7 T equipped with a quadrature volume
rat head coil. Two different scanners were used to test the effects of field
strength on the performance of our AI approach. Each animal underwent
1 or 2 sessions for each scanner for a total of 3 sessions at most.

The contrast-enhanced MR protocol consisted of the acquisition
of spin echo T1-weighted images before CA administration, after the
Protocols

Clinical

c
T

MRI Philips Panorama 1 T, MRI Philips Prodiva CX 1.5 T,
MRI GE Signa Twin 1.5 T, MRI Philips Achieva XR 3 T

T1-weighted
Mainly 2D spin echo
476 ms (±100 ms)
11.9 ms (±3.6 ms)

—
—

478 � 478 μm (±143 � 143 μm)
4 mm (±1 mm)

.

www.investigativeradiology.com 855
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FIGURE 2. Exclusion flowchart for clinical data set.
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first intravenous administration through the caudal vein of ProHance
(Bracco Imaging, Milan, Italy) at “standard dose” 0.1 mmol Gd/kg
and after a second administration of 0.1 mmol Gd/kg. The CAwas ad-
ministered after dilution in saline to a concentration of 100 mM at an
injection rate of approximately 1 mL/min. The first postcontrast acqui-
sition started with the first injection of CA. The second postcontrast ac-
quisition started immediately after the end of the first scan, at the time
of the second injection. On first approximation, pharmacokinetic ef-
fects that may occur in the time window between the administration
of the 2 doses were not taken into account, and the second postcontrast
acquisition was assumed to correspond cumulatively to a “double-
dose” acquisition. This scheme increases statistical power, making it
possible awithin-subject analysis, thus reducing the number of subjects,
according to the principles of 3R.

T1-weighted images were acquired with the parameters reported
in Table 1.
FIGURE 3. Deep learning network architecture used in this work. This model is
3 encoder steps and a series of 3 decoder steps.

856 www.investigativeradiology.com
Clinical Study
A total of 4711 central nervous systemMR imaging examinations,

acquired between January 2012 and March 2020 at Centro Diagnostico
Italiano (CDI, Milan, Italy; Bracco Group), were considered for inclusion
in this retrospective monocentric study approved by the institutional re-
view board (registration number 181/2020). Patients older than 18 years
who underwent MR contrast-enhanced brain scans, including a pre-CA
and postcontrast image with the same repetition time, axial orientation,
and acquisition matrix, were considered for inclusion. The flow diagram
(Fig. 2) details the exclusion mechanisms. One thousand nine hundred
ninety (of the 4711 collected examinations) with a variety of brain pathol-
ogies (eg, meningioma, multiple sclerosis, neurinoma, etc) were included
in the study.

The acquisitions were performed using either General Electric or
Philips scanners operating at different magnetic field strengths ranging be-
tween 1 T and 3 T (MRI Philips Panorama 1 T, MRI Philips Prodiva CX
1.5 T, MRI GE Signa Twin 1.5 T, and MRI Philips Achieva XR 3 T).
Most of collected T1-weighted images were 2D spin echo sequences
acquired with the parameters reported in Table 1.

Image Preprocessing
Contrast-enhanced images and the corresponding pre-CA acqui-

sitions were geometrically aligned using the SimpleElastix41 software
package with a nonrigid registration procedure. A visual quality check
was finally performed through a graphical user interface (GUI) inter-
nally developed with PAGE (an open-source program) to exclude the
presence of artifacts in the generated images (eg, related to the failure
of the coregistration procedure).

Magnetic resonance imaging signal was normalized to have the
pre- and half-dose images mapped onto the [0, 1] range, by dividing
each image by the maximum value of the synthetic half dose image.
Hence, signal in the standard- and double-dose image can exceed the
value of 1.

Deep Network Structure
Description of Network.We implemented a U-net like encoder-decoder
convolutional neural network as originally described by Lee et al,33 and
as represented in Figure 3. The proposed network consists of an encoder
and a decoder. The encoder is a series of 3 convolutional and pooling
layers that down-sample the input image while extracting features from
it. The decoder is a series of 3 up-sampling and convolutional layers that
reconstruct the original image size. Each level of the encoder and
decoder path consists of a residual block with 2 sequential 3 � 3
convolution layer with batch normalization and rectified linear unit
(ReLU) activation and a “shortcut” connection consisting of a 1 � 1
convolution with ReLU and batch normalization. The output of the
3 � 3 convolution layers is added to the output of the 1 � 1
an encoder-decoder convolutional neural network consisting of a series of

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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convolution creating the residual connection. In the encoder, each stage is
followed by a 2� 2max pooling layer, while 2� 2 up-sampling layers are
used in the decoder to increase the spatial resolution. Similarly to the
original U-net architecture, skip connections are added to connect
corresponding levels of the encoder and decoder paths. The number of
channels used in each convolution layer is shown in Figure 3. The
resolution of the input layer is 256 � 256. The cost function (described
below) compared the prediction and the reference ground-truth full-dose
image, which enabled the optimization of the network parameters.

