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CHAPTER

ONE

INTRODUCTION

In this dissertation I study fundamental mathematical properties of the Potts
model and the hard-core model. Both models originate in statistical physics. For
context I give a short introduction to discrete models from statistical physics
and some of the questions that are studied in the literature for these models
in Section 1.1. In Section 1.2 I introduce the Potts model and indicate the
main results contained in Part I of this dissertation. In Section 1.3 I introduce
the hard-core model and indicate the main results contained in Part II of this
dissertation. The computational complexity classes P, NP and #P play a role in
this dissertation, especially in Chapter 5. Section 1.4 gives a short introduction
in computational complexity.

1.1 Discrete models from statistical physics

Statistical mechanical models attempt to capture the macroscopic behavior of
materials, such as gasses, fluids or pieces of iron as a function of physical pa-
rameters, such as temperature. In particular, statistical physics aims to provide
a framework explaining macroscopic behavior of materials from the microscopic
states, see the introduction of [FV17]. Drastic changes in macroscopic behavior
of the material at a certain value of the parameters are called phase transitions.
A classical example of a phase transition is the liquid-vapor phase transition of
water; water boils at a specific temperature and pressure.

In this dissertation two discrete models that originate in statistical physics
play a role, the Potts model and the hard-core model. The mathematical frame-
work of a discrete model from statistical physics on a finite graph G = (V,E) is
as follows. The vertices of G model particles or positions of particles. There is a
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model dependent finite set of states S. A function σ : V → S is called a configura-
tion. Each configuration corresponds to a possible microscopic state of the model.
In the hard-core model one takes S = {occupied, unoccupied} and lets the ver-
tices of G represent potential positions of particles of a gas, see Section 1.3. The
Potts model was originally introduced to study ferromagnetism. The graph G
models the particles of some material and the set of states is [q] := {1, . . . , q}
for an integer q ≥ 2. The states model the different magnetic spins the particles
can take, see Section 1.2. One defines an energy function or Hamiltonian H that
associates an energy to each configuration. The Gibbs measure PrG on the set of
configurations is the probability measure where each configuration σ has a prob-
ability of occurring proportional to e−H(σ)/kT , where T ≥ 0 is the temperature
and k is the Boltzmann constant. Configurations with large energy are therefore
unlikely to occur. Gibbs measures can alternatively be defined by the property
that the marginal distributions of the vertices incident to v uniquely determine
the marginal distribution at v, i.e. these measures satisfy a Markov property.
The introduction of [Geo88] explains the physical relevance of Gibbs measures.
In short, a Gibbs measure can be thought of as a macroscopic equilibrium state
of the model.

Real world materials contain a large number of particles, a drop of water con-
tains roughly 1.67 · 1021 molecules. This motivates the idea to model real world
materials as an infinite system, i.e. with an infinite graph. The physical idea is to
let the volume and the number of particles of the system grow to infinity, while
keeping the ratio between volume and number of particles fixed. This process is
called the thermodynamic limit, see the introduction of [FV17] for details. Using
the Markov property the concept of a Gibbs measure can be successfully gener-
alised to infinite graphs, such as the integer lattice Zd or the infinite regular tree
T∆

1, see [Geo88] for a general definition. For many models on an infinite graph,
including the ones we study, there exists at least one Gibbs measure, which can
be proved by a compactness argument cf. [FV17, BW99, Geo88]. On a finite
graph the Gibbs measure is clearly unique. However on an infinite graph, the
Gibbs measure need no longer be unique. A fundamental question is: at what
temperatures is there a unique Gibbs measure and at what temperatures is there
a transition from a unique Gibbs measure to multiple Gibbs measures? A temper-
ature Tc at which there is a transition from a unique Gibbs measure to multiple
Gibbs measures is called a critical temperature. We say a uniqueness phase tran-
sition occurs at Tc. There is a surprising connection between the uniqueness
phase transition on the infinite regular tree and transitions in the computational
complexity of approximately computing partition function of bounded degree
graphs for 2-state models, such as the hard-core model. It is conjectured that a
similar phenomenon holds for models with a larger number of states, such as the

1The countable infinite tree where each vertex is incident to ∆ edges.
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Potts model. The uniqueness phase transition on the infinite regular tree also
plays a role in the design of efficient algorithms to sample from Gibbs measures
on finite graphs [BGG+20]. Part I of this dissertation, consisting of Chapters 2,
3 and 4, concerns the uniqueness phase transition of the antiferromagnetic Potts
model on the infinite regular tree.

The normalising constant in the Gibbs measure of a finite graph G is ZG(T ) =∑
σ e

−H(σ)/kT and is called the partition function of the model. Consider a
sequence of finite graphs Gn converging2 to an infinite graph G. Define the free
energy per site as

ρ(T ) = lim
n→∞

1

|V (Gn)|
log(ZGn

(T )),

which is a function of the temperature T . For many models the free energy
per site can be shown to be a well-defined continuous function on positive real
parameters. The free energy per site ρ(T ) and its derivatives contain interesting
information of the system, for example the density of the system. A parameter
T at which the free energy per site is non-analytic is called a phase transition
of the model. This definition of phase transition goes back to Ehrenfest, see for
example [Jae98]. A phase transition in terms of analyticity of the free energy per
site need not necessarily be the same as a uniqueness phase transition, though
both types of phase transitions mark a change in behavior of the model. Yang
and Lee established a connection between analyticity of the free energy per site
at a real parameter T0 and the set of complex zeros of ZGn

(T ) accumulating on
T0 for many models, including the hard-core model, when the limit graph is the
integer lattice Zd [YL52]. This motivates the study of complex zeros of partition
functions for sequences of finite graphs.

The study of the complex zeros of partition functions for a class G of fi-
nite graphs also has a motivation from computer science. The computer science
framework can be described as follows. Given the model, the temperature T of
the model and a class of graphs G, does there exist a polynomial time algorithm
that given G ∈ G computes ZG(T )? Here polynomial time means the worst-case
runtime of the algorithm is bounded by a polynomial in the number of vertices
of the graph G. Exact computation is in many cases proven to be computa-
tionally hard3, which implies existence of a polynomial time algorithm is very
unlikely. It is therefore natural to relax the computational problem and ask if
polynomial time approximate computation is possible: given G ∈ G and an ε > 0
can one approximate ZG(T ) in polynomial time with multiplicative error at most
ε? Approximate computation turns out to be deeply connected to the location
of complex zeros; for many models, including the hard-core model, a zero-free
region leads to a polynomial time approximation algorithm by the interpolation

2In the sense of van Hove, see Section 3.2.1 in [FV17].
3NP-hard or even #P-hard, see e.g. [Wig19] or Section 1.4 for definitions.
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method of Barvinok [Bar16, PR17]. On the other hand, when zeros are known
to accumulate at a certain temperature, approximate computation can often be
shown to be computationally hard. Part II of this dissertation, consisting of
Chapters 5 and 6, concerns the zeros of the partition function of the hard-core
model, for bounded degree graphs in Chapter 5 and for tori graphs in Chapter 6.

The next two sections introduce the two specific models and the questions I
study for those models in this dissertation.

1.2 Potts model

The Potts model was first introduced by Renfrey Potts on suggestion of his
advisor Cyril Domb, to study ferromagnetism [Pot52]. Let a finite graph G =
(V,E) be given. For the Potts model the set of states or colors is S = [q] =
{1, . . . , q} for some q ∈ Z≥2. The configurations σ : V → [q] are called colorings.
For a coloring σ let m(σ) denote the number of monochromatic edges in σ, i.e.
the number of {u, v} ∈ E for which σ(u) = σ(v). A proper coloring is a coloring
for which m(σ) = 0. The Hamiltonian is defined as H(σ) = −J ·m(σ), where
J ∈ R \ {0} is a coupling constant. We define the weight w(σ) = e

−H(σ))
kT , where

T ∈ R≥0 is the temperature and k is the Boltzmann constant. For example,
proper colorings receive weight 1. We use the convention to write w = e

J
kT ∈ R≥0,

so colorings receive weight wm(σ). With this convention the Gibbs measure on
the graph G = (V,E) is the probability measure that assigns probability

wm(σ)∑
τ :V→[q] w

m(τ)

to each coloring σ. The partition function ZPotts(G;w) =
∑
τ :V→[q] w

m(τ) of
the Potts model is a polynomial in w and can essentially be expressed as an
evaluation of the Tutte polynomial, a well known object from combinatorics
[FK72, Tut54, Sok05]. When it is clear we are working with the Potts model, we
denote the partition function as ZG(w). For w ∈ R>1, corresponding to J > 0
and T ≥ 0, colorings σ with larger number of monochromatic edges m(σ) re-
ceive larger weight. This is referred to as the ferromagnetic Potts model. When
w ∈ [0, 1), corresponding to J < 0 and T ≥ 0, colorings with smaller number
of monochromatic edges m(σ) receive higher weight. This is referred to as the
antiferromagnetic Potts model.

For the ferromagnetic Potts model on the infinite regular tree T∆ the unique-
ness phase transition is completely understood, see Theorem 5 in [GŠVY16].
The proof uses monotonicities in the model which only occur in the ferromag-
netic case. For the antiferromagnetic Potts model much less is known. Define



Hard-core model 5

wc = max{0, 1− q
∆}. When wc > 0, it is known there are multiple Gibbs measures

for w < wc [PdLM83, PdLM87].

Folklore conjecture. The q-state antiferromagnetic Potts model on T∆ has a
unique Gibbs measure if and only if{

w > wc for ∆ = q,

w ≥ wc otherwise.

In other words the folklore conjecture states that wc is the parameter at which
there is a uniqueness phase transition of the antiferromagnetic Potts model on the
infinite regular tree for all q and all ∆ ≥ q. This folklore conjecture was confirmed
for q = 2 and all ∆ by Srivastava, Sinclair and Thurley [SST14] and for q = 3
and ∆ ≥ 3 by Galanis, Goldberg and Yang [GGY18]. In this dissertation, the
following theorems are proved.

Main Theorem of Chapter 3. Let ∆ ∈ N≥5. Then for each w ∈ [1− 4
∆ , 1) the

4-state anti-ferromagnetic Potts model with edge interaction parameter w has a
unique Gibbs measure on the infinite ∆-regular tree T∆.

Main Theorem of Chapter 4. For each integer q ≥ 5 there exists ∆0 ∈ N
such that for each ∆ ≥ ∆0 and each w ∈ [1− q

∆ , 1) the q-state anti-ferromagnetic
Potts model with edge interaction parameter w has a unique Gibbs measure on
the infinite ∆-regular tree T∆.

One of the ingredients in the proof of these theorems is the iteration of a
map F : Rq → Rq, which depends on ∆ and w. We aim to find convex forward
invariant sets for F . A natural question that remains is the following.

Question 1.2.1. Can we take ∆0 = q + 1 in the Main Theorem of Chapter 4?

The main issue is that the proof of the Main Theorem of Chapter 4 uses a
compactness argument, which makes the dependency of ∆0 on q unclear. Addi-
tional analysis is needed in order to obtain explicit bounds for ∆0 in terms of
q. Part I, consisting of Chapters 2, 3 and 4, is devoted to the uniqueness phase
transition for the antiferromagnetic Potts model and is based on [dBBR22] and
[BdBBR22]. Chapter 2 serves as a common introduction to Chapters 3 and 4.

1.3 Hard-core model

The hard-core model is a model for a lattice gas. In this model particles of
a gas are assumed to occupy positions of a discrete lattice L. We define the
model on any finite graph G. Vertices of G can be occupied or unoccupied by
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a gas particle. We model this with the set of states S = {0, 1}, by taking 0 for
unoccupied and 1 for occupied vertices. The gas particles are assumed to have a
hard core, i.e. adjacent vertices of G cannot be both occupied by a gas particle.
The Hamiltonian is defined as

H(σ) =

{
∞ if there is an edge {u, v} with σ(u) = 1 = σ(v),∑
v∈V σ(v) otherwise.

We define the weight function by w(σ) = e
−H(σ)

kT , where k is the Boltzmann
constant and T is the temperature. We write λ = e

−1
kT , so the weight function is

w(σ) =

{
0 if there is an edge {u, v} with σ(u) = 1 = σ(v),

λ
∑

v∈V σ(v) otherwise.

A set I ⊆ V is called an independent set if there is no edge {u, v} with both
u and v in I. Configurations σ with nonzero weight correspond to independent
sets by taking I = σ−1(1). Hence the partition function of the hard-core model
of a finite graph G is equal to the generating function over all independent sets
of G, called the independence polynomial in graph theory. The independence
polynomial, introduced in [GH83], and its complex zeros for various graph classes
have a long history of study, see [LM05] for a survey. We denote the independence
polynomial by Zind(G;λ), or often simply by ZG(λ) when it is clear we are
working with the independence polynomial.

Evaluations at specific parameters λ carry information on the independent
sets of the graph, for example ZG(1) is the total number of independent sets
in G. Computing ZG(1) exactly is a computationally hard problem4, already
for the class of graphs where each vertex has degree at most 3 [Gre00]. It is
therefore natural to relax the problem to approximate computation. For a class
of graphs G and a specific parameter λ we say there exists a polynomial time
algorithm approximately computing |ZG(λ)| if given a graph G ∈ G and an ε > 0
the algorithm computes a number N in time polynomial in |V (G)|/ε such that
e−ε ≤ |ZG(λ)|

N ≤ eε. When ZG(λ) = 0 we allow the algorithm to output any
number N . Note for λ ∈ R≥0 we have |ZG(λ)| = ZG(λ) as ZG(λ) is a polynomial
with positive integer coefficients.

In Chapter 5 the focus is on the class of finite graphs where each vertex is of
degree at most ∆, denoted by G∆. Let us denote the set of zeros of independence
polynomials of graphs in G∆ by

Z∆ := {λ ∈ C : ∃G ∈ G∆ for which ZG(λ) = 0}.
4In fact #P-hard, see Section 1.4 for some background on computational complexity, in

particular for a definition of #P-hardness.
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We call Z∆ the zero-locus. For a vertex v of G we denote by Z in
G,v(λ) the inde-

pendence polynomial where we sum only over independent sets containing v and
by Zout

G,v(λ) the independence polynomial where we sum only over independent
sets not containing v, so that ZG(λ) = Z in

G,v(λ) + Zout
G,v(λ). The ratio at v is the

rational function

RG,v(λ) :=
Z in
G,v(λ)

Zout
G,v(λ)

.

Furthermore, define the family of maps

R∆ := {RG,v : G ∈ G∆ and v ∈ V (G)}.

Clearly 0 ̸∈ Z∆. By a result of Shearer [She85] it turns out that 0 ̸∈ Z∆. Let
U∆ denote the maximal connected and open set containing 0 with U∆ ⊆ C \ Z∆.
For the class of graphs G∆ and any λ ∈ U∆, there is a polynomial time ap-
proximation algorithm to compute ZG(λ), due to the interpolation method by
Barvinok [Bar16, PR17]]. One could summarise this by saying that connected
and open zero-free regions imply the existence of a polynomial time approxima-
tion algorithm. The main result of Chapter 5 establishes a connection in the
other direction, building on [BGGŠ20]. It also proves a fundamental connection
between the set of zeros and chaotic behavior of the family of ratios.

Main Theorem of Chapter 5. Parameters λ for which approximately com-
puting the norm of the independence polynomial |ZG(λ)| for graphs G ∈ G∆ is
computationally hard accumulate on any µ ∈ Z∆. Furthermore Z∆ is equal to
the set of parameters where the family R∆ behaves chaotically.

The chaotic behavior is characterised in two different ways that turn out
to be equivalent, see Chapter 5 for details. Through the connection between
zeros and chaotic behavior of R∆ one gets insight in the structure of Z∆ and its
complement, see for example Proposition 5.4.3 in Chapter 5. We conjecture the
following.

Conjecture 1.3.1. The set C \ Z∆ is connected.

If Conjecture 1.3.1 is true, then C\Z∆ = U∆. The hardness of approximation
of the independence polynomial of bounded degree graphs would be essentially
understood in terms of the set of zeros of the independence polynomial of bounded
degree graphs. In the limit ∆ → ∞ the suitably rescaled complement of the zero-
locus converges in the Hausdorff metric to a connected set [BBP21], providing
evidence for Conjecture 1.3.1.

From a physics viewpoint it is particularly interesting to consider sequences of
graphs Gn that converge to a regular lattice. In Chapter 6 we consider sequences
of d-dimensional tori converging to the integer lattice Zd for d ≥ 2, i.e. tori whose
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minimal cycle lengths tend to infinity. A d-dimensional torus with side lengths
ℓ1, . . . , ℓd is the Cartesian product Zℓ1 × · · · × Zℓd , where we write Zn for Z/nZ.
In particular, we study the structure of the set of zeros for various classes of tori,
which has motivation from statistical physics and computer science, as discussed
in Section 1.1.

Figures 6.1 and 6.2 in Chapter 6 suggest that for classes of tori there is a
connection between the set of zeros and the chaotic behavior of the family of
ratios of tori graphs. However, establishing such a connection remains open.
The main reason is the techniques from Chapter 5 to prove this connection do
not apply to the class of tori, as the techniques in Chapter 5 crucially use the
class of bounded degree graphs is closed under taking induced subgraphs. The
main result in Chapter 6 establishes when the zero set for various classes of tori
remains bounded, providing a first result on the structure of the set of zeros for
these physically more relevant class of graphs. For technical reasons we only
consider tori for which all side lengths are even and call those tori even.

Main Theorem of Chapter 6. Let F be a family of even d-dimensional tori. If
F is balanced, then the zeros of the independence polynomials {ZT : T ∈ F} are
uniformly bounded. If F is highly unbalanced, then the zeros are not uniformly
bounded.

Here we say that a family of d-dimensional tori F is balanced if there exists
a C > 0 such that for all T ∈ F we have that ℓd ≤ Exp(C · ℓ1), where ℓ1 ≤
· · · ≤ ℓd denote the side lengths of T . On the other hand we say that the
family is highly unbalanced if there is no uniform constant C > 0 such that
ℓd ≤ Exp(C · (ℓ1 · · · ℓd−1)

3
) for all T ∈ F .

Several steps of the proof for boundedness of zeros of balanced tori rely in
an essential way on the assumption that the tori are balanced. On the other
hand, the highly-unbalanced assumption on the family of tori that guarantees
the existence of unbounded zeros seems far from sharp, evidenced for example
by the fact that the demonstrated zeros of the tori escape very rapidly in terms
of the sizes of the tori. It therefore seems reasonable to expect that the balanced
assumption is necessarily, while the highly-unbalanced assumption is not.

Question 1.3.2. Let F be a family of even d-dimensional tori for which the
zeros of the independence polynomials are uniformly bounded. Is F necessarily
balanced?

For further questions, see Section 6.1.6 in Chapter 6. Chapter 5 is based on
[dBBG+21] and Chapter 6 is based on [dBBPR23].
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1.4 Complexity classes and reductions

The goal of this section is to define complexity classes NP and #P and to
define the notion of #P-hardness, providing background for Chapter 5 of this
dissertation. This section is based on the books [Wig19] and [Jer03], though
we use different notation to avoid confusion with independent sets. We will use
various computational problems as guiding examples in this section.

The first guiding computational problem is the following. Given a graph G =
(V,E), an integer k ≥ 0 and a set S ⊆ V , determine if S is an independent set
of size k in G. We denote this problem as IsIndset. Computational complex-
ity theory provides a mathematical framework to reason about algorithms for
problems such as IsIndset. We wish to define efficient solvable problems in some
way. Formally one needs to define what an algorithm is allowed to do and how
the input and output of a computational problem are represented. Usually, one
defines algorithms using Turing machines and tailor the input and output of the
problems to the specific definition of Turing machine chosen. It turns out the
standard definition of efficient solvable problem does not depend on the details
of the implementation of the Turing machine (e.g. what set of symbols it uses or
how many distinct storage tapes it has access to), see for example [AB09]. We
represent the finite objects we want to do computations on as finite bit strings.
In light of the previous remark, we do not concern ourselves with exactly how
we choose such a representation. To have something concrete in mind, one can
represent a graph with the adjacency matrix and integers with binary expansions.
Denote the set of finite bit strings as B. For x ∈ B we denote by |x| the size of x,
which is the number of bits in x5. Denote Bn ⊂ B for the set of bit strings of size
n. A computational problem is defined to be a function f : B → B. We wish to
have an algorithm to compute f(x) given any input x ∈ B. Note the input and
output may have different interpretation. For example, for IsIndset : B → {0, 1}
the input is a triple (G, k, S), where G = (V,E) is a graph, k ≥ 0 is an integer
and S ⊆ V is a set of vertices of G. The output will be 1 if |S| = k and S is an
independent set in G and 0 otherwise6.

Definition 1.4.1 (the class P). A computational problem f : B → B is in the
class P if there is an algorithm computing f and positive constants A, c such that
for every n and every x ∈ Bn the algorithm computes f(x) in at most Anc steps.

A step of an algorithm is a step of the Turing machine on which the algorithm
runs, but as the details of choice of Turing machine does not change the class P we

5For graphs, one defines the size typically to be the number of vertices of G, though again
there are many natural definitions of size that will all lead to the same computational complexity
of the computational problem.

6Formally, f could also receive input strings which are incorrectly formatted, in this case f
should output 0 as well.
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omit the choice of Turing machine in the definition. Computational problems in
P are considered to be efficiently solvable, see [Wig19] for more background and
motivation. The problem IsIndset is in P, as checking for each vertex in S if there
is an edge to any other vertex in S is an algorithm computing IsIndset that runs in
time polynomial in the size of (G, k, S). Computational problems f : B → {0, 1}
are called decision problems. Any computational problem f : B → B can be
viewed as a string of decision problems. Hence we sometimes think of P as
consisting of only decision problems. A decision problem f can be represented as
a subset C ⊂ B such that x ∈ C if and only if f(x) = 1.

The second guiding example is the decision problem Indset : B → {0, 1}. The
input for Indset is a graph G = (V,E) and an integer k ≥ 0, the output is 1 if
G contains an independent set of size k and 0 otherwise. For this problem, no
polynomial time algorithm is known. But given an independent set I in G of
size k, one can use IsIndset on input (G, k, I) to check in polynomial time if I
is in fact an independent set of size k in G. This is an archetypal example of a
problem in NP.

Definition 1.4.2 (the class NP). A decision problem f : B → {0, 1} is in the
class NP if there is a Vf ∈ P and a constant c such that

• If f(x) = 1, then there exists a witness y ∈ B with |y| ≤ c · |x|c and
Vf (x, y) = 1;

• If f(x) = 0, then for all witnesses y ∈ B we have Vf (x, y) = 0.

The idea behind this definition is that f outputs 0 only on inputs x where
the desired structure, such as an independent set of size k, does not exist. If
the desired structure does exist the output is 1 and we demand there exist a
verifier Vf ∈ P with which we can check the correctness of the output. Note
that in the definition of the class NP it is only required that the witness y is of
size comparable to the input x; there is no mention of how to obtain a witness
y. From the definitions we see each decision problem in P is in NP, as for any
decision problem f ∈ P one can take verifier Vf = f and let the witness y be
empty.

Let us introduce another famous decision problem in NP. A Boolean formula
consists of variables and the logical symbols ∨,∧,¬, for example (x ∨ ¬y) ∧ z is
a Boolean formula. A literal is a Boolean formula of the form x or ¬x. A clause
is a disjunction of literals, for example x ∨ ¬y is a clause. A Boolean formula
is in conjunctive normal form if it is a conjunction of clauses, so for example
(x ∨ ¬y) ∧ z is in conjunctive normal form, while (x ∧ y) ∨ z is not. We say
a Boolean formula is satisfiable if there is an assignment of true (1) and false
(0) to the variables such that the formula is true. For example, (x ∨ ¬y) ∧ z is
satisfiable, for example take x = z = y = 1. The Boolean formula x ∧ ¬x is not
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satisfiable. Let Sat denote the Boolean satisfiability problem, where the input is
a Boolean formula in conjunctive normal form and the output is 1 if the formula
is satisfiable and 0 otherwise. Checking an assignment of 0 and 1 to the variables
in a Boolean formula B satisfies B can be done in time polynomial in the size of
B, hence Sat is in NP.

A crucial tool in the study of complexity of decision problems are so-called
Karp reductions. Karp reductions link distinct decision problems, reducing one
problem to the other. Let us motivate the definition of a Karp reduction with an
example.

The decision problem Sat can be reduced to Indset by the following argument
from [Kar72]. Given a Boolean formula B in conjunctive normal form on k
variables, let li denote the literals and cj the clauses of B. Form a graph GB
with vertex sets all tuples (li, cj) and an edge between (li, cj) and (li′ , cj′) if j = j′

or li = ¬li′ . Then any independent I in GB of size k corresponds to a satisfying
assignment of the variables for B, by letting li = 1 if (li, cj) ∈ I and li = 0 if
(¬li, cj) ∈ I. The construction of GB takes time polynomial in the size of f . Note
also that k is less than the size of f , hence the size of (GB , k) is polynomial in the
size of f . This argument shows, by applying Indset to (GB , k), that if one has
a polynomial time algorithm for Indset, then this would also yield a polynomial
time algorithm for Sat.

Definition 1.4.3. Let f, g : B → {0, 1} be decision problems. A function r :
B → B is called a Karp reduction from f to g if r ∈ P and for every x ∈ B we
have f(x) = g(r(x)). We write f ≤K g if there is a Karp reduction from f to g.

We have shown Sat ≤K Indset. In general, if f ≤K g and g ∈ P then f ∈ P
follows. Furthermore, the relation ≤K is transitive.

Definition 1.4.4. Let f : B → {0, 1} be a decision problem. We say f is NP-
hard if for all g ∈ NP we have g ≤K f . If f ∈ NP we say f is NP-complete.

If a problem f is NP-complete and g ≤K f , then g is NP-hard. A funda-
mental result by Cook [Coo71] shows Sat is NP-complete. Together with the
reduction Sat ≤K Indset, this implies Indset is NP-complete. We think of an
NP-hard problem as being as hard as all the problems in NP, as finding a poly-
nomial time algorithm for an NP-hard problem would imply finding a polynomial
time algorithm for all problems in NP, thus yielding NP = P, which is widely
believed to be false. Hence proving a problem is NP-hard is considered a proof
of difficulty of a problem.

The final type of computational problems we will consider are those where we
want to count how many solutions exist. The guiding example is the computa-
tional problem #Indset : B → B. The input to #Indset is a graph G = (V,E)
and an integer k ≥ 0, the output is the number of independent sets of size k in
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G. This problem is a counting version of Indset. This is an archetypal example
of a problem in #P, a complexity class introduced by Valiant in [Val79].

Definition 1.4.5 (the class #P). Let f ∈ NP. The counting version of f is the
problem #f : B → B defined by #f(x) = |{y ∈ B : |y| ≤ c · |x|c and Vf (x, y) =
1}|, where the constant c and verification algorithm Vf are as in Definition 1.4.2.
We define #P to be the class of counting versions of problems in NP.

Similarly as in #Indset we can define a counting version of Sat, denoted
by #Sat. The reduction from Sat to Indset preserves witnesses, that is each
independent set of size k in the graph GB corresponds to a unique satisfying
assignment of the variables occurring in the Boolean formula B, so running #Sat
on B yields the same integer as running #Indset on (GB , k). Hence the problem
#Sat also reduces to the problem #Indset. However, in general, one needs a bit
more freedom than what is allowed by Karp reductions, as is illustrated in the
following example.

Consider the computational problem IndPolyEval, where the input is a pair
(G, k), with G a graph and k an integer and the output is the independence
polynomial of G evaluated at k, i.e. the integer Zind(G; k). Consider also the
computational problem IndNumber, with input a graph G and output the size of
the largest independent set of G, the so-called independence number of G denoted
by α(G).

If we assume there is a magical algorithm, often called an oracle, that com-
putes IndPolyEval in constant time, then using this oracle one can also solve
IndNumber in polynomial time, by the following argument. Given a graph G, we
want to compute α(G) in time polynomial in |G|. First, given G we can compute
in polynomial time in |G| the integers 0, 1, . . . , |G|. Now we use IndPolyEval on
(G, i) for all i ∈ {0, 1, . . . , |G|}. As each of the integers in {0, 1, . . . , |G|} is of size
bounded by the size of G and we assumed oracle access to IndPolyEval, this all
runs in time polynomial in |G|. From the integers Zind(G; i) for i ∈ {0, 1, . . . , |G|}
we can compute the independence polynomial of G in time polynomial in |G|, as
the degree of this polynomial is bounded by |G| and we have |G|+1 evaluations.
The degree of the independence polynomial is exactly α(G), which is what we
wanted to compute. We thus reduced the computational problem IndNumber
to the problem IndPolyEval, allowing here to access the oracle for IndPolyEval
polynomially many times in the size of the input graph. This type of reduction
is called a Cook reduction or a polynomial time Turing reduction.

Definition 1.4.6. Let f, g : B → B be computational problems. Assume there
is an oracle computing g in constant time. There is a Cook reduction from f
to g, if f(x) is computed by an algorithm in time polynomial in |x|, where the
algorithm has access to the oracle for g. We write f ≤C g if there is a Cook
reduction from f to g.



