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A B S T R A C T   

The etiology of childhood appetitive traits is poorly understood. Early-life epigenetic processes may be involved 
in the developmental programming of appetite regulation in childhood. One such process is DNA methylation 
(DNAm), whereby a methyl group is added to a specific part of DNA, where a cytosine base is next to a guanine 
base, a CpG site. We meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early- 
childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n = 1,086, 
Rotterdam, the Netherlands) and the Healthy Start study (n = 236, Colorado, USA). DNAm at autosomal 
methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. 
Parents reported on their child’s food responsiveness, emotional undereating, satiety responsiveness and food 
fussiness using the Children’s Eating Behaviour Questionnaire at age 4–5 years. Multiple regression models were 
used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with 
each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple 
testing. There were no associations of DNAm and any appetitive trait when examining individual CpG-sites. 
However, when examining multiple CpGs jointly in so-called differentially methylated regions, we identified 
45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 
associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study 
shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood 
and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating 
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differential DNAm associated with appetitive traits could be an important first step in identifying biological 
pathways underlying the development of these behaviors.   

1. Introduction 

Appetitive traits, which broadly describe individuals’ phenotypic 
predispositions towards food-related stimuli, are involved in the devel-
opment of obesity (Russell & Russell, 2019). The ‘behavioral suscepti-
bility theory’ (BST) suggests that variation in appetite, observed from 
early infancy (Llewellyn et al., 2011), mediates the interaction between 
genetic vulnerability and environmental risk exposure on obesity (Lle-
wellyn & Fildes, 2017). Appetitive traits encompass multiple di-
mensions, including ‘food approach’ traits, which are indicative of a 
heartier appetite and a heightened responsiveness to environmental 
food cues, and ‘food avoidant’ traits, which reflect a lower appetite or 
disinterest in eating. While appetitive traits may serve as the 
behaviorally-mediated mechanism linking nutrition, the food environ-
ment, and weight, a significant gap remains in understanding the early 
developmental origins of these traits. 

Understanding the etiology of appetitive traits requires a robust 
conceptualization and assessment these complex phenotypes. Evalua-
tion in early appetitive traits has predominantly relied on the widely- 
validated, parent-reported Children’s Eating Behaviour Questionnaire 
(CEBQ), initially developed to test the BST (Wardle et al., 2001). Despite 
relying on parent-report, and thus, parent perceptions, the CEBQ is a 
feasible tool to assess appetitive traits in large epidemiological studies. 
Within the CEBQ, distinct subscales correspond to constructs within the 
food approach (food responsiveness, enjoyment of food, emotional 
overeating) and food avoidant (satiety responsiveness, slowness in 
eating, food fussiness, and emotional undereating) domains. Recent 
meta-analytic evidence shows support for the BST, with CEBQ-assessed 
food approach and food avoidant traits conferring a higher and lower 
obesity risk, respectively (Kininmonth et al., 2021). This may in part be 
explained through observable eating behaviors (i.e., dietary intake, food 
preferences, eating speed), to which some of the CEBQ-subscales are 
consistently associated. For example, children scoring higher in food 
responsiveness tend to have an increased preference for energy-dense 
and nutrient-poor foods (Fildes et al., 2015), increased eating fre-
quency and higher energy intake (Carnell & Wardle, 2007; Syrad et al., 
2016); those children who are more satiety responsive are sensitive to 
feelings of fullness, and tend to eat slower and eat smaller portions 
(Carnell & Wardle, 2007; Syrad et al., 2016); those with elevated food 
fussiness tend to consume a limited variety of foods (Tharner et al., 
2014) and dislike core food groups such as fruits and vegetables (Fildes 
et al., 2015); and those high in emotional undereating eat less when 
negative moods are evoked (Blissett et al., 2019). Although not dia-
metrically opposed, food approach and avoidant traits appear to be 
somewhat inversely associated (Tharner et al., 2014). Children who 
score higher in food fussiness, for instance, tend to also be slower eaters 
and relatively less food responsive. Considerable evidence from twin 
studies suggests that appetitive traits are both genetically- and 
environmentally-influenced (Carnell et al., 2008; Fildes et al., 2016; 
Llewellyn et al., 2010; Smith et al., 2017). However, little attention has 
been paid to how the genetics and the environment together influence 
the early biological mechanisms that may underlie the development of 
appetitive traits. 

The Developmental Origins of Health and Disease (DOHaD) hy-
pothesis proposes that environmental exposures in early life are asso-
ciated with later-life health outcomes (Barker, 2004; Levitan & 
Wendland, 2013). In line with this theory, the prenatal environment has 
also been hypothesized to contribute to obesity-risk, partly through 
modulating appetite regulation systems (Boswell et al., 2018; Desai & 
Ross, 2020). For example, experimental research from rodent studies 
suggest that a maternal high-fat, high-sugar diet may promote 

hyperphagic eating in offspring, potentially indicative of food respon-
siveness (Ong & Muhlhausler, 2011). In humans, maternal obesity risk 
factors during pregnancy (such as high fasting plasma glucose and 
pre-pregnancy overweight) have been shown to predict eating behaviors 
such as self-serving larger portions, faster eating rate and higher energy 
intake, as well as increased child body mass index (BMI), at 6 years 
(Fogel et al., 2020). Observational evidence from a longitudinal birth 
cohort showed that excessive gestational weight gain was associated 
with increased food responsiveness in children aged 1 year old (Costa 
et al., 2022). Another study showed that mothers who gained less weight 
than recommended during pregnancy rated their male (but not female) 
offspring lower in satiety responsiveness at approximately 4 years of age 
(Boone-Heinonen et al., 2019). Furthermore, ultra-processed food con-
sumption during pregnancy has been also linked to lower satiety 
responsiveness in infants at 6-months of age (Cummings et al., 2022). 
The prenatal environment may be linked to children’s appetitive traits 
through biological processes that could modify the regulation or 
expression of genes during fetal development, such as epigenetic 
processes. 

DNA methylation (DNAm) is an epigenetic mechanism whereby 
methyl groups are added to cytosines at cytosine-guanine dinucleotides 
(CpG sites) in the DNA, which may affect gene expression (Ruiz-Arenas 
et al., 2022). Exposures during fetal development, such as maternal 
smoking (Joubert et al., 2016), maternal BMI at the start of pregnancy 
(Sharp et al., 2017) and maternal diet (Kupers et al., 2022) have been 
associated with newborn DNAm. A limited number of candidate studies 
have linked DNAm to appetitive traits in childhood. For example, one 
study (n = 317) showed that DNAm at the insulin-like growth factor-2 
(IGF2) gene in cord blood was associated with satiety responsiveness 
in children aged 1–6 years old (Do et al., 2019). In a small study of 32 
girls aged 5–6 years, lower levels of DNAm in the promoter of the BDNF 
(brain-derived neurotrophic factor) gene were found to be associated 
with lower satiety responsiveness (Gardner et al., 2015). While such 
studies implicate differential DNAm as a potentially relevant pathway 
underlying appetitive traits, so far interest has been in one or a few 
candidate genes, thereby precluding the possibility to uncover novel 
epigenetic pathways. 