Network Training. Using pairs of pre-CA and simulated half-dose
images as input and standard-dose images as ground-truth, the
network was trained to predict standard-dose images.

The data set was split in training set (70%), validation set (20%),
and test set (10%) to train and validate the DL model. Data augmenta-
tion, consisting of rotations, flips, was applied to images of the training
set to avoid overfitting and ensure the robustness of the model. A key
step in the data augmentation is the adjustment of noise levels to be
added to half-dose images to match realistic signal-to-noise and
contrast-to-noise levels. To this end, we added normally distributed
noise with zero mean and tunable standard deviation (SD) to the simu-
lated images. Normally distributed noise was added, rather than Rician
noise, since Rice distribution approaches a Gaussian one at sufficiently
high signal-to-noise ratio (SNR) (>2).42 Since the level of added noise
affected the performance of the network, this parameter was treated
as hyperparameter.

Stochastic gradient descent and back-propagation were used to
optimize the network weights and bias. A 3-component composite loss
was used as cost function: mean absolute error (MAE), MAE in the
Fourier transform space, and the perceptual loss43 based on the VGG-
1944 network pretrained on the ImageNet data set and cut at the fourth
pooling layer. To match the size of our input with that of VGG-19 net-
work (ie, 3 channels input layer, being trained on RGB images) for each
image a 3 channels tensor is created by repeating the grayscale image 3
times. The 3 components of the loss were normalized to balance their
weight during training. The normalization procedure consisted of train-
ing a network with only one loss component and measuring its mean
TABLE 2. Description of the Clinical Evaluation Studies

Aspect Study 1

Rationale To quantitatively assess the increment of CNR
and to qualitatively score DC, CE, AS, and
5-point Likert scale

Image data set presented
to radiologist

A total of 60 patients (for a total of 120 cases/
60 true standard dose and 60 virtual double
were randomly selected and then included
in the present study

Pathologies included • Meningioma (n = 10)
• Multiple sclerosis (n = 10)
• Glioblastoma (n = 10)
• Astrocytoma (n = 10)
• Metastases (n = 10)
• Angioma (n = 10)

Readers numbers 2 board-certified neuroradiologists (I.L.T. and
19 and 1.5 years of experience, respectively
to image source dose (ie, standard dose or
virtual double dose)

Question asked
to radiologists

• During the quantitative evaluation: to plac
case a first ROI in the largest homogenous
area of the lesion and a second ROI in the c
cerebral parenchyma (avoiding large blood
• During the qualitative evaluation: to grade
case DC, CE, AS, and IQ on a 5-point Like

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
value. Thismeanvaluewas then used to normalize each loss component
so that the mean value was set to one. Then, 3 weights were included in
the loss function (“a,” “b,” “c”) to modify the relative contribution of
each component and to study their effect on the final image quality
(IQ). Specifically, the following hyperparameters were subjected to
the tuning process: weight of MAE as pixelwise loss component
(“a” = 0.5, 1 or 2) and weight of perceptual loss component (“c” = 1,
2, or 5). Similarly, different values of noise SD (ie, 0.0075, 0.01,
0.015, 0.03) were investigated. For each hyperparameter setting (weight
of loss components and SD of noise), 5 repetitions of training and testing
were carried out after shuffling training, validation, and test data sets.
Training was performed with 250 epochs of stochastic gradient descent
using ADAM as optimizer with learning rate 0.01 and decay 0.001.

Each trained network was then applied to predict virtual double-dose
images using pre- and standard-dose images as input.