Note the oracle is allowed to be used more than one time, and also that after
applying the oracle we are allowed to use the outputs. This freedom is exactly
what we used when we showed IndNumber ≤C IndPolyEval. We note for decision
problems f, g we have f ≤K g implies f ≤C g, but the other implication might
not hold. Furthermore, if f ≤C g and g ∈ P then f ∈ P. Using these reductions,
we define #P-hardness and #P-completeness:

Definition 1.4.7. Let f : B → B be a computational problem. We say f is
#P-hard if for all g ∈ #P we have g ≤C f . If f ∈ #P we say f is #P-complete.

From the NP-completeness of Sat and Indset, one can deduce the #P-
completeness of #Indset and #Sat, see for example [Val79, Sim77].
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CHAPTER

TWO

BACKGROUND AND PRELIMINARIES

2.1 Introduction

The Potts model is a model from statistical physics, originally invented to study
ferromagnetism [Pot52]; it also plays a central role in probability theory, combi-
natorics and computer science, see e.g. [Sok05] for background.

Let G = (V,E) be a finite graph. The anti-ferromagnetic Potts model on the
graph G has two parameters, a number of states, or colors, q ∈ Z≥2 and an edge
interaction parameter w = eJ/kT , with J < 0 being a coupling constant, k the
Boltzmann constant and T the temperature. The case q = 2 is also known as
the zero-field Ising model. A configuration is a map σ : V → [q] := {1, . . . , q}.
Associated with such a configuration is the weight wm(σ), where m(σ) is the
number of edges e = {u, v} ∈ E for which σ(u) = σ(v). There is a natural prob-
ability measure, the Gibbs measure PrG;q,w[·], on the collection of configurations
Ω = {σ : V → [q]} in which a configuration is sampled proportionally to its
weight. Formally, for a given configuration ϕ : V → [q] the probability that a
random configuration Φ1 is equal to ϕ, is given by

PrG;q,w[Φ = ϕ] =
wm(ϕ)∑

σ:V→[q] w
m(σ)

, (2.1)

here the denominator is called partition function of the model and we denote it
by Z(G; q, w) (or just Z(G) if q and w are clear form the context).

In statistical physics the Potts model is most frequently studied on infinite
lattices, such as Z2. At the cost of introducing some measure theory, the notion

1We use the convention to denote random variables with capitals in boldface.
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of a Gibbs measure can be extended to such infinite graphs, see e.g. [BW99,
BW02, FV17]. For the definition of Gibbs measures, see Section 2.2. While at
any temperature the Gibbs measure on a finite graph is unique, this is no longer
the case for all infinite lattices. The transition from having a unique Gibbs
measure to multiple Gibbs measures in terms of the temperature is referred to
as a uniqueness phase transition in statistical physics [Geo88, FV17] and it is an
important problem to determine the exact temperature, the critical temperature,
Tc, at which this happens. There exist predictions for the critical temperature on
several lattices in the physics literature by Baxter [Bax82, Bax86] (see also [SS97]
for more details and further references), but it turns out to be hard to prove these
rigorously cf. [SS97].

In Part I of this dissertation we consider the anti-ferromagnetic Potts model
on the infinite ∆-regular tree, T∆, also known as the Bethe lattice, or Cayley tree.

For a number of states q ≥ 3 define

wc := max{0, 1− q

∆
}.

The following is a longstanding folklore conjecture (cf.[BGG+20, page 746]).

Folklore conjecture. The q-state antiferromagnetic Potts model on T∆ has a
unique Gibbs measure if and only if{

w > wc for ∆ = q,

w ≥ wc otherwise.

We note that using the well known Dobrushin uniqueness theorem, one obtains
uniqueness of the Gibbs measure provided w > 1− q

2∆ cf. [BCKL13, SS97], which
is still far way from the conjectured threshold. The conjecture was confirmed by
Jonasson for the case w = 0 [Jon02], by Srivastava, Sinclair and Thurley [SST14]
for q = 2 (see also [Geo88]; in this case one can map the model to a ferromagnetic
model since the tree is bipartite, which is much better understood), by Galanis,
Goldberg and Yang for q = 3 [GGY18]. Chapter 3 covers the case for q = 4 and
∆ ≥ 5.

Main Theorem of Chapter 3. Let ∆ ∈ N≥5. Then for each w ∈ [1− 4
∆ , 1) the

4-state anti-ferromagnetic Potts model with edge interaction parameter w has a
unique Gibbs measure on the infinite ∆-regular tree T∆.

Our proof of this result follows a different approach than the one taken
in [GGY18], which heavily relies on rigorous (but not easily verifiable) com-
puter calculations. In particular, our approach allows us to recover the results
from [GGY18], thereby removing the need for these computer calculations. See
Theorem 3.4.2 below for the full statement of what we prove with our approach.
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In Chapter 4 we confirm the folklore conjecture for all q ≥ 5 provided the
degree of the tree is large enough.

Main Theorem of Chapter 4. For each integer q ≥ 5 there exists ∆0 ∈ N
such that for each ∆ ≥ ∆0 and each w ∈ [1− q

∆ , 1) the q-state anti-ferromagnetic
Potts model with edge interaction parameter w has a unique Gibbs measure on
the infinite ∆-regular tree T∆.

This result builds on the techniques used in Chapter 3, but instead of fixing q
we analyse the uniqueness threshold as ∆ → ∞, see Theorem 4.2.1 for the precise
statement.

It has long been known that there are multiple Gibbs measures when w <
wc [PdLM83, PdLM87], see also [GŠV15]) and [BR19, KR17, GRR17, KRK14].
Below Lemma 4.2.2 in Chapter 4 we indicate how one could prove this. So our
main results pinpoints the critical temperature for the anti-ferromagnetic Potts
model on the infinite regular tree for large enough degree. For later reference we
will refer to wc as the uniqueness threshold.

2.1.1 Motivation from computer science
There is a surprising connection between phase transitions on the infinite regular
tree and transitions in the computational complexity of approximately computing
partition function of 2-state models (not necessarily the Potts model) on bounded
degree graphs. For parameters inside the uniqueness region there is an efficient
algorithm for this task [Wei06, LLY13, SST14], while for parameters for which
there are multiple Gibbs measures on the infinite regular tree, the problem is
NP-hard [SS14, GŠV16]. It is conjectured that a similar phenomenon holds for
a larger number of states.

While the picture for q-state models for q ≥ 3 is far from clear, some progress
has been made on this problem for the anti-ferromagnetic Potts model. On the
hardness side, Galanis, Štefankvovič and Vigoda [GŠV15] showed that for even
numbers ∆ ≥ 4 and any integer q ≥ 3, approximating the partition function
of the Potts model Z(G; q, w) is NP-hard on the family of graphs of maximum
degree ∆ for any 0 ≤ w < q/∆ = wc, which we now know to be the uniqueness
threshold (for ∆ large enough). On the other side, much less is known about
the existence of efficient algorithms for approximating Z(G; q, w) or sampling
from the measure PrG;q,w for the class of bounded degree graphs when w > wc.
Implicit in [BDPR21] there is an efficient algorithm for this problem whenever
1−αq/∆ < w ≤ 1, with α = 1/e, which has been improved to α = 1/2 in [LSS22].

For random regular graphs of large enough degree, our main result implies an
efficient randomized algorithm to approximately sample from the Gibbs measure
PrG;q,w for any wc < w ≤ 1 by a result of Blanca, Galanis, Goldberg, Štefankovič,
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Vigoda and Yang [BGG+20, Theorem 2.7]. In [Eft22], Efthymiou proved a similar
result for Erdős-Rényi random graphs without the assumption that wc is equal
to the uniqueness threshold on the tree. At the very least this indicates that the
uniqueness threshold on the infinite regular tree plays an important role in the
study of the complexity of approximating the partition function of and sampling
from the Potts model on bounded degree graphs.

2.2 Gibbs measures and uniqueness

We follow Brightwell and Winkler [BW99, BW02] to introduce the notion of
Gibbs measures on T∆, see also [Roz13, FV17] for more details and background.

Throughout we fix a degree ∆ ≥ 3 and an integer q ≥ 2. We denote the vertex
set of T∆ by V∆ and we denote the space of all configurations {ψ : V∆ → [q]}
by Ωq,∆. For a set U ⊂ V∆ we denote by ∂U the set of vertices in U that are
adjacent to some vertex in V∆ \ U . We refer to ∂U as the boundary of U . We
denote by U◦ := U \ ∂U the interior of U . For ψ ∈ Ωq,∆ and U ⊂ V∆ we denote
the restriction of ψ to U by ψ ↾U .

Definition 2.2.1 (Gibbs measure). We equip Ωq,∆ with the sigma algebra gen-
erated by sets of the form {ψ ∈ Ωq,∆ | ψ ↾U= ϕ} where U ⊂ V∆ is a finite set and
ϕ : U → [q] a fixed coloring of U . A probability measure µ on Ωq,∆ is called a
Gibbs measure if for any finite set U ⊂ V∆ and µ-almost every ϕ ∈ Ωq,∆, we have

Prµ[Φ↾U◦= ϕ↾U◦ | Φ↾V∆\U◦= ϕ↾V∆\U◦ ] = PrU ;q,w[Φ↾U◦= ϕ↾U◦
∣∣Φ↾∂U= ϕ↾∂U ],

(2.2)
where the second probability PrU ;q,w denotes the probability of seeing configura-
tion ϕ on the finite graph T∆[U ] induced by U conditioned on the event of being
equal to ϕ on ∂U . This latter probability is obtained by dividing the weight of
ϕ ↾U by the sum of the weights of all colorings of U that agree with ϕ on ∂U ,
cf. (2.1). To lighten notation, we write PrU instead of PrU ;q,w.

Remark 1. Note that the conditional probability on the left-hand side of (2.2)
cannot be computed using the standard formula for conditional probabilities, as
we in general condition on an event of measure zero. Therefore the formalism of
conditional expectations should be used to evaluate this conditional probability.
See [FV17] for more details.

By a compactness argument one can show that there always is at least one
Gibbs measure on Ωq,∆ cf. [FV17, BW99]. The question of whether there is a
unique Gibbs measure can be reformulated in terms of a certain decay of correla-
tions. To do so we require some definitions. Throughout Part I of this dissertation
we write d = ∆− 1.
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Definition 2.2.2. Let d and n be natural numbers and let ∆ = d + 1. We
define the tree Tnd to be the finite tree obtained from T∆ by fixing a root vertex
rd, deleting all vertices at distance more than n from the root, deleting one of
the neighbors of rd and keeping the connected component containing rd. We
denote the set of leaves of Tnd by Λn,d, except when n = 0, in which case we let
Λ0,d = {rd}.

Note that in the rooted tree Tnd each non leaf vertex has down degree d. We
omit the reference to d when this is clear from the context. The next lemma
reformulates uniqueness of the Gibbs measure in terms of the dependence on the
distribution of the colors of the root vertex on the coloring of the leaves. While
this result is well known we will provide a proof for convenience of the reader
based on Brightwel and Winkler’s proof [BW02, Theorem 3.3] for the case w = 0.

Lemma 2.2.3. The q-state Potts model with parameter w ≥ 0 on the infinite
∆-regular tree has a unique Gibbs measure if and only if for all colors c ∈ [q] it
holds that

lim sup
n→∞

max
τ :Λn,d→[q]

∣∣∣∣PrTn
d
[Φ(rd) = c | Φ↾Λn,d

= τ ]− 1

q

∣∣∣∣ = 0. (2.3)

Proof. We start with the ‘if’ part. Fix d = ∆ − 1 and w ≥ 0 and let µ be any
Gibbs measure on T = T∆. Let U ⊂ V = V (T) be a finite set. We aim to show
that for any configuration ψ : U → [q], the probability

Prµ[Φ↾U= ψ] (2.4)

does not depend on µ.
We may assume that U induces a tree with each vertex of degree ∆ or 1 by

taking a larger finite set if needed. Suppose that U has ℓ leaves; denote the set
of leaves by L. For n ∈ Z≥1 let Wn denote the collection of all vertices of T at
distance at most n from U . The graph induced by (Wn \ U) ∪ L is the disjoint
union of ℓ copies of Tn each rooted at a leaf of U , we denote the tree rooted at
u ∈ L with Tu. We claim

lim
n→∞

max
ρn:∂Wn→[q]

∣∣Prµ[Φ↾U= ψ
∣∣Φ↾∂Wn

= ρn]− PrU [Ψ = ψ]
∣∣ = 0, (2.5)

where Ψ is drawn from the Potts model distribution on T[U ]. This is sufficient
because it follows that the difference

|Prµ[Φ↾U= ψ]− PrU [Ψ = ψ]| =∣∣∣∣∣∣
∑

ρn:∂Wn→[q]

Prµ[Φ↾∂Wn
= ρn] ·

(
Prµ[Φ↾U= ψ

∣∣Φ↾∂Wn
= ρn]− PrU [Ψ = ψ]

)∣∣∣∣∣∣ ≤
max

ρn:∂Wn→[q]

∣∣Prµ[Φ↾U= ψ
∣∣Φ↾∂Wn

= ρn]− PrU [Ψ = ψ]
∣∣ ,
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can be made arbitrarily small, from which we conclude that Prµ[Φ ↾U= ψ] =
PrU [Ψ = ψ]. As this does not depend on µ it shows that µ is unique.

We now prove the claim. Let ρn : ∂Wn → [q] be arbitrary but fixed. Because
µ satisfies the Gibbs property we see

Prµ[Φ↾U= ψ
∣∣Φ↾∂Wn= ρn] = PrWn [Φ

′ ↾U= ψ
∣∣Φ′ ↾∂Wn= ρn], (2.6)

where Φ′ is drawn from the Potts model distribution on T[Wn]. We write ϕ ∼ ψ
if two configurations ϕ and ψ are equal where they are both defined. Moreover,
we denote the weight of a configuration σ by wt(σ). By definition of the Potts
model the right hand side of (2.6) as∑

σ:Wn→[q]
σ∼ψ, σ∼ρn

wt(σ)

∑
κ:Wn→[q]
κ∼ρn

wt(κ)
=

wt(ψ)
∑

(σu)u∈L, σu:Tu→[q]
σu∼ρn, σu∼ψ

∏
u∈L

wt(σu)

∑
κ:U→[q]

wt(κ)
∑

(γu)u∈L, γu:Tu→[q]
γu∼ρn, γu∼κ

∏
u∈L

wt(γu)
=

wt(ψ)
∏
u∈L

∑
σu:Tu→[q]

σu∼ρn, σu∼ψ

wt(σu)

∑
κ:U→[q]

wt(κ)
∏
u∈L

∑
γu:Tu→[q]

γu∼ρn, γu∼κ

wt(γu)
=

wt (ψ)∑
κ:U→[q] wt(κ)

∏
u∈L

PrTu
[Φ′

u(u) = κ(u)
∣∣Φ′

u ↾∂Tu
= ρn ↾∂Tu

]

PrTu
[Φ′

u(u) = ψ(u)
∣∣Φ′

u ↾∂Tu
= ρn ↾∂Tu

]

,

where ∂Tu = Tu ∩ ∂Wn and Φ′
u is drawn from the the Potts model distribution

on T[Tu]. As n goes to infinity the distance between the root u of Tu and its
leaves becomes arbitrarily large. It therefore follows from equation (2.3) that the
expression inside the final product gets arbitrarily close to 1 uniformly over all
ρn. We can thus conclude that Prµ[Φ↾U= ψ

∣∣Φ↾∂Wn
= ρn] converges to

wt(ψ)∑
κ:U→[q] wt(κ)

= PrU [Ψ = ψ]

uniformly, which was our claim.
For the ‘only if’ part we merely sketch the argument. Suppose the limsup is

not equal to 0 for some color c ∈ [q]. Then there must be distinct colors c and c′,
a number ε > 0, a sequence {ni} of natural numbers and boundary conditions
τi on the leaves of Tni

d such that the associated probabilities of the roots getting
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color c (resp. c′) are at least 1/q + ε (resp. at most 1/q − ε). Let τ ′i be the
boundary condition on the leaves of Tni

d obtained from τi by flipping the colors
c and c′. By symmetry, these respective probabilities are then reversed. We
can then create two distinct Gibbs measures with a limiting process using the
boundary conditions τi and τ ′i respectively.

We note that (2.3) is the property of uniqueness used in algorithmic applica-
tions [BGG+20].





CHAPTER

THREE

UNIQUENESS OF THE GIBBS MEASURE FOR THE
4-STATE ANTI-FERROMAGNETIC POTTS MODEL

ON THE REGULAR TREE

3.1 Organization

In this chapter we prove the following theorem.

Main Theorem of Chapter 3. Let ∆ ∈ N≥5. Then for each w ∈ [1− 4
∆ , 1) the

4-state anti-ferromagnetic Potts model with edge interaction parameter w has a
unique Gibbs measure on the infinite ∆-regular tree T∆.

In the next section we discuss our approach towards proving the main theorem
arriving at a geometric condition for uniqueness that we check in Section sec:proof
main, deferring the verification of a crucial inequality to Section sec: Inequality
section. Finally, in Section sec:conclude we finish with some concluding remarks
and open questions.

3.2 Approach and preliminaries

Our main goal in this section is to derive a geometric condition for ratios of
probabilities that implies uniqueness of the Gibbs measure on the ∆-regular tree.
This condition will then be verified in the following sections. Along the way we
will comment on how our approach relates to the approach of Galanis, Goldberg
and Yang [GGY18].
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3.2.1 Ratios of probabilities and the tree recursion
Instead of working directly with the probabilities we work with ratios of proba-
bilities just as in [GGY18].

Let us introduce a few concepts to facilitate the discussion. Fix n, d ∈ N,
write Tnd = (V,E) and let τ : Λn,d → [q], see Definition 2.2.2. The map τ is called
a boundary condition on Λn,d. We denote by

Zτ (Tnd ) =
∑

σ:V→[q]
σ↾Λn,d

=τ

wm(σ), (3.1)

the restricted partition function. For i ∈ [q] we denote by Zi,τ (Tnd ) the sum (3.1)
restricted to those σ that associate color i to the root vertex. We define the ratio

Ri,τ (Tnd ) =
Zi,τ (Tnd )
Zq,τ (Tnd )

. (3.2)

Note that Rq,τ (Tnd ) = 1. We moreover remark that Ri,τ (Tnd ) can be interpreted
as the ratio of the probabilities that the root gets color i (resp. q) given the
boundary condition τ on Λn,d.

We define for n ≥ 0, T̂nd to be the rooted tree obtained from Tnd by adding
a new root r̂d connecting it to the original root rd with a single edge. Note
that the set of non-root leaves of T̂nd is just Λn,d. For any boundary condition
τ : Λn,d → [q] on Λn,d we define the restricted partition function, Zi,τ (T̂nd ) and
ratio Ri,τ (T̂nd ) analogously as for Tnd .

The next lemma provides a sufficient condition for T∆ to have a unique Gibbs
measure in terms of these ratios, which we prove at the end of this section.

Lemma 3.2.1. Let q, d ∈ N and w ∈ (0, 1). Suppose that for all i ∈ [q − 1] and
for all δ > 0 there exists N > 0 such that for all n ≥ N and for all boundary
conditions τ : Λn,d → [q] on Λn,d we have

|Ri,τ (T̂nd )− 1| < δ,

then the tree T∆ with ∆ = d+ 1 has a unique Gibbs measure.

An advantage of working with the ratios of probabilities is that the well known
tree recursion for the Potts model takes a convenient form.

Lemma 3.2.2. Let n, d ∈ N and let τ : Λn,d → [q] be a boundary condition on
Λn,d. Let for i = 1, . . . , d, Ti = T̂n−1

d be the components of Tnd − rd where we
attach a new root vertex to rd−1. Let τi be the restriction of τ to Λn−1,d → [q]
viewed as a subset of the vertices of Ti. Then we have for each i ∈ [q − 1],

Ri,τ (T̂nd ) =
1 + w

∏d
s=1Ri,τs(T̂

n−1
d ) +

∑
l∈[q−1]\{i}

∏d
s=1Rl,τs(T̂

n−1
d )

w +
∑
l∈[q−1]

∏d
s=1Rl,τs(T̂

n−1
d )

. (3.3)
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For completeness we provide a proof for this lemma at the end of this section.
A direct analysis of the recursion in Lemma 3.2.2 is not straightforward, as it

does not contract uniformly on a symmetric domain. In [GGY18] this is remedied
by looking at the two-step recursion, that is they analyze the behaviour of the
ratio at depth n as a function of the ratios at depth n + 2. They show with
substantial, yet rigorous, aid of a computer algebra package that this two-step
recursion does contract on a symmetric domain (when q = 3 and w and d are
as they should be). We however take a different, more geometric approach and
work instead with the one-step recursion, as described in the next subsection.

3.2.2 A geometric condition for uniqueness
To state a geometric condition, we first introduce some functions that allow us to
treat the tree recursion from Lemma 3.2.2 more concisely. Let q ∈ Z≥2, d ∈ Z≥1

and w ∈ [0, 1). For i ∈ [q] let µi be the map from Rq>0 to R>0 given by

µi(x1, . . . , xq) = (w − 1)xi +

q∑
j=1

xj .

Furthermore, we define

G̃(x1, . . . , xq) = (µ1(x1, . . . , xq), . . . , µq(x1, . . . , xq))

and
F̃ (x1, . . . , xq) = G̃(xd1, . . . , x

d
q).

Both F̃ and G̃ are homogeneous maps from Rq>0 to itself. For x, y ∈ Rq>0 we
define an equivalence relation x ∼ y if and only if x = λy for some λ > 0. We
define Pq−1

>0 = Rq>0/ ∼ and denote elements of Pq−1
>0 as [x1 : · · · : xq]. We note

that since F̃ and G̃ are homogeneous they are also well-defined as maps from
Pq−1
>0 to itself and from now on we consider them as such.

Let π : Pq−1
>0 → Rq−1

>0 be the projection map defined by π([x1 : · · · : xq]) =

(x1/xq, . . . , xq−1/xq) with inverse ι : Rq−1
>0 → Pq−1

>0 defined by ι(x1, . . . , xq−1) =
[x1 : · · · : xq−1 : 1]. Note that π and ι are continuous. We define the maps G,F
from Rq−1

>0 to itself by π ◦ G̃ ◦ ι and π ◦ F̃ ◦ ι. Explicitly we have

G(x1, x2) =

(
wx1 + x2 + 1

x1 + x2 + w
,
x1 + wx2 + 1

x1 + x2 + w

)
and F (x1, x2) = G(xd1, x

d
2)

for q = 3. For q = 4 we have

G(x1, x2, x3) =

(
wx1 + x2 + x3 + 1

x1 + x2 + x3 + w
,
x1 + wx2 + x3 + 1

x1 + x2 + x3 + w
,
x1 + x2 + wx3 + 1

x1 + x2 + x3 + w

)
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and F (x1, x2, x3) = G(xd1, x
d
2, x

d
3).

With this definition the recursion from Lemma 3.2.2 can now be stated as
follows. Following the notation of the lemma, denote by xl the following log
convex combination of the ratios Rl,τs(T̂

n−1
d ),

xl =

(
d∏
s=1

Rl,τs(T̂
n−1
d )

)1/d

. (3.4)

Then (
R1,τ (T̂nd ), . . . , Rq−1,τ (T̂nd )

)
= F (x1, . . . , xq−1). (3.5)

We say that a subset T ⊆ Rn>0 is log convex if log (T ) is a convex subset of
Rn, where log (T ) denotes the set consisting of elements of T with the logarithm
applied to their individual entries. The next lemma gives sufficient conditions for
uniqueness on the infinite regular tree.

Lemma 3.2.3. Suppose that q ≥ 2, d ≥ 2 and w > 0 are such that there exists
a sequence {Tn}n≥0 of log convex subsets of Rq−1

>0 with the following properties.

1. Both the vector with every entry equal to 1/w and the vectors obtained from
the all-ones vector with a single entry changed to w are elements of T0.

2. For every m we have F (Tm) ⊆ Tm+1.

3. For every ε > 0 there is an M such that for all m ≥ M every element of
Tm has at most distance ε to the all-ones vector.

Then the anti-ferromagnetic Potts model with parameter w has has a unique Gibbs
measure on Td.

Proof. By Lemma 3.2.1, it suffices to show that regardless of the boundary con-
dition τ on Λn,d, Ri,τ (T̂nd ) → 1 as n→ ∞.

First of all we claim that for all n ≥ 0 and all boundary conditions τ :
Λn,d → [q] on Λn,d we have (R1,τ (T̂nd ), . . . , Rq−1,τ (T̂nd )) ∈ Tn. We prove this
by induction on n. For the base case, n = 0, we note that T̂0

d consists of one
free root r̂d, connected to a colored vertex v. If v is colored i ∈ [q − 1], then
(R1,τ (T̂0

d), . . . , Rq−1,τ (T̂0
d)) consists of a w on position i and ones everywhere

else. If v is colored q, then (R1,τ (T̂0
d), . . . , Rq−1,τ (T̂0

d)) = (1/w, . . . , 1/w). So the
base case follows from item (1).

Suppose next that for some n ≥ 0 the claim holds. Let τ : Λn+1,d → [q]
be any boundary condition on Λn+1,d. It then follows from (3.4), (3.5) and the
assumptions that Tn is log convex and F (Tn) ⊆ (Tn+1) that(

R1,τ (T̂nd ), . . . , Rq−1,τ (T̂nd )
)
∈ Tn+1,
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completing the induction.
From the claim we just proved and item (3) it then follows that given ε > 0

there exists N > 0 such that for all n ≥ N , any boundary condition τ on Λn,d
and color i, |Ri,τ (T̂nd )− 1| < ε. This concludes the proof.

In the next section we will construct a sequence of regions {Tn}n≥0 satisfying
the conditions of the lemma. In Subsection sec: symmetry of F we describe a
certain symmetry that the map F exhibits, corresponding to the symmetry of
the colors in the Potts model. When a region T has a corresponding symmetry
it is easier to understand the image F (T ). This is explained in Lemma 3.3.2. In
Subsection sec: regions Tab we define a two parameter family of sets Ta,b that
display the required symmetry. In Lemma 3.3.4 we prove that if simple analytic
conditions in a and b are satisfied the sets Ta,b are log-convex. In Lemma 3.3.6 we
give inner and outer approximations of the sets Ta,b with simple polytopes. This
is convenient since the map G is a fractional linear transformation and therefore
preserves convex sets. These are used in Lemma 3.4.1 in Subsection sec: main
thm proof where we show that if more involved analytical conditions are satisfied
Ta,b gets mapped strictly inside itself by F . We then combine all ingredients
to prove Theorem 3.4.2. In the proof of Theorem 3.4.2 we show that we can
construct a sequence Tn = Tan,bn that satisfies the conditions of Lemma 3.2.3
using the fact that we can keep satisfying the analytic conditions on an and bn.
This uses a number of technical inequalities whose verification we have moved to
Section sec: Inequality section to preserve the flow of the text.

We finish this section be providing proofs of Lemma 3.2.1 and Lemma 3.2.2.

3.2.3 Proofs of Lemma 3.2.1 and Lemma 3.2.2

Proof of Lemma 3.2.1. The ratios for T̂nd and Tnd can easily be expressed in terms
of each other. Fix any τ : Λn,d → [q]. Then for any i = 1, . . . , q − 1,

Ri,τ (T̂nd ) =
(w − 1)Ri,τ (Tnd ) +

∑q−1
j=1 Rj,τ (Tnd ) + 1∑q−1

j=1 Rj,τ (Tnd ) + w
(3.6)

and
Ri,τ (Tnd ) = (Ri,τ (T̂n−1

d ))d. (3.7)

We may thus assume that for each δ > 0 there exist N ′ such that for all n ≥
N ′,|Ri,τ (Tnd )− 1| < δ for all τ : Λn,d → [q].

For readability, we omit the reference to the subscript d in what follows. For
any i = 1, . . . , q we have

PrTn [Φ(r) = i | Φ↾Λn
= τ ] =

Zi,τ (Tn)
Zτ (Tn)

=
Zi,τ (Tn)∑q
j=1 Zj,τ (Tn)

.
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Hence for any i ∈ [q], upon dividing both the numerator and denominator by
Zq,τ (Tn), we obtain

PrTn [Φ(r) = i | Φ↾Λn= τ ] =
Ri,τ (Tn)∑q−1

i=1 Ri,τ (Tn) + 1
.

Now since the map

(x1, . . . , xq−1) 7→ max
i∈[q−1]

(∣∣∣∣ xi∑q−1
j=1 xj + 1

− 1

q

∣∣∣∣, ∣∣∣∣ 1∑q−1
j=1 xj + 1

− 1

q

∣∣∣∣)
is continuous and maps (1, . . . , 1) to 0, it follows that for every ε > 0 there is
a δ > 0 such that |Ri,τ (Tn) − 1| < δ for all boundary conditions τ on Λn and
i = 1. . . . , q − 1, implies that

max
τ :Λn→[q]

∣∣∣∣PrTn [Φ(r) = i | Φ↾Λn
= τ ]− 1

q

∣∣∣∣ < ε.

We conclude that the conditions of Lemma 2.2.3 are satisfied and hence T∆ has
a unique Gibbs measure.

We next provide a proof for the tree recursion.

Proof of Lemma 3.2.2. For readability we omit d from the notation. We have

Ri,τ (T̂n) =
Zi,τ (T̂n)
Zq,τ (T̂n)

=

∑
l∈[q]\{i} Zl,τ (Tn) + wZi,τ (Tn)∑
l∈[q−1] Zl,τ (Tn) + wZq,τ (Tn)

, (3.8)

as a factor w is picked up when the unique neighbour of the root vertex is assigned
the same color as the root vertex, r̂d, of T̂n. Note that for any color c ∈ [q] we
have Zc,τ (Tn) =

∏d
s=1 Zc,τs(T̂n−1). Plugging this in into (3.8) and dividing

the numerator and denominator by
∏d
s=1 Zq,τs(T̂n−1), we arrive at the desired

expression.

