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Background: Although several strategies for modelling competing events in
discrete event simulation (DES) exist, a methodological gap for the event-
specific probabilities and distributions (ESPD) approach when dealing with
censored data remains. This study defines and illustrates the ESPD strategy for
censored data.

Methods: The ESPD approach assumes that events are generated through a two-
step process. First, the type of event is selected according to some (unknown)
mixture proportions. Next, the times of occurrence of the events are sampled
from a corresponding survival distribution. Both of these steps can be modelled
based on covariates. Performance was evaluated through a simulation study,
considering sample size and levels of censoring. Additionally, an oncology-related
case study was conducted to assess the ability to produce realistic results, and to
demonstrate its implementation using both frequentist and Bayesian
frameworks in R.

Results: The simulation study showed good performance of the ESPD approach,
with accuracy decreasing as sample sizes decreased and censoring levels
increased. The average relative absolute error of the event probability (95%-
confidence interval) ranged from 0.04 (0.00; 0.10) to 0.23 (0.01; 0.66) for 60%
censoring and sample size 50, showing that increased censoring and decreased
sample size resulted in lower accuracy. The approach yielded realistic results in the
case study.

Discussion: The ESPD approach can be used to model competing events in DES
based on censored data. Further research is warranted to compare the approach
to othermodelling approaches for DES, and to evaluate its usefulness in estimating
cumulative event incidences in a broader context.
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1 Introduction

Discrete event simulation (DES) is increasingly used to model
disease, treatment, and care delivery pathways in healthcare (Günal
and Pidd, 2017; Vazquez-Serrano et al., 2021). Given its event-based
handling of time and the ability to account for resource capacity
constraints, it is an effective and efficient individual-level (or
microsimulation) modelling technique for a range of decision
problems (Marshall et al., 2020). The increased flexibility of DES
compared to more traditional approaches, such as state-transition
modelling, also implies that certain decisions regarding the model
structure and methodologies used may not necessarily be applicable
to such traditional approaches and adjustments must be made when
implementing such a dynamic model (Karnon et al., 2012).

Competing risks or events are common in healthcare and
clinical studies (Pintilie, 2006; Koller et al., 2012; Coemans et al.,
2022) and refer to a situation where there are multiple possible
outcomes that can occur, and the occurrence of one outcome
precludes the occurrence of the others or changes their
likelihood. One of the advantages of DES is the ability to
implement competing risks using different approaches (Barton
et al., 2004; Karnon et al., 2012). In implementing decision-
analytic models, every transition in the model pathway typically
involves competing events. More specifically, if it is possible to move
to more than one model state from a certain state, the transitions to
these subsequent states are competing risks. For example, for a
model structure commonly used in oncology defined by three health
states (i.e., disease free, recurrence, and death), the possible
transitions to the recurrence or death state from the disease-free
state are competing risks. Similarly, in a model of patient flows in an
emergency department, discharging a patient after triaging by a
nurse may be a competing event relative to the patient being referred
to an emergency doctor for further investigations.

The ability to model competing risks using different strategies
allows the modeler to select the approach that best suits the available
evidence and context (Caro and Möller, 2014). Each strategy
necessitates defining a data analysis framework and the required
simulation steps, collectively referred to as a modelling approach. In
terms of competing risks, two broad approaches to time-to-event
estimation are commonly used. When considering competing risks,
there are two broad approaches to time-to-event estimation (Barton
et al., 2004). The first calculates individual time estimates for each
potential subsequent event and proceeds based on which event is
predicted to occur earliest. The second approach also generates an
overall time estimate for the next event but employs an additional
sampling process to identify the specific type of event likely to
happen. Importantly, the likelihood of each event type occurring can
be influenced by this initially sampled time-to-event.

These approaches can be broadly categorised into specific
modelling strategies (Barton et al., 2004; Degeling et al., 2019;
Degeling et al., 2022).

1. Strategy 1—Event-Specific Distributions (ESD): it involves
sampling times to each event and simulating the first event to
occur. It uses event-specific distributions to sample time-to-event
for each competing event and then selects the earliest to simulate.

2. Strategy 2—Event-Specific Probabilities and Distributions
(ESPD): the event type is sampled first based on specific

probabilities, followed by sampling the time-to-event from the
corresponding distribution. The resulting model is a mixture of
event-specific time-to-event distributions, weighted by their
probabilities.

3. Strategy 3—Unimodal and Multimodal Distribution and
Regression (UDR & MDR): the time-to-event is sampled first,
using either a unimodal or multimodal distribution. It then
employs a regression model to determine the specific event
that corresponds to the sampled time.