Preclinical Evaluation
Similarity of virtual double-dose and standard-dose images

against real double-dose images was assessed using peak SNR (PSNR)
and structural similarity index (SSIM),45,46 respectively, a measure of
voxel-wise differences (errors) and nonlocal structural similarity. The
metrics were computed for both standard-dose images and the virtual
double-dose images against the ground-truth, that is, the experimental
double-dose image, to study the similarity improvement obtained by the
CNN. Data are shown as average values ± standard error. The significance
of statistical difference was assessed by a Student t test.

Clinical Evaluation
As detailed in Table 2, 2 evaluation studies were performed: the

first one aimed at quantitatively assessing the increment of contrast-to-
noise ratio (CNR) and lesion-to-brain ratio (LBR), and the second one
aimed at qualitatively scoring the visibility of small lesions.

Study 1. For the quantitative and qualitative evaluation of model
performance, a subset of 60 patient scans were randomly selected and
included in the test set: 22 males and 38 females; mean age,
56 ± 15 years (min = 27, max = 81 years); scanners: MRI Philips
Study 2

and LBR
IQ on a

To qualitatively score, the visibility of small lesions
on a 5-point Likert scale

images:
dose)

A total of 30 patients (for a total of 60 cases/images:
30 true standard dose and 30 virtual double dose)
were randomly selected and then included in
the present study
• Metastases (n = 15)
• Active multiple sclerosis (n = 15)

M.P. with
) not blinded

3 board-certified neuroradiologists (N.C., C.D.G.,
and G.S. with 40, 44, and 47 years of experience),
respectively, blinded to the image source dose
(ie, standard dose or virtual double dose).

e on each
enhancing
ontralateral
vessels)
for each
rt scale

To qualitatively grade for each case visibility,
degree of delineation and brightness of small
enhancing structures on a 5-point Likert scale

www.investigativeradiology.com 857

www.investigativeradiology.com


FIGURE 4. Representative example of pre-CA (A), standard-dose image (B), real double-dose image (C), and virtual double-dose image (D), and
difference image between real double-dose and virtual double-dose (E) from an examination acquired at 7 T (top row) and 3 T (bottom row).
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Panorama 1 T (n = 11), MRI Philips Prodiva CX 1.5 T (n = 27),MRI GE
Signa Twin 1.5 T (n = 19), and MRI Philips Achieva XR 3 T (n = 3);
even distribution of pathologies (meningioma [n = 10], multiple
sclerosis [n = 10], glioblastoma [n = 10], astrocytoma [n = 10],
metastases [n = 10], angioma [n = 10]). A total of 120 (60 true
standard dose and 60 virtual double dose) cases were presented to 2
board-certified neuroradiologists (I.L.T. and M.P. with 19 and 1.5
years of experience respectively). During the quantitative evaluation,
the readers independently placed the first region of interest (ROI) in
the largest homogenous enhancing area of the lesion and a second
ROI in the contralateral cerebral parenchyma (avoiding large blood
vessels). The percentage variation of CNR and LBR of virtual double
dose with respect to standard dose was computed for each case with
at least 1 enhancing lesion, according to the formulae:

CNR ¼ SI lesion − SIbrain
SDbrain

LBR ¼ SIlesion
SIbrain

where SIROI and SDROI, respectively, denote the average signal intensity
(SI) and its SD in a given ROI (where ROI = lesion, brain). Data are pre-
sented as average values ± standard error. During the qualitative evalua-
tion, the readers independently graded diagnostic confidence (DC),
clarity of the enhancement (CE), artifact suppression (AS), and IQ on
a 5-point Likert scale. Average scores and related 95% confidence in-
tervals were both calculated across readers and type of the image.

Study 2. In a second run of clinical evaluation, the original standard-dose
images and the virtual double-dose images were qualitatively evaluated
by neuroradiologists N.C., C.D.G., and G.S. with 40, 44, and 47 years
of experience, respectively, blinded to the image source. The readers
FIGURE 5. Representative example of pre-CA (A), standard-dose image (B), re

858 www.investigativeradiology.com
independently graded visibility, degree of delineation, and brightness
of small enhancing structures (larger diameter on average 3.54 ± 1.05 mm;
min = 1.04 mm and max = 5.47 mm) on a 5-point Likert scale on 15
cases of metastases (larger diameter on average 3.70 ± 1.26 mm;
min = 1.04 mm and max = 5.47 mm) and 15 cases of active multiple
sclerosis (larger diameter on average 3.37 ± 0.81 mm; min = 2.33 mm and
max = 5.12 mm). Average score across readers and type of the image was
computed using 2-tailed t test, with a 5% level used for confidence
intervals and statistical significance.
RESULTS

Preclinical Results
Figure 4 shows representative examples of experimental pre-CA,

standard-dose, and double-dose images compared with AI-generated virtual
double-dose images for 2 subjects at 2 different magnetic field strengths
(7 T, top row, and 3 T, bottom row). At both fields, virtual double-dose im-
age contrast is substantially enhanced compared with that of standard-dose
images, with good delineation of lesion boundaries and tumor heterogeneity
in qualitative agreement with the experimental double-dose images.
The enhancement of the virtual double-dose image contrast is also ap-
parent in the lateral ventricles and in cortical blood vessels.