3.3 Ingredients for the proof of the main theorem

In this section we collect more properties of the recursion which together with
Lemma 3.2.3 prove the main theorem.
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3.3.1 Symmetry of the map F

In order to find suitable sets T such that F (T ) ⊆ T we will exploit a symmetry
that the map F exhibits, due to the inherent symmetry of permuting the colors
[q] in the Potts model. To make this formal we will define a few self-maps on, and
regions of, the spaces Pq−1

>0 ,R
q−1
>0 and Rq−1. To avoid confusion, we will denote

self-maps on and subsets of Pq−1
>0 with a tilde, self-maps on and subsets of Rq−1

>0

without additional notation and self-maps on and subsets of Rq−1 with a hat.
When a self-map or subset is used as an index, we will drop the hat or tilde in
the index.

The three spaces Pq−1
>0 ,R

q−1
>0 and Rq−1 are homeomorphic, with homeomor-

phisms π : Pq−1
>0 → Rq−1

>0 with inverse ι and log : Rq−1
>0 → Rq−1 with inverse exp.

We define the self-maps Ĝ, F̂ on Rq−1 by Ĝ = log ◦ G◦exp and F̂ = log ◦ F ◦exp.
To summarize, we have the following diagram of continuous maps

Pq−1
>0

π //

G̃,F̃

��

Rq−1
>0

log //

G,F

��

ι
oo Rq−1

exp
oo

Ĝ,F̂

��
Pq−1
>0

π // Rq−1
>0ι

oo
log // Rq−1 .
exp
oo

Let Sq denote the symmetric group on q elements. This group acts on Pq−1
>0

be permuting the entries, which corresponds to permuting the colors in the Potts
model. For σ ∈ Sq we denote the map from Pq−1

>0 to itself corresponding to this
action by M̃σ. We use this action to also define an action on Rq−1

>0 by letting
Mσ(x) = (π ◦M̃σ ◦ ι)(x). It is easy to see that the action of Sq on Pq−1

>0 commutes
with G̃ and F̃ . It follows that the action of Sq on Rq−1

>0 also commutes with F and
G. Similarly, we define the map M̂σ on x ∈ Rq−1 by M̂σ(x) = (log ◦ Mσ ◦ exp) (x)
and we note that this action commutes with Ĝ and F̂ .

Example 3.3.1. As an example we present the table of the action of Sq for q = 3
on a point in all the three coordinates.

σ id (12) (13) (23) (123) (132)

M̃σ([x : y : z]) [x : y : z] [y : x : z] [z : y : x] [x : z : y] [z : x : y] [y : z : x]
Mσ(x, y) (x, y) (y, x) (1/x, y/x) (x/y, 1/y) (1/y, x/y) (y/x, 1/x)

M̂σ(x, y) (x, y) (y, x) (−x, y − x) (x− y,−y) (−y, x− y) (y − x,−x)

Note that in general M̂σ is a linear map for all σ ∈ Sq. In fact, the map σ 7→ M̂σ

is an irreducible representation of Sq called the standard representation, but we
will not use this.

For any permutation τ ∈ Sq we define the following subset of Pq−1
>0

R̃τ =
{
[x1 : · · · : xq] ∈ Pq−1

>0 : xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(q)

}
.
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Furthermore, we let Rτ = π(R̃τ ) and R̂τ = log(Rτ ). Note that if x ∈ Pq−1
>0 has

the property that xi ≥ xj then µi(x) ≤ µj(x), recalling that

µi(x1, . . . , xq) = (w − 1)xi +

q∑
j=1

xj .

It follows that the map G̃ maps R̃τ into R̃τ◦m, where m ∈ Sq denotes the
permutation with m(l) = q + 1 − l for l ∈ [q]. The same is true for F̃ because
x 7→ xd maps any R̃τ to itself. It follows that G and F map Rτ into Rτ◦m and
that Ĝ and F̂ map R̂τ into R̂τ◦m. In Figure 3.1 the regions Rτ and R̂τ are
depicted when q = 3.

The main purpose of the considerations of this section up until this point is
to state and prove the following simple lemma.

Lemma 3.3.2. Suppose T ⊆ Rq−1
>0 is a set such that Mσ(T ) = T for all σ ∈ Sq.

Suppose also that there is a permutation τ ∈ Sq such that

F (T ∩ Rτ ) ⊆ int(T ).

Then F (T ) ⊆ int(T ).

Proof. Let x ∈ T . There is a σ ∈ Sq such that Mσ(x) ∈ Rτ and thus Mσ(x) ∈
T ∩ Rτ . It follows from the assumption that (F ◦Mσ)(x) ∈ int(T ). Because
Mσ commutes with F we find that (Mσ ◦ F )(x) ∈ int(T ). We conclude that
F (x) ∈ M−1

σ (int(T )) = Mσ−1(int(T )) ⊆ T . Because Mσ is continuous it follows
that M−1

σ (int(T )) is an open subset of T and hence F (x) ∈ int(T ).

In the next section we will define a family of regions Ta,b for a, b > 1 with the
property Mσ(Ta,b) = Ta,b for all σ ∈ Sq. Our goal will be to show that for certain
choices of parameters (a, b) we have F (Ta,b) ⊆ int(Ta,b). Because of Lemma 3.3.2
it will be enough to restrict ourselves to one well chosen region Rτ .

3.3.2 Definition and properties of the sets Ta,b

For q = 3 and q = 4 we will define a family of log convex sets Ta,b ⊆ Rq−1
>0 with

the property that Mσ(Ta,b) = Ta,b for all σ ∈ Sq. We will do this by defining the
convex sets T̂a,b ⊆ Rq−1 and then letting Ta,b = exp(T̂a,b).

Let a, b > 1. To avoid having to write too many logarithms we let â = log(a)

and b̂ = log(b). For q = 3 we define the following half-space of R2

Ĥa,b = {(x, y) ∈ R2 : −b̂ · x+ â · y ≤ âb̂}.
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Subsequently, we define

T̂a,b =
⋃
σ∈S3

M̂σ

(
R̂(23) ∩ Ĥa,b

)
.

Similarly, for q = 4, we define the half-space

Ĥa,b = {(x, y, z) ∈ R3 : −b̂ · x+ â · z ≤ âb̂}

and the region
T̂a,b =

⋃
σ∈S4

M̂σ

(
R̂(243) ∩ Ĥa,b

)
.

For both q = 3 and q = 4 we let Ta,b = exp(T̂a,b). Figure 3.1 contains an image
of T̂a,b and Ta,b for q = 3. Figure 3.2 contains an image of T̂a,b for q = 4; we
highlighted the region R̂(243) ∩ Ĥa,b in orange. We have chosen to give the sets
T̂a,b the same name for q = 3 and q = 4. This is because many of the properties of
T̂a,b that we will prove hold for both cases and are proved in a similar way. Unless
otherwise stated one should assume that any statement involving T̂a,b refers to
the corresponding statement for both q = 3 and q = 4.

We first state a basic lemma relating the half-space representation and the
vertex representation of a polytope. This lemma will be used a number of times
in the remainder of the section to derive useful properties of the sets Ta,b.

Lemma 3.3.3. Let H1, . . . ,Hn be closed half-spaces in Rn−1. Furthermore, let
p1, . . . , pn ∈ Rn−1 with the property that for all i ∈ [n] we have pi ∈ int(Hi) and
pi ∈ ∂Hj for j ̸= i. Then

n⋂
i=1

Hi = Conv ({p1, . . . , pn}) ,

where Conv(S) denotes the convex hull of the set S.

Proof. We give a sketch of the proof. The conditions on the pi imply that the
set {p1, . . . , pn} is affinely independent, i.e. the set {p1 − pn, . . . , pn−1 − pn} is
linearly independent. Therefore there exists an invertible affine transformation
T with T (v) =M(v− pn) for some invertible linear transformation M , such that
T (pi) = ei for i ∈ [n − 1], where ei denotes a standard basis vector. From the
conditions on the pi it follows that T (Hi) = {x ∈ Rn−1 : xi ≥ 0} for i ∈ [n − 1]

and T (Hn) = {x ∈ Rn−1 :
∑n−1
i=1 xi ≤ 1}. As affine transformations preserve
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convexity, we see

T

(
n⋂
i=1

Hi

)
=

n⋂
i=1

T (Hi) =

n−1⋂
i=1

{x ∈ Rn−1 : xi ≥ 0} ∩ {x ∈ Rn−1 :

n−1∑
i=1

xi ≤ 1}

= Conv ({e1, . . . , en−1, 0}) = Conv ({T (p1), . . . , T (pn)})
= T (Conv ({p1, . . . , pn})) .

The lemma now follows from the fact that T is invertible.

(−â, 0)

(0, b̂)

(â, â)

(b̂, 0)

(0,−â)

(−b̂,−b̂)

R̂(2,3)

R̂(1,3,2)

R̂(1,3)

R̂(1,2,3)

R̂(1,2)

R̂e

R̂(2,3) ∩ Ĥa,b

(1/a, 1)

(1, b)

(a, a)

(b, 1)

(1, 1/a)

(1/b, 1/b)

R(2,3)

R(1,3,2)

R(1,3)

R(1,2,3)

R(1,2)

Re

Figure 3.1: Images for q = 3 of T̂a,b on the left and Ta,b on the right. The
boundaries of the regions R̂τ and Rτ are drawn with dashed lines.

Lemma 3.3.4. For a, b ∈ R>1 with b ≤ a ≤ b2 we have that T̂a,b is convex, or
equivalently, that Ta,b is log convex.

Proof. Recall that we let â = log(a) and b̂ = log(b) and observe that these are
two positive real numbers. Also recall that the action of Sq on Rq−1 is given by
linear maps. It follows that the half-space Ĥa,b gets mapped to a half-space by
M̂σ for any σ ∈ Sq. We will show that for the choices of parameters stated in the
lemma we have

T̂a,b =
⋂
σ∈Sq

M̂σ

(
Ĥa,b

)
(3.9)

for both q = 3 and q = 4. This equality implies that T̂a,b is convex because
an intersection of half-spaces is convex. In fact, it implies that T̂a,b is a convex
polytope.
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x

y

z

(−â, 0, 0)

(0, b̂, b̂)

(0, 0, b̂)

R̂(243) ∩ Ĥa,b

Figure 3.2: Image for q = 4 of T̂a,b. The red dots depend on â, the black dots
depend on b̂. In orange the region R̂(243) ∩ Ĥa,b is depicted.

We will first prove that the right-hand side of (3.9) is contained in the left-
hand side. To that effect take an element x ∈ ⋂σ∈Sq

M̂σ

(
Ĥa,b

)
. Because the

collection {R̂σ}σ∈Sq
covers Rq−1, there is a τ ∈ Sq such that x ∈ R̂τ . For q = 3

let σ ∈ S3 such that σ · (23) = τ . We see that x ∈ R̂τ ∩ M̂σ(Ĥa,b) and thus
x ∈ M̂σ

(
R̂(23) ∩ Ĥa,b

)
, from which it follows x ∈ T̂a,b. Similarly, for q = 4 we let

σ ∈ S4 such that σ · (243) = τ . It follows in exactly the same way that x ∈ T̂a,b.
The proof that the left-hand side of (3.9) is contained in the right-hand side

is slightly more involved. Assume that q = 3. We first show that

R̂(23) ∩ Ĥa,b = Conv
(
{(0, 0), (−â, 0), (0, b̂)}

)
, (3.10)

While this is easily seen to be true from Figure 3.1, we provide a formal proof.
Note that R̂(23) is the intersection of Ĥx≤0 = {(x, y) ∈ R2 : x ≤ 0} and Ĥy≥0 =

{(x, y) ∈ R2 : y ≥ 0}. One can check that (0, 0) ∈ ∂Ĥx≤0 ∩ ∂Ĥy≥0 ∩ int(Ĥa,b),
(−â, 0) ∈ ∂Ĥa,b ∩ ∂Ĥy≥0 ∩ int(Ĥx≤0) and (0, b̂) ∈ ∂Ĥa,b ∩ ∂Ĥx≤0 ∩ int(Ĥy≥0).
Equation (3.10) then follows from Lemma 3.3.3.
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We obtain

T̂a,b =
⋃
σ∈S3

M̂σ

(
Conv

(
{(0, 0), (−â, 0), (0, b̂)}

))
=
⋃
σ∈S3

Conv
(
{(0, 0), M̂σ(−â, 0), M̂σ(0, b̂)}

)
.

We want to show that this is a subset of
⋂
σ∈S3

M̂σ

(
Ĥa,b

)
. Because all these

half-spaces are convex, it is enough to show that the set

P = {(0, 0)} ∪
⋃
σ∈S3

{M̂σ(−â, 0), M̂σ(0, b̂)}

is a subset of M̂τ (Ha,b) for all τ ∈ S3. Because the set P is invariant under the
action of S3 it is sufficient to show that P ⊆ Ĥa,b. We can calculate P explicitly
to obtain

P = {(0, 0), (0,−â), (−â, 0), (â, â), (0, b̂), (b̂, 0), (−b̂,−b̂)}.
To check that these points lie in Ĥa,b we have to check that for each (x, y) ∈ P

we have −b̂ · x+ â · y ≤ âb̂. The inequality is trivially true for all but the points
(â, â) and (−b̂,−b̂). One can confirm that the inequalities obtained by filling in
these two points are simultaneously satisfied if and only if b̂/2 ≤ â ≤ 2b̂. Because
â = log(a) and b̂ = log(b) this is equivalent to

√
b ≤ a ≤ b2. This shows that for

these choices of a and b the left-hand side of (3.9) is contained in the right-hand
side, which concludes the proof for q = 3.

The proof for q = 4 follows the same path. One can show in very similar way
to the q = 3 case that

R̂(243) ∩ Ĥa,b = Conv
(
{(0, 0, 0), (−â, 0, 0), (0, 0, b̂), (0, b̂, b̂)}

)
and thus that

T̂a,b =
⋃
σ∈S4

Conv
(
{(0, 0, 0), M̂σ(−â, 0, 0), M̂σ(0, 0, b̂), M̂σ(0, b̂, b̂)}

)
.

It is again sufficient to show that

P = {(0, 0, 0)} ∪
⋃
σ∈S4

{M̂σ(−â, 0, 0), M̂σ(0, 0, b̂), M̂σ(0, b̂, b̂)}

is a subset of Ĥa,b. Explicitly we have

P = {(0, 0, 0), (−â, 0, 0), (0,−â, 0), (0, 0,−â), (â, â, â), (b̂, 0, 0), (0, b̂, 0), (0, 0, b̂),
(0, b̂, b̂), (b̂, 0, b̂), (b̂, b̂, 0), (0,−b̂,−b̂), (−b̂, 0,−b̂), (−b̂,−b̂, 0), (−b̂,−b̂,−b̂)}.
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We need to check that for (x, y, z) ∈ P we have (x, y, z) ∈ Ĥa,b, that is, we have
−b̂ ·x+ â · z ≤ âb̂. This inequality holds simultaneously for the points (−b̂,−b̂, 0)
and (â, â, â) if and only b̂ ≤ â ≤ 2b̂. It can be seen that the inequalities obtained
from the other points also hold for this regime of parameters. This concludes the
proof that the left-hand side of (3.9) is contained in the right-hand side for q = 4,
which is the final thing that we needed to show to prove the lemma.

Lemma 3.3.2 states that it is enough to understand F (Ta,b∩Rσ) for a specific σ
to understand the whole image F (Ta,b). In the following two lemmas we calculate
Ta,b ∩ Rσ more explicitly for σ = (123) and σ = (134) for q = 3 and q = 4
respectively. Because F maps R(123) into R(23) for q = 3 and R(134) into R(243)

for q = 4, we describe Ta,b ∩ Rσ for these instances of σ too. The choice for
these specific permutations σ is arbitrary, but does seem to make the upcoming
analysis more pleasant than for some other choices.

Lemma 3.3.5. Let a, b ∈ R>1 and define

la,b(x) = b · xlog(b)/ log(a)

For q = 3 we have

Ta,b ∩R(23) = {(x, y) ∈ R2
>0 : x ≤ 1 ≤ y ≤ la,b(x)}

and
Ta,b ∩R(123) = {(x, y) ∈ R2

>0 : y ≤ 1 ≤ x ≤ la,b(y)}.
For q = 4 we have

Ta,b ∩R(243) = {(x, y, z) ∈ R3
>0 : x ≤ 1 ≤ y ≤ z ≤ la,b(x)}.

and
Ta,b ∩R(134) = {(x, y, z) ∈ R3

>0 : z ≤ y ≤ 1 ≤ x ≤ y · la,b(z/y)}.

Proof. We will first prove the statement for q = 3. Recall that T̂a,b ∩ R̂(23) =

Ĥa,b∩R̂(23), where Ĥa,b = {(x, y) ∈ R2 : −b̂ ·x+ â ·y ≤ âb̂} and R̂(23) = {(x, y) ∈
R2 : x ≤ 0 ≤ y}. Therefore we can write

Ĥa,b ∩ R̂(23) = {(x̂, ŷ) ∈ R2 : x̂ ≤ 0 ≤ ŷ ≤ b̂

â
· x̂+ b̂}.

If we replace â by log(a) and b̂ by log(b) we find that

Ta,b ∩R(23) = exp(Ĥa,b ∩ R̂(23)) =

{(ex̂, eŷ) ∈ R2
>0 : x̂ ≤ 0 ≤ ŷ ≤ log(b)

log(a)
· x̂+ log(b)}.
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By applying exp to the individual components of the inequalities and replacing
x = ex̂ and y = eŷ, we obtain the equality stated in the lemma. To prove the
other equality for q = 3 we note that for σ = (12) we have σ(23) = (123) and thus
Mσ(Ta,b ∩ R(23)) = Ta,b ∩ R(123). For (x, y) ∈ R2

>0 we have M(12)(x, y) = (y, x)
and thus Ta,b ∩R(123) equals

{(y, x) ∈ R2
>0 : x ≤ 1 ≤ y ≤ la,b(x)} = {(x, y) ∈ R2

>0 : y ≤ 1 ≤ x ≤ la,b(y)}.

To prove the statements given for q = 4 we recall that in that case Ĥa,b =

{(x, y, z) ∈ R3 : −b̂ ·x+ â · z ≤ âb̂} and R̂(243) = {(x, y, z) ∈ R3 : x ≤ 0 ≤ y ≤ z}.
Therefore

T̂a,b ∩ R̂(243) = Ĥa,b ∩ R̂(243) = {(x̂, ŷ, ẑ) ∈ R3 : x̂ ≤ 0 ≤ ŷ ≤ ẑ ≤ b̂

â
· x̂+ b̂}.

Similarly, as in the q = 3 case, it follows that

Ta,b ∩R(243) = exp(T̂a,b ∩ R̂(243)) = {(x, y, z) ∈ R3
>0 : x ≤ 1 ≤ y ≤ z ≤ la,b(x)}.

If we let σ = (13)(24) we have σ · (243) = (134). For this σ and (x, y, z) ∈ R3
>0

we have Mσ(x, y, z) = (z/y, 1/y, x/y). We find that

Ta,b ∩R(134) =Mσ(Ta,b ∩R(243))

= {(z/y, 1/y, x/y) ∈ R3
>0 : x ≤ 1 ≤ y ≤ z ≤ la,b(x)}

= {(x, y, z) ∈ R3
>0 : z/y ≤ 1 ≤ 1/y ≤ x/y ≤ la,b(z/y)}

= {(x, y, z) ∈ R3
>0 : z ≤ y ≤ 1 ≤ x ≤ y · la,b(z/y)}.

The next lemma provides inner and outer approximations of the sets Ta,b with
simple polytopes.

Lemma 3.3.6. Let a, b ∈ R>1 with a ≥ b. Then for q=3 we have

Conv({(1, 1), (1/a, 1), (1, b)}) ⊆ Ta,b ∩R(23)

and
Ta,b ∩R(123) ⊆ Conv({(1, 1), (b, 1), (1, 1− (b− 1) log(a)

b log(b)
)}).

For q=4 we have

Conv({(1, 1, 1), (1/a, 1, 1), (1, b, b), (1, 1, b)}) ⊆ Ta,b ∩R(243)

and

Ta,b ∩R(134) ⊆ Conv({(1, 1, 1), (b, 1, 1), (1, 1/b, 1/b), (1, 1, 1− (b− 1) log(a)

b log(b)
)}).
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Proof. Let la,b be as in Lemma 3.3.5. We define c = log(b)/ log(a) so that we can
write la,b(x) = b · xc. By assumption c ≤ 1, therefore the function la,b is concave
and thus the sets

{(x, y) ∈ R2
>0 : y ≤ la,b(x)} and {(x, y, z) ∈ R3

>0 : z ≤ la,b(x)}

are convex. It follows now from Lemma 3.3.5 that the sets Ta,b ∩R(23) for q = 3
and Ta,b ∩ R(243) for q = 4 are convex. It is easy to see that the former set
contains the points (1, 1), (1/a, 1) and (1, b) and that the latter set contains the
points (1, 1, 1), (1/a, 1, 1), (1, b, b) and (1, 1, b). This is enough to conclude that
the first stated inclusions for q = 3 and q = 4 hold.

Because la,b is concave we find that for all x > 0

la,b(x) ≤ l′a,b(1)(x− 1) + la,b(1) = bc(x− 1) + b. (3.11)

Therefore, using Lemma 3.3.5, we have the following inclusion for q = 3

Ta,b ∩R(123) = {(x, y) ∈ R2
>0 : y ≤ 1 ≤ x ≤ la,b(y)}

⊆ {(x, y) ∈ R2 : y ≤ 1 ≤ x ≤ bc(y − 1) + b}.

Note that in the latter set we do not require x and y to be positive. This set can
also be written as the intersection of the following three half-spaces

H1 = {(x, y) ∈ R2 : y ≤ 1}, H2 = {(x, y) ∈ R2 : 1 ≤ x} and

H3 = {(x, y) ∈ R2 : x ≤ bc(y − 1) + b}.

Note that (1, 1) ∈ ∂H1 ∩ ∂H2 ∩ int(H3), (b, 1) ∈ ∂H1 ∩ int(H2) ∩ ∂H3 and
(1, 1− b−1

bc ) ∈ int(H1)∩ ∂H2 ∩ ∂H3. The second inclusion for q = 3 stated in the
lemma follows from Lemma 3.3.3.

From Lemma 3.3.5 and equation (3.11) we deduce that for q=4

Ta,b ∩R(134) ⊆ {(x, y, z) ∈ R3 : z ≤ y ≤ 1 ≤ x ≤ y · (bc(z/y − 1) + b)}.

So Ta,b ∩R(134) is contained in the intersection of the following half-spaces

H1 = {(x, y, z) ∈ R3 : z ≤ y}, H2 = {(x, y, z) ∈ R3 : y ≤ 1},
H3 = {(x, y, z) ∈ R3 : 1 ≤ x}, H4 = {(x, y, z) ∈ R3 : x ≤ bc(z − y) + by}.

We see that (1, 1, 1) ∈ ∂H1 ∩ ∂H2 ∩ ∂H3 ∩ int(H4), (b, 1, 1) ∈ ∂H1 ∩ ∂H2 ∩
int(H3) ∩ ∂H4, (1, 1/b, 1/b) ∈ ∂H1 ∩ int(H2) ∩ ∂H3 ∩ ∂H4 and (1, 1, 1 − b−1

bc ) ∈
int(H1) ∩ ∂H2 ∩ ∂H3 ∩ ∂H4. Using Lemma 3.3.3 we can conclude that the last
stated inclusion in the lemma indeed holds.
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3.4 Proof of the main theorem

In this section we prove the main theorem. We utilize a number of inequalities
for which the proofs can be found in the next section.

Lemma 3.4.1. Let q ∈ {3, 4}, d ∈ Z≥2 for q = 3 and d ∈ Z≥4 for q = 4 and let
1− q/∆ ≤ w < 1 where ∆ = d+ 1. Let a, b ∈ R>1 such that

max

{
b,
bd + w + q − 2

wbd + (q − 1)

}
< a < b

bd(q−1+w)(b−1)

(bd−1)(b−w) . (3.12)

Then F (Ta,b) ⊆ int(Ta,b).

Proof. Recall from Section sec: Intro functions that we can write F as the com-
position G ◦ P , where P (x1, . . . , xq−1) = (xd1, . . . , x

d
q−1). In logarithmic coordi-

nates the map P̂ = log ◦P ◦ exp acts as multiplication by d. In the proof of
Lemma 3.3.4 we showed that T̂a,b is a polytope whose vertices have entries 0,
±â or ±b̂. It follows that P̂ (T̂a,b) is the same polytope where â and b̂ are re-
placed by d · â and d · b̂ respectively. Because â = log(a) and b̂ = log(b), we can
conclude that P (Ta,b) = Tad,bd . It follows from Lemma 3.3.2 that it is enough
to show that G(Tad,bd ∩ R(123)) = F (Ta,b ∩ R(123)) ⊆ int(Ta,b) for q = 3 and
G(Tad,bd ∩R(134)) = F (Ta,b ∩R(134)) ⊆ int(Ta,b) for q = 4.

We use Lemma 3.3.6 to conclude that it is enough to show that

G
(
Conv({(1, 1), (bd, 1), (1, 1− (bd − 1) log(a)

bd log(b)
)})
)
⊆ int(Ta,b) (3.13)

for q = 3 and

G
(
Conv({(1, 1, 1), (bd, 1, 1),(1, 1/bd, 1/bd), (1, 1, 1− (bd − 1) log(a)

bd log(b)
)})
)

⊆ int(Ta,b)
(3.14)

for q = 4. We have to be careful here because initially we defined G as a map on
Rq−1
>0 . We can extend G to the half-space H = {(x1, . . . , xq−1) : x1+ · · ·+xq−1+

w > 0}. To show that the sets in equations (3.13) and (3.14) are contained in
H it is enough to show that the vertices of these convex hulls are contained in
H. This is clear for all but the last written vertex in either case. We will show
that the equation x1 + · · ·+ xq−1 +w > 0 does indeed hold for these two points.
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Namely, by (3.12) we have

x1 + · · ·+ xq−1 + w = q − 1− (bd − 1) log(a)

bd log(b)
+ w

> q − 1− (bd − 1)

bd
· b
d(q − 1 + w)(b− 1)

(bd − 1)(b− w)
+ w

=
(1− w)(q − 1 + w)

b− w
≥ 0,

as desired.
The map G is a linear-fractional function, which means that G sends line

segments to line segments (see e.g. Section 2.3.3 of [BV04]). Thus, for any set of
points p1, . . . , pn we have G(Conv({p1, . . . , pn})) = Conv ({G(p1), . . . , G(pn)}).
Let

fq(x) =
wx+ q − 1

x+ q − 2 + w
and g(x) =

(1 + w)x+ 2

2x+ 1 + w
.

The left-hand side of (3.13) is equal to

Conv

(
{(1, 1), (f3(bd), 1), (1, f3

(
1− (bd − 1) log(a)

bd log(b)

)
)}
)

and the left-hand side of (3.14) is equal to

Conv

(
{(1, 1, 1), (f4(bd), 1, 1), (1, g(1/bd), g(1/bd)),

(1, 1, f4

(
1− (bd − 1) log(a)

bd log(b)

)
}
)
.

We can use Lemma 3.3.6 to see that it is enough to show that

fq(b
d) > 1/a, g(1/bd) < b and fq

(
1− (bd − 1) log(a)

bd log(b)

)
< b (3.15)

to conclude that these sets are contained in Ta,b ∩R(23) and Ta,b ∩R(243) respec-
tively. The first inequality follows directly from the assumptions. The second
inequality follows from item (4) of Theorem 3.5.1 below. For the last inequality
we note that fq is strictly decreasing and 1− (bd−1) log(a)

bd log(b)
is also strictly decreasing

in a. Therefore, it is enough to show the inequality for a = b
bd(q−1+w)(b−1)

(bd−1)(b−w) . We
obtain

fq

(
1− (bd − 1) log(a)

bd log(b)

)
< fq

(
1− (q − 1 + w)(b− 1)

b− w

)
= b.
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Because the inequalities in (3.15) are strict we can even conclude that Ta,b gets
mapped strictly inside itself by F , i.e. F (Ta,b) ⊆ int(Ta,b).

Theorem 3.4.2. Let q ∈ {3, 4}, d ∈ Z≥2 for q = 3 and d ∈ Z≥4 for q = 4 and
let 1 − q/∆ ≤ w < 1 with w > 0 and ∆ = d + 1. Then the q-state Potts model
with weight w on the infinite ∆-regular tree, T∆, has a unique Gibbs measure.

Proof. We will construct a sequence of subsets {Tn}n≥0 as is described in Lemma
3.2.3. Define the functions

L(b) = max

{
b,
bd + w + q − 2

wbd + (q − 1)

}
and U(b) = min

{
b2, b

bd(q−1+w)(b−1)

(bd−1)(b−w)

}
.