Epigenome-wide association studies (EWAS) of DNAm markers at 
birth that predict childhood appetitive traits have not yet been per-
formed. Hypothesis-free testing of epigenome-wide DNAm signals may 
present new leads to piece together the puzzle of appetitive trait etiol-
ogy. Thus, in the current study, we aimed to investigate associations of 
genome-wide DNAm in newborn cord blood with appetitive traits in 
early childhood. We studied DNAm both at the site level (per CpG), and 
at the regional level (inter-related, nearby CpG sites). To maximize 
statistical power, we meta-analyzed EWASs for appetitive traits from 
two independent cohorts (total n = 1322). 

2. Methods 

2.1. Study design and participants 

Two cohorts participating in the worldwide Pregnancy And Child-
hood Epigenetics Consortium (PACE) (Felix et al., 2018) with newborn 
umbilical cord blood DNAm and child appetitive traits measured before 
age 6 years were included in the current analysis: the Generation R 
Study (Generation R) and Healthy Start. 

2.1.1. Generation R 
Generation R is a population-based cohort focused on health and 

development from fetal life onwards (Jaddoe et al., 2006). All pregnant 
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women living in Rotterdam, the Netherlands, with an expected delivery 
date between April 2002 and January 2006 were invited to participate 
(N = 9778; participation rate: 61%). Cord blood DNAm data were 
available for 1396 children, who were selected from the full population 
to be a homogeneous subgroup of children with both parents born in the 
Netherlands (based on self-report, European ancestry was confirmed for 
all children in our sample with genetic data available [99%]), and with 
high completeness of follow-up. Of these children, 1098 had information 
available on appetitive traits. Twelve sibling pairs were present in this 
set; one sibling of each pair was removed based on data availability or 
otherwise randomly, leaving a final sample size of n = 1086 children. 
The Generation R Study has been approved by the Medical Ethical 
Committee of Erasmus MC, University Medical Center Rotterdam. 
Written informed consent was obtained from parents of all children. 

2.1.2. Healthy Start 
The Healthy Start study (Healthy Start) is an ongoing, pre-birth 

cohort study based in Colorado, USA (Starling et al., 2015). Pregnant 
women were recruited between 2009 and 2014 at the University of 
Colorado obstetrics clinics. Women were eligible for the Healthy Start 
study if they were ≥16 years, expecting a singleton birth, had a gesta-
tional age <24 weeks at enrolment, and had no serious chronic medical 
conditions or history of stillbirth. A total of 1410 pregnancies were 
enrolled, and umbilical cord blood DNAm was analyzed in a subset of 
these (n = 600), based on availability of cord blood, maternal blood, and 
urine samples during pregnancy. For this analysis of cord blood DNAm 
and child appetitive traits, further exclusions were as follows: 6 partic-
ipants had discordance between reported sex and sex predicted by the 
DNAm data (see 2.2. DNA methylation measurement), 180 had missing 
child appetitive traits data, 7 were siblings of other participants in the 
cohort, and 171 had a race/ethnicity other than non-Hispanic white 
(54% Hispanic ethnicity and 33% black, 7% Asian, 1% American Indi-
an/Alaska Native and 9% Multiracial), resulting in a final sample size of 
n = 236. The Healthy Start study protocol was approved by the Colorado 
Multiple Institutional Review Board, and all women provided written 
informed consent before the first study visit. 

2.2. DNA methylation measurement 

Each cohort performed sample processing, quality control and 
normalization based on their own protocols. In Generation R, DNA was 
extracted from cord blood samples taken at birth. Five-hundred nano-
grams of DNA per sample underwent bisulfite conversion using the EZ- 
96 DNA Methylation kit (Shallow) (Zymo Research Corporation, Irvine, 
USA) and further processed with the Illumina Infinium Human-
Methylation450 BeadChip (Illumina Inc., San Diego, USA). Preparation 
and normalization of the HumanMethylation450 BeadChip array data 
was performed following the CPACOR workflow using the software 
package R (Lehne et al., 2015; R Core Team, 2013). In detail, the.idat 
files were read using the minfi package (Aryee et al., 2014). Probes with 
a detection p-value>1e-16 were set to missing per array. Intensity values 
were stratified by autosomal and non-autosomal probes and quantile 
normalized for each of the six probe type categories separately: type II 
red or green, type I methylated red or green and type I unmethylated red 
or green (Illumina Inc., 2013; Lehne et al., 2015). Beta values were 
computed as the ratio of the methylated to the methylated + unme-
thylated signal. Arrays with observed technical problems such as failed 
bisulfite conversion, hybridization or extension, as well as arrays with a 
mismatch between sex of the proband and sex determined by the 
chromosome X and Y probe intensities were removed from subsequent 
analyses. Lastly, only arrays with a call rate (i.e. successfully measured 
samples) > 95% per sample were processed further. Outlying values on 
the probes were excluded using the Tukey method, i.e. values<(25th 
percentile–3*interquartile range) and values>(75th percentile-
+3*interquartile range) were excluded (Tukey, 1977). 

In Healthy Start, DNA was extracted from umbilical cord blood 

collected at birth using the QIAamp DNA Blood Mini Kit (Qiagen) and 
stored in buffy coats. Illumina Infinium HumanMethylation450 Bead-
Chip (Illumina Inc., San Diego, USA) was used to measure epigenome- 
wide DNAm (Yang et al., 2017). Additional details of DNA extraction 
and bisulfite conversion have been described in detail previously 
(Starling et al., 2020). Quality control checks included assessment of 
DNA purity, integrity, and quantity. Samples were eligible for inclusion 
if they met the following criteria: 260/280 ratio >1.8 indicating DNA 
purity, DNA integrity score >7, and at least 500 ng of DNA available. 
Probes with high detection p-value (>0.05) (n = 587) and low bead-
count <4 (n = 664) were removed. Additionally, samples with in-
consistencies between reported and predicted sex were removed (n = 6). 
Stratified quantile normalization was performed using the pre-
processQuantile function in minfi (Touleimat & Tost, 2012). ComBat 
was used for batch correction (Johnson et al., 2007). Extreme methyl-
ation outliers were removed, as defined by a value more than three times 
the interquartile range below the 25th percentile or above the 75th 
percentile (Hoaglin et al., 1986; Merid et al., 2020). 

For both cohorts, only autosomal probes were analyzed and cross- 
reactive probes were excluded (Chen et al., 2013; Naeem et al., 2014), 
resulting in 415,786 probes in Generation R and 429,136 probes in 
Healthy Start. We included the 415,267 probes in the meta-analyses that 
were present in both cohorts. The R package FDb.InfiniumMethylation. 
hg19 (Triche, 2014) was used for probe annotation. 