The lesions displayed in Figure 4 are characterized by
well-defined hyperintense rims. In contrast, Figure 5 presents MR im-
ages of a tumor infiltrating subcortical areas, where lower CA uptake
makes it difficult to identify tumor boundaries in the standard-dose im-
age (Fig. 5B). Visual inspection of real and virtual double-dose contrast
(panel “c” and “d,” respectively) shows substantial enhancement of
CNR in brain regions away from the point of implantation. Importantly, his-
tological examination of postmortem tissue demonstrates correspondence
of virtual contrast with neoplastic tissue in the infiltrated regions. Addi-
tional illustrative comparisons of real and virtual double-dose contrast
al double-dose image (C), virtual double-dose (D), and histology (E).

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 7. Evaluations using quantitative nonsubjective similarity metrics
(PSNR [dB] panel A and SSIM panel B) of acquired standard-dose and
virtual double-dose compared against acquired double-dose
ground-truth on testing data sets. *P < 0.05. **P < 0.01. ***P < 0.

FIGURE 6. Representative example of double-dose image (A), virtual double-dose with noise 0.0075 (B), 0.01 (C), 0.015 (D), and 0.03 (E). SSIM at 7 T (F)
and SSIM at 3 T (G). *P < 0.05. **P < 0.01. ***P < 0.
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images with histological slices are reported in the Supplementary Material
section, http://links.lww.com/RLI/A839.

Focusing on CNN optimization, as described in the Methods
section, a small albeit appreciable influence of the weights “a,” “b,”
and “c” was observed (up to 1 dB and 0.5 percentage points for PSNR
and SSIM, respectively). Parameters were tuned to increase metrics
values of double virtual dose against acquired virtual dose as much as
possible. The best result was obtained setting “a” = 0.5 and “c” = 1.
The second best results were obtained with “a” = 2 and “c” = 5.

The effect of the noise level is shown in Figure 6, where repre-
sentative images at increasing noise are reported, as well as a
quantitative evaluation based on SSIM. The SSIM was chosen as a
metric because it is known to better represent changes in structural in-
formation compared with pixel-wise metrics based on absolute errors
(such as MSE or PSNR). According to SSIM, the higher the noise, the
higher the similarity between acquired and virtual double dose. Visu-
ally, at low noise level, the image shows a texture that differs from
ground-truth, showing artificial fluctuations of gray levels in the healthy
brain parenchyma. At increasing noise fluctuations, results smoothed up
to a slightly over blurring for the highest values. The best compromise
appears to be the intermediate levels of noise equal to 0.015 for both
magnetic field strengths, for which the SSIM values are higher than
those obtained with standard dose, and at the same time the blurring
is moderate.

After model optimization, quantitative comparison of the exper-
imental and virtual double-dose images was performed on a test data set
comprising 13 randomly selected subjects. We used 2 different metrics,
PSNR and SSIM, and results were averaged over 5 repetitions of train-
ing, shuffling training, validation, and test sets. Figure 7 shows the sum-
mary statistics across all subjects included in the test sets for both indi-
ces at 3 T and 7 T. It should be noted that the metrics were conserva-
tively computed over the entire image, without prior segmentation of
the tumor lesion. Virtual double-dose images show high degrees of sim-
ilarity to real double-dose images for both PSNR and SSIM (29.49 dB
and 0.914 at 7 T, respectively, and 31.32 dB and 0.942 at 3 T) and
highly significant improvement over standard-dose images at both field
strengths (light gray bars).
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc. www.investigativeradiology.com 859
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Clinical Results
The network architecture and training procedures that were opti-

mized and validated on the preclinical data set were subsequently
applied to a large set of clinical data comprising a variety of brain con-
ditions. Examples of representative cases are reported in Figure 8,
where experimental pre-CA and standard-dose images are compared
with virtual double-dose ones. Consistent with the preclinical findings,
virtual double-dose contrast improves delineation of lesion boundaries
and enhances tumor texture compared with standard-dose images,
while leaving bright the pre-CA T1 perilesional hyperintense signal.
Strong contrast enhancement is also observed in blood vessels, which
appear as prominent features in the virtual double-dose contrast images.