It follows from items (1), (2) and (3) of Theorem 3.5.1 that L(b) < U(b) for
b > 1. We define M(b) = (L(b) + U(b))/2 and note that L(b) < M(b) < U(b) for
b > 1. Any element of Rq−1

>0 is contained in Tb,b for a large enough value of b. It
follows that we can choose b0 > 1 such that Tb0,b0 contains both the vector with
every entry equal to 1/w and the vectors obtained from the all-ones vector with
a single entry changed to w. Because M(b0) > b0 we have Tb0,b0 ⊂ TM(b0),b0 and
thus TM(b0),b0 contains these vectors too. Inductively we now define bn for n ≥ 1
by

bn = inf
{
b : F (TM(bn−1),bn−1

) ⊆ TM(b),b

}
.

Because TM(b),b moves continuously with b it follows from Lemma 3.4.1 that
{bn}n≥1 is a strictly decreasing sequence. The sequence is clearly bounded below
by 1 and thus it must have a limit. We claim that this limit is 1. For the
sake of contradiction assume that it has a limit b∞ > 1. The set TM(b∞),b∞

gets mapped strictly inside itself by F and thus there is a b′ < b∞ such that
TM(b∞),b∞ also gets mapped strictly inside TM(b′),b′ . This is an open condition,
so there is an ε > 0 such that TM(b),b gets mapped strictly inside TM(b′),b′ for
all b ∈ [b∞, b∞ + ε). There must be an integer N such that bN ∈ [b∞, b∞ + ε),
but then bN+1 < b′ < b∞, so b∞ cannot be the limit of the decreasing sequence
{bn}n≥0.

We define Tn = TM(bn),bn . We have b < M(b) < b2, so it follows from
Lemma 3.3.4 that every Tn is log-convex. We have chosen T0 such that condition
(1) of Lemma 3.2.3 is satisfied. By construction F (Tm) ⊆ Tm+1 for all m and thus
condition (2) of Lemma 3.2.3 is satisfied. Finally, because both bn and M(bn)
converge to 1, it follows that the sequence of sets Tn converges to the set consisting
of just the all-ones vector. This means that condition (3) of Lemma 3.2.3 is
satisfied. We can conclude that T∆ has a unique Gibbs measure.

Remark 2. The assumption w > 0 is critical in the case q = 3 and d = 2, as it is
well known there are multiple Gibbs measures at wc = 0 when q = ∆. One sees
this in our argument as well. For the base case of the induction, condition (1) of
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Lemma 3.2.3, we need T0 to contain the vectors (1, w) = (1, 0), (w, 1) = (0, 1) and
(1/w, 1/w) = (∞,∞). If we take the log convex hull of these vectors and apply F ,
we obtain a region that again contains the vectors (1, w) = (1, 0), (w, 1) = (0, 1)
and (1/w, 1/w) = (∞,∞). It is thus possible to choose boundary conditions that
yield unbounded ratios at an arbitrary distance from the leaves. This observation
is closely related to the existence of so-called frozen colorings [BW00]. These give
distinct trivial Gibbs measures, each supported on a single coloring of T2.

3.5 Proof of the inequalities

This section is dedicated to showing all the inequalities from the previous section
are satisfied. We define the following functions

l(q, d, w, b) =
bd + q − 2 + w

wbd + q − 1
, g(d,w, b) =

2b∆ + w

(1 + w)bd + 2
,

h(q, d, w, b) =
bd(b− 1)(q − 1 + w)

(bd − 1) (b− w)
, u(q, d, w, b) = bh(q,d,w,b).

We mostly consider these as functions in b and consider only b ≥ 1. Note that
h(q, d, w, b) has a removable singularity in b = 1 with h(q, d, w, 1) = q−1+w

d(1−w) . The
theorem we prove in this section is the following.

Theorem 3.5.1. For q = 3, d ≥ 2 and w ∈ [1 − 3
∆ , 1) or for q = 4, d ≥ 4 and

w ∈ [1− 4
∆ , 1) with ∆ = d+ 1 we have for each b > 1

1. u(q, d, w, b) > l(q, d, w, b),

2. u(q, d, w, b) > b,

3. b2 > l(q, d, w, b).

And for all b > 1 and d ≥ 3 and w ∈ [1− 4
∆ , 1) we have

(4) g(d,w, b) < b.

In the next section we show it is enough to prove Theorem 3.5.1 holds for
w = wc = 1− q

∆ where we take q = 4 in inequality (4). Subsequently, inequality
(2) is proved in Corollary 3.5.5, inequality (3) is proved in Lemma 3.5.6 and
inequality (4) is proved in Lemma 3.5.3. The proof of inequality (1) is the most
involved and is the result of Lemma 3.5.7 and Lemma 3.5.8.
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3.5.1 Reduction to w = wc

Lemma 3.5.2. Let q ≥ 2, d ≥ 1 and w ∈ [0, 1). For b > 1 we have l(q, d, w, b)
and g(d,w, b) are decreasing in w, while u(q, d, w, b) is increasing in w.

Proof. We compute

∂

∂w
l(q, d, w, b) = − (bd − 1)(bd + q − 1)

(wbd + q − 1)2
,

∂

∂w
g(d,w, b) = − 2(b2d − 1)

((1 + w)bd + 2)2
,

∂

∂w
u(q, d, w, b) = u(q, d, w, b) · b

d(b− 1)(b+ q − 1) log b

(bd − 1)(b− w)2
.

We see that for b > 1 we have

∂

∂w
l(q, d, w, b) < 0,

∂

∂w
g(d,w, b) < 0 and

∂

∂w
u(q, d, w, b) > 0,

so the lemma follows.

From Lemma 3.5.2 it follows that if we can show Theorem 3.5.1 holds for
w = wc, then it also holds for all w ∈ [wc, 1). So from now on we will work with
l(b, wc, d, q), u(b, wc, d, q) and h(b, wc, d). To shorten notation we write

l(b) =
∆bd + d(q − 1)− 1

(d− q + 1)bd +∆(q − 1)
, g(b) =

∆bd + d− 1

(d− 1)bd +∆
,

h(b) =
dqbd(b− 1)

(bd − 1) (∆(b− 1) + q)
, u(b) = bh(b).

We note that the function h has a removable singularity in 1 with h(1) = 1.

3.5.2 Inequalities g(b) < b, u(b) > b and b2 > l(b)

We will start by showing g(b) < b holds for b > 1 and d ≥ 2.

Lemma 3.5.3. Let d ≥ 2 and b > 1. Then we have g(b) < b.

Proof. We have g(1) = 1 and g′(1) = 1. Furthermore, one can see

g′′(b) = −4d2
(
d2 − 1

) (
bd − 1

)
bd−2

((d− 1)bd +∆)
3 < 0

for d ≥ 2 and b > 1. This implies g(b) < b for d ≥ 2 and b > 1.
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Next we show that h is increasing in b. This fact will immediately give us
inequality (2). Furthermore, it is also helpful in proving a sufficient condition for
inequality (1) to hold, see Lemma 3.5.7 below.

Lemma 3.5.4. For all b > 1, d ≥ 2 and q ≥ 2 we have h′(b) > 0.

Proof. We compute

h′(b) =
kdbd−1

(
qb∆ − d (∆) b2 +

(
2d2 − dq + 2d− q

)
b− d2 + dq − d

)
(bd − 1)

2
(∆(b− 1) + q)2

.

It suffices to show that

m(b) := qb∆ − d (∆) b2 +
(
2d2 − dq + 2d− q

)
b− d2 + dq − d

is positive for b > 1. We compute

m′(b) = ∆(k(bd − 1)− 2d(b− 1)),

m′′(b) = d∆(kbd−1 − 2).

We see m′′(b) > 0 for b > 1, d ≥ 2 and q ≥ 2. Noting that m′(1) = 0 and
m(1) = 0, it follows that m′(b) and m(b) are strictly positive for b > 1.

This immediately implies inequality (2).

Corollary 3.5.5. For b > 1 we have u(b) > b.

Proof. Recall u(b) = bh(b). As h(1) = 1 and h′(b) > 0 for b > 1 by Lemma 3.5.4,
we see u(b) > b for b > 1 follows.

Until this point, we did not need to assume q = 3 or q = 4 for the computations
to work, but for inequality (3) to hold we do need some restrictions on q and d.

Lemma 3.5.6. For q = 3 and d ≥ 2 and for q = 4 and d ≥ 4 we have l(b) < b2,
for all b > 1.

Proof. Multiplying both sides of the inequality with the positive factor (d− q +
1)bd +∆(q − 1) we obtain the equivalent inequality

∆bd + d(q − 1)− 1 < (d− q + 1)bd+2 +∆(q − 1)b2.

To show that this inequality holds we show that the polynomial

Q(b) = (d− q + 1)bd+2 −∆bd +∆(q − 1)b2 − d(q − 1) + 1
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is strictly positive for b > 1. For d ≥ 2 we compute

Q′(b) = (d+ 2)(d− q + 1)b∆ −∆dbd−1 + 2∆(q − 1)b,

Q′′(b) = (d+ 2)∆(d− q + 1)bd −∆d(d− 1)bd−2 + 2∆(q − 1),

Q′′′(b) = d∆bd−3
(
(d+ 2)(d− q + 1)b2 − (d− 1)(d− 2)

)
,

Because ∆ ≥ k we find that for all b ≥ 1

(d+2)(d−q+1)b2−(d−1)(d−2) ≥ (d+2)(d−q+1)−(d−1)(d−2) = (6−q)d−2q.

For q = 3 this quantity is nonnegative for d ≥ 2 and for q = 4 this quantity is
nonnegative for d ≥ 4. So in our case we can conclude that Q′′′(b) ≥ 0 for all
b ≥ 1. As we have Q′′(1) = d∆ > 0, Q′(1) = 3d > 0 and Q(1) = 0, it follows that
Q′′(b), Q′(b) and Q(b) are strictly positive for b > 1.

3.5.3 The inequality u(b) > l(b)

The following lemma contains a sufficient condition to prove this inequality. In
the remainder of the section we prove that this condition is satisfied.

Lemma 3.5.7. Suppose for all b > 1 we have

l′(b)

l(b)
<
h(b)

b
+ 2

b− 1

b+ 1
g′(b). (3.16)

Then u(b) > l(b) for all b > 1.

Proof. As l(b) and u(b) are strictly positive for b ≥ 1, we can define

F (b) = log(u(b))− log(l(b))

for b ≥ 1. Then we have

F ′(b) =
u′(b)

u(b)
− l′(b)

l(b)
=
h(b)

b
+ log(b)h′(b)− l′(b)

l(b)
.

For b > 1 we have that h′(b) > 0 by Lemma 3.5.4 and log(b) > 2(b− 1)/(b+ 1),
therefore

F ′(b) >
h(b)

b
+ 2

b− 1

b+ 1
h′(b)− l′(b)

l(b)
,

which is positive by (3.16). It is easy to see F ′(1) = 0. Hence F has a global
minimum in b = 1. As F (1) = 0, it follows that u(b) > l(b) for all b > 1, which
is what we wanted to show.



Proof of the inequalities 47

This lemma is useful because proving the inequality u(b) > l(b) for all b > 1
can now be reduced to proving inequalities involving rational functions and with
some work to inequalities involving only polynomials. The next lemma shows
that (3.16) holds. For this to work we do need to restrict to q = 3 and d ≥ 2 or
q = 4 and d ≥ 4.

Lemma 3.5.8. For q = 3 and d ≥ 2 and for q = 4 and d ≥ 4 and any b > 1 we
have

l′(b)

l(b)
<
h(b)

b
+ 2

b− 1

b+ 1
h′(b).

Proof. We introduce the following polynomials

p(b) = ∆bd + d(q − 1)− 1, q(b) = (d− q + 1)bd +∆(q − 1),

s(b) = dqbd(b− 1), t(b) =
(
bd − 1

)
(∆(b− 1) + q).

Thus l(b) = p(b)/q(b) and h(b) = s(b)/t(b). Furthermore, we define r(b) =
q(b)p′(b)− p(b)q′(b) and v(b) = t(b)s′(b)− s(b)t′(b). It is worth noting that r(b)
simplifies to q2d2bd−1. The inequality we want to prove can now be written as

r(b)

p(b)q(b)
<

s(b)

b · t(b) + 2
(b− 1)v(b)

(b+ 1)t(b)2
.

For b > 1 the quantity b(b + 1)p(b)q(b)t(b)2 is strictly positive and thus it is
equivalent to prove the inequality, where we have multiplied both sides by this
term. We see that it is enough to prove that the following polynomial is strictly
positive for all b > 1

P (b) = (b+ 1)s(b)p(b)q(b)t(b) + 2b(b− 1)v(b)p(b)q(b)− b(b+ 1)r(b)t(b)2. (3.17)

It can be checked that the terms s(b), b · v(b) and b · r(b) all contain a factor
qdbd and thus P0(b) = P (b)/(kdbd) is a polynomial in b whose coefficients are
polynomials in d. The remainder of the proof will be dedicated to showing that
P0(b) is strictly positive for b > 1.

To avoid ambiguity later, we prove this for q = 3 in the two cases d = 2 and
d = 3 separately. For d = 2 we have

P0(b) = 54(b− 1)6 + 54(b− 1)5

and for d = 3 we have

P0(b) =16(b− 1)12 + 212(b− 1)11 + 1236(b− 1)10 + 4116(b− 1)9 + 8793(b− 1)8

+ 12789(b− 1)7 + 12123(b− 1)6 + 6318(b− 1)5 + 1458(b− 1)4.
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In both cases all the coefficients of P0(b) are strictly positive when written as a
polynomial in b− 1 and thus the polynomials are strictly positive for b > 1.

We will now assume that d ≥ 4. It can be seen by cross-multiplying the terms
in the individual polynomials in (3.17) that the only coefficients of P0(b) that
can be non-zero appear in the bi·d+j terms where i, j ∈ {0, 1, 2, 3}. The exact
coefficients are recorded in Table 3.1. For n ∈ {1, 2, 3} we inductively define the
polynomials Pn(b) = P

(4)
n−1(b)/b

d−4. Note that in this way Pn(b) is a polynomial
whose only non-zero coefficients appear in the bi·d+j term, where 0 ≤ i ≤ 3 − n
and j ∈ {0, 1, 2, 3}.

Table 3.1: The coefficients of P0(b) for d ≥ 4.

Term of P0(b) Coefficient q = 3 Coefficient q = 4
b0 (d− 2)

(
8d3 − 3d2 + 2

)
(d− 3)

(
18d3 − d2 + 3

)
b1 −24d4 + 19d3 + 60d2 − 24d− 14 −54d4 + 67d3 + 173d2 − 39d− 27
b2 ∆(3d− 1)

(
8d2 + d− 16

)
∆
(
54d3 − 23d2 − 124d+ 33

)
b3 −∆2

(
8d2 + 3d− 2

)
−∆2

(
18d2 + 7d− 3

)
bd (d− 2)

(
8d3 + 4d2 − d− 6

)
(d− 3)

(
12d3 + 3d2 − 2d− 9

)
b∆ −3

(
8d4 − 8d3 + 15d2 − 19d− 14

)
−36d4 + 73d3 − 129d2 + 99d+ 81

bd+2 3
(
8d4 − 4d3 + 15d2 + 20d− 16

)
36d4 − 47d3 + 115d2 + 163d− 99

bd+3 −∆
(
8d3 − 8d2 − d+ 6

)
−∆

(
12d3 − 19d2 − 6d+ 9

)
b2d 2(d− 2)∆

(
d2 − 2d+ 3

)
(d− 3)∆

(
2d2 − 5d+ 9

)
b2∆ −3

(
2d4 − 4d3 + 3d2 + 14∆4

)
−6d4 + 21d3 − 37d2 − 81d− 81

b2d+2 3
(
2d4 − 2d3 − 7∆6

)
6d4 − 15d3 + 19d2 − 53d+ 99

b2d+3 −(d− 2)∆
(
2d2 + 2d+ 3

)
−(d− 3)∆

(
2d2 + d+ 3

)
b3d (d− 2)2∆ (d− 3)2∆
b3∆ −(d− 2)∆(d+ 7) −(d− 3)∆(d+ 9)
b3d+2 −(d− 8)(d− 2)∆ −(d− 11)(d− 3)∆
b3d+3 (d− 2)∆2 (d− 3)∆2

The values of P (i)
j (1) as a polynomial in x = d− 4, up to a common positive

multiplicative factor, for q = 3 and q = 4 are contained in tables 3.2 and 3.3
respectively. These polynomials have only nonnegative coefficients, from which
it follows that their values are nonnegative for all d ≥ 4.

The polynomial P3(b) is a cubic polynomial and thus its third derivative
P

(3)
3 (b) is constant. Its exact value, which is recorded in Table 3.2 for q = 3 and

in Table 3.3 for q = 4, is strictly positive for all x ≥ 0, i.e. for all d ≥ 4. We
claim that it now follows inductively that P (i)

j (b) is strictly positive for all b > 1.
Namely, suppose that for i ∈ {0, 1, 2, 3} we have shown that P (i+1)

j (b) is strictly
positive for b > 1. Then it follows that P (i)

j (b) is strictly increasing. Because
P

(i)
j (1) ≥ 0 (cf. Table 3.2 and Table 3.3), we can conclude from this that P (i)

j (b)
is also strictly positive for b > 1. Furthermore, if Pj+1(b) > 0 for b > 1 then the
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same follows for P (4)
j because bd−4 · Pj+1(b) = P

(4)
j (b). In conclusion, it follows

that P0(b) > 0 for b > 1, which is what we set out to prove.

Table 3.2: The values of P (i)
j (1) for q = 3 in the variable x = d − 4 divided by

6(x+ 4)3(x+ 5) for i, j ∈ {0, 1, 2, 3}.
P0(1) 0
P

(1)
0 (1) 0
P

(2)
0 (1) 0
P

(3)
0 (1) 0
P1(1) 54(x+ 2)

P
(1)
1 (1) 3

(
122x2 + 759x+ 1045

)
P

(2)
1 (1) 3

(
478x3 + 5019x2 + 16831x+ 17560

)
P

(3)
1 (1) 4276x4 + 61731x3 + 328134x2 + 754415x+ 623616

P2(1) 4
(
2864x5 + 51218x4 + 363231x3 + 1272211x2 + 2188942x+ 1467858

)
P

(1)
2 (1) 2

(
8800x6 + 200624x5 + 1895748x4 + 9479789x3 + 26371144x2 + 38515725x+ 22913226

)
P

(2)
2 (1) 4

(
6100x7 + 166078x6 + 1935943x5 + 12502085x4 + 48198140x3 + 110605547x2 + 139341417x+ 73916010

)
P

(3)
2 (1) 4(x+ 2)

(
7948x7 + 229772x6 + 2871108x5 + 20093453x4 + 85033465x3 + 217534941x2 + 311415975x+ 192411450

)
P3(1) 12(x+ 2)

(
3324x8 + 105498x7 + 1478477x6 + 11945536x5 + 60841362x4 + 199973638x3 + 414113609x2 + 493884000x+ 259667100

)
P

(1)
3 (1) 4(x+ 2)(x+ 5)(2x+ 9)(3x+ 13)

(
372x6 + 10607x5 + 124569x4 + 775749x3 + 2712487x2 + 5063412x+ 3950100

)
P

(2)
3 (1) 4(x+ 2)(x+ 5)2(x+ 6)(2x+ 9)(3x+ 13)(3x+ 14)

(
12x4 + 368x3 + 3431x2 + 13148x+ 18249

)
P

(3)
3 (1) 36(x+ 2)(x+ 5)4(x+ 6)(x+ 7)(2x+ 9)(2x+ 11)(3x+ 13)(3x+ 14)

Table 3.3: The values of P (i)
j (1) for q = 4 in the variable x = d − 4 divided by

8(x+ 4)3(x+ 5) for i, j ∈ {0, 1, 2, 3}.
P0(1) 0
P

(1)
0 (1) 0
P

(2)
0 (1) 0
P

(3)
0 (1) 0
P1(1) 48x

P
(1)
1 (1) 8

(
44x2 + 215x+ 135

)
P

(2)
1 (1) 2

(
709x3 + 6684x2 + 18585x+ 12690

)
P

(3)
1 (1) 4134x4 + 55427x3 + 265045x2 + 515121x+ 308889

P2(1) 4
(
2699x5 + 45392x4 + 297314x3 + 933894x2 + 1366575x+ 695142

)
P

(1)
2 (1) 2

(
8020x6 + 174193x5 + 1549849x4 + 7170108x3 + 17941968x2 + 22435155x+ 10317699

)
P

(2)
2 (1) 2

(
10878x7 + 284024x6 + 3149973x5 + 19136364x4 + 68251666x3 + 141154110x2 + 153239211x+ 64122030

)
P

(3)
2 (1) 3(x+ 1)

(
9316x7 + 267882x6 + 3329185x5 + 23169850x4 + 97489094x3 + 247912018x2 + 352706325x+ 216527850

)
P3(1) 12(x+ 1)

(
2889x8 + 91143x7 + 1269517x6 + 10192836x5 + 51576597x4 + 168375593x3 + 346232169x2 + 409934700x+ 213929100

)
P

(1)
3 (1) 3(x+ 1)(x+ 5)(2x+ 9)(3x+ 13)

(
408x6 + 11669x5 + 136865x4 + 848735x3 + 2949267x2 + 5463996x+ 4227300

)
P

(2)
3 (1) 6(x+ 1)(x+ 5)2(x+ 6)(2x+ 9)(3x+ 13)(3x+ 14)

(
6x4 + 193x3 + 1807x2 + 6883x+ 9471

)
P

(3)
3 (1) 27(x+ 1)(x+ 5)4(x+ 6)(x+ 7)(2x+ 9)(2x+ 11)(3x+ 13)(3x+ 14)

We have shown the inequalities (1), (2), (3) all hold, thus the conditions in
Lemma 3.4.1 and Lemma 3.3.4 are satisfied.

3.6 Concluding remarks

We conclude with some remarks concerning the possibility of expanding our ap-
proach and with some questions.
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Generalisation The biggest challenge to generalizing our method to other val-
ues of (q,∆) comes from the fact that inequality (3) from Theorem 3.5.1 is not
necessarily true for all b > 1. This suggests that it might not be possible in all
cases to find arbitrarily large log convex regions that get mapped into themselves.
We suspect that in general this is indeed impossible when one requires the regions
to have the symmetry that we use in this chapter, that is regions T ⊂ Rq−1

>0 with
Mσ(T ) = T for all σ ∈ Sq. A consequence is that in some cases we cannot make
the region large enough to start the induction laid out in Lemma 3.2.3. Fortu-
nately, inequality (3) does hold near b > 1 for all (q,∆) with ∆ ≥ q and w ≥ wc.
This suggests that, at least when wc is close to 1, i.e. when ∆ is large enough
compared to q, our methods could still be applied. Moreover, it might be possible
to find a separate argument to show that the ratios of T̂nd get at least moderately
close to 1 for some n. This could then be used to bootstrap the induction in
Lemma 3.2.3.

There are two more complications that prevent us from applying our method
directly to other values of (q,∆). We suspect that these can be overcome with
more thorough analysis. The first one comes from the fact that inequality (1) from
Theorem 3.5.1 is no longer satisfied for most values of (q,∆) and wc. The precise
form of this inequality highly depends on our method of proof and specifically on
our choice of upper bound for la,b in equation (3.11). Computer analysis suggests
that by taking different upper bounds for la,b, specifically taking tangent lines
at different points, the proof that Ta,b gets mapped into itself for a and b near 1
can be salvaged. The other complication appears when q ≥ 5. In this case one
obtains more inequalities analogous to inequality (4) from Theorem 3.5.1. These
are not all satisfied when we take a naive generalization of the region Ta,b. We
suspect that this can be remedied by letting the regions depend on more than
just two parameters. This leads to the analysis specifically of the log convexity
of the regions becoming more involved. Of course, it is also possible to work with
different log convex regions, for example the regions we work with in Chapter 4.

The case (q,∆) = (4, 4) Unfortunately, our approach does not allows us to
handle the case (q,∆) = (4, 4). We briefly explain the complications. In inequal-
ity (3.11) we use the tangent line of la,b(x) at x = 1 to upper bound la,b(x); this
makes the calculus easier and this choice works for q = 4 and ∆ ≥ 5. We have
evidence that by using the tangent line at a different point in inequality (3.11)
the calculations that follow from this upper bound also work for the case q = 4
and ∆ = 4. However, we can show that inequality (3) in Theorem 3.5.1 fails when
(q,∆) = (4, 4) and b > 1 is large enough, meaning that in that case the set Ta,b
cannot both be log convex and satisfy F (Ta,b) ⊂ Ta,b. For b > 1 close enough to
1 inequality (3) in Theorem 3.5.1 does hold. We suspect that our approach can
be tweaked to show uniqueness for all w ∈ (0, 1) when (q,∆) = (4, 4), possibly by
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finding a separate argument to show that the ratios of T̂n3 get at least moderately
close to 1 for some n, bootstrapping the induction in Lemma 3.2.3.

Zero-free region Our final comment is related to the following question. Given
q ∈ N and ∆ ≥ q. Does there exist a region U in C containing the interval
(1− q

∆ , 1] such that for any w ∈ U and any graph G of maximum degree ∆ the
partition function Z(G, q, w) ̸= 0? (If so this would yield an efficient algorithm for
approximately computing Z(G, q, w) in this region by Barvinok’s method [Bar16]
combined with [PR17].)

Following [BDPR21], to prove this, for say q = 3, we would essentially need
to find a log convex set S ⊊ C2 such that the map F maps S into S and such that
S satisfies some additional properties that we will not discuss here. We suspect
that the sets Ta,b we have constructed may be helpful in determining whether
such a set S can be constructed.





CHAPTER

FOUR

UNIQUENESS OF THE GIBBS MEASURE FOR THE
ANTI-FERROMAGNETIC POTTS MODEL ON THE

INFINITE ∆-REGULAR TREE FOR LARGE ∆

4.1 Organization

In this chapter we prove the following theorem.

Main Theorem of Chapter 4. For each integer q ≥ 5 there exists ∆0 ∈ N
such that for each ∆ ≥ ∆0 and each w ∈ [1− q

∆ , 1) the q-state anti-ferromagnetic
Potts model with edge interaction parameter w has a unique Gibbs measure on
the infinite ∆-regular tree T∆.

In the next section we give a more technical overview of our approach. In par-
ticular we recall some results from Chapter 3 that we will use and set up some
terminology. We also gather two results that will be used to prove the main theo-
rem, leaving the proofs of these results to Section 4.3 and Section 4.4 respectively.
Assuming these results, the main theorem will be proved in Section 4.2.4.

4.2 Approach, preliminaries and proof outline

Our approach to prove the main theorem is based on the approach from Chapter 3
for the cases q = 3, 4. As is well known, to prove uniqueness it suffices to show
that for a given root vertex, say v, the probability that v receives a color i ∈ [q],
conditioned on the event that the vertices at distance n from v receive a fixed
coloring, converges to 1/q as n→ ∞ regardless of the fixed coloring of the vertices
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at distance n, see Lemma 2.2.3. Instead of studying these probabilities, we study
ratios of these probabilities. It then suffices to show that these converge to 1.
The ratios at the root vertex v can be expressed as a rational function of the
ratios at the neighbors of v. See Lemma 4.2.2 below. This function is rather
difficult to analyze directly and as in Chapter 3 we analyze a simpler function
coupled with a geometric approach. A key new ingredient of our approach in this
chapter is to take the limit of ∆, the degree of the tree, to infinity and analyze the
resulting function. This function turns out be even simpler and behaves much
better in a geometric sense. With some work we translate the results for the
limit case back to the finite case and therefore obtain results for ∆ large enough.
This is inspired by a recent paper [BBP21] in which this idea was used to give
a precise description of the location of the zeros of the independence polynomial
for bounded degree graphs of large degree.

4.2.1 Reformulation of the main result
We will reformulate the main theorem here in terms of the conditional distribution
of the color of the root vertex of T∆ conditioned on a fixed coloring of the vertices
at a certain distance from the root.

Let ∆ ≥ 2 be an integer. In what follows it will be convenient to write
d = ∆ − 1 and let n ∈ Z≥0. We use the notations Tnd and Λn,d introduced in
Definition 2.2.2. For a positive integer q we call a map τ : Λn,d → [q] a boundary
condition on Λn,d.

The following theorem may be seen as a more precise form of our main result.

Theorem 4.2.1. Let q ≥ 3 be a positive integer. There exist constants C > 0
and d0 > 0 such that for all integers d ≥ d0 and all α ∈ (0, 1) the following holds
for any i ∈ {1, . . . , q}:

lim
n→∞

max
τ :Λn,d→[q]

∣∣∣∣PrTn
d ,q,wc [Φ(r) = i | Φ↾Λn,d

= τ ]− 1

q

∣∣∣∣ = 0, (4.1)

for any boundary condition τ on Λn,d and edge interaction w(α) = 1− αq
d+1 ,∣∣∣∣PrTn

d ,q,w(α)[Φ(r) = i | Φ↾Λn,d
= τ ]− 1

q

∣∣∣∣ ≤ Cαn/2. (4.2)

Remark 3. We can in fact strengthen (4.2) in two ways. First of all, for any
α < α̂ < 1 there exists a constant Cα̂ > 0 such that the right-hand side of (4.2)
can be replaced by Cα̂α̂n. Secondly, for any fixed d ≥ d0 there exist a constant
Cd > 0 such that the right-hand side of (4.2) can be replaced by Cdαn.
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As is well known (we provide a proof in Lemma 3.2.1 of Chapter 3) The-
orem 4.2.1 directly implies the main theorem. Therefore the remainder of the
chapter is devoted to proving Theorem 4.2.1.