2.3. Measures 

2.3.1. Child appetitive traits 
In each cohort, child appetitive traits were assessed by parent-report 

using the widely-implemented Children’s Eating Behaviour Question-
naire (CEBQ) (Wardle et al., 2001) at age 4 years in Generation R, and 
age 5 years in Healthy Start. The CEBQ has good psychometric proper-
ties (Wardle et al., 2001), and has demonstrated ecological validity in 
behavioural tests (Blissett et al., 2019; Carnell & Wardle, 2007). Four 
subscales that were available in both Generation R and Healthy Start 
were included in the EWAS meta-analyses: food responsiveness (5 items, 
e.g. “My child is always asking for food”), emotional undereating (4 items, 
e.g. “My child eats less when (s)he is upset”), satiety responsiveness (5 
items, e.g. “My child gets full before his/her meal is finished”) and food 
fussiness (6 items, e.g. “My child is difficult to please with meals”). Items 
were assessed on a 5-point Likert scale from “1” (never) to “5” (always) 
and summed to produce a subscale sum score. The subscales showed 
acceptable to good internal reliability in Generation R (α = 0.74–0.91) 
and Healthy Start (α = 0.70–0.93). Where normally distributed, sum 
scores were standardized (z-scores) for comparison between the models. 
The food responsiveness subscale was skewed in both cohorts and, 
therefore, square-root transformed to approach normality, and all scales 
were z-score transformed. 

2.3.2. Covariates 
In Generation R, maternal age at delivery was calculated based on 

maternal age assessed upon enrolment, gestational age at enrolment and 
gestational age at birth. Maternal smoking during pregnancy was 
assessed with three questionnaires in early (<18 weeks), mid- (18–25 
weeks), and late (>25 weeks) pregnancy and categorized into 0 = never 
smoked during pregnancy/1 = quit when pregnancy was known/2 =
sustained smoking during pregnancy. Maternal education was used as an 
indicator of socio-economic status (SES) and was obtained via ques-
tionnaire at enrolment. The information was dichotomized (0 = did not 
complete university studies/1 = completed university studies). Maternal 
pre-pregnancy body mass index (BMI; kg/m2) was computed based on 
pre-pregnancy weight, which was collected at enrolment using a ques-
tionnaire, and height. Self-reported pre-pregnancy weight correlated 
highly (r = 0.96) with measured weight at enrolment around 13 weeks 
of pregnancy (Tielemans et al., 2015). Child sex and birth weight were 
obtained from midwife and hospital registries. Sample plate was 
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included in the models to correct for batch effects. White blood cell 
proportions (CD4+ T-lymphocytes, CD8+ T-lymphocytes, natural killer 
cells, B-lymphocytes, monocytes, granulocytes, and nucleated red blood 
cells) were estimated with a cord blood-specific reference panel (Gervin 
et al., 2019). Gestational age at birth was determined using fetal ultra-
sound examinations or last menstrual period (LMP) in case of a regular 
menstrual cycle and a certain first day of LMP (Jaddoe et al., 2006). 

In the Healthy Start study, child sex, birthweight, and gestational age 
at birth were obtained from medical records. Maternal age and educa-
tion were self-reported at time of enrolment. Education was dichoto-
mized (0 = high school education or less/1 = more than high school 
education). Mothers also self-reported their race (1 = white, 2 = black, 
3 = Asian, 4 = American Indian/Alaska Native, 5 = Hawaiian/Pacific 
Islander, 6 = Multiracial) and ethnicity (0 = non-Hispanic, 1 = His-
panic). Maternal smoking status was self-reported at three study visits: 
twice during pregnancy and once at delivery, and was operationalized as 
a 3-level categorical variable (0 = never smoked/quit early in preg-
nancy, 1 = quit smoking early in pregnancy, 2 = sustained smoking 
throughout pregnancy). Maternal pre-pregnancy BMI was calculated 
using height measured at enrolment and pre-pregnancy weight obtained 
from the medical record. Cell deconvolution to estimate the relative 
proportions of the 7 cell types (B cells, CD4 T cells, CD8 T cells, gran-
ulocytes, monocytes, NK cells, and nucleated red blood cells) was per-
formed using the R package FlowSorted.CordBloodCombined.450k (R 
Core Team, 2013) with a combined reference dataset for cord blood 
(Gervin et al., 2019). 

2.4. Statistical analyses 

2.4.1. Site- and regional-level epigenome-wide meta-analyses 
Each cohort first ran a cohort-specific EWAS according to a pre-

defined analysis plan. Missing data points on covariates were imputed 
(% missing on variables ranged from 0 to 9.8% in Generation R and 
0–16.9% in Healthy Start) using the mice package (Buuren & 
Groothuis-Oudshoorn, 2010) in R. To enhance imputation, additional 
variables were used for the imputation only, including household in-
come, maternal and paternal BMI at enrolment, maternal daily caloric 
intake during pregnancy and maternal alcohol intake during pregnancy 
in Generation R, and gestational weight gain and maternal daily caloric 
intake in Healthy Start. We performed a maximum of 10 iterations to 
create 10 imputed datasets. Regression analyses were performed using 
pooled statistics. To study the associations of DNAm with appetitive 
traits, we planned three regression models per appetitive trait: a basic 
model (Model 1), a fully adjusted model (Model 2), and an exploratory 
model including potential mediators (variables that could act as a 
mediator, but directions of effect are unclear; Model 3). In each model, 
DNAm was modelled as the predictor and appetitive trait as the 
outcome. Model 1 adjusted for child sex and age at appetitive trait 
assessment, batch and estimated white blood cell proportions. Signifi-
cant hits (Bonferroni corrected, see below) were followed up by running 
Model 2, which additionally adjusted for potential confounders 
maternal age at delivery, smoking during pregnancy, education, and 
pre-pregnancy BMI. If Model 2 produced an association, Model 3 was 
run, which additionally adjusted for the potential mediators gestational 
age at birth and birth weight. With these models, site-level epi-
genome-wide analyses (EWASs) were performed separately in each 
cohort. Associations between DNAm at each individual site and stan-
dardized child appetitive trait score were estimated in R using robust 
linear regressions. Within each model, a Bonferroni-correction was 
applied to account for the number of probes (p < 1.20 × 10− 7). Quality 
control procedures on the EWAS results were run using the QCEWAS R 
package (Van der Most et al., 2017). Fixed effects inverse variance 
weighted meta-analyses of the cohort-specific results were performed 
using METAL (Willer et al., 2010). Shadow meta-analyses were inde-
pendently performed a different investigator on the team and results 
were confirmed. 

In the regional-level EWASs, related, nearby sites were studied 
jointly as a region, using the meta-analysis extension of the DMRff 
package in R (Suderman et al., 2018). DNAm is often correlated between 
CpG sites that are close together in space. The DMRff package takes 
these correlations between CpG sites as well as their physical closeness 
into account in the analysis. The summary statistics from each cohort 
site-level EWAS were used to identify differentially methylated regions 
(DMR) by analyzing patterns of methylation changes across multiple 
nearby CpG sites. The analysis also accounts for site-level uncertainty in 
the EWAS estimates (e.g. resulting from combining data from different 
cohorts). We searched for regions within a standard 500 base pair 
(500bp) site-window along the DNA. A Bonferroni corrected p < 0.05 
was applied to adjust for the number of regions tested. 