4. Strategy 4–using discrete time cycles with transition probabilities:
it operates in discrete time cycles and uses transition probabilities
for state changes. This strategy resembles a discrete-time state-
transition model (Siebert et al., 2012) more than a traditional
DES. While it can be useful in certain contexts, it sacrifices the
continuous-time advantages and complex event dependencies
that DES is designed to capture.

Previous research has focused on the ESD, ESPD, UDR, and
MDR modelling strategies in the context of uncensored individual
patient data (Degeling et al., 2019), demonstrating that accuracy
depended on the number of competing events, overlap of time-to-
event distributions for the competing events, and sample size. While
these studies have shown that the ESPD approach performs well and
is straightforward to implement for uncensored data (Degeling et al.,
2019), there is a methodological gap when it comes to censored data,
which is a common challenge in long-term studies and real-world
settings. The impact of data censoring on model accuracy has been
examined for the ESD and UDR approaches (Degeling et al., 2022),
but no framework currently exists for implementing the ESPD
approach in the presence of censoring.

The primary objective of this study is to adapt the ESPD
approach for handling censored data, which will offer several
advantages. Firstly, the ESPD approach has proven to be
effective and straightforward for uncensored data (Degeling
et al., 2019), yet its application is limited by the lack of a
framework to handle censored data. Given the commonality of
censored data in long-term and real-world studies, our study could
significantly expand the method’s applicability. Secondly, while
existing methods like ESD and UDR have frameworks to deal with
censored data, they do not offer the same advantages as the ESPD
in terms of ease of implementation and effective uncertainty
estimation around time-to-event parameters. Addressing this
limitation involves tackling technical challenges, one of which is
the current absence of a well-defined likelihood function tailored
for the ESPD approach in censored data scenarios, a gap that our
study aims to fill.

By addressing this methodological gap, we provide a more
versatile toolset for analysts in this field. On the practical side,
we offer implementations of this adapted ESPD approach in both
Bayesian and frequentist methods using R, thereby catering to a wide
range of statistical preferences and needs. The paper is structured to
provide comprehensive evidence for the tailored ESPD approach.
We start by defining the ESPD approach in the methods section,
followed by a simulation study for accuracy assessment. To
demonstrate its utility in real-world scenarios, a case study is
included for illustration. The paper concludes with a general
discussion that synthesises our findings and outlines directions
for future research.
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2 Methods

We follow standard notation for survival analyses, where T is the
event time or censoring time, a continuous random variable that is
distributed according to a particular probability density function
f(t), with cumulative distribution function 1) F(t) and survival
function 2) S(t) defined as:

F t( ) � P T ≤ t( ) � ∫t

0
f x( )dx (1)

S t( ) � P T > t( ) � 1 − F t( ) � ∫∞

t
f x( )dx (2)

Furthermore, let K � 1, . . . , k be the index set for k mutually
exclusive independent competing events and let Cj be the event
indicator which shows whether person i, i � 1, . . . , n experienced
event j, j � 1, . . . , k, or not. For notational simplicity we encode our
events with the vector c, i.e., if competing event j is experienced,
then cj � 1, ci,i≠j � 0.

Building on 1) and 2), we introduce the ESPD strategy. It offers a
two-step procedure for generating events in a competing risk
scenario. First, the type of event is selected based on some
(unknown) mixture proportions. Second, the time of occurrence
for the chosen event is sampled from a corresponding survival
distribution (e.g., Weibull, Gompertz, etc.). Effectively, this results in
times that are a mixture of m distributions, where m � k aligns
naturally with the k mutually exclusive independent competing
events described in the survival analysis framework. Additionally,
we allow both the mixture proportions and the survival distributions
to depend on covariates X, such as age, disease stage, etc., thereby
making the final model a multivariable mixture model.

To successfully implement the ESPD strategy in the context of
censored data, the next step is to define a robust likelihood function.
Unlike other methods like ESD or UDR, where frameworks for
handling censored data are already established, the ESPD strategy
lacks such a framework. As a result, our study introduces a tailored
likelihood function, to allow for more accurate and reliable
parameter estimation. This involves parameterising two critical
components: the mixture proportions or event risks i) and the
time-to-event distributions ii).

The first component involves modeling the type of event i).
Specifically, we employ a multinomial distribution with event
probabilities π � (π1, . . . , πk), such that ∑k

j�1πj �1. To allow
mixture proportions π to depend on some vector of covariates
Xπ , a linear relationship is assumed. The model for mixture
proportions is constructed using the sof tmax function, which
takes as input the product of the vector of covariates Xπ , and a
vector of coefficients βπ . We model it as follows:

π � sof tmax βπXπ( ) (3)
The relationship between event probabilities and covariates is

expressed by the sof tmax Eq 3. It serves to map the linear
combination of predictor variables to a probability set that always
sums up to 1. By ensuring this, the function guarantees a positive
probability distribution. These probabilities are subsequently used to
estimate the mixture proportions or event risks.