4.2.2 Log-ratios of probabilities
Theorem 4.2.1 is formulated in terms of certain conditional probabilities. For
our purposes it turns out to be convenient to reformulate this into log-ratios of
these probabilities. To introduce these, we recall some relevant definitions from
Chapter 3. Throughout we fix an integer q ≥ 3.

Given a (finite) graph G = (V,E) and a subset U ⊆ V of vertices, we call
τ : U → [q] a boundary condition on U . We say vertices in U are fixed and
vertices in V \ U are free. The partition function restricted to τ is defined as

ZU,τ (G; q, w) =
∑

σ:V→[q]
σ↾U=τ

wm(σ).

We just write Z(G) if U, τ and q, w are clear from the context. Given a boundary
condition τ : U → [q] on U , a free vertex v ∈ V \ U and a state i ∈ [q] we define
τv,i as the unique boundary condition on U ∪ {v} that extends τ and associates
i to v. When U and τ are clear from the context, we will denote ZU∪{v},τv,i

(G)
as Zvi (G). Let τ : U → [q] be a boundary condition on U and v ∈ V be a free
vertex. For any i ∈ [q] we define the log-ratio R̃G,v,i as

R̃G,v,i := log(Zvi (G))− log(Zvq (G)),

where log denotes the natural logarithm. Note that R̃G,v,q = 0. We moreover
remark that R̃G,v,i can be interpreted as the logarithm of the ratio of the prob-
abilities that the root gets color i (resp. q) conditioned on the event that U is
colored according to τ .

For trees the log-ratios at the root vertex can be recursively computed from
the log-ratios of its neighbors. To describe this compactly we introduce some
notation that will be used extensively throughout the chapter. Fix d ∈ R>1 and
let α ∈ (0, 1]. Define the maps Gd,α;i, Fd,α;i : Rq−1 → R for i ∈ {1, . . . , q − 1} as

Gd,α;i(x1, . . . , xq−1) =
1− xi∑q−1

j=1 xj + 1− α·q
d+1

(4.3)

and

Fd,α;i(x1, . . . , xq) = d log

(
1 +

α · q
d+ 1

·Gd,α;i(exp(x1), . . . , exp(xq−1))

)
. (4.4)
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Define the map Fd,α : Rq−1 → Rq−1 whose ith coordinate function is given by
Fd,α;i(x1, . . . , xq−1) and defineGd,α similarly. To suppress notation we write Fd =
Fd,1 and Gd = Gd,1. We also define exp(x1, . . . , xq−1) = (exp(x1), . . . , exp(xq−1))
and log(x1, . . . , xq−1) = (log(x1), . . . , log(xq−1)). We note that Gd,α and Fd,α are
analytic in 1/d near 0 when viewing d as a variable. We will now use the map
Fd,α to give a compact description of the tree recurrence for log-ratios.

Lemma 4.2.2. Let T = (V,E) be a tree, τ : U → [q] a boundary condition on
U ⊊ V . Let v be a free vertex of degree d ≥ 1 with neighbors v1, . . . , vd. Denote
Ti for the tree that is the connected component of T − v containing vi. Restrict
τ to each Ti in the natural way. Write R̃i,j for the log-ratio R̃Ti,vi,j. Then for α
such that w = 1− α·q

d+1 ,

(R̃T,v,1, . . . , R̃T,v,q−1) =

d∑
i=1

1

d
Fd,α(R̃i,1, . . . , R̃i,q−1), (4.5)

a convex combination of the images of the map Fd,α.

Proof. By focusing on the jth entry of the left-hand side and substitutingRT,v,j =
exp(R̃T,v,j), we see that (4.5) follows from the well known recursion for ratios

RT,v,i =

d∏
s=1

∑
l∈[q−1]\{i}RTs,vs,l + wRTs,vs,i + 1∑

l∈[q−1]RTs,us,l + w
. (4.6)

This recursion follows from Lemma 3.2.2 and Equation 3.7 in Chapter 3.

We note that if the boundary condition τ is constant on the leaves of the tree
Tnd+1, then the log-ratios at the root can be obtained by iterating the univariate
function f given by f(x) = Fd,α(x, . . . , x) at w = w(α). The point x = 0 is a
fixed point of f ; it satisfies |f ′(0)| ≤ 1 if and only if w ≥ wc. From this it is not
difficult to extract that there exist multiple Gibbs measures when w < wc.

Denote 0⃗ for the zero vector in Rq−1. (Throughout we will denote vectors in
boldface.) We define for any n ≥ 1 the set of possible log-ratio vectors

Rn := {(R̃Tn
d+1,r,1

, . . . , R̃Tn
d+1,r,q−1) ∈ Rq−1|τ : Λn → [q]}.

Here the ratios R̃Tn
d+1,r,1

depend on τ but this is not visible in the notation. The
following lemma shows how the recursion from Lemma 4.2.2 will be used.

Lemma 4.2.3. Let q ≥ 3 and d ≥ 2 be integers. If there exists a sequence
{Tn}n≥1 of convex subsets of Rq−1 with the following properties:

1. R1 ⊆ T1,
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2. for every n ≥ 1, Fd(Tn) ⊆ Tn+1,

3. for every ε > 0 there is an N ≥ 1 such that for all n ≥ N we have
supr∈Tn

∥r∥1 ≤ ε,

then
lim
n→∞

max
τ :Λn,d+1→[q]

∣∣∣∣PrTn
d ,q,wc

[Φ(r) = i | Φ↾Λn,d
= τ ]− 1

q

∣∣∣∣ = 0. (4.7)

Proof. The proof is analogous to the proof of Lemma 3.2.3 and we therefore omit
it.

We note that the lemma is only stated for α = 1. An analogues statement for
α ∈ (0, 1) and Fd replaced by Fd,α with a more accurate dependence of N on ε
follows from a certain monotonicity of Fd,α, as will be explained in the proof of
the main theorem below.

In the next section we construct a family of convex sets that allows us to form
a sequence {Tn}n≥1 with the properties required by the lemma.

4.2.3 Construction of suitable convex sets
We need the standard q − 2-simplex, which we denote as

Simp =

{
(t1, . . . , tq−2, 1−

q−2∑
i=1

ti) | ti ≥ 0 for all i,
q−2∑
i=1

ti ≤ 1

}
,

to avoid confusion with the degree ∆ of the infinite regular tree.
The symmetric group Sq acts on Rq by permuting entries of vectors. Consider

Rq−1 ⊂ Rq as the subspace spanned by {e⃗1− e⃗q, . . . , e⃗q−1− e⃗q}, where e⃗i denotes
the ith standard base vector in Rq. This induces a linear action of Sq on Rq−1,
also known as the the standard representation of Sq and denoted by x⃗ 7→ π · x⃗
for x⃗ ∈ Rq−1 and π ∈ Sq. The following lemma shows that the map Fd,α is
Sq-equivariant for any α ∈ (0, 1], essentially because the action permutes the q
colors of the Potts model and no color plays a special role.

Lemma 4.2.4. For any π ∈ Sq, any α ∈ (0, 1], any x⃗ ∈ Rq−1 and any d we have

π · Fd,α(x⃗) = Fd,α(π · x⃗).

Proof. This follows as in Section 3.3.1.

Define for c ≥ 0 the half space

H≥−c :=

{
x⃗ ∈ Rq−1 |

q−1∑
i=1

xi ≥ −c
}
. (4.8)
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Define the set
Pc =

⋂
π∈Sq

π ·H≥−c. (4.9)

Note that for each c ≥ 0 the set Pc equals the convex polytope

conv
(
{(−c, 0, . . . , 0), . . . (0, . . . , 0,−c), (c, . . . , c)}

)
.

Denote Dc := conv
(
{(−c, 0, . . . , 0), . . . (0, . . . , 0,−c), (0, . . . , 0)}

)
. Then we have

Pc =
⋃
π∈Sq

π ·Dc. (4.10)

We refer to Dc as the fundamental domain of the action of Sq on Rq−1.
The following two propositions capture the image of Pc under applications of

the map Fd.

Proposition 4.2.5. Let q ≥ 3 be an integer. Then there exists d1 > 0 such that
for all d ≥ d1 and c ∈ [0, q + 1], Fd(Pc) is convex.

Proposition 4.2.6. Let q ≥ 3 be an integer. There exists d2 > 0 such that for
all d ≥ d2 the following holds: for any c ∈ (0, q + 1] there exists 0 < c′ < c such
that

F ◦2
d (Pc) ⊆ Pc′ .

An intuitive explanation for why we need F ◦2
d and cannot work with Fd di-

rectly is that the derivative of Fd at 0 is equal to −Id, which reflects the fact that
we are dealing with an anti-ferromagnetic model, while the derivative of F ◦2

d at
0 is equal to Id.

We postpone the proofs of the two results above to the subsequent sections.
A crucial ingredient in both proofs will be to analyze the limit limd→∞ Fd. We
first utilize the two propositions to give a proof of Theorem 4.2.1.

4.2.4 A proof of Theorem 4.2.1
Fix an integer q ≥ 3. Let d1, d2 be the constants from Proposition 4.2.5 and 4.2.6
respectively. Let d0 ≥ max{d1, d2} large enough to be determined below. Note
that the log-ratios at depth 0 are of the form ∞· e⃗i and −∞ · 1⃗, where 1⃗ denotes
the all ones vector. This comes from the fact that the probabilities at level 0 are
either 1 or 0 and so the ratios are of the form 1⃗+∞e⃗i or 0⃗. This implies that the
log-ratios at depth 1 are convex combinations of Fd(∞ · e⃗i) = d log(1 + −q

d+1 )e⃗i

and Fd(−∞ · 1⃗) = d log(1 + q
d+1−q )⃗1. So for d ≥ d0 and d0 large enough they are

certainly contained in Pq+1.
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We start with the proof of (4.1). We construct a decreasing sequence {cn}n∈N
and let T2n−1 = Pcn . For even n > 0 we set Tn = Fd(Pcn−1), which is convex by
Proposition 4.2.5. We set c1 = q + 1 and for n ≥ 1, given cn, we can choose, by
Proposition 4.2.6, cn+1 < cn so that F ◦2

d (Pcn) ⊆ Pcn+1
. Choose such a cn+1 as

small as possible. We claim that the sequence {cn}n∈N converges to 0. Suppose
not then it must have a limit c > 0. Choose c′ < c such that F ◦2

d (Pc) ⊆ Pc′ .
Then for n large enough we must have F ◦2

d (Pcn) ⊆ Pc/2+c′/2, contradicting the
choice of cn+1.

Since {cn}n∈N converges to 0, it follows that the sequence Tn converges to
{0}. With Lemma 4.2.3 this implies (4.1).

To prove the second part let α ∈ (0, 1). Consider the decreasing sequence
{cn}n∈N with cn = (q + 1)αn−1. Set T2n−1 = Pcn and T2n = Fd,α(Pcn−1

). We
use the following observation.

Lemma 4.2.7. For any α ∈ (0, 1], any x⃗ ∈ Rq−1 and any integer d there is
d′ ≥ d such that Fd,α(x⃗) = d

d′ · Fd′(x⃗). Moreover, d
d′ ≤ α.

Proof. When viewing α and d as variables, 1
dFd,α;i only depends on the ratio α

d+1 .
Therefore the first statement of the lemma holds with d′ defined by α

d+1 = 1
d′+1 .

Since d
d′ =

αd
d+1−α , the second statement also holds.

The lemma above implies that Fd,α(Pcn) =
d
d′ · Fd′(Pcn) and hence is convex

for each cn. It moreover implies that

F ◦2
d,α(Pcn) ⊂ αFd′(αFd′(Pcn))) ⊂ αPcn = Pcn+1

.

By basic properties of the logarithm, (4.2) now quickly follows. This finishes the
proof of Theorem 4.2.1.

The strengthening mentioned in Remark 3 can be derived from the fact that
the derivative of Fd,α at 0⃗ is equal to −αd

d+1−α Id. Note that αd
d+1−α < α for all

α ∈ (0, 1) and d. Therefore on a small enough open ball B around 0⃗ the operator
norm of the derivative of Fd,α can be bounded by α̂ for all d ≥ d0 (and by α for
fixed d ≥ d0). Then for any integer n ≥ 0, F ◦n

d,α(B) ⊂ α̂nB (αnB respectively).
For n0 large enough Pcn0

is contained in this ball B. For n > 2n0 we then set
Tn = α̂n−2n0B (αn−2n0B respectively). The statements in the remark now follow
quickly.

4.2.5 The d → ∞ limit map
As mentioned above, an important tool in our approach is to analyze the maps Fd
as d→ ∞. Since Fd(Rq−1) is bounded, it follows that as d→ ∞, Fd(x1, . . . , xq−1)
converges uniformly to the limit map

F∞(x1, . . . , xq−1), (4.11)
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with coordinate functions

F∞;i(x1, . . . , xq−1) := q
1− exi∑q−1
j=1 e

xi + 1
. (4.12)

We write G∞;i(x1, . . . , xq−1) = q 1−xi∑q−1
j=1 xj+1

for the ith coordinate function of the

fractional linear map G∞. Note that F∞ = G∞ ◦ exp.
By Lemma 4.2.4 for any π ∈ Sq, any x⃗ ∈ Rq−1 and any d we have π ·Fd(x⃗) =

Fd(π · x⃗). As the action of π on Rq−1 does not depend on d, we immediately see
π · F∞(x⃗) = F∞(π · x⃗) follows.

In the next two sections we will prove Propositions 4.2.5 and 4.2.6. The idea
is to first prove a variant of these propositions for the map F∞ and then use
that Fd → F∞ uniformly to finally prove the actual statements. We use the
description of Pc as intersection of half spaces π · H≥−c in Section 4.3 and the
description as the union of the π ·Dc in Section 4.4.

4.3 Convexity of the forward image of Pc
This section is dedicated to proving Proposition 4.2.5.

For µ ∈ R we define the half space H≥µ as in (4.8). The half space H≤µ is
defined similarly. We denote by Hµ the affine space which is the boundary of
H≤µ.

In what follows we will often use that the map G∞ is a fractional linear
transformation and thus preserves lines and hence maps convex sets to convex
sets, see e.g. [BV04, Section 2.3].

Lemma 4.3.1. For all c > 0, the set exp(H≥−c) := {exp(x⃗) | x⃗ ∈ H≥−c} is
strictly convex, consequently

G∞(exp(H≥−c))

is strictly convex.

Proof. Since G∞ is a fractional linear transformation, it preserves convex sets.
It therefore suffices to show that exp(H≥−c) is strictly convex.

To this end take any x⃗, y⃗ ∈ exp(H≥−c) and let λ ∈ (0, 1). We need to show
that λx⃗+ (1− λ)y⃗ ∈ exp(H≥−c). By strict concavity of the logarithm we have

q−1∑
i=1

log(λxi + (1− λ)yi) ≥
q−1∑
i=1

λ log(xi) + (1− λ) log(yi) > −c,

we conclude that exp(H≥−c) is strictly convex.
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In what follows we need the angle between the tangent space ofG∞(exp(H−c))
for c > 0 at G∞(x⃗) for any x⃗ ∈ exp(H−c) and the space H0. This angle is defined
as the angle of a normal vector of the tangent space pointing towards the interior
of G∞(exp(H≥−c)) and the vector −1⃗ (which is a normal vector of H0).

Lemma 4.3.2. For any c ∈ [0, q + 1] and any x⃗ ∈ exp(H−c) the angle between
the tangent space of G∞(exp(H−c)) at G∞(x⃗) and H0 is strictly less than π/2.

Proof. We will first show that the tangent space cannot be orthogonal to H0.
The map G∞ is invertible (when restricted to Rq−1

>0 ) with inverse G−1
∞ whose

coordinate functions are given by

G−1
∞,i(y1, . . . , yq−1) =

−qyi∑q−1
i=1 yi + q

+ 1.

Define g : Rq−1 \ H−q → R by g(y⃗) =
∏q−1
i=1 G

−1
∞,i(y⃗). Then the image

of exp(H−c) under G∞ is contained in the hypersurface {y⃗ ∈ Rq−1 | g(y⃗) =
exp(−c)}. Therefore a normal vector of the tangent space of G∞(exp(H−c)) at
y⃗ = G∞(x⃗) is given by the gradient of the function g. Thus to show that this
tangent space is not orthogonal to H0, we need to show that

q−1∑
i=1

∂
∂yi

g(y⃗) ̸= 0. (4.13)

We have
q−1∑
i=1

∂
∂yi

g(y⃗) =

q−1∑
i=1

q−1∑
j=1

∏q−1
k=1G

−1
∞,k(y⃗)

G−1
∞,j(y⃗)

∂
∂yi

G−1
∞,j(y⃗)

=

q−1∑
j=1

∏q−1
k=1G

−1
∞,k(y⃗)

G−1
∞,j(y⃗)

q−1∑
i=1

∂
∂yi

G−1
∞,j(y⃗)

=

q−1∑
j=1

∏q−1
k=1G

−1
∞,k(y⃗)

G−1
∞,j(y⃗)

· −q(
∑q−1
i=1 yi + q) + q(q − 1)yj

(
∑q−1
i=1 yi + q)2

=

q−1∑
j=1

∏q−1
k=1G

−1
∞,k(y⃗)

G−1
∞,j(y⃗)

·
−(q − 1)G−1

∞,j(y⃗)− 1∑q−1
i=1 yi + q

.

Since G−1
∞,k(y⃗) > 0 for each k, all terms in the final sum are nonzero and have

the same sign. This proves (4.13).
Since the angle between the tangent space of G∞(exp(H−c)) at G∞(x⃗) and

H0 depends continuously on x⃗ this angle should either be always less than π/2
or always be bigger. Since by the previous lemma the set G∞(exp(H≥−c)) is
convex, it is the former.
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x1

x2

H0

Domc

Fy(Pc)

Fy(H−c)

Figure 4.1: Depicting the situation in Lemma 4.3.3, for q = 3, c = 2 and y = 1
20 .

The domain Domc of the function hy,c which we define in the proof of Lemma 4.3.3
is made by choosing a′ = −3.

We next continue with the finite case. We will need the following definition.
The hypograph of a function f : D → R is the region {(x, y) | x ∈ D, y ≤ f(x)}.
Below we will consider a hypersurface contained in Rq−1 that we view as the
graph of a function with domain contained in H0. In this context the hypograph
of such a function is again contained in Rq−1, but the ‘positive y-axis’ points in
the direction of 1⃗ as seen from 0⃗ ∈ H0.

Lemma 4.3.3. There exists y1 > 0 such that for all y ∈ [0, y1) and c ∈ [0, q+1]
the set Fy(Pc) is contained in the hypograph of a concave function, hy,c, with a
convex compact domain in H0.

Proof. We first prove that for any x⃗ ∈ H0 and c ∈ [0, q + 1] there exists an open
neighborhood Wc,x⃗ = Yc,x⃗×Cc,x⃗×Xc,x⃗ of (0, c, x⃗) ∈ [0, 1]× [0, q+1]×Rq−1 such
that the following holds for any (y′, c′, x⃗′) ∈Wc,x⃗:

the angle between the tangent space of F1/y′(H−c′) at F1/y′(x⃗
′
c′) and H0

is strictly less than π/2, (4.14)

where we denote x⃗c := x⃗ − c
q−1 1⃗ ∈ H−c. To see this note that by the previous

lemma we have that the tangent space of F∞(H−c) at F∞(x⃗c) is not orthogonal
to H0 and in fact makes an angle of less than π/2 with H0. Say it has angle
π/2−γ. Since (y, c, x⃗) 7→ F1/y(x⃗c) is analytic, there exists an open neighborhood
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W0 of (0, c, x⃗) such that for any (y′, x⃗′, c′) ∈ W0 the angle between the tangent
space of F1/y′(H−c′) at F1/y′(x⃗′c′) and H0 is at most π/2 − γ/2. Clearly, W0

contains an open neighborhood of (0, c, x⃗) of the form Y ×C ×X proving (4.14).
Next fix c ∈ [0, q + 1] and x⃗ ∈ H0 and write Wc,x⃗ = Y × C × X. Together

with the implicit function theorem, (4.14) now implies that for each y′ ∈ Y and
any c′ ∈ C, that locally at x⃗c′ , F1/y′(H−c) is the graph of an analytic function
fy′,c′,x⃗ on an open domain contained in H0. Here we use that F1/y is invertible
with analytic inverse. By choosing Y and C small enough, we may by continuity
assume that we have a common open domain, Dc,x⃗, for these functions for all
c′ ∈ C and y′ ∈ Y , where we may moreover assume that these functions are all
defined on the closure of Dc,x⃗.

We next claim, provided the neighbourhood W = Yc,x⃗ × Cc,x⃗ is chosen small
enough, that for each y′ ∈ Y and c′ ∈ C,

the largest eigenvalue of the Hessian fy′,c′,x⃗ on Dc,x⃗ is strictly less than 0.
(4.15)

To see this we note that by the previous lemma we know that F∞(H≥−c) is
strictly convex. Therefore the Hessian1 of f0,c,x⃗ on Dc,x⃗ is negative definite,
say its largest eigenvalue is δ < 0. Similarly as before, there exists an open
neighborhood W ′ ⊆ W of (0, c) of the form W ′ = Y ′ × C ′ such that for each
y′ ∈ Y ′ and c′ ∈ C ′, the function fy′,c′,x⃗ has a negative definite Hessian with
largest eigenvalue at most δ/2 < 0 for each z⃗ ∈ Dc,x⃗ (by compactness of the
closure of Dc,x⃗). We now want to patch all these function to form a global
function on a compact and convex domain. We first collect some properties of
F1/y that will allow us to define the domain.

First of all note that by compactness there exists a > 0 such that for each
c ∈ [0, q + 1], exp(Pc) ⊂ H≤a (where the inclusion is strict). We now fix such
a value of a. Since G∞ is Sq-equivariant, we know that G∞(H≤a) = H≥a′ for
some a′ ∈ R. We now choose y∗ > 0 small enough such that the following two
inclusions hold for all y ∈ [0, y∗] and c ∈ [0, q + 1]

F1/y(Pc) ⊂ H≥a′ , (4.16)
projH0

(F∞(H−c) ∩H≥a′) ⊂ projH0
(F1/y(H−c)), (4.17)

where projH0
denotes the orthogonal projection onto the space H0. The first

inclusion holds since F1/y converges uniformly to F∞ as y → 0. For the second
inclusion note that

F∞(H−c) ∩H≥a′ = G∞(exp(H−c) ∩H≤a) ⊂ F∞(H−c).

1Recall that the Hessian of a function f : U → R for an open set U ⊆ Rn at a point u ∈ U is
defined as the n×n matrix Hf (u) with (Hf (u))i,j = ∂2f

∂xi∂xj
(u). When these partial derivatives

are continuous and the domain U is convex, f is concave if and only if its Hessian is negative
definite at each point of the domain U [BV04].



64 Uniqueness of the Gibbs measure for large degree

Because exp(H−c)∩H≤a is compact, the desired conclusion follows since F1/y →
F∞ uniformly as y → 0.

Let us now consider for c ∈ [0, q + 1] the projection

Domc := projH0
(F∞(H−c) ∩H≥a′),

see Figure 4.1. Since F∞(H−c) ∩H≥a′ is convex by Lemma 4.3.1 and compact,
it follows that Domc is compact and convex for each c ∈ [0, q + 1]. Moreover, we
claim that ⋃

c∈[0,q+1]

({c} × Domc) ⊆ [0, q + 1]×H0 is compact. (4.18)

Indeed, it is the continuous image of the compact set exp(H≥−q−1)∩H≤a under
the map

exp(H≥−q−1) ∩H≤a → [0, q + 1]×H0

defined by

x⃗ 7→
(
q−1∑
i=1

xi,projH0
(G∞(x⃗))

)
.

By (4.17) Domc is contained in projH0
(F1/y(H−c)) for all y ∈ [0, y∗] and

c ∈ [0, q + 1]. It follows that the sets Yc,x⃗ × Cc,x⃗ ×Dc,x⃗, where x⃗ ranges over H0

and c over [0, q + 1], form an open cover of {0} × ∪c∈[0,q+1] ({c} × Domc). Since
the latter set is compact by (4.18), we can take a finite sub cover. Therefore
there exists y1 > 0 such that for each y ∈ [0, y1) and each c ∈ [0, q+1] we obtain
a unique global function hy,c on the union of these finitely many domains, which
by (4.15) has a strictly negative definite Hessian. By construction the union of
these domains contains Domc for each c ∈ [0, q + 1]. Consequently, restricted to
Domc, hy,c is a concave function for each y ∈ [0, y1) and c ∈ [0, q+1]. By (4.16),
it follows that F1/y(Pc) is contained in the hypograph of hy,c, as desired.

We can now finally prove Proposition 4.2.5, which we restate here for conve-
nience.

Proposition 4.2.5. Let q ≥ 3 be an integer. Then there exists d1 > 0 such that
for all d ≥ d1 and c ∈ [0, q + 1], Fd(Pc) is convex.

Proof. By the previous lemma we conclude that for d larger than 1/y1, Fd(Pc) is
contained in the hypograph of the function h1/d,c, denoted by hypo(hc,1/d) and
moreover that this hypograph is convex, as the function h1/d,c is concave on a
convex domain.
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Since Pc is invariant under the Sq-action, it follows that

exp(Pc) =
⋂
π∈Sq

π · (exp(H≥−c) ∩H≤a)

and therefore by Lemma 4.2.4,

Fd(Pc) =
⋂
π∈Sq

π · (Fd(Pc)) ⊆
⋂
π∈Sq

π · hypo(h1/d,c). (4.19)

We now claim that the final inclusion in (4.19) is in fact an equality. To see
the other inclusion, take some z⃗ ∈ ∩π∈Sqπ · hypo(h1/d,c). By symmetry, we
may assume that z⃗ is contained in Rq−1

≥0 . Then z⃗ is equal to Fd(x⃗) for some
x⃗ ∈ H≥−c ∩ Rq−1

≤0 , implying that z⃗ is indeed contained in Fd(Pc).
This then implies that Fd(Pc) is indeed convex being equal to the intersection

of the convex sets π · hypo(h1/d,c).

4.4 Forward invariance of Pc in two iterations

This section is dedicated to proving Proposition 4.2.6. We start with a version
of the proposition for d = ∞ and after that consider finite d.

4.4.1 Two iterations of F∞

Let Φ : Rq−1 → Rq−1 be defined by

Φ(x1, . . . , xq−1) = F ◦2
∞ (x1, . . . , xq−1)

and its ‘restriction’ to the half line R≤/0 · 1⃗, ϕ : R≥0 → R≥0, by

ϕ(t) = −⟨Φ(−t/(q − 1) · 1⃗), 1⃗⟩,

where we use ⟨·, ·⟩ to denote the standard inner product on Rq−1.
This subsection is devoted to proving the following result.

Proposition 4.4.1. For any c ≥ 0 we have

Φ(Pc) ⊆ Pϕ(c) ⊊ Pc.

By the definition of Pc in terms of Dc, (4.10), and the Sq-equivariance of the
map F∞ and hence of the map Φ, it suffices to prove this for Pc replaced by Dc.
This can be derived from the following two statements:
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(i) For any c ≥ 0 the minimum of ⟨Φ(x⃗), 1⃗⟩ on −cSimp is attained at −c/(q−
1) · 1⃗.

(ii) For any c > 0 we have ϕ(c) < c.

Indeed, these statements imply that for any c > 0 we have that Φ(−cSimp) ⊆
Dϕ(c) ⊊ Dc. Clearly this is sufficient, since Dc = ∪0≤c′≤c− c′ Simp and therefore

Φ(Dc) = ∪0≤c′≤cΦ(−c′ Simp) ⊆ ∪0≤c′≤cDϕ(c′) ⊆ Dϕ(c) ⊊ Dc.

We next prove both statements, starting with the first one.

Statement (i)

Proposition 4.4.2. Let c ≥ 0. Then for any x⃗ ∈ −cSimp we have that

⟨Φ(x⃗), 1⃗⟩ ≥
〈
Φ

( −c
q − 1

1⃗

)
, 1⃗

〉
.

Moreover, equality happens only at x⃗ = −c
q−1 1⃗.

Before giving a proof, let us fix some further notation. By definition we have

⟨Φ(x⃗), 1⃗⟩ =
q−1∑
i=1

q
1− eF∞;i(x⃗)∑q−1
j=1 e

F∞;j(x⃗) + 1
=

q2∑q−1
j=1 e

F∞;j(x⃗) + 1
− q,

where we recall that F∞;j denotes the jth coordinate function of F∞. Thus the
ith coordinate of the gradient of ⟨Φ(x⃗), 1⃗⟩ is given by

ψi(x⃗) :=
−q2(∑q−1

j=1 e
F∞;j(x⃗) + 1

)2
q−1∑
j=1

eF∞;j(x⃗) · ∂F∞;j

∂xi
(x⃗)



=
q3exi

(
eF∞;i(x⃗)(1 +

∑q−1
j=1 e

xj ) +
∑q−1
j=1 e

F∞;j(x⃗)(1− exj )
)

(∑q−1
j=1 e

F∞;j(x⃗) + 1
)2 (∑q−1

j=1 e
xj + 1

)2 .