2.4.2. Genetic enrichment 
Significant findings stemming from site- or regional-level analyses 

were further examined in two ways. Genetic influences on DNAm were 
examined by i) a look-up of known associations of DNAm with genetic 
variants elsewhere on the genome, e.g. methylation quantitative trait 
loci (mQTLs) in cis (within a ±1 Mb window) or in trans (outside of this 
window, potentially on a different chromosome) as identified in cord 
blood of a pediatric population (Gaunt et al., 2016) and in cord or whole 
blood in a larger study on 36 populations of all ages (Min, Hemani, 
Hannon et al., 2021); and ii) a look-up of estimated additive genetic 
influences, and shared and unique environmental influences on DNAm, 
as based on twin heritability analyses (Hannon et al., 2018). To under-
stand if there was enrichment of genetic patterns in associated versus 
non-associated CpGs, two-sided T-tests were performed between these 
two groups for each look-up and differences of p < 0.05 are reported. 

2.4.3. Enrichment for eQTMs 
We examined associated expression patterns by checking if signifi-

cant findings have been identified as expression quantitative trait 
methylation (eQTMs) in cis in peripheral blood of 832 children aged 
between 6 and 11 years (Ruiz-Arenas et al., 2022). To understand if 
there was enrichment of gene expression patterns in associated versus 
non-associated CpGs, two-sided T-tests were performed between these 
two groups and differences of p < 0.05 are reported. 

2.4.4. Enrichment for regulatory elements 
We explored enrichment of tissue- or cell-type specific regulatory 

elements. This analysis was performed with eFORGe v2.0, using data 
from Consolidated Roadmap Epigenomics, ENCODE, and Blueprint to 
test for DNAse I hypersensitive regions, chromatin states, and histone 
marks, using default settings (1 kb window, 1000 background repeti-
tions) (Breeze et al., 2019). Findings of FDR adjusted q < 0.05 are 
reported. 

2.4.5. Functional enrichment 
To examine functional enrichment of genes associated with sites 

significant in the site- or regional-level meta-analyses, we performed 
appetitive trait-specific Gene Ontology pathways analyses using the 
GOfuncR package in R (Grote & Grote, 2018). Pathways with a 
family-wise error rate (FWER) corrected p < 0.05 based on random 
permutations of the gene-associated variables were considered to be 
enriched. 

2.4.6. Look-up of annotated genes 
Genes annotated to associated sites or regions were followed-up to 

probe if they have been previously associated with obesity-related traits 
in genome-wide association study (GWAS) or EWAS publications. The 
GWAS Catalog (Sollis et al., 2023) used for the GWAS look-up included 
>45,000 published GWASs performed in humans. Relevant 
obesity-related labels identified for this look-up were ‘obesity’, ‘body 
mass index’, ‘adipose tissue’, and ‘fat body mass’, which included 186 
publications of 219 obesity-related traits. The EWAS Catalog (Battram 
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et al., 2022) for the EWAS look-up included 2686 published EWASs 
performed in humans, in different tissues and at different ages. Relevant 
obesity-related labels identified were ‘obesity’, ‘BMI’, ‘body mass index’, 
‘body mass index change’, and ‘heavy vs lean weight’, which included 
18 publications of 6 obesity-related traits. 

3. Results 

The sample characteristics of Generation R and Healthy Start are 
described in Table 1. Both cohorts were comparable in their character-
istics and appetitive traits. However, relative to Generation R, the 
Healthy Start children were slightly older (4.0 years vs. 4.9 years, 
respectively). In Generation R, mothers were slightly older (32.5 years 
vs. 30.4 years, respectively) and had a lower pre-pregnancy BMI (23.2 
kg/m2 vs. 24.8 kg/m2, respectively) compared to Healthy Start mothers. 
The correlation coefficients between the CEBQ subscales within each 
cohort using Spearman’s rank correlations are shown in Table 2. 

3.1. Site-level and regional-level epigenome-wide meta-analyses 

We did not find associations of DNAm at individual CpG-sites and 
any of the appetitive traits in Model 1. Therefore, no further analyses 
were conducted relating to DNAm of individual CpG-sites. However, we 
found associations of differentially methylated regions widely spread 
across the genome with each of the appetitive traits in Model 1. Most 
regions in Model 1 were also detected as a region in Model 2 (91% 
detected; differences may occur if inter-CpG similarity in effect size 
changes between models) and the majority remained significant (94% of 
detected regions). The results for each model are detailed in Supple-
mental Tables 1-4; here we present the results of fully adjusted Model 2. 
DNAm at 45 regions was associated with food responsiveness (Table 3), 

at 7 regions with emotional undereating (Table 4), at 13 regions with 
satiety responsiveness (Table 5), and at 9 regions with food fussiness 
(Table 6). Overall, there was little heterogeneity between cohort-level 
results for these regions, with a total average of 5% of sites in the 
associated regions showing significant (p < 0.05) heterogeneity. DNAm 
at several regions was associated, in a consistent direction, with multiple 
appetitive traits: DNAm at a region on chromosome 4, near HS6ST1, was 
associated with both emotional undereating and satiety responsiveness; 
DNAm at a region on chromosome 12 in GLIPR1L2, and on chromosome 
4 in SH3BP2 was associated both with satiety responsiveness and food 
fussiness. The additional adjustment for maternal age, smoking, edu-
cation, and pre-pregnancy BMI in Model 2 resulted in small effect size 
changes between Model 1 and Model 2 across all appetitive traits (me-
dian change = 1.0%; IQR = 0.4–2.2%). In Model 3, which included 
additional adjustment for the potential mediators gestational age at 
birth and birth weight, 86% of regions significant in Model 2 were 
detected. Of these, 88% remained significant (31 regions for food 
responsiveness; 5 regions for emotional undereating; 12 regions for 
satiety responsiveness; 8 regions for food fussiness). Effect size changes 
from Model 2 to Model 3 were small (median change = 2.4%; IQR =
1.4–3.8%), suggesting limited or no mediation of effects via changes in 
birth weight and gestational age at birth. 

3.2. Enrichment analyses 

DNAm associations for emotional undereating, satiety responsive-
ness, and food fussiness showed some shared regions in the regional- 
level EWAS, thus confirming the conceptual links between these food 
avoidant traits. As such, these three food avoidant traits were grouped 
together for the following enrichment analyses. Hence the following 
enrichment analyses describe results for ‘food avoidant traits’ and ‘food 
responsiveness’, the only food approach trait we examined. 

3.2.1. Genetic enrichment 
Results from the genetic enrichment analyses, which show the extent 

to which DNAm at regions of associated CpGs might be influenced by 
genomic variation, are provided in Supplemental Table 5. First, we 
examined whether DNAm at CpGs in each region was related to genetic 
variation at SNPs (mQTLs, methylation quantitative trait loci). Based on 
the study by Gaunt et al. (2016), CpGs in regions associated with food 
avoidant traits were more often related to mQTLs than CpGs in other 
regions (37.7% vs. 7.4%, p < 0.001), but no difference was found for 
food responsiveness (14.6% vs. 6.9%, p = 0.08). Based on the study by 
Min et al. (2021), CpGs in regions associated with both food respon-
siveness and food avoidant traits were more often related to mQTLs 
(food responsiveness: 58.7% vs. 40.8%, p = 0.002; food avoidant traits: 
81.7% vs. 41.6%, p < 0.001). Second, we examined twin heritability 
estimates for DNAm of CpGs in each region. The proportions of additive 
genetic effects estimated were higher for CpGs in associated regions 
versus those in non-associated regions for both food responsiveness and 

Table 1 
Sample characteristics.   