The linear combination of the covariates (known from the data)
and their coefficients (to be estimated) creates a score (or logit) for

each event, which can be represented as z � βπXπ . If we consider
two competing risks and two covariates, our score vector can be
detailed as z � [z1, z2], where z1 represents the score for the first
event (e.g., recurrence) and z2 is for the second event (e.g., death).

Further, the transformation using the sof tmax function for a

given score xi in a vector x can be given by σ(xi) � exi∑L

j�1e
xj
, where, L

corresponds to the total number of events, and e is the base of the
natural logarithm.

When the transformation is applied to the score vector z, the
resulting probabilities for the two events are π1 � ez1

ez1+ez2 and
π2 � ez2

ez1+ez2 . Within this context, π1 gives the probability of the
occurrence of the first event, while π2 provides the probability for the
second event.

For the second component ii), conditioned on the occurrence of
a specific event j, a particular survival function Sj(t, θj) is used to
model the time-to-event distribution 4):

P T > t
∣∣∣∣cj � 1( ) � Sj t, θj( ) � ∫∞

t
f j s, θj( )ds (4)

Different risks may have different distributions and the
parameter vectors for these distributions θj, j � 1, . . . , k can
incorporate dependence on (potentially risk-specific) covariates
as well.

For non-censored data 5), the probability of observing an event
of type j (cj � 1) at time t is:

P t
∣∣∣∣cj � 1( ) � πjf j t, θj( ) (5)

While for censored data 6), since no event is observed(∑k
j�0cj � 0), we know that whichever event got selected, the

corresponding “failure” occurred after the end of the experiment.
In other words, no event has occurred yet:

P t

∣∣∣∣∣∣∣∣∣∣∑
k

j�0
cj � 0⎛⎝ ⎞⎠ �∑k

j�1
πjSj t, θj( ) (6)

Ignoring covariates for simplicity, the combined likelihood (for
k competing risks) can be written as follows:

P t, c π, θ|( ) �∏k
j�1

πjf j t, θj( )[ ]cj︸�������︷︷�������︸
A

× ∑k

j�1πjSj t, θj( ){ }1−∑k

i�1ci⎡⎢⎣ ⎤⎥⎦
︸�����������︷︷�����������︸

B

(7)
Here, term in A applies if an event is observed, i.e., cj � 1 for

some j, while B will become 1 since 1∑k

j�1cj�0
� 0). If no event is

observed, i.e., ∑k
j�0cj � 0, only B will contribute.

In Eq 7, we presented the combined likelihood for handling an
arbitrary number k of competing risks. When covariates are involved
in the analysis, they would generally be incorporated into both π and
θ, so that each parameter can be parameterised with covariates.

Considering that many practical applications consider two
competing risks, k � 2, we also provide the simplified likelihood
function 8) for such case. The incorporation of covariates to the
likelihood function 8) is implemented in the accompanying R code
for both frequentist and Bayesian analyses.
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P t, c|π, θ( ) � π1f 1 t, θ1( )( )c1 × π2f 2 t, θ2( )( )c2
× π1S1 t, θ1( ) + π2S2 t, θ2( )( )1−c1−c2 (8)

When considering the two competing risks setting based on Eq 8,
there would be seven parameters to be estimated. These parameters,
encompassing coefficients in our expression for π, as well as associated
shapes and scales, are intrinsically linked to the observables t (time)
and c (event type). The latter are observations found in the study
dataset, while the parameters are to be estimated from the dataset. Our
goal is to determine the best-fit parameters that align with the
observed data. This entails solving an optimization problem to
obtain the maximum likelihood estimates from the dataset.

3 Results

3.1 Simulation study

A simulation study was performed to verify the accuracy and
performance of the ESPDmodelling approach. All files related to the
simulation study can be accessed on GitHub: https://github.com/
koendegeling/CompetingEvents_ESPD.

The considered hypothetical scenario included k � 2 competing
risks: recurrence (recur) and death before recurrence (death), and we
opted for parameter values that are consistent with practical, real-
world data, particularly in the oncology setting. The chosen
coefficients were selected to reflect realistic relationships between
disease stage and time-to-event risks, providing a credible
foundation for our model. Simulated patients had equal
probabilities of being diagnosed at disease stage IA, IB, or II, and
their age was normally distributed, with mean 60 years and a
standard deviation of 5 (normalised to mean 0). The true
parameter values used to simulate the population were:

log
πrecur

1 − πrecur
( ) � −0.4 + 0.4 stageIB + 0.8 stageII

Frecur t|θrecur( ) � Weibull t, θshaperecur � exp 0.7( ), θscalerecur(
� exp 2 − 0.2 stageIB − 0.6 stageII( ))