The virtual double-dose images were quantitatively and qualitatively
evaluated in 2 reading studies, against the original standard-dose acquisition.

The quantitative assessment of the degree of the amplification
of virtual double-dose contrast images was evaluated for a subset of
FIGURE 8. Representative clinical cases of astrocytoma,metastases,multiple scl
B and E, Standard dose postcontrast image. C and F, Virtual double-dose image

860 www.investigativeradiology.com
60 patients with various brain pathologies. Results are summarized
in Figure 9. The percentage gain in CNR (virtual double dose contrast
vs standard dose) and LBR are shown in Figure 9A and Figure 9B, re-
spectively, for the ROIs selected by 2 independent expert readers.
Contrast-to-noise ratio and LBR are consistently increased by an aver-
age 155% and 34%, respectively, with no significant differences for the
2 readers. The qualitative scores assigned by the 2 neuroradiologists in-
dicated that the CE is maintained acceptable to good for both standard
dose and virtual double dose according to reader 1 and increased by 0.5
points in virtual double dose with respect to standard dose according to
reader 2 (see Table 3). Both the 2 readers perceived also DC, IQ, and
AS not compromised in the virtual double-dose image with respect to
that of the standard-dose image. The average qualitative score and the
related confidence of interval exhibit a perception acceptable to good
for the virtual double-dose contrast as well as for standard-dose image
(see Table 3).
erosis, and glioblastoma, respectively, from top to bottom. A andD, Pre-CA.
. The red square indicates the zoomed area showed in panels D, C, and F.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 9. Contrast evaluations using quantitative nonsubjective metrics
(%CNR and %LBR) of virtual double-dose images compared against
standard-dose acquisitions on testing data sets.
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The qualitative assessment in terms of visibility, degree of delin-
eation, and brightness of small low-enhancing lesions was performed in
a subset of 30 patients, 15 of whom affected by multiple sclerosis and
the remaining by multiple metastases. As detailed in Table 4, the virtual
double-dose images were preferred by all 3 readers. On average be-
tween readers, standard-dose images were graded 3.51 of 5 (average
to good), whereas virtual double-dose images were graded 4.46 of 5
(good to excellent). Two representative examples of small lesion virtu-
ally enhanced by our model are shown in Figure 10.
DISCUSSION
In this study, we have implemented and assessed a training strat-

egy that uses synthetic data to enhance the image contrast of GBCAs in
diagnostic MR images. The proposed approach involves using syn-
thetic half-dose images to train the model to virtually double the CA
dose, and then applying the trained network to standard images to pro-
duce virtual image contrast equivalent to double the standard dose. To
optimize the model and verify the strategy, we conducted a dedicated
TABLE 3. Average Scores of CE, DC, AS, and IQ for the Selected Test Sam

Reader
ID

CE DC

Standard
Dose

Virtual Double
Dose

Standard
Dose

Virtual Doub
Dose

Reader 1 3.92 (3.8, 4.1) 3.85 (3.7, 4.0) 3.92 (3.7, 4.1) 3.33 (3.1, 3.6
Reader 2 3.50 (3.2, 3.8) 4.02 (3.8, 4.3) 3.62 (3.4, 3.9) 3.40 (3.2, 3.6

Grades are expressed on a 5-point Likert scale ranging from 1 (poor) to 5 (excellen
parentheses.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
preclinical study using an animal model of brain tumor. This study en-
abled us to fine-tune the model hyperparameters by comparing the vir-
tual contrast imageswith ground-truth double-dose images that may not
be available in the clinical database. In addition, we were able to con-
firm our hypothesis that the trained network can reliably predict the
contrast that would occur from a double CA dose when applied to
standard-dose images.

For the present study, we chose to focus on contrast enhance-
ment of brain lesions. Besides the obvious clinical relevance of brain
neoplastic and metastatic disease, a largely unmet medical need, the
choice was driven by the favorable characteristics of neuroimaging
data. From a technical point of view, brain MR images are less affected
by susceptibility and motion artifacts than, for example, abdominal im-
ages, and can present a broad variety of lesions, with different size, def-
inition, conspicuity, and CA uptake. Hence, brain images are less prone
to artifacts and offer an ideal arena for the implementation and valida-
tion of our training approach.