Generation R (n =
1086) 

Healthy Start (n =
236) 

Child n (%) or mean ± SD 

Sex (% boys) 531 (49) 125 (53) 
Birthweight (g) 3568 ± 490 3333 ± 442 
Gestational age, weeks 40.2 ± 1.4 39.6 ± 1.2 
Age at appetitive traits assessment, 

months 
48.5 ± 1.0 58.9 ± 9.9 

Appetitive traitsa 

Food responsiveness (scale 5 to 
25) 

8.9 ± 3.1 11.1 ± 3.1 

Emotional undereating (scale 5 to 
20) 

11.1 ± 3.4 10.7 ± 3.4 

Satiety responsiveness (scale 5 to 
25) 

15.2 ± 3.2 15.9 ± 2.8 

Food fussiness (scale 5 to 30) 17.8 ± 4.9 17.7 ± 5.1 

Mother n (%) or mean ± SD 

Age (years)b 32.5 ± 4.0 30.4 ± 4.8 
Pre-pregnancy BMI, (kg/m2) 23.2 ± 3.8 24.8 ± 5.3 
Smoking 

Never 874 (80.5) 171 (72.5) 
Quit when pregnancy was known 92 (8.5) 10 (4.2) 
Continued during pregnancy 118 (10.9) 15 (6.4) 

Educational levelc 

High 451 (41.5) 208 (88.1) 

BMI: Body Mass Index. 
a Sum scores from the Children’s Eating Behaviour Questionnaire (Wardle 

et al., 2001). 
b In Generation R, maternal age is assessed at delivery. In Healthy Start, 

maternal age is measured at enrolment. 
c In Generation R, mothers were coded as having a ‘high’ education if they 

completed university; in Healthy Start, mothers were coded as ‘high’ education 
if they completed more than a high school education; % missing on variables 
ranged from 0 to 9.8% in Generation R and 0–16.9% in Healthy Start. 

Table 2 
Correlations (Spearman’s rho) between CEBQ subscales in Generation R (n =
1086) and Healthy Start (n = 236).   

Emotional 
undereating 

Satiety 
responsiveness 

Food 
fussiness 

Food responsiveness 
Generation R 0.08 − 0.21*** − 0.06** 
Healthy start 0.24*** − 0.17* − 0.03 

Emotional undereating 
Generation R – 0.35*** 0.26*** 
Healthy start – 0.15* 0.13 

Satiety responsiveness 
Generation R – – 0.47*** 
Healthy start – – 0.41* 

*p < 0.05; **p < 0.01; ***p < 0.001. 
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food avoidant traits (food responsiveness: 0.28 vs. 0.14, p < 0.001; food 
avoidant traits: 0.52 vs. 0.16, p < 0.001). The proportion of shared 
environmental effects was smaller for CpGs in associated regions than in 

other regions for food avoidant traits (0.10 vs. 0.16, p < 0.001), but for 
food responsiveness no difference was found (0.19 vs. 0.19, p = 0.961). 
The proportion of unique environmental effects was smaller for CpGs in 

Table 3 
Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food responsiveness at 4–5 years.  

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p p Bonferroni adjusted 

chr13 31506376 31507139 TEX26/TEX26-AS1 9 18.81 2.00 6.16E-21 3.16E-15 
chr17 14206774 14207968 HS3ST3B1 13 26.92 3.36 1.09E-15 5.58E-10 
chr20 44440824 44441164 UBE2C 6 37.24 4.75 4.68E-15 2.40E-09 
chr19 49223814 49224454 RASIP1 6 24.60 3.21 1.92E-14 9.83E-09 
chr11 3819041 3819306 PGAP2 6 215.24 30.55 1.85E-12 9.50E-07 
chr13 113622633 113622750 MCF2L-AS1 6 26.74 3.49 1.74E-14 8.91E-09 
chr11 44332385 44332940 ALX4 20 58.52 8.91 5.21E-11 2.67E-05 
chr11 36422377 36422615 PRR5L 5 13.33 2.01 3.60E-11 1.84E-05 
chr11 843915 844536 TSPAN4 8 24.67 3.80 8.70E-11 4.45E-05 
chr7 94023822 94023869 COL1A2 3 187.16 28.88 9.13E-11 4.67E-05 
chr8 145651369 145651799 VPS28 3 − 62.99 9.68 7.63E-11 3.91E-05 
chr9 90589146 90589806 CDK20 5 106.99 16.97 2.86E-10 1.47E-04 
chr1 156307962 156308296 CCT3/TSACC 9 161.86 26.48 9.81E-10 5.02E-04 
chr7 32111062 32111068 PDE1C 3 77.98 12.62 6.47E-10 3.31E-04 
chr4 5021084 5021311 CYTL1 7 − 23.84 4.04 3.59E-09 1.84E-03 
chr6 149805995 149806339 ZC3H12D 7 22.41 3.65 7.99E-10 4.09E-04 
chr11 2919798 2920209 SLC22A18AS 8 35.84 6.13 4.95E-09 2.54E-03 
chr12 45270312 45270573 NELL2 6 136.55 22.87 2.37E-09 1.22E-03 
chr15 90208810 90209326 PLIN1 5 104.26 17.56 2.91E-09 1.49E-03 
chr3 48471300 48471771 PLXNB1 5 52.86 8.98 3.90E-09 2.00E-03 
chr1 151118299 151119525 SEMA6C 13 93.74 16.17 6.73E-09 3.45E-03 
chr13 111039873 111040579 COL4A2 4 13.97 2.38 4.19E-09 2.15E-03 
chr22 18,985,500 18,985,691 DGCR5 3 12.75 2.20 6.50E-09 3.33E-03 
chr8 1765074 1766126 MIR596 13 27.14 4.67 6.23E-09 3.19E-03 
chr1 201476362 201476619 CSRP1 6 51.06 8.93 1.09E-08 5.59E-03 
chr11 567966 568206 MIR210HG 4 65.83 11.42 8.17E-09 4.19E-03 
chr11 111741914 111742291 ALG9 7 232.34 41.26 1.80E-08 9.20E-03 
chr17 76976010 76976357 LGALS3BP 7 41.90 7.27 8.31E-09 4.25E-03 
chr17 39890756 39891009 JUP 4 255.27 44.57 1.02E-08 5.23E-03 
chr7 79083054 79084166 MAGI2-AS3 17 36.17 6.41 1.67E-08 8.57E-03 
chr5 140018644 140018709 TMCO6 3 27.53 4.87 1.59E-08 8.12E-03 
chr5 140621375 140621754 PCDHB19P 3 26.72 4.81 2.75E-08 1.41E-02 
chr18 9708890 9709061 RAB31 3 376.43 67.81 2.83E-08 1.45E-02 
chr2 239140032 239140340 TARDBPP3/LINC02610 7 63.12 11.08 1.21E-08 6.18E-03 
chr7 35293080 35293892 TBX20 11 75.25 14.03 8.24E-08 4.22E-02 
chr20 62327968 62328427 RTEL1-TNFRSF6B 4 − 4.67 0.86 6.83E-08 3.50E-02 
chr4 142053146 142054660 RNF150 9 114.87 20.95 4.18E-08 2.14E-02 
chr20 62738880 62739073 NPBWR2 3 46.91 8.36 1.99E-08 1.02E-02 
chr19 55677716 55678066 DNAAF3 7 222.67 40.89 5.15E-08 2.64E-02 
chr16 3493423 3493681 ZNF597/NAA60 6 − 22.95 4.20 4.71E-08 2.41E-02 
chr4 1161597 1161653 SPON2 2 44.62 8.17 4.75E-08 2.43E-02 
chr1 202113592 202114058 ARL8A 4 167.70 30.75 4.92E-08 2.52E-02 
chr5 140071110 140071347 HARS2/HARS1 5 285.97 53.45 8.81E-08 4.51E-02 
chr5 140529627 140530467 PCDHB6 7 15.52 2.88 6.99E-08 3.58E-02 
chr14 74416980 74417249 FAM161B/COQ6 6 266.93 49.81 8.36E-08 4.28E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal age at delivery, smoking during 
pregnancy, education and pre-pregnancy BMI. 
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models. Due to varying site-level effect sizes and inter-site 
correlation adjustments, the regional estimate’s interpretability is limited to the direction of change: a positive estimate indicates that a higher level of methylation is 
related to more food responsiveness whereas a negative estimate indicates that a higher level of methylation is related to less food responsiveness. 