Let us define the following functions vi : Rq−1 → R for i = 1, . . . , q − 1 as

vi(x⃗) := xi

eGi(1 +

q−1∑
j=1

xj) +

q−1∑
j=1

eGj (1− xj)

 ,

where we write
Gi := G∞;i(x⃗) =

q(1− xi)

1 + x1 + · · ·+ xq−1
.
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Then we see that

ψi(x⃗) =
q3(∑q−1

j=1 e
F∞;j(x⃗) + 1

)2 (∑q−1
j=1 e

xj + 1
)2 · vi(ex1 , . . . , exq−1),

and ψ1(x⃗) = · · · = ψq−1(x⃗) if and only if v1(exp(x⃗)) = · · · = vq−1(exp(x⃗)).

Proof of Proposition 4.4.2. First of all observe that the function ⟨Φ(x⃗), 1⃗⟩ is in-
variant under the permutation of the coordinates of x⃗. Thus we can assume
that

x⃗ ∈ U := {y⃗ ∈ Rq−1 | 0 ≥ y1 · · · ≥ yq−1}
and not all the coordinates of x⃗ are equal.

Now it is enough to show that there exists a vector 0⃗ ̸= w⃗ ∈ Rq−1 such that in
the direction of w⃗ the function is (strictly) decreasing, ⟨w⃗, 1⃗⟩ = 0 and x⃗+t0w⃗ ∈ U
for some small t0 > 0. Let

ℓ = min{1 ≤ i ≤ q − 2 | xi > xi+1},

which is finite, since not all of the coordinates of x⃗ are equal.
We claim that w⃗ = − e⃗1+···+e⃗ℓ

ℓ + e⃗ℓ+1 satisfies the desired conditions. Clearly,
w⃗ is perpendicular to 1⃗ and x⃗+ tw⃗ ∈ U for t small enough. Now let us calculate
the derivative of

g(t) := ⟨Φ(x⃗+ tw⃗), 1⃗⟩.
Using the notation defined above, we obtain

g′(0) =− ψ1(x⃗) + · · ·+ ψℓ(x⃗)

ℓ
+ ψℓ+1(x⃗)

= −ψℓ(x⃗) + ψℓ+1(x⃗)

= −C · (vℓ(exp(x⃗))− vℓ+1(exp(x⃗)))

= −C · (vℓ(y⃗)− vℓ+1(y⃗)),

where C > 0 and y⃗ = exp(x⃗). In particular,

1 ≥ y1 = y2 = . . . = yℓ > yℓ+1 ≥ . . . ≥ yq−1 ≥ 0.

So to conclude that g′(0) < 0 and finish the proof, we need to show that

vℓ(y⃗)− vℓ+1(y⃗) > 0. (4.20)

Lemma 4.4.3 shows that we may assume y⃗ satisfies 1 ≥ y1 = y2 = . . . = yℓ >
yℓ+1 ≥ yℓ+2 = . . . = yq−1 ≥ 0. Lemma 4.4.4 below shows that for those vectors
y⃗ (4.20) is indeed true. So by combining Lemma 4.4.3 and Lemma 4.4.4 below
we obtain (4.20) and finish the proof.
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Lemma 4.4.3. If 1 ≥ y1 = y2 . . . = yℓ > yℓ+1 ≥ . . . ≥ yq−1 ≥ 0 for some
1 ≤ ℓ ≤ q − 2, then

vℓ(y⃗)− vℓ+1(y⃗) ≥ vℓ(x⃗)− vℓ+1(x⃗),

where x⃗ ∈ Rq−1 is defined as

xj =

{
yj if j ≤ ℓ+ 1

yℓ+2+···+yq−1

q−ℓ−2 if j > ℓ+ 1

for 1 ≤ j ≤ q − 1.

Proof. By continuity, it suffices to show

vℓ(y⃗)− vℓ+1(y⃗) ≥ vℓ(x⃗)− vℓ+1(x⃗), (4.21)

where x⃗ ∈ Rq−1 is defined as

xj =

{
yj if j ̸= i, i+ 1

yi+yi+1

2 if j = i or j = i+ 1

for 1 ≤ j ≤ q − 1 and any i ≥ ℓ+ 2.
For t ∈ R we define y⃗(t) by

yj(t) :=

 yj if j ̸= i, i+ 1
yi − t if j = i
yi+1 + t if j = i+ 1

for j = 1, . . . , q − 1. Note that y⃗(0) = y⃗ and y⃗(yi/2 − yi+1/2) = x⃗. We further
define

ξ(t) :=vℓ(y⃗(t))− vℓ+1(y⃗(t)).

After a straightforward calculation we can express ξ(t) as

ξ(t) = yℓe
Gℓ(1 +

q−1∑
j≥1

yj)− yℓ+1e
Gℓ+1(1 +

q−1∑
j≥1

yj)

+ yℓ
∑

j ̸=i,i+1

eGj (1− yj)− yℓ+1

∑
j ̸=i,i+1

eGj (1− yj)

+ (yℓ − yℓ+1)
(
eGi(t)(1− yi + t) + eGi+1(t)(1− yi+1 − t)

)
,

where we write Gℓ := G∞;ℓ(y⃗(t)) = q(1−yℓ)
1+y1+···+yq−1

, for ℓ ̸∈ {i, i + 1} and we
write Gℓ(t) = G∞;ℓ(y⃗(t)) when ℓ ∈ {i, i + 1}. This notation indicates that Gℓ
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is a constant function of t when ℓ ̸∈ {i, i + 1}. Now observe that the function
appearing in the last row,

g(t) := eGi(t)(1− yi + t) + eGi+1(t)(1− yi+1 − t),

is convex on t ∈ [0, yi − yi+1], since its second derivative is given by

g′′(t) = eGi(t)
(1− yi + t)q2

(1 + y1 + · · ·+ yq−1)2
+ 2eGi(t)

q

1 + y1 + · · ·+ yq−1

+ eGi+1(t)
(1− yi+1 − t)q2

(1 + y1 + · · ·+ yq−1)2
+ 2eGi+1(t)

q

1 + y1 + · · ·+ yq−1
> 0.

As g(t) = g(yi − yi+1 − t), we obtain that g(t) has a unique minimizer in [0, yi −
yi+1] exactly at t such that = yi − yi+1 − t. In other words,

t =
yi − xi+1

2

is the unique minimizer of g(t) on this interval and thus for ξ(t). This implies
(4.21) and hence the lemma.

Lemma 4.4.4. Let 1 ≥ x1 > x2 ≥ x3 ≥ 0 and q − 2 ≥ l ≥ 1. Then

vl(x1, · · · , x1︸ ︷︷ ︸
l

, x2, x3, · · · , x3︸ ︷︷ ︸
q−l−2

) > vl+1(x1, · · · , x1︸ ︷︷ ︸
l

, x2, x3, · · · , x3︸ ︷︷ ︸
q−l−2

).

Proof. The algebraic manipulations that are done in this proof, while elementary,
involve quite large expressions. Therefore we have supplied additional Mathemat-
ica code in Appendix 4.6 that can be used to verify the computations. We define

ξ(y1, y2, y3; t) := (y1y3(t− l − 1) + (l + 1)y1 + (l + 1)y1y2 − ly2) e
A1(y1,y2,y3;t)+

(−y2y3(t− l − 1)− (l + 1)y1y2 + y1 − 2y2) e
A2(y1,y2,y3;t)+

(y1 − y2) (1− y3) (t− l − 1)eA3(y1,y2,y3;t),

where
Ai(y1, y2, y3; t) :=

(t+ 1)(1− yi)

1 + ly1 + y2 + (t− (l + 1))y3

for i = 1, 2, 3 (see Listing 4.1). One can check that ξ(x1, x2, x3; q − 1) is equal to

vl(x1, · · · , x1, x2, x3, · · · , x3)− vl+1(x1, · · · , x1, x2, x3, · · · , x3).
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We will treat t as a variable and vary it while keeping the values that appear in
the exponents constant. To that effect let Ci = Ai(x1, x2, x3; q − 1) and define

y1(t) =
C1(l − t− 1) + C3(t− l − 1) + C2 + t+ 1

C3(t− l − 1) + C1l + C2 + t+ 1
,

y2(t) =
C3(t− l − 1) + C1l − C2t+ t+ 1

C3(t− l − 1) + C1l + C2 + t+ 1
,

y3(t) =
C1l − C3(l + 2) + C2 + t+ 1

C3(t− l − 1) + C1l + C2 + t+ 1
.

These values are chosen such that for t0 = q − 1 we have yi(t0) = xi and
Ai(y1(t), y2(t), y3(t); t) = Ci independently of t for i = 1, 2, 3 (see Listings 4.2 and
4.3). Therefore ξ(y1(t), y2(t), y3(t); t) is a rational function of t and we want to
show that it is positive at t = q − 1. We can explicitly calculate that

ξ(y1(t), y2(t), y3(t); t) =

(
1 + t

C3(t− l − 1) + C1l + C2 + t+ 1

)2

· r(t),

where r is a linear function (see Listing 4.4). It is thus enough to show that
r(q − 1) > 0. We will do this by showing that r(l + 1) > 0 and that the slope of
r is positive. We find that r(l + 1) is equal to

r(l + 1) = u1 · eC1 + u2 · eC2 ,

where

u1 = 2 + l + C2 − 2C1 + lC1C2 − lC2
1

u2 = −
(
2 + l + lC1 − (l + 1)C2 + C1C2 − C2

2

)
.

This is part of the output of Listing 4.5. Note that by construction, since 1 ≥
x1 > x2 ≥ x3, we have 0 ≤ C1 < C2 ≤ C3. Therefore the sum of the coefficients
of eC1 and eC2 satisfies

u1 + u2 = (l + 2)(C2 − C1) + (l − 1)C1C2 − lC2
1 + C2

2

= (l + 2 + C2 + lC1)(C2 − C1) > 0.

Now we will separate two cases depending on the sign of the coefficient of u2. If
u2 is non-negative, then

r(l + 1) = u1e
C1 + u2e

C2 ≥ u1e
C1 + u2e

C1 = (u1 + u2)e
C1 > 0.

If u2 is negative, then

2 + (1 + C1 − C2)l > C2 − C1C2 + C2
2 = (1 + C2 − C1)C2.
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In particular 2 + (1 + C1 − C2)l > 0. Thus

r(l + 1) = eC2(u1e
C1−C2 − u2)

≥ (1 + C1 − C2)u1 − u2 = C1(C2 − C1)(2 + (1 + C1 − C2)l) > 0.

The slope of r is given by

s := (1 + C3 − C1) e
C1 − (1 + C3 − C2)e

C2 + (C2 − C1)C3e
C3 .

This is part of the output of Listing 4.5. To show that this is positive we show
that s · e−C2 is positive. Because both 1 + C3 − C1 and C2 − C1 are positive we
find

s · e−C2 = (1 + C3 − C1) e
C1−C2 − (1 + C3 − C2) + (C2 − C1)C3e

C3−C2 ≥
(1 + C3 − C1)(1 + C1 − C2)− (1 + C3 − C2) + (C2 − C1)C3(1 + C3 − C2) =

(C2 − C1)(C1 + C3(C3 − C2)),

which is positive because 0 ≤ C1 < C2 ≤ C3. This concludes the proof.

We now continue with the second statement.

Statement (ii)

Proposition 4.4.5. For any x > 0 we have that〈
Φ

( −x
q − 1

1⃗

)
, 1⃗

〉
> −x.

Proof. The statement is equivalent to

ϕ(x) < x.

for x > 0. By definition we know that

ϕ(x) = (q − 1)
q(ef(x) − 1)

(q − 1)ef(x) + 1
,

where

f(x) = −q e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
.

First note that ϕ(R>0) ⊆ (0, q). This means that if x ≥ q, the statement
holds. Thus we can assume that 0 < x < q. Now, the inequality ϕ(x) < x can be
written as

ef(x) <
x+ q(q − 1)

(q − 1)(q − x)
,
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because q − x > 0. By taking logarithm of both sides, we see that ϕ(x) < x is
equivalent to

−q e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
< log

(
x+ q(q − 1)

(q − 1)(q − x)

)
.

Since x+q(q−1)
(q−1)(q−x) >

0+q(q−1)
(q−1)q ≥ 1, we can use the inequality log(b) > 2 b−1

b+1 for

b = x+q(q−1)
(q−1)(q−x) . Therefore, to show ϕ(x) < x, it is sufficient to prove that

−q e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
≤ −2qx

(q − 2)x− 2q(q − 1)
,

or, equivalently
(2q − 2− x) ≤ (x+ 2q − 2)e−x/(q−1).

This follows from the fact that g(t) = (t + 2q − 2)e−t/(q−1) − (2q − 2 − t) is a
convex function on R≥0, its derivative satisfies g′(0) = 0 and g(0) = 0. This
concludes the proof.

4.4.2 Two iterations of Fd

As before, we view y = 1/d as a continuous variable. Let us define Φ : Rq−1 ×
[0, 12 ] → Rq−1 by

Φ(x1, . . . , xq−1, y) = F ◦2
1/y(x1, . . . , xq−1).

Note that this map is analytic in all its variables. For simplicity, if y∗ is fixed,
then we use the notation Φy∗(x1, . . . , xq−1) for Φ(x1, . . . , xq−1, y)|y=y∗ , and if
y = 0, then Φ(x1, . . . , xq−1) := Φ0(x1, . . . , xq−1).

Lemma 4.4.6. There exist positive constants A > 0 and c0 > 0, such that for
any 0 < c ≤ c0 we have

c− ϕ(c) ≥ Ac3.

Proof. By definition we know that

ϕ(x) = (g ◦ f)(x) = (q − 1)
q(ef(x) − 1)

(q − 1)ef(x) + 1
,

where

f(x) = −q e−x/(q−1) − 1

(q − 1)e−x/(q−1) + 1
,

g(x) = (q − 1)q
ex − 1

(q − 1)ex + 1
.
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Let us calculate the Taylor expansion of f(x) and g(x) around 0:

f(x) =
1

q − 1
x+

q − 2

2(q − 1)2q
x2 +

(q2 − 6q + 6)

6(q − 1)3q2
x3 +O(x4),

g(x) = (q − 1)x− (q − 1)(q − 2)

2q
x2 +

(q − 1)(q2 − 6q + 6)

6q2
x3 +O(x4).

Thus their composition has the following Taylor expansion around 0:

(g ◦ f)(x) = x− 1

6(q − 1)2
x3 +O(x4).

This implies that there exists c0 > 0 and A > 0, such that for any c0 ≥ x ≥ 0 we
have

x− ϕ(x) ≥ Ax3,

as desired.

The next proposition implies forward invariance of Pc under F ◦2
d for c small

enough and d large enough.

Proposition 4.4.7. There exists c0 > 0 and d0 > 0. Such that for all c ∈ (0, c0]
and integers d ≥ d0 there exists 0 < c′ < c such that

F ◦2
d (Dc) ⊂ Dc′ .

Proof. By the previous lemma we know that there is a c′0 > 0 and an A > 0, such
that for any c ≤ c′0 we have

∥Φ(−c/(q − 1) · 1⃗) + c/(q − 1) · 1⃗∥ ≥ Ac3.

Here we denote by ∥x⃗∥ =
(∑q−1

i=1 x
2
i

)1/2
, the standard 2-norm on Rq−1. By

Proposition 4.4.2, we have that for any x⃗ ∈ Dc, Φ(x⃗) is contained in Dϕ(c).
Therefore, denoting by Br(y) the ball of radius r around y,

BAc3/2(Φ(x⃗)) ∩ (−∞, 0]q−1 ⊆ Dϕ(c)+Ac3/2 ⊊ Dc. (4.22)

Now let us consider the Taylor approximation of Φy(x1, . . . , xq−1) at 0⃗ =

(0, . . . , 0). Since for any y∗ ∈ [0, 1] the map F1/y∗(x1, . . . , xq−1) has 0⃗ as a fixed
point of derivative −Id, there exists constants c1, C1 ≥ 0 such that for any y ∈
[0, 1] and x⃗ = (x1, . . . , xq−1) ∈ [−c1, 0]q−1 we have

∥Φy(x⃗)− Id(x⃗)− T3,y(x⃗)∥ ≤ C1 · ∥x⃗∥4,
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where Id(x⃗) + T3,y(x⃗) is the 3rd order Taylor approximation of Φy(x⃗) at 0⃗. Note
that the second order term is equal to 0 because the derivative of F1/y∗(x⃗) at
x⃗ = 0⃗ equals −Id. In particular, T3,y(x⃗) = Ty((x⃗), (x⃗), (x⃗)) for some multi-linear
map Ty ∈ Mult((Rq−1)3,Rq−1), and as y → 0 the map T3,y converges uniformly
on [−q, 0]q−1 to T3,0. Specifically, for any x⃗ = (x1, . . . , xq−1) ∈ [−c1, 0]q−1

∥T3,y(x⃗)− T3,0(x⃗)∥ ≤ A3(y)∥x⃗∥3

for some function A3 that satisfies limy→0A3(y) = 0.
Putting this together and making use of the triangle inequality, we obtain

that for any 0 < c ≤ min{c1, c′0} and any x⃗ = (x1, . . . , xq−1) ∈ Dc

∥Φy(x⃗)− Φ(x⃗)∥ ≤ ∥Φy(x⃗)− Id(x⃗)− T3,y(x⃗)∥
+ ∥Id(x⃗) + T3,y(x⃗)− Id(x⃗)− T3,0(x⃗)∥
+ ∥Id(x⃗) + T3,0(x⃗)− Φ(x⃗)∥
≤ 2C1∥x∥4 +A3(y))∥x∥3 ≤ K(2C1c+A3(y))c

3,

for some constant K > 0 (using that the 2-norm and the 1-norm are equivalent on
Rq−1.) Now let us fix 0 < c0 ≤ min{c1, c′0} small enough such thatK2C1c0 < A/4
and fix a y0 > 0 such that for any any 0 ≤ y ≤ y0 we have KA3(y) ≤ A/4.

Then by (4.22), for any 0 ≤ y ≤ y0, 0 ≤ c ≤ c0 and x⃗ = (x1, . . . , xq−1) ∈ Dc,

Φy(Dc) ⊆ BAc3/2(Φ(Dc)) ∩ (−∞, 0]q−1 ⊆ Dϕ(c)+Ac3/2 ⊊ Dc.

So we can take c′ = ϕ(c) +Ac3/2.

4.4.3 Proof of Proposition 4.2.6
We are now ready to prove Proposition 4.2.6, which we restate here for conve-
nience.

Proposition 4.2.6. Let q ≥ 3 be an integer. There exists d2 > 0 such that for
all d ≥ d2 the following holds: for any c ∈ (0, q + 1] there exists 0 < c′ < c such
that

F ◦2
d (Pc) ⊆ Pc′ .

Proof. We know by Proposition 4.4.7 there is a d0 > 0 and a c0 > 0 such that
for d ≥ d0 and c ∈ (0, c0) there exist c′ < c such that F ◦2

d (Dc) ⊂ Dc′ . As
Pc = ∪π∈Sq

π ·Dc, we see by Lemma 4.2.4 that for d ≥ d0 and c ∈ (0, c0) we have
F ◦2
d (Pc) ⊂ Pc′ .

Next we consider c ∈ [c0, q+1]. By Proposition 4.4.1 we know F ◦2
∞ (Pc) ⊂ Pϕ(c)

and ϕ(c) < c for any c > 0. As Fd converges to F∞ uniformly, we see for
each c ∈ [c0, q + 1] there is a dc > 0 large enough such that for d ≥ dc and
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c′ = c/2 + ϕ(c)/2 we have F ◦2
d (Pĉ) ⊊ Pc′ for all ĉ sufficiently close to c. By

compactness of [c0, q + 1], we obtain that there is a dmax > 0 such that for any
d > dmax and any c ∈ [c0, q+ 1] there exists c′ < c such that F ◦2

d (Pc) ⊊ Pc′ . The
proposition now follows by taking d2 = max(d0, dmax).

4.5 Concluding remarks

Although we have only proved uniqueness of the Gibbs measure on the infinite
regular tree for a sufficiently large degree d, our method could conceivably be
extended to smaller values of d. With the aid of a computer we managed to
check that for q = 3 and q = 4 and all d ≥ 2 the map F ◦2

d maps Pc into Pϕd(−c),
where ϕd is the restriction of −F ◦2

d to the line R · 1⃗. It seems reasonable to expect
that for other small values of q a similar statement could be proved. A general
approach is elusive so far. It is moreover also not clear that Fd(Pc) is convex, not
even for q = 3. In fact, for q = 3 and c large enough F3(Pc) is not convex. But
for reasonable values of c it does appear to be convex. For larger values of q this
is even less clear.

Knowing that there is a unique Gibbs measure on the infinite regular tree is
by itself not sufficient to design efficient algorithms to approximately compute the
partition function/sample from the associated distribution on all bounded degree
graphs. One needs a stronger notion of decay of correlations, often called strong
spatial mixing [Wei06, GK12, GKM15, LY13] or absence of complex zeros for the
partition function near the real interval [w, 1] [Bar16, PR17, BDPR21, LSS22]. It
is not clear whether our current approach is capable of proving such statements
(these certainly do not follow automatically), but we hope that it may serve as
a building block in determining the threshold(s) for strong spatial mixing and
absence of complex zeros. While writing this dissertation, for the case w = 0
corresponding to proper colorings, strong spatial mixing on the infinite tree was
proved for q ≥ ∆ + 3 in [CLMM23], very close to the uniqueness threshold
q ≥ ∆ + 1. in the same paper uniqueness of the Gibbs measure on T∆ was
confirmed for all q,∆ and w ≥ max(1 − q−1

∆+4 , 0) ≥ max(1 − q
∆ , 0) = wc in

[CLMM23], providing further partial confirmation of the folklore conjecture.

4.6 Supplementary Mathematica code to Lemma
4.4.4

The functions Ai for i = 1, 2, 3 and ξ are defined as follows.

Listing 4.1: The functions Ai and ξ



A1[y1_, y2_, y3_, m_] := (m + 1) (1 − y1)/(1 + l y1 + y2 + (m − (l + 1)) y3)
A2[y1_, y2_, y3_, m_] := (m + 1) (1 − y2)/(1 + l y1 + y2 + (m − (l + 1)) y3)
A3[y1_, y2_, y3_, m_] := (m + 1) (1 − y3)/(1 + l y1 + y2 + (m − (l + 1)) y3)

Xi[y1_, y2_, y3_, m_] := (y1 y3 (m − l − 1) + (l + 1) y1 + (l + 1) y1 y2 − l y2) Exp[A1[y1,
y2, y3, m]]

+ (−y2 y3 (m − l − 1) − (l + 1) y1 y2 + y1 − 2 y2) Exp[A2[y1, y2, y3, m]]
+ (y1 − y2) (1 − y3) (m − l − 1) Exp[A3[y1, y2, y3, m]]

The functions yi(t) are defined as follows.

Listing 4.2: The functions yi
{y1[t_], y2[t_], y3[t_]} = {y1, y2, y3} /. Solve[A1[y1, y2, y3, t ] == C1 && A2[y1, y2, y3,

t] == C2 && A3[y1, y2, y3, t] == C3, {y1, y2, y3}][[1]]

Listing 4.3: Verification that yi(q − 1) = xi. This expression yields {x1, x2, x3}
Simplify[{y1[q − 1], y2[q − 1], y3[q − 1]} /. {Rule[C1, A1[x1, x2, x3, q − 1]], Rule[C2, A2

[x1, x2, x3, q − 1]], Rule[C3, A3[x1, x2, x3, q − 1]]}]

The function r(t) can subsequently be found with the following code.

Listing 4.4: The function r
r [t_] = Simplify[Xi[y1[t ], y2[t ], y3[t ], t ] ((1 + t)/(1 + C2 − C3 + C1 l − C3 l + t + C3

t))^(−2)]

It can be observed that r is indeed linear in t. To calculate r(l + 1) and the
slope of r we use the following piece of code.

Listing 4.5: The values of r(l + 1) and the slope of r
Simplify[{r [ l + 1], Coefficient [ r [ t ], t ]}]
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CHAPTER

FIVE

ZEROS, CHAOTIC RATIOS AND THE
COMPUTATIONAL COMPLEXITY OF

APPROXIMATING THE INDEPENDENCE
POLYNOMIAL FOR BOUNDED DEGREE GRAPHS

5.1 Introduction

The independence polynomial of a graph G = (V,E) is defined by

ZG(λ) =
∑
I⊆V

λ|I|,

where the sum is taken over all independent subsets I of the vertex set V . Recall
that I is said to be independent if no two vertices in I are connected by an edge.
Note that ZG(1) equals the number of independent subsets of V .

In statistical physics the independence polynomial is known as the partition
function of the hard-core model. Of particular interest from a physics perspec-
tive is the location of the zeros of the partition function for certain classes of
graphs. Away from these zeros the free energy is analytic, i.e. there are no phase
transitions in the Lee-Yang sense cf. [YL52].

It turns out that exact computation of the independence polynomial for large
graphs is not feasible for most values of λ; it is a #P-Hard problem1, cf. [Rot96,

1The complexity class #P may be seen as the counting version of the complexity class NP.
For example, the problem of deciding whether a graph on n vertices contains an independent
set of size k is a problem in NP, while the problem of determining the number of independent
sets of size k is in #P. See [Val79, AB09] for further background.
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Figure 5.1: The cardioid Λ3.

Gre00, Vad01]. A question that has received significant interest is for which λ ∈ C
there exist polynomial time algorithms that approximate ZG(λ), up to small
multiplicative constants. See e.g. [Wei06, SS14, Bar16, PR17, BGGŠ20, ALOG20]
and the references therein.

Surprisingly, much like absence of zeros implies absence of phase transitions
(in the Lee-Yang sense), absence of zeros implies the existence of efficient algo-
rithms for this computational problem. More formally, on any connected open
set containing the origin on which the independence polynomial does not vanish
for all graphs of a given maximum degree ∆ there exists an efficient algorithm for
approximating the independence polynomial [Bar16, PR17]. Let us denote the
maximal connected ‘zero-free’ set by U∆. For real values of λ in the complement
of the closure of U∆, approximating the partition function is computationally
hard [SS05, SS14, PR19, BGGŠ20]. In other words, the absence/presence of com-
plex zeros near the real axis marks a transition in the computational complexity
of approximating the independence polynomial of graphs of bounded degree ∆
for real values of λ. The transition point for positive λ coincides with the phase
transition for the hard-core model on the Cayley tree of degree ∆.

A natural question is whether a similar phenomenon manifests itself for non-
real λ. Bezaková, Galanis, Goldberg and Štefankovič [BGGŠ20] made an impor-
tant contribution towards solving this question, by showing that for any integer
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∆ ≥ 3 and non-real λ outside a certain cardioid2, Λ∆, approximation of the inde-
pendence polynomial for graphs of bounded degree at most ∆ is computationally
hard. (In fact #P-hard.) See Figure 5.1 for a picture of Λ3 and Definition 5.2.5
for the definition of Λ∆. Earlier it was shown by Peters and Regts [PR19] that
zeros of the independence polynomial of graphs of maximum degree at most ∆
accumulate on the entire boundary of Λ∆. In particular the maximal connected
‘zero-free’ set containing 0, denoted by U∆, is contained in the cardioid; their
intersections with the real axis in fact coincide [SS05, PR19]. See [BC18] and
[BCSV23] for more results on U∆. Buys [Buy21] however showed that Λ∆ does
contain zeros of the independence polynomial of graphs of bounded degree ∆.
This in particular indicates that the result of [BGGŠ20] does not fully answer
the question how zeros relate to computational hardness for non-real λ.

The goal of this chapter is to solve this question by directly relating, for any
fixed integer ∆ ≥ 3, the zeros for the family of graphs of maximum degree at
most ∆ to the parameters where approximating evaluations of the independence
polynomial is computationally hard. Our result is obtained by studying a natural
family of rational maps associated to this family of graphs, using techniques and
ideas from complex dynamics. We show that ‘chaotic behaviour’ of this family is
equivalent to the presence of zeros, and implies computational hardness.

5.1.1 Occupation ratios
Given ∆ ∈ Z≥2, we define G∆ as the collection of finite simple rooted graphs
(G, v) such that the maximum degree of G is at most ∆. For i ∈ {1, . . . ,∆} we
define Gi∆ = {(G, v) ∈ G∆ : deg(v) ≤ i}. The occupation ratio, or ratio for short,
of a rooted graph (G, v) is defined by the rational function

RG,v(λ) :=
Z in
G (λ)

Zout
G (λ)

,

where “in” means that in the definition of ZG(λ) the sum is taken only over
independent sets I that contain the marked point v, while “out” means that the
independent sets do not contain v. The ratio is a very useful tool in studying
the zeros of the independence polynomial, see Lemma 5.2.1 below, and has been
key in several of the aforementioned works. The ratio is also relevant from a
statistical physics perspective as it is closely related to the free energy.