Fdeath t|θdeath( ) � Gompertz t, θshapedeath � 0.1, θratedeath(
� exp −3.5 + 0.1 age( ))

Based on these true parameters, a population (spop) of nsim �
1, 000, 000 individuals was simulated. Subsequently, the performance
of the ESPD approach was assessed for a range of scenarios defined by
the proportion of censored observations (pcensored � 0.0, 0.1, 0.3, 0.6)
and various sample sizes (nsample � 50, 100, 200, 500) using the
following procedure:

• For all combinations of pcensored and nsample:
• For nrun � 10, 000 iterations:
• Drawasample suncensored frompopulation spop according tonsample

• Censor sample suncensored according to pcensored to obtain
sample scensored

• Analyse scensored according to the ESPD approach
• Based on the estimated parameters, simulate a new sample ssim
of size nsim

• Assess the performance by comparing the outcomes of ssim to
the population spop

Censoring was performed through an independent process where
censoring times were sampled from an exponential distribution
defined by a censoring rate. If the sampled censoring time was
lower than that of the event, the observation was censored at the
censoring time. The censoring rate was increased incrementally until
the required proportion of censored observations was achieved.

Further, the performance of the approach was assessed in terms
of the probability of recurrence, as well as the mean and distribution
of the time-to-recurrence and time-to-death. The performance of
the event probability and mean time-to-events was quantified using
a range of error measures, for which lower values corresponds to a
better performance.

• Error (E) or bias: E � sim − pop
• Absolute error (AE): AE � |sim − pop|
• Relative error (RE): RE � sim−pop

pop

• Relative absolute error (RAE): RAE � |sim−pop|
pop

In which pop refers to the simulated population of individuals
with aforementioned characteristics, which is simulated based on
the true parameter values, while sim refers to the simulations based
on the parameter values as estimated by the ESPD approach.

Lastly, considering these measures do not consider the variance
and spread of the distributions of the time-to-events, we also
quantified the performance of these distributions by the Kullback-
Leibler divergence (KLD), or relative entropy, which is widely used to
assess the likeliness of distributions (Kullback and Leibler, 1951):

KLD f pop t( )
∣∣∣∣∣f sim t( )( )�∫∞

0
f pop x( )log f pop x( )

f sim x( )( )dx
�∫∞

0
f pop x( )× log f pop x( )( )− log f sim x( )( )( )dx

The KLD is a measure of the distance between probability
distributions. In general, the smaller the value of KLD, the closer
the simulated distribution is to the true population distribution, and
the better the model is at representing the data (Cover, 1999). Thus,
a smaller KLD indicates a better fit between the simulated and the
true distributions, whereas a larger KLD indicates a worse fit.

Given that none of the performance measures considers second-
order uncertainty and given that the frequentist implementation is
more computationally efficient in obtaining point-estimates compared
to the Bayesian implementation, the former was used in the simulation
study. Although the Bayesian implementation is illustrated for the case
study, a formal comparison of the two implementations in the
simulation study was beyond the scope of this study.

Overall, the ESPD approach performed well. We observed that
higher proportions of censoring and lower sample sizes both negatively
impacted the accuracy of the approach across all performance
measures. All results of the simulation study are available in Table 1.

Regarding the event probability, on average, there was no error
in the E or RE up to 30% censoring. For 60% censoring, the RE
ranged from −0.02 (95% confidence interval: 0.16; 0.13) for sample
size 500, to 0.05 (−0.44; 0.66) for size 50. The average RAE ranged
from 0.04 (0.00; 0.10) for multiple scenarios, to 0.23 (0.01; 0.66) for
60% censoring and size 50.

For the mean time-to-event, similar as for the event
probability, on average there was basically no error in the E or
RE up to 30% censoring. For 60% censoring, unrealistic results
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TABLE 1 Simulation study results, based on varying degree of censoring (Prop censor), and different sample size (Size). E: error (bias); AE: absolute error; Prob: probability; Prop: proportion; RE: relative error; RAE: relative
absolute error; TTR: time-to-recurrence; TTD: time-to-death.

Prop
censor

Size Prob
TTR.E

Prob
TTR.AE

Prob
TTR.RE

Prob
TTR.RAE

Mean
TTR.E

Mean
TTR.AE

Mean
TTR.RE

Mean
TTR.RAE

Mean
TTD.E

Mean
TTD.AE

Mean
TTD.RE

Mean
TTD.RAE

TTR.KLD TTD.KLD

0 50 0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.00
(−0.28; 0.28)

0.11
(0.00; 0.32)

−0.01
(−1.11; 1.16)

0.46
(0.02; 1.29)

0.00
(−0.22; 0.23)

0.09
(0.00; 0.26)

0.03
(−2.71; 2.86)

1.13
(0.04; 3.19)

0.00
(−0.22; 0.23)