Table 4 
Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and emotional undereating at 4–5 years.  

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p p Bonferroni adjusted 

chr4 74847646 74847829 PF4 7 − 9.31 1.41 4.02E-11 1.92E-05 
chr11 368440 368638 B4GALNT4 7 − 29.71 4.32 5.92E-12 2.83E-06 
chr13 36871878 36872346 CCDC169-SOHLH2 12 61.38 8.94 6.76E-12 3.23E-06 
chr14 100141423 100142298 HHIPL1 5 − 35.00 5.60 3.94E-10 1.89E-04 
chr7 94286304 94286834 PEG10 19 30.63 5.18 3.42E-09 1.64E-03 
chr1 234367145 234367586 SLC35F3 5 − 11.97 2.18 3.75E-08 1.79E-02 
chr2 129659420 129659834 HS6ST1 4 − 22.18 4.16 9.45E-08 4.52E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal age at delivery, smoking during 
pregnancy, education and pre-pregnancy BMI. 
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models. Due to varying site-level effect sizes and inter-site 
correlation adjustments, the regional estimate’s interpretability is limited to the direction of change: a positive estimate indicates that a higher level of methylation is 
related to more emotional undereating whereas a negative estimate indicates that a higher level of methylation is related to less emotional undereating. 
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associated regions than in other regions for both food responsiveness 
and food avoidant traits (food responsiveness: 0.53 vs. 0.67, p < 0.001; 
food avoidant traits: 0.38 vs. 0.68, p < 0.001). This means that DNAm at 
these regions showed evidence of greater influence from genetic rather 
than environmental variation. 

3.2.2. Enrichment for eQTMs 
Results from the eQTM look-up, which shows the extent to which 

CpGs at associated regions have been associated with expression levels 
of nearby genes in peripheral blood of children (eQTMs), are provided in 
Supplemental Table 6. CpGs at regions associated with food avoidant 
traits were more often marked as eQTMs than CpGs at other regions 
(46.2% vs. 4.1%, p < 0.001). No difference was detected for food 
responsiveness (9.7% vs. 4.3%, p = 0.10). 

3.2.3. Enrichment for regulatory elements 
For CpGs in regions associated with food responsiveness, evidence 

for enrichment of DNAse I hypersensitive regions was found in blood 
tissue, fetal muscle tissue, fetal stomach tissue, fetal thymus tissue and in 
induced pluripotent stem cells (q < 0.05, Supplemental Figure 1). No 
evidence of tissue- or cell-type specific enrichment was found for chro-
matin states or histone marks for food responsiveness. For food avoidant 
traits, evidence for enrichment of histone marks was found in the small 
and large fetal intestine, fetal stomach, fetal trunk muscle, fetal thymus, 
and fetal adrenal gland (q < 0.05, Supplemental Figure 2). No tissue- or 
cell-type specific enrichment was found for DNAse I hypersensitive re-
gions or chromatin states with food avoidance traits. 

3.2.4. Functional enrichment 
Genes associated with differentially methylated regions were tested 

for functional enrichment against genes associated with all other re-
gions. No enrichment of Gene Ontology pathways was found for any of 
the appetitive traits (FWER p > 0.05). 

3.2.5. Look-up of annotated genes 
Genes at differentially methylated regions that have been associated 

with obesity-related traits have been depicted in Supplemental Tables 1- 
4. For food responsiveness, genetic variation of SEMA6C and NPBWR2 
has been related to BMI in the same study (Locke et al., 2015) and DNAm 
at PRR5L has been related to BMI in three studies (Demerath et al., 2015; 
Geurts et al., 2018; Wahl et al., 2017). Similarly DNAm at ZC3H12D 
(Geurts et al., 2018; Sayols-Baixeras et al., 2017; Sun et al., 2019), 
PLXNB1 (Geurts et al., 2018), and LGALS3BP (Demerath et al., 2015; 
Geurts et al., 2018; Sun et al., 2019) has been related to BMI. For 
emotional undereating, genetic variation of SLC35F3 has previously 
been related to trunk fat mass (Tachmazidou et al., 2017) and DNAm at 
ABR has previously been related to BMI (Geurts et al., 2018). For satiety 
responsiveness, DNAm at BCL9L (Sun et al., 2019; Wahl et al., 2017) and 
SMAD3 (Chen et al., 2021) has previously been associated with BMI. 
Lastly, for food fussiness, genetic variation of TYW3 has previously been 
related to visceral fat (Fox et al., 2012). All reported DNAm studies 
looked at DNAm in blood. 

Table 5 
Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and satiety responsiveness at 4–5 years.  