When (G, v) is a rooted Cayley tree of depth n−1 and down-degree d = ∆−1,
the ratio satisfies

RG,v(λ) = fnλ,d(0),

2Although the domain Λ∆ resembles a cardioid, it is formally not a cardioid. However, as
discussed in Section 5.7, it plays an analogous role as the Main Cardioid of the Mandelbrot set,
justifying our use of the term cardioid.
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where
fλ,d(z) :=

λ

(1 + z)d

and throughout the chapter we write fn for the n-th iterate of the map f .
In this context it is therefore natural to consider λ as the parameter which

determines the orbit of the marked point 0. This type of setting is often studied
in complex dynamical systems, where one is interested in the sets where the
parameter λ is active or passive. A parameter λ0 is said to be passive if the
family of rational functions {λ 7→ f◦nλ,d(0)} is normal at λ0, i.e. there exists a
neighborhood such that every sequence in this family has a subsequence that
converges uniformly. A parameter is active if it is not passive. The most well-
known activity-locus is undoubtedly the boundary of the Mandelbrot set, where
the iterates of the functions z2 + c are considered. Following this terminology we
define the activity-locus, A∆, by

A∆ := {λ0 ∈ C | {λ 7→ RG,v(λ) | (G, v) ∈ G∆} is not locally normal at λ0}.
Another notion of chaotic behaviour of the ratios appears in the proof of the

result of Bezaková, Galanis, Goldberg and Šefankovič [BGGŠ20]. An important
step towards proving #P-hardness is showing that for every non-real λ outside
of the closed cardioid Λ∆ the set of values {RG,v(λ) | (G, v) ∈ G1

∆} is dense in Ĉ.
Motivated by this we define

D∆ := {λ ∈ C | {RG,v(λ) | (G, v) ∈ G1
∆} is dense in Ĉ}

and refer to the closure of D∆ as the density-locus. We will prove it is equal to
the activity-locus, thereby showing that these two notions of chaotic behaviour
of the ratios are essentially equivalent.

5.1.2 Main result
To state our main result connecting the presence of zeros to computational hard-
ness, we define the zero-locus as the closure of

Z∆ = {λ ∈ C : ZG(λ) = 0 for some G ∈ G∆}.
We informally define the #P-locus as the closure of the collection of λ for which
approximating ZG(λ) is #P-hard for G ∈ G∆. See Section 5.1.3 below for a
formal definition.

The main results of this chapter can now be stated succinctly as follows.

Main Theorem. For any integer ∆ ≥ 3 the zero-locus, the activity-locus and
the density-locus are equal and contained in the #P-locus. In other words:

Z∆ = A∆ = D∆ ⊆ #P∆.
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We remark that the topological structure of the complement of the zero-locus
is not yet understood. We have the following conjecture.

Conjecture 5.1.1. For each integer ∆ ≥ 3, the set C \ Z∆ is connected.

Should this conjecture be true, then by Proposition 5.4.3 below, we know
that the maximal ‘zero-free’ set containing 0, U∆, equals the complement of
the zero-locus. Since there exists a polynomial time algorithm [Bar16, PR17]
for approximating the independence polynomial on U∆, this would imply with
our main theorem a complete understanding of the computational complexity of
approximating the independence polynomial in terms of the location of the zeros
as well as in terms of chaotic behaviour of the ratios.

Remark 4. We note that [PR19] and [BGPR22] combined implicitly contain
similar equivalent characterizations for the Lee-Yang zeros of the partition func-
tion of the ferromagnetic Ising model on bounded degree graphs. In that setting
the complement of the zero-locus is in fact connected when the edge interaction
parameter is sub-critical.

5.1.3 Computational complexity
We formally state here the computational problems we are interested in. We
denote by Q[i] the collection of complex numbers with rational real and imaginary
part. Let λ ∈ Q[i], ∆ ∈ N and consider the following computational problems.

Name #Hard-CoreNorm(λ,∆)

Input A graph G of maximum degree at most ∆.

Output If ZG(λ) ̸= 0 the algorithm must output a rational number N such that
N/1.001 ≤ |ZG(λ)| ≤ 1.001N . If ZG(λ) = 0 the algorithm may output any
rational number.

Name #Hard-CoreArg(λ,∆)

Input A graph G of maximum degree at most ∆.

Output If ZG(λ) ̸= 0 the algorithm must output a rational number A such that
|A − a| ≤ π/3 for some a ∈ arg(ZG(λ). If ZG(λ) = 0 the algorithm may
output any rational number.

We can now formally define the #P-locus, as the closure of the set,

#P∆ := {λ ∈ Q[i] : the problem #Hard-CoreNorm(λ,∆) is #P-hard}.
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We remark that in the definition of #P∆ replacing #Hard-CoreNorm(λ,∆) by
#Hard-CoreArg(λ,∆) does not alter the validity of the main theorem.

We moreover note that the constant 1.001 is rather arbitrary. It originates
from [BGGŠ20]. As remarked there the constant can be replaced by any other
constant. Let us quickly explain the idea. If say #Hard-CoreNorm(λ,∆) is #P-
hard, but there would be a polynomial time algorithm for the problem with 1.001
replaced by 1.0012, then we could run this algorithm on the disjoint union of two
copies of the same graph G obtaining an a 1.0012 approximation to the norm of
ZG∪G(λ) = ZG(λ)

2. This would immediately gives us a 1.001-approximation to
the norm of ZG(λ). Since the number of vertices of G ∪ G is polynomial in the
number of vertices of G, we would thus also get a polynomial time algorithm for
the problem with constant 1.001.

Organization. After introducing preliminary definitions and results in section
2, we treat the degree ∆ = 2 case in section 3. While the equalities between
different loci are different when ∆ = 2, the explicit descriptions of the zero- and
activity-locus will be used in the higher degree cases.

In section 4 we prove the equality of the zero-locus and the activity-locus.
The inclusion of the latter in the former is actually an immediate consequence of
Montel’s Theorem, and proved earlier in Corollary 5.2.10. We end that section
by showing that connected components of the complement of the zero-locus are
simply connected.

In section 5 we prove the equality of the activity- and the density-locus, and
in section 6 we prove that the density-locus is contained in the #P-locus.

We end this chapter by discussing a special subclass of graphs: the finite
Cayley trees of fixed down-degree ∆ − 1. In this setting classical results from
complex dynamical systems can be used to obtain a precise description of the
zero- and activity-locus. While there zeros do not lie in the activity-locus, the
activity-locus equals the accumulation set of the zeros.

5.2 Preliminaries

In this section we collect some preliminary results and conventions that will
be used in the remainder of the chapter. The results in this section are not
necessarily new, but often cannot be found in the literature in the exact way
they are stated here. For convenience of the reader we include proofs, especially
when the methods are similar to those used later in the chapter.
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5.2.1 Ratios of graphs and trees.
Recall that for a rooted graph (G, v) the occupation ratio is defined as the fol-
lowing rational function in λ

RG,v(λ) =
Z in
G (λ)

Zout
G (λ)

.

We note that ZG(λ) = Z in
G (λ) + Zout

G (λ), which implies that ZG(λ) = 0 if and
only if RG,v(λ) = −1, unless Z in

G,v(λ) and Zout
G,v(λ) both vanish, in which case the

value of the rational function RG,v(λ) may not equal −1. The next lemma will
show that we can often ignore this difficulty.

We will write G− v for the graph G with vertex v removed, and G−N [v] for
the graph with N [v] removed, where N [v] = {u ∈ V (G) : {u, v} ∈ E(G)}∪{v} is
the closed neighborhood of v. We observe that ZoutG,v(λ) = ZG−v(λ), and similarly
ZinG,v(λ) = λ · ZG−N [v](λ).

Lemma 5.2.1. Let λ ∈ C∗. The following three statements are equivalent.

1. There exists a graph G of maximum degree at most ∆ for which ZG(λ) = 0.

2. There exists a rooted graph (G, v) ∈ G∆ for which RG,v(λ) = −1.

3. There exists a rooted graph (G, v) ∈ G∆ for which RG,v(λ) ∈ {−1, 0,∞}.
Proof. Assume that (1) holds, then there is a graph G of maximum degree at most
∆ for which ZG(λ) = 0. Without loss of generality we can assumeG ∈ G∆ satisfies
ZG(λ) = 0 and has a minimal number of vertices, i.e. for any graph H ∈ G∆

with ZH(λ) = 0 we have |V (G)| ≤ |V (H)|. For any vertex v ∈ V (G) we have

0 = ZG(λ) = ZinG,v(λ) + ZoutG,v(λ).

As |V (G−v)| < V (G) we have ZoutG,v(λ) = ZG−v(λ) ̸= 0, which implies RG,v(λ) =
−1. Thus (2) holds. Trivially, if (2) holds then also (3) holds. To complete the
proof we will assume (3) holds and show that (1) follows.

Assume there is a rooted graph (G, v) ∈ G∆ for which RG,v(λ) ∈ {−1, 0,∞}.
If RG,v(λ) = −1, we either have ZoutG,v(λ) = 0, in which case (1) follows, or
ZoutG,v(λ) ̸= 0, in which case ZinG,v(λ) = −ZoutG,v(λ) and (1) follows as well. If
RG,v(λ) = ∞ we have ZoutG,v(λ) = 0. As ZoutG,v(λ) = ZG−v(λ) we see (1) holds.
The final case is RG,v(λ) = 0, in which case we have 0 = ZinG,v(λ) = λ·ZG−N [v](λ).
Now as λ ̸= 0, we must have ZG−N [v](λ) = 0, which concludes the proof.

Note that for λ = 0 we have RG,v(λ) = 0 and ZG(λ) = 1 for any graph G and
any vertex v ∈ V (G). Hence for λ = 0, statements (1) and (2) in Lemma 5.2.1
are still equivalent, while statement (3) is not equivalent to (1) or (2).
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The following result due to Bencs [Ben18] will play an important role in this
chapter.

Theorem 5.2.2. Let (G, v) ∈ Gi∆ be a rooted connected graph. Then there is a
rooted tree (T, u) ∈ Gi∆ and induced graphs G1, . . . , Gk of G such that

(i) ZT = ZG
∏k
i=1 ZGi

,

(ii) RG,v = RT,u.

The following result is a consequence.

Lemma 5.2.3. Let λ ∈ C and (G, v) ∈ G∆ with ZG(λ) = 0. Then there is a
rooted tree (T, u) ∈ G1

∆ such that ZT (λ) = 0 and RT,u(λ) = −1.

Proof. Note that for any graph G we have ZG(0) = 1, so we can assume λ ̸= 0.
By Lemma 5.2.1 there exists a rooted graph (G, v) ∈ G∆ such that RG,v(λ) = −1.
By Theorem 5.2.2(i) we see there is a rooted tree (T, u) ∈ G∆ with ZT (λ) = 0. It
follows there is a tree T̃ of maximum degree ∆ with a minimal number of vertices
such that ZT̃ (λ) = 0. For T̃ and any vertex v ∈ V (T̃ ) we have RT̃ ,v(λ) = −1.
The lemma follows by choosing v a leaf of T̃ .

At a later stage we will need to worry about the degree of the root vertex
in our definition of the activity- and density-locus. We therefore introduce some
definitions to facilitate their discussion.

Fix an integer ∆ ≥ 2 throughout. For i = 1, . . . ,∆ we denote the family of
ratios with root degree at most i by

Ri
∆ := {RG,v) | (G, v) ∈ Gi∆}.

We just write R∆ instead of R∆
∆. For a given λ ∈ C, we denote the set of values

of these ratios by
Ri

∆(λ) := {RG,v)(λ) | (G, v) ∈ Gi∆}.
Then we define Ai

∆ to be the collection of λ0 at which the family Ri
∆ is not

normal. We just write A∆ instead of A∆
∆. Finally, we introduce Di

∆ to be the
collection of λ for which the set Ri

∆(λ) is dense in C. Note that we denote D1
∆

by D∆ (as opposed to the above convention).

5.2.2 Graph manipulations and definition of the cardioid
The recursion formula given in the following lemma is well known.
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Lemma 5.2.4. Let T = (V,E) be a tree and v a vertex of T . Suppose v is
connected to d ≥ 1 other vertices u1, . . . , ud. Denote Ts for the tree that is the
connected component of T − v containing us. Then we have

RT,v(λ) =
λ∏d

s=1(1 +RTs,us
(λ))

. (5.1)

Proof. We have

ZinT,v(λ)

ZoutT,v (λ)
= λ

ZT−N [v](λ)

ZT−v(λ)
= λ

d∏
s=1

ZoutTs,us
(λ)

ZTs
(λ)

= λ

d∏
s=1

ZoutTs,us
(λ)

ZoutTs,us
(λ) + ZinTs,us

(λ)
,

(5.2)
where in the second equality we use that the partition function of a graph factors
into the partition functions of its connected components. By dividing for each
s ∈ {1, . . . , d} the denominator and enumerator of the right hand side of equation
(5.2) by ZoutTs,us

(λ) we obtain the desired formula.

This lemma implies the claim from the introduction that the ratios of Cayley
trees are given by iterating fλ,d(z) = λ

(1+z)d
. We refer to Section 5.7 for an

in-depth discussion of Cayley trees and their associated dynamics.

Definition 5.2.5. Define the cardioid Λ∆ as the closure of the set of parameters
λ for which fλ,d has an attracting fixed point.

Note that 0 ∈ Λ∆. One can show, see Section 2.1 in [PR19], that

Λ∆ =

{
z

(1− z)∆
| |z| ≤ 1

∆− 1

}
.

Taking z = −1
∆−1 , we observe that

λ∗(∆) =
−(∆− 1)∆−1

∆∆

is the intersection point of Λ∆ with the negative real line.
Let G = (V,E) be a graph and let (Gi, vi) be rooted graphs for i ∈ V . We

refer to the graph obtained from G and the Gi by identifying each vertex i ∈ V
with vi as implementing the Gi in G, see Figure 5.2. The next lemmas describe
the effect on the ratios for various choices of G and Gi.

Lemma 5.2.6. Let Pn denote the path on n vertices. Let (Gi, vi) be rooted graphs
for i ∈ {1, . . . , n} and denote µi(λ) = RGi,vi(λ). Let P̃n be the graph obtained by
implementing the Gi in Pn. Then

RP̃n,vn
(λ) = (fµn(λ) ◦ · · · ◦ fµ1(λ))(0),

where fµ(z) = µ
1+z .
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Proof. We use induction on n. For n = 1, by definition we have RG1,v1(λ) =

µ1(λ) = fµ1(λ)(0). As P̃1 = G1, we have RP̃1,v1
(λ) = RG1,v1(λ). The base case

follows.
Suppose the statement holds for some n ≥ 1. The vertex vn+1 has 1 neighbor

that is part of the path Pn. Let us denote that neighbor as vn. It follows that

RP̃n+1,vn+1
(λ) =

Zin
P̃n+1,vn+1

(λ)

Zout
P̃n+1,vn+1

(λ)
=
ZinGn+1,vn+1

(λ)

ZoutGn+1,vn+1
(λ)

·
Zout
P̃n,vn

(λ)

ZP̃n,vn
(λ)

= RGn+1,vn+1
(λ) ·

Zout
P̃n,vn

(λ)

Zout
P̃n,vn

(λ) + Zin
P̃n,vn

(λ)
=
RGn+1,vn+1(λ)

1 +RP̃n,vn
(λ)

= fµn+1(λ)(RP̃n,vn
(λ)),

where in the second equality we use that the partition function of a graph factors
into the partition functions of its connected components.

By the induction hypothesis we have

RP̃n,vn
(λ) = (fµn(λ) ◦ · · · ◦ fµ1(λ))(0),

from which it follows that

RP̃n+1,vn+1
(λ) = (fµn+1(λ) ◦ fµn(λ) ◦ · · · ◦ fµ1(λ))(0),

completing the proof.

v1

G1

v2

G2

v3

G3

vn

Gn

Figure 5.2: The graph P̃n in Lemma 5.2.6

Remark 5. Note that if the graphs Gi in Lemma 5.2.6 are all of maximum
degree ∆ and the roots vi have degree at most ∆−2 for i ∈ {2, . . . , n−1} and at
most degree ∆ − 1 for i ∈ {1, n}, then the graph P̃n is also of maximum degree
∆.
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Lemma 5.2.7. Let G = (V,E) be a graph and denote n = |V |. Let (H, v) be a
rooted graph. Let G̃ = (Ṽ , Ẽ) be obtained from G by implementing n copies of
(H, v) in G. Then for any w ∈ V we have

ZG̃,w(λ)

(ZoutH,v(λ))
n
= ZG,w(RH,u(λ)) (5.3)

and
RG̃,w(λ) = RG,w(RH,v(λ)). (5.4)

Proof. We have

Zin
G̃,w

(λ)

(ZoutH,v(λ))
n
=

∑
I∈I(G)
w∈I

ZinH,v(λ)
|I|ZoutH,v(λ)

n−|I|

(ZoutH,v(λ))
n

= ZinG,w(RH,v(λ)) (5.5)

and

Zout
G̃,w

(λ)

(ZoutH,v(λ))
n
=

∑
I∈I(G)
w ̸∈I

ZinH,v(λ)
|I|ZoutH,v(λ)

n−|I|

(ZoutH,v(λ))
n

= ZoutG,w(RH,v(λ)). (5.6)

Equality (5.3) follows from equalities (5.5) and (5.6) noting that for any graph W
and any vertex u of W we have ZW (λ) = ZinW,u(λ) + ZoutW,u(λ). Equality (5.4)
follows from equalities (5.5) and (5.6) and the definition of the ratio.

We will also need the following slight variation on Lemma 5.2.4.

Lemma 5.2.8. Let (G1, v1) and (G2, v2) be rooted graphs, and define the rooted
graph (G̃, ṽ) by identifying the roots v1 and v2. Then

RG̃,ṽ(λ) = λ−1 ·RG1,v1(λ) ·RG2,v2(λ).

Proof. We compute

RG̃,ṽ(λ) =
Zin
G̃,ṽ

(λ)

Zout
G̃,ṽ

(λ)
=
ZinG1,v1

(λ) · ZinG2,v2
(λ) · λ−1

ZoutG1,v1
(λ) · ZoutG2,v2

(λ)
= λ−1 ·RG1,v1(λ) ·RG2,v2(λ).

5.2.3 The Shearer region

Denote the open disk around 0 with radius (∆−1)∆−1

∆∆ by B∆. This region, also
known as the Shearer region, is the maximal open disk centered around 0 that is
zero free for the independence polynomial of graphs of maximum degree ∆ [SS05,
She85]. We will show the Shearer region is also disjoint from the activity-locus
and the density-locus, which will later be used to deal with the λ = 0 case in the
proof of our main theorem.
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Lemma 5.2.9. Let ∆ ≥ 2 be an integer. Then B∆ is disjoint from the activity-
locus, the zero-locus and the density-locus, i.e., we have B∆ ∩D∆ = B∆ ∩A∆ =
B∆ ∩ Z∆ = ∅.

Proof. We claim that for any rooted graph (G, v) ∈ G∆ and any λ ∈ B∆ we have

|RG,v(λ)| <
{

1
∆ if deg(v) ≤ ∆− 1,
1

∆−1 otherwise.

By Theorem 5.2.2 we can equivalently work with rooted trees (T, v) ∈ G∆ instead
of rooted graphs.

We will prove the claim by induction on the number of vertices of T . If
|V (T )| = 1, we have deg(v) = 0 and therefore RT,v(λ) = λ. The claim then
follows as (∆−1)(∆−1)

∆∆ < 1
∆ for all ∆ ≥ 2. Suppose the claim holds for all rooted

trees (T, v) ∈ G∆ with |V (T )| ≤ n for some n ≥ 1. Let (T̃ , ṽ) ∈ G∆ be a rooted
tree with n + 1 vertices. Denote the d children of ṽ as u1, . . . , ud and denote
(Ti, ui) for the rooted subtree of T̃ with root ui. By Lemma 5.2.4 we have

RT̃ ,ṽ(λ) =
λ∏d

i=1(1 +RTi,ui
(λ))

.

We note that each (Ti, ui) has at most n vertices, hence the induction hypotheses
applies. Furthermore in Ti we have deg(ui) ≤ ∆ − 1 as T̃ has maximum degree
at most ∆. Thus we see

|RT̃ ,ṽ(λ)| =
|λ|∏d

i=1 |1 +RTi,ui
(λ)|

≤ |λ|∏d
i=1(1− |RTi,ui

(λ)|)

<
|λ|

(1− 1
∆ )d

=
∆d|λ|

(1−∆)d
<

(∆− 1)∆−1−d

∆∆−d .

Now if d ≤ ∆− 1, we see (∆−1)∆−1−d

∆∆−d < 1
∆ hence the claim follows for that case.

If d = ∆ we have (∆−1)∆−1−d

∆∆−d = 1
∆−1 , which proves the claim.

It follows from the claim above that the family of ratios R∆ maps B∆ into
the open unit disk, for all ∆ ≥ 2. So clearly B∆ ∩ D∆ = ∅. As B∆ is open, we
have B∆ ∩ D∆ = ∅.

By Montel’s Theorem the family R∆ is normal on B∆, so B∆ ∩A∆ = ∅. We
showed for all rooted graphs (G, v) ∈ G∆ that |RG,v(λ)| < 1

∆−1 ≤ 1, hence the
ratio will never equal −1. For λ ̸= 0, we see by Lemma 5.2.1 that λ ̸∈ Z∆. For
λ = 0 we note that ZG(0) = 1 for any graph G ∈ G∆. It follows that B∆∩Z∆ = ∅.
Again, as B∆ is open, we have B∆ ∩ Z∆ = ∅. This completes the proof.
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Remark 6. We note that on the negative real line the Shearer region agrees
with the interior of the cardioid, i.e we have R≤0 ∩ B∆ = R≤0 ∩ int Λ∆ for all
integers ∆ ≥ 3.

Lemmas 5.2.9 and 5.2.1 together imply one of the inclusions in our main
result.

Corollary 5.2.10. For all ∆ ≥ 2 the activity-locus is contained in the zero-locus,
i.e. A∆ ⊆ Z∆.

Proof. Equivalently, we want to show that for any λ ∈ C \ Z∆ the family R∆ is
normal at λ. By Lemma 5.2.9 this is the case for λ = 0 and thus we assume that
λ ̸= 0. Take a sufficiently small neighborhood U around λ such that 0 ̸∈ U and
U ∩ Z∆ = ∅. It follows from Lemma 5.2.1 that the family R∆ avoids {−1, 0,∞}
for all λ′ ∈ U . Hence by Montel’s Theorem the family is normal on U .

5.3 Graphs with maximum degree at most two

In this section we will deal with graphs of maximum degree at most two, in other
words graphs for which each component is a path or a cycle. We will show that

Z2 = A2 = (−∞,−1/4] and D1
2 = D2

2 = ∅.

An explicit description of Z2 was already known [HL72, SS05]; we provide a new
proof for the sake of completeness.

Note that this is in contrast to the situation for ∆ ≥ 3 as stated in the main
theorem. It follows from Lemma 5.2.3 that Z2 is equal to the set of λ for which
there is a (T, v) ∈ G1

2 , with T a tree, such that RT,v(λ) = −1. The collection
G1
2 consists of rooted graphs where the component containing the root is a path

rooted at an endpoint. Let (Pn, vn) denote a path on n vertices rooted at an
endpoint vn. If we let fλ(z) = λ/(1 + z) then it follows from Lemma 5.2.6 that
RPn,vn(λ) = fnλ (0). For fixed λ the map fλ is a Möbius transformation and
therefore we first review some properties of Möbius transformation.

5.3.1 Möbius transformations
Everything that is done in this section can for example be found in [Bea95, Section
4.3]. Let M denote the group of Möbius transformations with composition as
group operation and let GL2(C) denote the group of 2 × 2 invertible matrices
with complex entries. The following map is a surjective group homomorphism.

Φ : GL2(C) → M,
( a b
c d

)
7→
(
z 7→ az + b

cz + d

)
.



92 Zeros, chaotic ratios and computational complexity

For any g ∈ M take an element A ∈ Φ−1({g}) and define tr2(g) = tr(A)2/ det(A).
This quantity does not depend on the choice of A and thus tr2 is a well-defined
function on M. We say that elements f, g ∈ M are conjugate if there exists an
h ∈ M such that f = h ◦ g ◦ h−1.

Lemma 5.3.1 ([Bea95, Theorem 4.3.4]). Let f, g ∈ M not equal to the identity.
The maps f, g are conjugate if and only if tr2(f) = tr2(g). It follows that g is
conjugate to

• a rotation z 7→ eiθ · z for some θ ∈ (0, π] if and only if tr2(g) ∈ [0, 4);

• the translation z 7→ z + 1 if and only if tr2(g) = 4;

• a multiplication z 7→ ξ · z for some ξ ∈ C∗ with |ξ| < 1 if and only if
tr2(g) ∈ C \ [0, 4].

The map g is said to be elliptic, parabolic or loxodromic in these three cases
respectively.

Observe that if f = h ◦ g ◦ h−1 then fn = h ◦ gn ◦ h−1. It follows that, to
understand the dynamical behaviour of a Möbius transformation g, it is enough
to understand the dynamical behaviour of any element in the conjugacy class of
g. If g is loxodromic then it has two distinct fixed points in Ĉ, one of which
is attracting and the other is repelling. Under iteration of g the orbit of every
initial value except for the repelling fixed point converges to the attracting fixed
point. If g is parabolic then g has a unique fixed point, and under iteration of
g all orbits converge to this fixed point. If g is elliptic then g is conjugate to a
rotation z 7→ eiθ · z. We say that g is conjugate to a rational rotation if θ is a
rational multiple of π and otherwise we say that g is conjugate to an irrational
rotation. If g is conjugate to a rational rotation there is a positive integer n such
that gn is equal to the identity. If g is conjugate to an irrational rotation it has
two fixed points, say p, q, and Ĉ\{p, q} is foliated by generalized circles on which
g acts conjugately to an irrational rotation.

We end this subsection by classifying fλ in terms of its parameter.

Lemma 5.3.2. The Möbius transformation fλ is

• elliptic if λ ∈ (−∞,−1/4);

• parabolic if λ = −1/4;

• loxodromic if λ ∈ C∗ \ (−∞,−1/4].

Proof. This follows from Lemma 5.3.1 and the fact that tr2(fλ) = −1/λ.
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5.3.2 Determining the zero and activity-locus

In this subsection we we will show that both Z2 and A1
2 are equal to (−∞,−1/4].

By definition we have A1
2 ⊆ A2 and by Corollary 5.2.10 we have A2 ⊆ Z2, hence

it will follow that A2 is equal to (−∞,−1/4] as well.

Lemma 5.3.3. Zeros of ZG for graphs G ∈ G2 form a dense subset of the interval
(−∞,−1/4), hence Z2 = (−∞,−1/4].

Proof. We claim that λ ∈ Z2 if and only if fλ is conjugate to a rational rotation.
First suppose that λ ∈ Z2. Then, by Lemma 5.2.3, there is an n ≥ 1 such that

for the path on n vertices Pn rooted at the endpoint vn we have RPn,vn(λ) = −1
and thus fnλ (0) = −1. Because f2λ(−1) = 0 regardless of the value of λ we obtain
that fn+2

λ (0) = 0. This means that 0 is a periodic point of fλ of period strictly
larger than 1. This can only occur if fλ is conjugate to a rational rotation, as is
explained in Section 5.3.1.

Suppose that fλ is conjugate to a rational rotation. Note that this implies
that λ is not equal to zero. Take the smallest positive integer n such that fnλ
is equal to the identity and thus specifically fnλ (0) = 0. Note that fλ(0) = λ
and f2λ(0) = λ/(1 + λ) and thus n ≥ 3. Since f−2

λ (0) = −1 we obtain that
RPn−2,vn−2

(λ) = fn−2
λ (0) = −1. It follows from the proof of Lemma 5.2.1 that λ

is a root of ZPn−2
.

Parameters λ for which fλ is conjugate to a rational rotation lie dense in
the set of parameters for which fλ is conjugate to any rotation. It follows from
Lemma 5.3.2 that Z2 = (−∞,−1/4].

We remark that tr2 of the map that sends z to eiθ · z is equal to 2(1+cos(θ)).
By comparing this to the value of tr2(fλ) it follows from the previous proof that

Z2 =

{ −1

2(1 + cos(tπ))
: t ∈ (0, 1) ∩Q

}
.

We will now prove the final lemma needed to determine A2.

Lemma 5.3.4. The family R1
2 is not normal around any λ ∈ (−∞,−1/4], i.e.

(−∞,−1/4] ⊆ A1
2.

Proof. Recall that

R1
2 = {RPn,vn : n ≥ 1} = {λ 7→ fnλ (0) : n ≥ 1}.

Take a λ0 ∈ (−∞,−1/4] and suppose for the sake of contradiction that there
exists a neighborhood U of λ0 on which R1

2 is normal. We take U connected and
sufficiently small so that it does not contain 0, and 0 is not a fixed point of fλ for
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any λ ∈ U . Because R1
2 is normal on U there exists a subsequence of {RPn,vn}n≥1

that converges locally uniformly to a holomorphic function F : U → Ĉ. For λ ∈
U \(−∞,−1/4] the map fλ is loxodromic, hence fnλ (0) converges to the attracting
fixed point of fλ as n goes to infinity. This means that for λ ∈ U \ (−∞,−1/4]
we have fλ(F (λ)) = F (λ). Because U \ (−∞,−1/4] is non-empty and open in U
it follows from the identity theorem for holomorphic functions that the equality
fλ(F (λ)) = F (λ) must hold for all λ ∈ U . The set U contains a parameter λ1 for
which fλ1

is elliptic. The value 0 is not a fixed point of fλ1
and thus the distance

of fnλ1
(0) to both of the fixed points of fλ1

is uniformly bounded below for all n
by a positive constant. This means that no subsequence of {RPn,vn(λ1)}n≥1 can
converge to the fixed point F (λ1). We conclude that R1

2 is not normal at λ0.

It follows from the previous two lemmas and Corollary 5.2.10 that

(−∞,−1/4] ⊆ A1
2 ⊆ A2

2 ⊆ Z2 = (−∞,−1/4].

Therefore we can conclude that both A2 and Z2 are equal to (−∞,−1/4].