0.09
(0.00; 0.26)

0.07
(0.01; 0.24)

0.07
(0.02; 0.23)

0 100 0.00
(−0.10; 0.10)

0.04
(0.00; 0.11)

0.00
(−0.20; 0.19)

0.08
(0.00; 0.23)

−0.01
(−0.79; 0.81)

0.32
(0.01; 0.91)

0.00
(−0.16; 0.16)

0.06
(0.00; 0.18)

0.01
(−1.95; 1.99)

0.79
(0.03; 2.23)

0.00
(−0.16; 0.16)

0.06
(0.00; 0.18)

0.04
(0.01; 0.13)

0.05
(0.02; 0.11)

0 200 0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.00
(−0.55; 0.56)

0.22
(0.01; 0.63)

0.00
(−0.11; 0.11)

0.04
(0.00; 0.13)

0.00
(−1.39; 1.39)

0.57
(0.02; 1.59)

0.00
(−0.11; 0.11)

0.05
(0.00; 0.13)

0.03
(0.01; 0.08)

0.04
(0.02; 0.07)

0 500 0.00
(−0.04; 0.04)

0.02
(0.00; 0.05)

0.00
(−0.09; 0.09)

0.04
(0.00; 0.10)

0.00
(−0.34; 0.35)

0.14
(0.01; 0.39)

0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.01
(−0.86; 0.86)

0.35
(0.01; 0.98)

0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.03
(0.01; 0.05)

0.03
(0.02; 0.05)

0.1 50 0.00
(−0.15; 0.15)

0.06
(0.00; 0.17)

0.00
(−0.30; 0.29)

0.12
(0.00; 0.34)

0.01
(−1.17; 1.35)

0.51
(0.02; 1.46)

0.00
(−0.24; 0.27)

0.10
(0.00; 0.29)

0.06
(−2.91; 3.10)

1.22
(0.05; 3.48)

0.00
(−0.23; 0.25)

0.10
(0.00; 0.28)

0.08
(0.01; 0.29)

0.08
(0.02; 0.29)

0.1 100 0.00
(−0.10; 0.10)

0.04
(0.00; 0.12)

0.00
(−0.21; 0.20)

0.08
(0.00; 0.24)

0.00
(−0.83; 0.86)

0.34
(0.01; 0.97)

0.00
(−0.17; 0.17)

0.07
(0.00; 0.20)

0.02
(−2.06; 2.08)

0.85
(0.03; 2.40)

0.00
(−0.17; 0.17)

0.07
(0.00; 0.19)

0.05
(0.01; 0.14)

0.05
(0.02; 0.14)

0.1 200 0.00
(−0.07; 0.07)
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were obtained for sample size 50. Other than that, for 60%
censoring, the average RE ranged from 0.00 (−0.13; 0.16) for
time-to-recurrence and size 500, to 0.23 (−0.27; 1.09) for time-
to-recurrence and size 100. Excluding the scenario of 60%
censoring and size 50, the average RAE ranged from 0.03 (0.00;
0.08) for multiple scenarios, to 0.34 (0.01; 1.09) for time-to-
recurrence under 60% censoring and for size 100.

In terms of the KLD, similar trends were observed. The KLD
ranged from 0.03 (0.01; 0.05) for multiple scenarios, to 0.49 (0.03;
2.97) for time-to-death for the scenario of 60% censoring and size
50. As the KLD values were relatively close to 0 for most scenarios,
this suggested that the ESPD model performed well in
approximating the true population distribution of time-to-events.
However, for the scenario with 60% censoring and sample size 50,
the KLD value for time-to-death was relatively larger than 0.1 and
higher compared to other scenarios, thus suggesting that the model
did not fit the data as well, which is a similar pattern observed with
alternative modelling strategies.

3.2 Case study

The overall aim of the case study is to provide users with an
understanding of the steps involved in implementing the ESPD
strategy in a simple example in R. This is provided for both
frequentist and Bayesian frameworks and considering Weibull
distribution only, for simplicity. In this section, we describe key
steps towards the ESPD Weibull implementation as an illustration,
and advice the reader to refer to the publicly available scripts for a
full description and detailed step-by-step implementation of the
strategy. Finally, so that users can fully apply the ESPD approach, we
also provide a custom R function that allows for fitting various
distributions, including other than Weibull, together with visual fits
and Akaike Information Criterion (AIC) scores. These files are also
accessible on the listed GitHub repository.

We use a publicly available dataset melanoma, available from the
boot package in R (Hinkley and Anthony, 1997; Ripley and Angelo,

2022). Themelanoma dataset was originally analysed by Andersen et al.
(1993) and consists of measurements made on patients with malignant
melanoma, which all had their tumour removed by surgery inDenmark
from 1962 to 1977 (Andersen et al., 1993). Several covariates are
available, as summarised in Table 2. In terms of outcomes, we
consider the following patient status: deceased, disease recurrence,
and alive without disease recurrence (i.e., censored).