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p p Bonferroni adjusted 

chr2 54087008 54087343 GPR75/ASB3 10 − 35.12 4.35 6.99E-16 3.39E-10 
chr4 2819614 2819770 SH3BP2 3 − 29.00 4.25 8.85E-12 4.29E-06 
chr10 131265059 131265137 MGMT 5 − 38.28 6.45 2.97E-09 1.44E-03 
chr11 118781408 118781778 BCL9L 8 − 28.39 4.57 5.16E-10 2.50E-04 
chr15 67417651 67417899 SMAD3 4 − 128.04 21.02 1.12E-09 5.41E-04 
chr6 25882328 25882590 SLC17A3 4 3.73 0.62 2.44E-09 1.18E-03 
chr12 75784855 75785232 GLIPR1L2 8 − 16.56 2.93 1.50E-08 7.25E-03 
chr11 2293117 2293593 ASCL2 12 15.40 2.62 4.36E-09 2.11E-03 
chr17 6899207 6899577 ALOX12-AS1 9 − 6.15 1.08 1.18E-08 5.73E-03 
chr8 143859709 143859990 LYNX1 6 15.37 2.65 6.34E-09 3.07E-03 
chr15 22833149 22833681 TUBGCP5 9 18.09 3.14 8.07E-09 3.91E-03 
chr2 27531236 27531360 UCN 5 42.76 7.91 6.51E-08 3.15E-02 
chr8 2130120 2130263 MYOM2 2 − 41.91 7.75 6.46E-08 3.13E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal age at delivery, smoking during 
pregnancy, education and pre-pregnancy BMI. 
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models. Due to varying site-level effect sizes and inter-site 
correlation adjustments, the regional estimate’s interpretability is limited to the direction of change: a positive estimate indicates that a higher level of methylation is 
related to more satiety responsiveness whereas a negative estimate indicates that a higher level of methylation is related to less satiety responsiveness. 

Table 6 
Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food fussiness at 4–5 years.  

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p p Bonferroni adjusted 

chr1 75198582 75199117 CRYZ/TYW3 9 − 18.20 2.78 5.86E-11 2.82E-05 
chr6 28058724 28059208 ZSCAN16-AS1 9 − 9.14 1.33 6.88E-12 3.31E-06 
chr12 75784617 75785295 CAPS2/GLIPR1L2 10 − 15.55 2.41 1.07E-10 5.14E-05 
chr19 57352014 57352185 ZIM2/MIMT1 8 72.76 10.88 2.31E-11 1.11E-05 
chr4 2819614 2819770 SH3BP2 3 − 25.79 4.20 7.89E-10 3.80E-04 
chr12 2943902 2944493 NRIP2 8 14.58 2.57 1.47E-08 7.05E-03 
chr2 129659018 129659946 HS6ST1 7 − 19.46 3.27 2.70E-09 1.30E-03 
chr7 150755629 150756491 SLC4A2 10 − 45.95 8.49 6.16E-08 2.96E-02 
chr15 62516282 62516670 C2CD4B 5 − 15.01 2.78 6.95E-08 3.35E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal age at delivery, smoking during 
pregnancy, education and pre-pregnancy BMI. 
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models. Due to varying site-level effect sizes and inter-site 
correlation adjustments, the regional estimate’s interpretability is limited to the direction of change: a positive estimate indicates that a higher level of methylation is 
related to more food fussiness whereas a negative estimate indicates that a higher level of methylation is related to less food fussiness. 
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4. Discussion 

This is the first epigenome-wide association study (EWAS) examining 
associations of DNA methylation (DNAm) in cord blood with child 
appetitive traits (age 4–5 years), leveraging data from two prospective 
birth cohorts. The meta-analyses showed that DNAm at individual CpG 
sites was not associated with any of the four appetitive traits examined 
in the current study: food responsiveness, emotional undereating, satiety 
responsiveness and food fussiness. However, multiple differentially 
methylated regions – genomic regions comprised of several, related 
methylated sites – were associated with appetitive traits in childhood. 
Many of the CpG sites in the associated regions have been shown be 
under greater influence of genetic rather than environmental variation. 
We also found some evidence that sites associated with appetitive traits 
were enriched for regulatory elements in tissues such as fetal stomach 
and intestine. This may indicate a potential regulatory role for the 
identified differentially methylated regions, but this requires further 
functional studies. Altogether, these findings provide initial evidence for 
potential biological pathways underlying the expression of early appe-
titive traits. 

The meta-analyses showed that food responsiveness was associated 
with the largest number of differentially methylated regions, relative to 
the other three appetitive traits investigated. This suggests that the 
prenatal period is a particularly sensitive period for the epigenetic in-
fluence of food responsiveness, which may, in part, be due to this 
construct broadly capturing rudimentary energy balance behaviors 
which are salient to survival. In children, heightened sensitivity to 
external food cues observed in food responsiveness serves to promote a 
surplus in energy intake (Carnell & Wardle, 2007) which favors weight 
gain (Kininmonth et al., 2021). While adaptive in environments with 
unreliable energy and nutritional sources, this function may be no 
longer beneficial in the ubiquitous Western food-environment, where 
palatable and energy-dense foods are readily available. In our analyses, 
genes associated with regions differentially methylated for food 
responsiveness appear to be linked to a broad range of functions, 
including immune function, neural development, and cardiovascular 
functioning. In the look-up of genes associated with differentially 
methylated regions, several notable genes appear to be involved in 
metabolically-related functions which may be relevant to the early 
expression of food responsiveness. One example is ALG9 (ALG9 Alpha-1, 
2-Mannosyltransferase) on chromosome 11, a gene encoding the 
glycosylation protein alpha-1,2-mannosyltransferase, which has been 
shown to be differentially expressed in the placentae of women with 
diabetes mellitus during pregnancy (Alexander et al., 2018). Another 
example is a region of chromosome 20, located in the transcription start 
site of NPBWR2 (Neuropeptides B/W Receptor 2), which encodes a 
neuropeptide receptor, and which has previously been related to BMI 
(Locke et al., 2015). Also, this gene has been related to leptin and insulin 
levels in rats (Rucinski et al., 2007) as well as feeding behavior under 
stress in mice (Aikawa et al., 2008). As food responsiveness was the only 
food approach trait examined in the current analyses, further research is 
required to examine associations between DNAm and other food 
approach behaviors, such as enjoyment of food and emotional 
overeating. 

Differentially methylated regions associated with the food avoidance 
behaviors examined (emotional undereating, satiety responsiveness and 
food fussiness) were linked to genes also serving broad functions, with a 
prominence for cardiovascular and gastrointestinal function. Interest-
ingly, several genes were annotated to differentially methylated regions 
associated with multiple food avoidance behaviors. Similarly to the 
inter-correlations of the appetitive traits, these results indicate that we 
studied different aspects of a shared construct. For example, satiety 
responsiveness and food fussiness were related to DNAm in or near 
SH3BP2 (SH3 Domain Binding Protein 2; chromosome 4) and GLIPR1L2 
(GLIPR1-Like Protein 2; chromosome 12). SH3BP2 is associated with 
cherubism, a disorder characterized by dysplasia of the jaw 

(Reichenberger et al., 2012). GLIPR1L2 encodes a cysteine-rich secre-
tory protein and is highly expressed in the testes in vitro (Ren et al., 
2006). Cord blood methylation in GLIPR1L2 has previously been asso-
ciated with maternal pre-pregnancy obesity (Martin et al., 2019). In our 
current analyses, it is worth noting that DNAm in GLIPR1L2 remained 
associated with both satiety responsiveness and food fussiness after 
adjustment for maternal pre-pregnancy BMI (Model 2). This indicates 
that, where maternal pre-pregnancy BMI may be a potential precursor to 
cord blood GLIPR1L2 DNAm, the association between GLIPR1L2 DNAm 
and these appetitive traits (satiety responsiveness and food fussiness) is 
at least partially independent of pre-pregnancy BMI. 