For the preclinical study, a model of brain glioma based on im-
plantation of C6 cells was selected. C6 cells grow intracerebrally in
Wistar rats forming tumors that mimic several characteristics of malig-
nant human glioma including nuclear pleomorphism, high mitotic in-
dex, foci of tumor necrosis and intratumoral hemorrhage, parenchymal
invasion, diffuse infiltrative borders, and palisading cells surrounding
areas of necrosis.11,47,48 Hence, this model offers a variety of features
that facilitate generalization of the method to detection of a variety
of lesions.

Two different metrics, PSNR and SSIM, were chosen for the
comparison of virtual contrast and ground-truth images in the preclini-
cal study. Peak signal-to-noise ratio is a standard metric based on MSE,
which estimates the errors between images. Structural similarity index
measures the perceptual difference between 2 images and ranges be-
tween −1 and 1 (1 for identical images). Quantitative analysis of the
preclinical virtual double-dose contrast images shows significant im-
provement over the standard-dose and a high degree of similarity to
the double-dose ground-truth for both metrics. We report a difference
of PSNR of 1 dB (at 7 T) and 0.3 dB (at 3 T), and SSIM values of
0.91 (double dose vs virtual double dose) and 0.90 (standard dose vs
double dose). For comparison, in a clinical study where experimental
data were used to predict standard-dose images from low-dose images,
Gong at al6 reported lower absolute SSIM values (0.76 low dose vs
standard dose vs 0.85 synthesized full dose vs standard dose) and
higher PSNR values (5 dB). However, substantial differences between
Gong's study and ours should be noted. First, a much larger amplifica-
tion factor (k = 5) was investigated in Gong's study. Moreover, in our
study, quantitative comparison of predicted and experimental
double-dose images was performed on the entire field of view, which
includes skull and extracranial tissues. Although our results clearly indicate
a statistically significant improvement of the predicted double-contrast over
standard-dose images, the overall sensitivity of our metrics was reduced
due to the inclusion of nonenhancing tissues (eg, muscle) outside the brain
within the image. This is a conservative choice that reduces the measured
ple (n = 60 Standard Dose and n = 60 Virtual Double Dose)

AS IQ

le Standard
Dose

Virtual Double
Dose

Standard
Dose

Virtual Double
Dose

) 3.30 (3.1, 3.5) 2.45 (2.2, 2.7) 3.95 (3.8, 4.1) 3.15 (2.9, 3.4)
) 3.58 (3.3, 3.8) 3.17 (2.9, 3.4) 3.83 (3.6, 4.1) 3.45 (3.2, 3.7)

t). Mean values are reported, with the corresponding standard deviations between
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TABLE 4. Average Scores of Visibility, Delineation, and Brightness of Small Contrast Enhancing Lesion for the 30 Cases of the Selected Test
Sample

Standard Dose Virtual Double Dose Standard Dose vs Virtual Double Dose Counts

Reader average 3.51 (0.62) 4.46 (0.69) P << 0.001* 90
Reader 1 3.67 (0.55) 4.63 (0.56) P << 0.001* 30
Reader 2 3.63 (0.61) 4.63 (0.61) P << 0.001* 30
Reader 3 3.23 (0.63) 4.10 (0.76) P << 0.001* 30
R1 vs R2 P = 0.77 P = 1 NA 30
R1 vs R3 P < 0.05* P < 0.001* NA 30
R2 vs R3 P < 0.05* P < 0.01* NA 30

Grades are expressed on a 5-point Likert scale ranging from 1 (poor) to 5 (excellent). Mean values are reported, with the corresponding standard deviations between
parentheses. Best metrics are shown in bold when the 5% significance threshold is met. *Differences across readers and postcontrast MRI sequences are compared using
2-tailed t tests, and P values are reported.
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effect size, but does not require operator- or algorithm-based segmentation
procedures, thus avoiding potential biases.