In estimating the probability of recurrence and distributions of
the time-to-recurrence and time-to-death, we assume that.

• The mixture proportions are modelled based on covariates
age, sex, ulceration status, and tumour thickness,

• Weibull distributions are appropriate for the time-to-event
distributions, assuming a single shape parameter across all
groups, where the scale parameter is modelled based on the
same covariates as the mixture proportions.

3.2.1 Frequentist implementation
The first step is to define the log-likelihood function in R. The

step_by_step_frequentist notebook provides a thorough step-by-step
implementation of the log-likelihood from its simplest version to
incorporating censoring, followed by adding covariates, and finally
to considering two competing risks. We highly recommend users
who are unfamiliar with these concepts to go through the R code and
different steps in the notebook.

Box 1 defines the function in its complete form, which returns
the log-likelihood for a set of parameters given the data.

BOX 1 Definition of the log-likelihood function, incorporating the
competing events and covariates.

Here, vector t contains the event or censoring times, vector e
contains the event data (possible values: recur for disease
recurrence, death for deceased patients, or cens for censored
patients), and X is the covariance matrix. Furthermore, coefs

TABLE 2 Summary of the data used from the publicly available melanoma
dataset.

Variable N = 205 [n (%); median (IQR)]

Demographics

Sex (male) 79 (39%)

Diagnosis age (years) 54 (42, 65)

Tumour thickness (mm) 1.94 (0.97, 3.56)

Ulcerated tumour 90 (44%)

Outcomes

Time to last status assessment (years) 5.5 (4.2, 8.3)

Patient status

Deceased 57 (28%)

Recurred 134 (65%)

Censored 14 (6.8%)
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represents the vector of coefficients that are to be estimated, which
need to be defined through a single vector for most optimisation
functions. Therefore, the first step in the function is to extract the
coefficients for the different parameters from the coefs vector. For
each parameter that is modelled based on the 4 covariates, there are
5 coefficients: 1 for the intercept and one for each covariate. For the
shape parameters that are not modelled based on covariates, there
simply is one coefficient. Subsequently, the coefficients are
transformed into the parameters for the mixture distribution.
Transformations are required because the mixture proportions π

are modelled as a logistic regression model and the resulting log-
odds need to be transformed to probabilities. Similarly, the shape
and scale parameters of the Weibull distributions need to be non-
negative and are, therefore, typically modelled using coefficients that
are log-transformed. That way, the coefficients can have any
negative or positive value in the optimization process, whilst the
corresponding parameters will be non-negative. In R, the %*%
operator is used for matrix multiplications. This is used in the
code to apply covariate matrix X to the coefficients, resulting in
vectors of patient-specific parameter values, such as p recur,
shape recur, etc. For readability of the code, the log-likelihood is
obtained in 3 separate steps, one for each of the possible events.

The next step is to apply the ll_weibull_mix_cov function to the
data to find the optimal coefficients by maximizing the likelihood
function. For this we use the maxLik function of the maxLik package
(Henningsen et al., 2010), which was developed with this exact
objective in mind, and which conveniently returns the variance-
covariance matrix together with the coefficient estimates. In this
function, we need to specify the log-likelihood function, start values
for the coefficients, and any arguments that need to be passed on to
the function, which are t, e, and X in this case. Because we optimize
the function defined by coefficients and not the parameters on real
scale, we can simply specify a zero as the starting value for each
parameter. Once the optimization is performed, point estimates for
the coefficient values can be extracted from the optimization object.
This process is illustrated in Box 2.

BOX 2 Performing the maximisation of the likelihood function and
extracting the results.

Although this step-by-step implementation in R is relatively
straightforward, a general function that can be used to apply the
ESPD approach for modelling two competing events has been made

available with the tutorial on GitHub. The function is available in the
script ESPD_frequentist.R, providing all the functionality one may
require, such as allowing for different parametric families of
distributions for individual risks. Further information is available
in the corresponding script.

3.2.2 Bayesian implementation
The Bayesian implementation is fully detailed in the notebook

case_study_bayesian.Rmd, together with the Stan model weibull_
mix_cov.stan on GitHub. Stan is a probabilistic programming
language for specifying statistical models, providing full Bayesian
inference, approximate Bayesian inference and penalised maximum
likelihood estimation with optimisation (Team, 2023). In R, Stan can
be called through various libraries and in this implementation, we
use CmdStanR (Češnovar, 2022), which does not interface directly
with C++ and is thus user friendly for beginners. In Stan, a typical
simulation is a two-step process, by which we first fit the model on
existing data to obtain posterior estimates of all parameters, and
then sample from the resulting distribution to obtain a synthetic
dataset.