Several appetitive traits were associated with DNAm at regions near 
or at genes linked to pubertal development. Both emotional undereating 
and food fussiness were associated with DNAm on chromosome 2 at 
regions near HS6ST1 (Heparan Sulfate 6-O-Sulfotransferase 1), a gene 
related to hypogonadism and delayed puberty (Howard et al., 2018). 
Another differentially methylated region found for emotional under-
eating was near IGSF10 (Immunoglobulin Superfamily Member 10) on 
chromosome 3, which has also been related to delayed puberty (Budny 
et al., 2020). Food responsiveness was associated with a differentially 
methylated region on chromosome 3 in PLXNB1 (Plexin B1), which has 
been related to hypogonadism (Welch et al., 2022). Furthermore, a 
look-up indicated that DNAm at PLXNB1 has been related to BMI (Geurts 
et al., 2018). Taken together, this could indicate that these gene regions 
that relate to appetite in early childhood may be signals for growth and 
development, perhaps during puberty. 

Enrichment analyses showed that differentially methylated regions 
associated with food avoidance traits were enriched for cis-eQTMs in 
peripheral blood in children, indicating that differential DNAm at these 
regions may have functional relevance. Among regions in which DNAm 
was related to expression of the gene closest to the region itself are those 
at aforementioned SH3BP2 and IGSF10, as well as a region in OR2L13 
(Olfactory Receptor Family 2 Subfamily L Member 13), at which DNAm 
associated with emotional undereating. This gene encodes an olfactory 
receptor, and has been shown to be expressed in non-chemosensory 
tissues as well, including blood and the brain (Ferrer et al., 2016), and 
DNAm at this gene has been associated with gestational diabetes mel-
litus previously (Howe et al., 2020; Quilter et al., 2014). DNAm at a few 
differentially methylated regions was related to expression levels of a 
gene close to, but not nearest to the region, for example DNAm at 
SLC4A2 (Solute Carrier Family 4 Member 2) was associated with food 
fussiness, yet DNAm at this region is related to the expression of AGAP3 
(ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 3), a 
gene related to synaptic plasticity (Oku & Huganir, 2013). 

Further, enrichment analyses of CpGs at differentially methylated 
regions associated with appetitive traits indicated that, overall, DNAm 
at the associated regions appeared to be mainly explained by genetic (as 
opposed to environmental) variation as compared to DNAm at other 
regions. This corroborates our finding that associations of DNAm with 
appetitive traits are largely independent of prenatal factors. Causal 
pathways of selected genes could be tested through Mendelian 
randomization and mediation analyses (at the site-level) to interpret to 
what extent DNAm might mediate genetic or environmental effects on 
appetitive traits. Mediation analyses would also be required to formally 
test appetitive traits as behaviorally-mediated mechanisms linking ge-
netic risk and environmental exposure to weight gain. Another follow- 
up experiment could be to analyze DNAm and gene expression in the 
same samples to test the effects of differential DNAm on gene expression. 
Such an analysis could provide an immediate functional readout of 
identified DNAm differences. We did not examine child BMI as an 
outcome or correlate of appetitive traits, as such analyses are outside the 
scope of the current analyses as it would require much larger sample 
sizes. However, this is an important direction for future research, owing 
to the link between appetitive traits and child BMI and adiposity. 

This study adds to the knowledge on biological processes underlying 
children’s appetitive traits. However, interpretation of these results 
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must be considered in light of some limitations. Firstly, these results are 
presented with the caveat that the direction of the DNAm methylation 
effect estimates cannot be readily interpreted. For active genes, higher 
DNAm at the promoter area (TSS200) is often, but not always, related to 
decreased gene transcription, whereas higher DNAm is often (but not 
always) related to increased gene transcription (Ball et al., 2009; Jones, 
2012). In addition, since site-level effect sizes can vary substantially 
across the differentially methylated regions, and correlations between 
the sites are accounted for when computing the regional-level estimate, 
this means that the size of the regional analysis estimate cannot be 
meaningfully interpreted. We therefore recommend readers to pay 
attention to the annotated genes, rather than the effect estimates, to 
understand which biological systems may be involved in appetitive 
traits. Secondly, because associations between DNAm at CpG sites and 
child behavior are typically small (Mulder et al., 2020), we may have 
been underpowered to detect small effect sizes. However, previous 
studies examining DNAm in relation to child appetitive traits were small 
candidate studies (Do et al., 2019; Gardner et al., 2015), and therefore 
this is the first (and relatively large) EWAS meta-analysis. Thirdly, it is 
also worth mentioning that there were some differences between the 
two cohorts in the meta-analysis; for example, how participant charac-
teristics were measured (e.g. maternal education). The cohorts were also 
different in size. Nevertheless, we found many associations between 
differently methylated regions and appetitive traits in the meta-analysis, 
with most showing low heterogeneity between the cohorts, indicating 
that these results were largely robust to inter-cohort differences. We 
encourage researchers to add to these data and to further explore other 
appetitive traits, as only appetitive traits that were common across both 
cohorts were examined in the current study. Fourthly, appetitive traits 
were assessed using parent-report, which may introduce subjectivity or 
social desirability bias. However, the CEBQ was used to assess child 
appetitive traits, and subscales from the CEBQ have been validated with 
observations and experimental eating behavior tasks in preschool-aged 
children (Blissett et al., 2019; Carnell & Wardle, 2007). Parents are 
likely to be reliable reporters of their child’s behavior as they observe 
their child’s eating across contexts and over a period of time. Fifthly, 
there was a 4- to 5- year period between the measurement of the 
exposure (cord blood DNAm) and the outcome (appetitive traits) in the 
two cohorts. Other early environmental exposures may influence the 
expression of children’s eating phenotypes, such as parent feeding 
practices (Harris et al., 2020). Finally, we only examined one time point 
of DNAm and appetitive traits. As both appetitive traits and DNAm are 
known to change over time (Derks et al., 2019; Mulder et al., 2021), 
future research could build on the current findings by examining DNAm 
and appetitive traits at multiple time points across child development to 
determine the directionality of associations. There were also many study 
strengths in addition to those already mentioned. For example, in 
addition to the analysis of CpGs, we completed a robust analysis of 
differentially methylated regions. We also controlled for a number of 
maternal and child covariates in different models, and hypothesized 
mediators, to examine effect size changes between models. 

Findings from this study support the hypothesis that DNAm at 
numerous genetic regions in cord blood is associated with appetitive 
traits at preschool-age, implicating DNAm patterns widely spread across 
the genome in the newborn as a potential mechanism underlying early 
childhood eating behavior. We have linked our results to evidence 
indicating that DNAm at these regions is related to both genetic factors 
and the prenatal environment, although more so to the former. We hope 
these findings incite other researchers to study associations between 
DNAm and appetitive traits, to unravel potential causal pathways 
through which DNAm may play its role in appetitive traits. 
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