Interestingly, the performance of our approach was different at
the 2 magnetic field strengths used for the preclinical study (3 T and
7 T). The difference may be attributed to multiple factors. Beyond mag-
netic field strength, the 2 scanners used for data collection differ in coil
configuration (surface vs volume coils at 3 T and 7 T, respectively).
Moreover, the relaxivity of GBCA is slightly different at the 2 magnetic
field strengths (3.46 vs 3.35 mM−1 s−1 at 3 Tand 7 T, respectively, Shen
et al49). Finally, the different SNR in the 2 sets of images may have con-
tributed to determine different predictive powers.

The contrast amplification effect of the trained and optimized
network was assessed both quantitatively and qualitatively on a large
clinical data set. As expected, a significant increment in contrast was
observed in lesions but was also apparent in blood vessels, thus increas-
ing visibility of vascular network. As these are generally anatomically
distinct from pathology, and as such easy to recognize, their more prom-
inent appearance is unlikely to affect radiological assessment. A slight
loss of anatomical details in the nonenhancing regions (ie, brain paren-
chyma) was reported by all readers. Flattening of gray levels in gray and
white matter is sometimes observed after administration of the CA,19

possibly due to the different densities of capillaries in the 2 tissues.50
FIGURE 10. Representative clinical cases of metastases and multiple sclerosis fi
post contrast image. C and F, Virtual double-dose image. The red square indic

862 www.investigativeradiology.com
Virtual amplification of contrast seems to exacerbate this effect, consis-
tent with differential increase of contrast in gray and white matter.

Contrast amplification is thus far achieved by increasing CA dose
to enhance lesion detection.5,51 In brain metastases for instance, in par-
ticular when there are multiple lesions present, a better delineation and
conspicuity of smaller lesions has an impact on the treatment plan deci-
sion. Engh et al52 reported 29% additional metastases with double-dose
imaging performed for radiotherapy planning; more importantly, this
changed the treatment plan in 89% of patients.

In the present study, we applied our strategy to simulate contrast
corresponding to a virtual double-dose of CA. However, the approach
of generating synthetic data makes it possible to modulate the dose am-
plification factor and to train the model to predict contrast at GBCA
doses several times larger than those used in the clinical practice. Al-
though this possibility has not been explored here in full, it represents
an avenue of further development for our approach.

The present study has potential limitations listed hereafter.
Coregistration of precontrast and postcontrast images is part of the pre-
processing step in our procedure. A not proper coregistration may cause
artifacts that can influence (without compromising) the quality of the
half-dose images simulated through a mathematical function calculated
voxel-wise. Thus, if the voxel correspondence between precontrast and
postcontrast images is poor, application of standard coregistration
rst and second row, respectively. A and D, Pre-CA. B and E, Standard dose
ates the zoomed area showed in panels D, C, and F.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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algorithms may not suffice, and artifacts similar to motion artifact or
partial volume effect might occur. In this study, we excluded by visual
inspection approximately 15% of the patient cohort due to evident mis-
alignment of precontrast and postcontrast acquisitions. The percentage
is rather high, and it could be significantly reduced using more sophis-
ticated coregistration techniques that are already part of the state of the
art but are not object of the present study. A potential solution to work
around the misalignment of images applied for training has been pro-
posed by Haubold et al,53 where the CycleGAN architecture is applied
to abdominal computed tomography in a large animal model. Since
CycleGAN loss does not contain any pixelwise computation, the train-
ing is not affected by coregistration imperfections.

Finally, despite the large number of magnetic field strengths and
the different scanners included in the present study, we note that the clin-
ical study was by nature monocentric. Further retrospective multicentric
studies may be useful to strengthen the results presented here, and to test
generalizability of the proposed AI tool to other clinical contexts.

CONCLUSIONS
In conclusion, the present study proposes a DL approach based

on synthetic training data to boost image contrast in CA-enhanced
MR images. Specifically, we leveraged a physical model to simulate
different levels of MR contrast from a gadolinium-based MR CA, and
we applied the resulting data sets to train a neural network to predict
contrast at a GBCA dose that was double the one normally used in
the clinical practice. Preclinical data from a specially designed study
were used to determine the optimal hyperparameters and to optimize
the model against ground-truth data.

The approach was then applied to amplify contrast in a broad set
of clinical data from subjects with a variety of central nervous system
lesions. Blind reading by expert neuroradiologists demonstrates that
the virtual contrast improves qualitatively and quantitatively delineation
of lesion boundaries and visibility of vascular network compared with
standard-dose images. The proposed AI tool proves particularly effec-
tive in increasing detectability of small, low-enhancing lesion (eg, small
metastasis or multiple sclerosis plaques).
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