The Bayesian implementation inherently captures parameter
uncertainty in a principled manner through posterior distributions.
These distributions can be used directly to inform parameter values
in a probabilistic analysis of the simulation model (Briggs et al.,
2012).

3.2.3 Case study results
In this section, we highlight the application and interpretation of

Bayesian implementation outcomes. Though the conclusions are
applicable to the frequentist case, we believe this example presents
an educational opportunity for readers to compare optimisation
(Box 2) results in R. This demonstration’s objective is less about
unearthing groundbreaking findings and more about illuminating
the nuances of a practical implementation.

Our discussion focuses on Figure 1; Table 3. In Figure 1, the
posterior distribution of various model parameters is displayed. On the
x-axis, we see the parameter values, and the y-axis portrays their
density. These parameters are part of the Bayesian ESPD model for
competing risks, which uses Weibull distributions. Each event, be it
recurrence or death, has its parameters estimated individually. In these
plots, the parameters alpha (α) andmu (μ) are prominent, serving as the
fundamental shape and scale components of the Weibull distribution.
In contrast, beta (β) encompasses the regression coefficients tied to the
model’s covariates, and the pi (π) parameter defines coefficients for the
mixture proportions derived from the covariates.

By analysing the coefficients for both risks side-by-side, we
aimed to derive an intuitive understanding of their implications.
The relationship between these variables and event types can be
observed through their respective coefficient values. Specifically, the
magnitude and direction of their coefficient values in the model offer
insights into their relationships with the event types. A higher
coefficient value for a variable suggests a stronger association
with the outcome.

A particularly relevant observation from Figure 1 is the mixing
proportion intercept (πint) with its mean value hovering
around −1.5, indicating a higher likelihood of recurrence as
opposed to death. Figure 1 also underscores that ulceration and

Frontiers in Pharmacology frontiersin.org07

Franchini et al. 10.3389/fphar.2023.1255021

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1255021


thickness are pivotal factors influencing the outcomes, which can be
seen based on the β coefficients. These coefficients depict how
changes in ulceration and thickness are associated with changes
in the hazard of the events. Furthermore, by examining the π
coefficients for these covariates, we can glean insights into their
influence on the likelihood of one event type over another, such as
recurrence versus death.

Examining the Weibull parameters (α and μ), we conclude that
the mean death time is shorter than the recurrence time. For a
complete view of the distribution, we suggest readers to simulate
times for death and recurrence based on mean Weibull parameters
with zero covariate effects and plotting a histogram. This can be
accomplished using the rweibull_cov function fromGitHub. Finally,
the likelihood of recurrence increases with the observation period
length.

In Table 3, we present the probabilities of recurrence for
censored individuals from the melanoma dataset, as sampled
from the Bayesian posterior distribution. Recurrence is frequently
the more probable outcome. The primary covariates influencing
both the event type and its timing are ulceration and thickness,
reflecting findings from Figure 1. Patients with a tumour thickness
significantly above the mean exhibit a heightened risk of death
before recurrence, indicating that thickness may be an indication of
melanoma severity.

4 Discussion

Competing risks data are common in medical research that aims
to investigate an outcome of interest and, hence, decision-analytic
models of healthcare pathways commonly include multiple
competing events. For example, in oncology, recurrence is a
competing risk to death prior to recurrence, which is typically
modelled based on background mortality. Here, we addressed a
methodological gap by defining and illustrating a modelling
approach for implementing the ‘event first, time second’ strategy
for modelling competing events in DES when the parameters are to
be estimated based on censored data. The resulting ESPD modelling
approach was mathematically defined for any number of competing
risks in Eqs 7, 8, and implementations in both the frequentist and
Bayesian framework were provided for two competing risks,
including when considering covariates. Finally, the approach was
evaluated in a simulation study and illustrated in a case study for
which the corresponding R code has been made available with this
manuscript.

The results of the simulation study indicate that the frequentist
implementation of the ESPD approach performs well under various
degrees of censoring and sample sizes. However, its accuracy
diminishes with decreasing sample sizes and increasing levels of
censoring (Table 1). These results are consistent with past studies on
implementing competing events in DES with uncensored and
censored data using alternative strategies (Degeling et al., 2019;
Degeling et al., 2022). Our findings reiterate the importance for
modellers to recognise that datasets characterised by high censoring
levels and small sample sizes might render the ESPD approach less
reliable for simulations, which also holds for other methods
previously investigated (Degeling et al., 2019). Although a formal
comparison of the frequentist and Bayesian implementations was

beyond the scope of the simulation study, the case study
demonstrated that both implementations yielded comparable and
realistic results. Further research may compare the frequentist and
Bayesian implementations more systematically to identify whether
either may be preferable in certain scenarios. Significantly, our study
introduces an additional method to the existing techniques for
addressing censoring, filling the gap where no method was
previously delineated for such censoring.

Further research is also warranted to quantitatively compare the
performance of the ESPD to previously defined modelling
approaches for implementing competing events in DES based on
censored data (Degeling et al., 2022), in line with previous work
focused on uncensored data (Degeling et al., 2019). This would also
inform selection between the different modelling approaches. Such
guidance is already available for the ESD, ESPD, UDR and MDR
approaches for scenarios in which they are informed by uncensored
data, as well as for the ESD and UDR approaches when informed by
censored data. Based on the previous work for uncensored data and
the results of our simulation study, we expect that the ESPD
approach will have good accuracy and be relatively
straightforward to implement and interpret when used for
censored data compared to the other approaches, but this is to
be confirmed in a comparative simulation study. In this context, it is
important to note that the interpretation of likelihood-based
measures, such as the AIC may be different between the
approaches. For the ESD approach, the likelihood only considers
the time-to-event for each event independently and not the type-of-
event, whereas the likelihood in the UDR approach considers the
likelihood of the time-to-event and event-type separately, and the
ESPD considers the time-to-event and event-type of all events
jointly. Regardless, despite high-level guidance on the selection of
different approaches being useful, validation of the results will
remain pertinent in the modelling process.

By demonstrating the implementation of the ESPD approach
using both the frequentist and Bayesian frameworks in R and Stan,
we enable novice and more advanced R users to leverage this
modelling strategy. The frequentist implementation allows for a
fast and relatively easy retrieval of the point estimates and the
variance-covariance matrix of the coefficient, especially with the
provided general functions that facilitates incorporation of
covariates and different distribution types. Whilst more
challenging to implement, some may argue that the Bayesian
version provides a more natural and principled way of
combining useful prior information into the estimate, which may
be more accurate than a frequentist estimate, if such information is
available. Furthermore, some consider the interpretation of a
Bayesian result more straightforward, as it provides a framework
about the unknown parameter conditional on the observed data,
rather than about the observed data conditional on the unknown
parameter. By providing both implementations, we provide
modellers with the freedom to use the framework they prefer.

The ESPD approach was developed for modelling competing
events in DES. However, the event-specific probabilities may also be
considered as cumulative event incidences in an epidemiological
context. The cumulative incidence of competing risks has generally
been modelled using cause-specific hazard models and sub-
distribution hazard models (Fine and Gray, 1999; Pintilie, 2006;
Lau et al., 2009; Austin and Fine, 2017). The ESPD approach may
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provide an interesting alternative to these models, where the
cumulative event incidences can be modelled directly as the
mixture proportions. This could be utilized for estimating
probabilities of treatment sequences from real-world data where
typically a substantial proportion of patients is still on treatment,
i.e., censored for the competing events of switching to a subsequent

treatment line and death without further treatment. This is relevant
for disease areas where patients typically receive multiple lines of
therapy, such as oncology.

In summary, our study has filled a methodological gap by
providing a tutorial and framework for modelling competing
events in discrete event simulations with censored data. The ESPD

FIGURE 1
Posterior distribution samples for the ESPD model. Weibull parameters: α, μ; Mixing proportion: π; Adjustment coefficients: β; Subscripts: p
(recurrence), d (death).

TABLE 3 Mean posterior probabilities for recurrence event for each censored individual.

Age Sex Thickness Ulcer Time to last status assessment (years) Probability of recurrence

76 Male 6.76 Present 0.03 0.35

56 Male 0.65 Absent 0.08 0.83

71 Female 2.90 Absent 0.27 0.80

60 Female 3.22 Present 0.64 0.59

64 Female 0.16 Present 0.97 0.68

72 Male 12.56 Present 1.35 0.29

86 Female 8.54 Present 2.26 0.44

64 Male 1.29 Absent 3.91 0.87

76 Female 1.29 Present 4.18 0.70

71 Male 4.84 Present 5.10 0.84

66 Female 0.65 Absent 5.71 0.88

49 Male 1.62 Absent 8.64 0.97

49 Male 6.12 Absent 8.72 0.99

54 Female 1.45 Absent 9.47 0.89
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approach, which samples the event first and time-to-event second,
was found to be accurate and produced realistic results in both
simulation and case studies. The ESPD approach has been
implemented in both a frequentist and Bayesian framework using
R, making it easily accessible for others to use and expand upon in
future research. Not only is the ESPD strategy applicable for
modelling competing events in DES, but it also has potential to be
used in other contexts to estimate cumulative event incidences. Future
studies should perform and report on cross-validation of the ESPD
approach compared to the other strategies, which will ultimately
ensure individual patient data are appropriately modelled.
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