5.3.3 Determining the density-locus.

Recall that for λ ∈ C we defined Ri
∆(λ) = {RG,v(λ) : (G, v) ∈ Gi∆}. Subsequently

we defined Di
∆ as the set consisting of those λ for which Ri

∆(λ) is dense in Ĉ. It
is thus clear that D1

2 ⊆ D2
2. To conclude the section we show the following.

Lemma 5.3.5. There is no λ0 ∈ C for which R2
2(λ0) is dense in Ĉ, i.e. D2

2 = ∅.

Proof. It follows from Theorem 5.2.2 that

R2
2(λ) = {RT,v(λ) : (T, v) ∈ G2

2 with T a tree}.

A rooted tree (T, v) ∈ G2
2 can be viewed as a vertex v onto which two rooted paths

(Pn, vn) and (Pm, vm) are attached for n,m ≥ 0. It follows from Lemma 5.2.4
and Lemma 5.2.6 that

RT,v(λ) = λ · 1

1 + fnλ (0)
· 1

1 + fmλ (0)
=

1

λ
· fn+1
λ (0) · fm+1

λ (0).

For a specific λ0 the right-hand side of this equality is not defined if fn+1
λ0

(0)

and fm+1
λ0

(0) take on the values 0 and ∞. Recall that if fn+1
λ0

(0) = ∞, then
fnλ0

(0) = −1, which implies that λ0 ∈ Z2. If this is the case then Lemma 5.3.3
implies that λ0 is real, and thus R2

2(λ0) is contained in R∪{∞} and is not dense
in Ĉ.
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Assume that λ0 is not real. In this case we have the equality

R2
2(λ0) =

{
1

λ0
· fn+1
λ0

(0) · fm+1
λ0

(0) : n,m ≥ 0

}
.

The map fλ0
is loxodromic, hence the orbit of 0 converges to an attracting fixed

point without passing through ∞. Note that fλ0
(∞) = 0, therefore ∞ is not

the attracting fixed point, and thus there is a positive bound B ∈ R>0 such that
|fnλ0

(0)| < B for all n. It follows that∣∣∣∣ 1λ0 · fn+1
λ0

(0) · fm+1
λ0

(0)

∣∣∣∣ < B2

|λ0|

for all n,m, and thus R2
2(λ0) is bounded and in particular not dense in Ĉ.

5.4 Equality of the zero-locus and the activity-
locus for ∆ ≥ 3

In this section we prove the equalities A1
∆ = A2

∆ = · · · = A∆
∆ = Z∆ for ∆ ≥ 3,

thereby proving that the activity-locus is equal to the zero-locus. Our strategy
is similar to the ∆ = 2 case. By definition we have A1

∆ ⊆ A2
∆ ⊆ · · · ⊆ A∆

∆. We
will first show that A1

∆ = A2
∆ = · · · = A∆−1

∆ and subsequently we will show that
Z∆ ⊆ A∆−1

∆ . Then Corollary 5.2.10, which states that A∆
∆ ⊆ Z∆, is enough to

arrive at our desired conclusion.

Lemma 5.4.1. The family R1
∆ is normal at λ0 ∈ C if and only if R∆−1

∆ is
normal at λ0, and hence A1

∆ = A∆−1
∆ .

Proof. Recall that
Ri

∆ := {RG,v : (G, v) ∈ Gi∆}
and thus R1

∆ ⊆ R∆−1
∆ . It follows that if R∆−1

∆ is normal at λ0 then the same
holds for R1

∆.
To show the other direction, assume that R1

∆ is normal at λ0. Note that the
family R∆

∆ is normal at 0 by Lemma 5.2.9, hence we can assume λ0 ̸= 0. As R1
∆

is normal at λ0, there is a neighborhood U of λ0 on which R1
∆ is a normal family.

We can take U such that 0 ̸∈ U . We will show that R∆−1
∆ is also a normal family

on U . To that effect take a sequence of rooted graphs {(Gn, vn)}n≥1 ⊆ G∆−1
∆ .

Construct the rooted graphs (Ĝn, v̂n) ∈ G1
∆ by attaching a root v̂n to the root

vn of Gn by a single edge. By assumption the sequence {RĜn,v̂n
}n≥1 has a

subsequence that converges locally uniformly to a function H : U → Ĉ. Let
I ⊆ N be the indices belonging to this subsequence. By Lemma 5.2.6 we have
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RĜn,v̂n
(λ) = fλ(RGn,vn(λ)) for every λ ∈ U . Because U does not contain 0, the

Möbius transformation fλ is invertible for every λ ∈ U . Therefore for these λ we
have

lim
n→∞
n∈I

RGn,vn(λ) = lim
n→∞
n∈I

f−1
λ (fλ(RGn,vn(λ)))

= lim
n→∞
n∈I

f−1
λ (RĜn,v̂n

(λ)) = f−1
λ (H(λ)).

Because the map U × Ĉ → Ĉ that sends (λ, z) to f−1
λ (z) is continuous, we can

conclude that this limit converges locally uniformly on U . Therefore we have
shown that the sequence {RGn,vn}n≥1 has a subsequence that converges locally
uniformly to the holomorphic function λ 7→ f−1

λ (H(λ)), and thus R∆−1
∆ is normal

at λ0.

Proposition 5.4.2. Let ∆ ≥ 3. Then Z∆ ⊆ A∆−1
∆ , and hence the zero-locus is

contained in the activity-locus.

Proof. Let us assume λ ∈ Z∆. Then for any open neighborhood V of λ there is
a λ0 ∈ V for which ZG(λ0) = 0 for some G ∈ G∆. We will prove that the family
R∆−1

∆ cannot be normal on V .
By Lemma 5.2.3 there is a a rooted tree (T, u) ∈ G1

∆ for which RT,u(λ0) = −1.
Consider the rooted trees (Tn, v) obtained by implementing a copy of (T, u) in
every vertex of the rooted paths (Pn, v). It follows from Lemma 5.2.7 that

RTn,v = RPn,v ◦RT,u.
We note that in Tn the root v has degree 2 ≤ ∆− 1. Furthermore RT,u maps a
neighborhood of λ0 holomorphically to a neighborhood of −1, since RT,u is not
constantly equal to −1. Lemma 5.3.4 states that the family {RPn,v}n>0 is not
normal at −1 and thus it follows that {RTn,v}n>0 is not normal at λ0.

Summarising we have the following relations between sets

A1
∆

(1)
= A∆−1

∆ ⊆ A∆
∆

(2)
⊆ Z∆

(3)
⊆ A∆−1

∆ ,

where equality (1) is due to Lemma 5.4.1, inclusion (2) is due to Corollary 5.2.10
and inclusion (3) is due to Proposition 5.4.2. It follows that A1

∆ = . . . = A∆
∆, and

A∆ = Z∆ for all ∆ ≥ 2.

5.4.1 The complement of the zero-locus
As an application of the equality of the zero-locus and the activity-locus, we
show here that each component of the complement of the zero-locus is simply
connected.
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Proposition 5.4.3. Let ∆ ≥ 2 be an integer. Any connected component of the
complement of the zero-locus, C \ Z∆, is simply connected.

Proof. For ∆ = 2 the statement follows directly by the exact characterization of
the closure of the zero-locus. We will therefore assume that ∆ ≥ 3.

Let γ be a simple closed curve contained in the complement of the zero-locus,
C \ Z∆. It is sufficient to prove that the interior of γ, which we will denote by
V , is zero free. Let us suppose for the sake of a contradiction that this is not the
case.

Let T be a minimal tree for which ZT (λ0) = 0 for some λ0 ∈ V . Let v be a
leaf of T . Since |T | is chosen minimal it follows that RT,v(λ0) = −1. Denote the
neighbor of v in T by w. By minimality of T it also follows that RT−v,w(λ) ̸= −1
for any λ ∈ V .

Note that V is necessarily bounded, as it is a subset of the cardioid, Λ∆.
Hence by compactness of V it follows that RT−v,w is bounded away from −1 on
V . Since

RT,v(λ) =
λ

1 +RT−v,w(λ)

it follows that RT,v is bounded on V . By the Open Mapping Theorem for holo-
morphic functions it follows that there must be a λ1 ∈ ∂V = γ for which

RT,v(λ1) ∈ (−∞,−1).

Use Lemma 5.2.6 to implement the rooted tree (T, v) in the paths Pn to obtain
a sequence of rooted graphs {(Gn, un)}n≥1 with

RGn,un = RPn,un ◦RT,v.

Since RT,v(λ1) ∈ (−∞,−1), which is contained in the half-line where the family
{λ 7→ RPn,u(λ)}n∈N is not normal, it follows that the family of ratios {RGn,un} is
not normal at λ1. This contradicts the assumption that γ is contained in C\Z∆,
by the equivalence of the activity-locus and the zero-locus.

5.5 Equality of the density-locus and the activity-
locus for ∆ ≥ 3

We first show the inclusion D∆ ⊆ A∆ holds. Note that as A∆ is closed, it suffices
to show D∆ ⊆ A∆.

Theorem 5.5.1. The density-locus is contained in the activity-locus. More pre-
cisely, we have D∆ ⊆ A∆ for all ∆ ≥ 3.
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Remark 7. Recall the remarkable Proposition 6 in [BGGŠ20], in which it is
shown that non-real λ ∈ Q[i] outside the cardioid Λ∆ are contained in the
density-locus. As a consequence Theorem 5.5.1 implies that Z∆ is dense in the
complement of the cardioid.

The proof of Theorem 5.5.1 is by contradiction. So we will assume that there
is a λ0 ∈ D∆ with λ0 ̸∈ A∆ and arrive at a contradiction. In order to do this, we
state and prove three helpful lemmas.

Lemma 5.5.2. Let λ0 ∈ C\A∆. Assume the family R∆ is normal on some open
neighborhood U of λ0 and that {RGn,vn(λ0)}n≥1 converges to −1 for a sequence
{(Gn, vn)}n≥1 of rooted graphs from G∆. Then {RGn,vn}n≥1 converges to −1
locally uniformly on U .

Proof. It follows from the conclusion of Section 5.4, i.e. A∆ = Z∆, that ZG(λ) ̸=
0 for all λ ∈ U and G ∈ G∆. Suppose {RGn,vn}n≥1 does not converge to −1
locally uniformly on U . Then, after taking a subsequence if necessary, we may
assume that {RGn,vn}n≥1 converges locally uniformly on U to a non-constant
holomorphic function f . Clearly f(λ0) = −1. Since zeros of holomorphic func-
tions are isolated there exists ε > 0 so that B(λ0, ε) ⊂ U and such that

δ := inf
λ∈∂B(λ0,ε)

|f(λ) + 1| > 0.

Let n be sufficiently large so that |RGn,vn − f | < δ uniformly on B(λ0, ε). Then

|(RGn,vn(λ) + 1)− (f(λ) + 1)| < δ < |f(λ) + 1|+ |RGn,vn(λ) + 1|

for all λ ∈ ∂B(λ0, ε). By Rouché’s theorem there exists λ1 ∈ B(λ0, ε) for which
RGn,vn(λ1) = −1. By Lemma 5.2.1 it follows λ1 is a zero of the independence
polynomial ZG for some graph G of maximum degree at most ∆, which is a
contradiction as we assumed λ0 ∈ C \ A∆ = C \ Z∆.

Lemma 5.5.3. Let λ0 ∈ C \ A∆. Assume the family R∆ is normal on some
open neighborhood U of λ0 and that {RGn,vn(λ0)}n≥1 converges to µ ≤ − 1

4 for a
sequence of rooted graphs {(Gn, vn)}n≥1 in G1

∆. Then {RGn,vn}n≥1 converges to
µ locally uniformly on U .

Proof. If this is not the case then, as in the previous lemma, we may assume that
{RGn,vn}n≥1 converges locally uniformly to a non-constant holomorphic function
f with f(λ0) = µ. By Rouché’s theorem we can find λ1 ∈ U and n sufficiently
large so that RGn,vn(λ1) = µ, by the same argument as in the previous lemma.

Consider the family of rooted graphs {(G̃k, wk)} obtained by implementing
(Gn, vn) in every vertex of the rooted paths (Pk, wk), where Pk is the path with k
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vertices and wk is one of its extreme vertices. Since vn has degree 1, the graph G̃k
has maximum degree at most ∆. Hence by Lemma 5.2.6 we have

RG̃k,wk
(λ) = fkRGn,vn (λ)(0).

By Lemma 5.3.4 the family {RPk,wk
} = {λ 7→ fkλ (0)} is non-normal at λ = µ,

and therefore the family {RG̃k,wk
} is non-normal at λ1, contradicting the fact

that the family R∆ is normal on U .

Lemma 5.5.4. Assume there is a λ0 ∈ D∆ with λ0 ̸∈ A∆. Denote U for an
open neighborhood of λ0 on which the family R∆ is normal. Assume further-
more that {RGn,vn(λ0)}n≥1 converges to µ ∈ R for a sequence of rooted graphs
{(Gn, vn)}n≥1 in G∆−1

∆ . Then {RGn,vn}n≥1 converges to µ locally uniformly on
U .

Proof. If µ = −1 the result follows by Lemma 5.5.2. We may therefore assume
that µ ̸= −1. Recall that we denote fλ(z) = λ/(1 + z). We will show for each
µ ∈ R there exists µ1, µ2, µ3 ≤ − 1

4 so that

fµm
◦ · · · ◦ fµ1

(µ) = −1,

for some m ≤ 3. We distinguish between different cases

1. µ ≥ −3/4. Take µ1 = −1− µ ≤ −1/4, one can check fµ1
(µ) = −1.

2. µ < −1. Take µ1 = −1/4 and µ2 = 1 − fµ1(µ), then fµ1(µ) > 0 > −3/4
and so µ2 ≤ −1/4. One can check fµ2 ◦ fµ1(µ) = −1.

3. −1 < µ < −3/4. Take µ1 = µ2 = −1/4 and µ3 = 1 − fµ2
(fµ1

(µ)), then
fµ1

(µ) < −1 so we see µ3 ≤ −1/4. One can check fµ3
◦ fµ2

◦ fµ1
(µ) = −1.

We may assume that {RGn,vn}n≥1 converges locally uniformly on U to a holo-
morphic function f with f(λ0) = µ. We want to show f is constant on U . Since
the set {RG,v(λ0) : (G, v) ∈ G1

∆} is dense in Ĉ by assumption, we can choose
sequences of rooted graphs {(Gin, vin)}n≥1 in G1

∆ so that {RGi
n,v

i
n
(λ0)}n≥1 con-

verges to µi for each i = 1, . . . ,m. By Lemma 5.5.3 every sequence {RGi
n,v

i
n
}n≥1

converges locally uniformly on U to the constant function µi for each i.
Consider for each n ≥ 1, the rooted graph (G̃n, v

m
n ) obtained by implementing

the rooted graphs (Gn, vn), (G1
n, v

1
n), . . . , (G

m
n , v

m
n ) on the vertices of the path

Pm+1 of length m. Note that G̃n has maximum degree at most ∆.
It follows from Lemma 5.2.6 that

RG̃n,vmn
(λ) = fRGm

n ,vm
n

(λ) ◦ · · · ◦ fRG1
n,v1

n
(λ) ◦RGn,vn(λ).
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By our choice of the µi the sequence of ratios {RG̃n,vmn
(λ0)}n≥1 converges to

fµm
◦· · ·◦fµ1

(µ) = −1. Hence by Lemma 5.5.2 the sequence of ratios {RG̃n,vmn
}n≥1

converges locally uniformly to the constant function −1. Furthermore the se-
quence of ratios {RG̃n,vmn

}n≥1 converges to the function F := fµm
◦ · · · ◦ fµ1

◦ f .
As fµm

◦ · · · ◦ fµ1
(z) is a non-constant holomorphic function and F = −1 on U ,

it follows that f is constant on U , as desired.

We are now ready to prove Theorem 5.5.1.

Proof of Theorem 5.5.1. Assume for the purpose of a contradiction that there
exists λ0 ∈ D1

∆ with λ0 ̸∈ A∆. We note that by Lemma 5.2.9 we know λ0 ̸= 0.
Throughout the proof denote U for an open neighborhood of λ0 on which the
family R∆ is normal; we may assume 0 ̸∈ U by taking U small enough. Assume
first that λ0 is not purely imaginary. Consider the real number c = −|λ0|2

2Reλ0
and

notice that
λ20

λ0 + c
= 2Reλ0 ∈ R.

Choose two sequences of rooted graphs {Gn, vn}n≥1, {(Hn, wn)}n≥1 in G1
∆ so

that {RGn,vn(λ0)}n≥1 and {RHn,wn
(λ0)}n≥1 converge to respectively 1 and c.

By Lemma 5.5.4 we must have that these sequence of ratios converge locally
uniformly on U to the respective constants 1 and c.

Consider the sequence of graphs G̃n≥1 constructed by merging vn and wn and
by then connecting this vertex to a vertex ṽn.

vn

Gn

Hn

ṽn

Figure 5.3: The rooted graph G̃n in the proof of Theorem 5.5.1

It follows from Lemma 5.2.6 and Lemma 5.2.8 for all λ ∈ U that

RG̃n,ṽn
(λ) =

λ

1 + λ−1RGn,vn(λ)RHn,wn(λ)
,
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where we use 0 ̸∈ U . Hence the sequence of holomorphic functions {RG̃n,ṽn
}n≥1

converges locally uniformly on U to the function f(λ) = λ2

λ+c as n → ∞. Note
that f is not a constant function, and that f(λ0) ∈ R, contradicting Lemma 5.5.4.
This contradiction completes the proof for λ0 not purely imaginary.

Assume instead that λ0 is purely imaginary and let (G, v) ∈ G1
∆ so that

RG,v(λ0) is not purely imaginary. For c ∈ R to be determined later choose again
two sequences of rooted graphs {Gn, vn}n≥1, {(Hn, wn)}n≥1 in G1

∆ such that se-
quences {RGn,vn(λ0)}n≥1 and {RHn,wn

(λ0)}n≥1 converge to 1 and c respectively.
Define for each n ≥ 1, (G̃n, ṽn) as above and let (Kn, vn) be the rooted graph
obtained from the disjoint union of (G̃n, ṽn) and (G, v) by identifying the vertex
ṽn with v. It follows from Lemma 5.2.6 and Lemma 5.2.8 for λ ∈ U that

RKn,vn(λ) =
RG,v(λ)

1 + λ−1RGn,vn(λ)RHn,wn(λ)
,

where we use 0 ̸∈ U . Thus in order to follow the same argument as before we
require c ∈ R for which

λ0 ·RG,v(λ0)
λ0 + c

∈ R.

It is clear that such real number c exists, hence the identical argument leads to
the desired contradiction.

We will now show the other inclusion A∆ ⊆ D∆ also holds for all ∆ ≥ 3. We
first show the inclusion holds for non-real parameters λ ∈ A∆.

Theorem 5.5.5. Let ∆ ≥ 3 and suppose that the family R∆ is not normal in
any neighborhood of λ0 ∈ C \ R≤0. Then there exists λ1 arbitrarily close to λ0
for which the set {RG,v(λ1) : (G, v) ∈ G1

∆} is dense in Ĉ.

Proof. Because Z∆ = A∆ there exists λ2 arbitrarily close to λ0 for which there is
a graph G of maximum degree at most ∆ such that ZG(λ2) = 0. We claim that
we can assume λ2 ̸∈ R. This is clear if λ0 ̸∈ R. Moreover, if λ0 ∈ R then λ0 is
a strictly positive real number. Because ZG(x) > 0 for any positive real number
x, it follows that λ2 is necessarily not real as long as it is sufficiently close to λ0.

By Lemma 5.2.3 there is a rooted tree (T, v) ∈ G1
∆ such that RT,v(λ2) = −1.

Since the rational function λ 7→ RT,v(λ) is non-constant, it is an open map.
The image of a neighborhood of λ2 therefore contains a small open real interval
around −1. Recall that Lemma 5.3.2 states that for µ ∈ (−∞,−1/4) the map
fµ : z 7→ µ/(1 + z) is conjugate to a rotation w 7→ eiθ · w. Furthermore, by
comparing tr2 of both maps, it is not hard to see that those parameters µ for
which fµ is conjugate to an irrational rotation lie dense in (−∞,−1/4). Therefore
we can choose a λ1 ∈ C \ R arbitrarily close to λ2 such that for µ := RT,v(λ1)
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the map fµ is conjugate to an irrational rotation. From now on µ is fixed to be
this value.

Let p, q be the two fixed points of the transformation fµ. In Section 5.3.1 we
explained that Ĉ \ {p, q} is foliated by generalized circles invariant under fµ, and
on which fµ acts conjugate to an irrational rotation. We denote the generalized
circle through z by Cz, and write Cq and Cp for {q} and {p} respectively. The
map z 7→ Cz is continuous as a map from Ĉ to the space {K ⊆ Ĉ : K compact}
equipped with the Hausdorff metric.

Our goal is to show that R1
∆(λ1) is dense in Ĉ. We first claim that if w ∈

R1
∆(λ1), then R2

∆(λ1) ∩ Cw is dense in Cw.
To prove the claim, let (H,u) ∈ G1

∆ be a rooted graph such that RH,u(λ1) = w.
Let G̃n as follows be obtained from the path Pn+1 on n+1 vertices, labeled v0 up
to vn, by implementing (H,u) at v0 and the rooted tree (T, v) at the remaining
n vertices of Pn+1, see Figure 5.4. Now by Lemma 5.2.6 we have

RG̃n,vn
(λ1) = fnµ (RH,u(λ1)) = fnµ (w).

Observe that for each n ≥ 1 we have (G̃n, vn) ∈ G2
∆. Because fµ acts conjugately

to an irrational rotation on Cw it follows that R2
∆(λ1) ∩ Cw is dense in Cw.

v0

H

v1

T

v2

T

vn

T

Figure 5.4: The graph (G̃n, vn) in the proof of the claim

Because µ ∈ R1
∆(λ1) and Cµ = R̂ := R ∪ {∞} it follows from the claim that

R2
∆(λ1)∩ R̂ is dense in R̂. Observe that fλ1(R̂) = λ1 · R̂. So by attaching a vertex

at the root with an edge, we obtain that R1
∆(λ1) ∩ λ1 · R̂ is dense in λ1 · R̂.

The set
U = {z ∈ Ĉ : Cz intersects λ1 · R̂ transversely}

is an open set in Ĉ, see Figure 5.5. Because λ1 ̸∈ R we see that C−1 = R̂ intersects
λ1 · R̂ transversely, and thus −1 ∈ U . The set U is contained in ∪w∈λ1·R̂Cw.
Because R1

∆(λ1) ∩ λ1 · R̂ is dense in λ1 · R̂, it follows that ∪w∈R1
∆(λ1)Cw is dense

in U . From the claim we proved earlier, it follows R2
∆(λ1) is dense in U . Attaching

a vertex to the root of a tree in G2
∆ with ratio r yields a rooted tree in G1

∆ with
ratio fλ1(r), and thus R1

∆(λ1) is dense in the neighborhood U∞ := fλ1(U) of ∞.
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For two rooted trees (T1, v1) ∈ G1
∆ and (T2, v2) ∈ G2

∆ with ratios r1 and
r2 respectively we can define the rooted tree (T3, v1) ∈ G2

∆ by adding an edge
between the roots of T1 and T2 and considering v1 the root of the obtained tree.
By Lemma 5.2.6 the ratio of (T3, v1) is given by

F (r1, r2) := fr1(r2) =
r1

1 + r2
,

under the assumption (r1, r2) ̸∈ {(0,−1), (∞,∞)}. It is not hard to see that

F (U∞ × R̂ \ {(0,−1), (∞,∞)}) = Ĉ.

Because R1
∆(λ1) is dense in U∞ and R2

∆(λ1) is dense in R̂ it follows that R2
∆(λ1)

is dense in Ĉ. We finally conclude that R1
∆(λ1) is dense in fλ1(Ĉ) = Ĉ.

q

p

R̂

λ1 · R̂

Figure 5.5: The generalized circles λ1 · R̂ and R̂ intersect in the points 0 and ∞.
A region around 0 is drawn. The open set U is shaded in gray. Examples of
generalized circles Cw that intersect λ1 · R̂ transversely are drawn in red, while
examples of circles that do not intersect λ1 · R̂ are drawn in blue.

We can now finally prove the inclusion A∆ ⊆ D∆ building on Proposition 6
of [BGGŠ20] to deal with the real parameters λ ∈ A∆.
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Theorem 5.5.6. Let ∆ ≥ 3. Then the activity locus is contained in the density
locus, i.e. A∆ ⊆ D∆.

Proof. Let λ0 ∈ A∆. If λ0 ∈ C \R≤0, then λ0 ∈ D∆ follows from Theorem 5.5.5.
We know Z∆ = A∆. By Remark 6 we know that

Z∆ ∩ R≤0 = R≤0 \ int(Λ∆)

for all ∆ ≥ 3. Proposition 6 of [BGGŠ20] implies that C \ (R ∪ Λ∆) ⊆ D∆ for
∆ ≥ 3. Hence it follows that R≤0\ int(Λ∆) ⊆ D∆, which completes the proof.

5.6 Density implies #P-hardness

In this section we will show that the density-locus is contained in the #P-locus.
To prove our result we will need to to show ‘exponential’ density for ratios of a
specific family of trees: we need to get ε-close to a given point P ∈ Q[i] with
ratios of trees of size at most O(log(1/ε) + size(P )). Here size(P ) denotes the
sum of the bit sizes of the real and imaginary part of P . Moreover, we denote
for rational ε > 0 by size(ε, P ) the sum of the the bit size of ε and size(P ).

Let λ0 ∈ C \ R. Then the Möbius transformation fλ0
is loxodromic (cf.

Section 5.3.1) and hence has a repelling fixed point, which we denote by z0.
Let

A := {z ∈ C : 2π/3− 0.01 < arg z < 2π/3, 1/17 < |z| < 1/16}. (5.7)

Let T = {(G1, v1), . . . , (Gm, vm), (G1, v1), . . . , (GM , vM} be a family of rooted
trees and U an open disk containing z0. The pair (T , U) is called a fast imple-
menter for λ0 if the ratios µi := RGi,vi and χi := RGi,vi

are such that the maps
gi := fµi

◦ fχi
are loxodromic and satisfy

1. the attracting fixed point zi of gi lies in U for all i,

2. U ⊆ ∪Mi=1gi(U),

3. g′i(z) ∈ A for all i and all z ∈ U ,

and the disk U is such that

1. U ⊂ fλ0(U),

2. U does not contain the attracting fixed point of fλ0
,

3. U has three rational points on its boundary.

We have the following results concerning fast implementers.
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Lemma 5.6.1. Let ∆ ≥ 3 be an integer. Let λ0 ∈ D∆. Then there exists a fast
implementer (T , U) for λ0.

Lemma 5.6.2. Let λ0 ∈ C \ R and assume that there exists a fast implementer
({(G1, v1), . . . , (Gm, vm), (G1, v1), . . . , (GM , vM )}, U) for λ0. Then, given P ∈ C
and ε > 0 there exists an algorithm that yields a sequence of ratios

w1, . . . , wK ∈ {λ0} ∪
M⋃
i=1

{µi := RGi,vi , χi := RGi,vi
}

such that

• |(fwK
◦ · · · ◦ fw1)(0)− P | < ε,

• wK = λ0 and

• K = O(max (log(1/ε), log(|P |/ε))).
If λ0 ∈ Q[i] and the input parameters P, ε are also in Q[i] then the algorithm
runs in poly(size(P, ε)) time.

We provide proofs for these lemmas in the next subsection, but first we collect
some consequences.

Corollary 5.6.3. Let ∆ ≥ 3 be an integer. The set D∆ is an open set.

Proof. Let λ0 ∈ D∆. Let (T , U) be fast implementer, as guaranteed to exist by
Lemma 5.6.1. For λ nearby λ0 we still have that the repelling fixed point of fλ
is contained in U , its attracting fixed point does not lie in U and U ⊂ fλ(U). In
other words (T , U) is a fast implementer for λ. Therefore applying the algorithm
of Lemma 5.6.2 to λ we obtain that the collection of values {RG,v(λ) | (G, v) ∈
G1
∆} is dense in Ĉ and hence λ ∈ D∆.

For our next corollary we first need a result about the set

E∆ := {λ ∈ Q[i] | ZG(λ) = 0 for some G ∈ G∆}.

Lemma 5.6.4. Let ∆ ≥ 3 be an integer. Then the collection E∆ is contained in
the set {

(a+ ib)−1 | a, b ∈ Z, 0 <
√
a2 + b2 ≤ ∆∆

(∆− 1)∆−1

}
.

Proof. Let λ ∈ E∆. Then there exists a graph G = (V,E) such that 1/λ is
a root of P (z) := z|V |ZG(1/z). Now P is a monic polynomial and therefore
1/λ ∈ Z[i] (since Z[i] is integrally closed by Gauss’s lemma). We also know that
|1/λ| ≤ ∆∆

(∆−1)∆−1 by Lemma 5.2.9. This proves the lemma.
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Corollary 5.6.5. Let ∆ ≥ 3 be an integer. Let λ0 ∈ (D∆∩Q[i])\E∆. Then given
P ∈ Q[i] and rational ε > 0 there exists an algorithm that generates a rooted tree
(T, v) such that |RT,v(λ0)− P | ≤ ε and Zout

T,v(λ0) ̸= 0, and outputs Zin
T,v(λ0) and

Zout
T,v(λ0) in time bounded by poly(size(ε, P )).

Proof. We first perform a brute force, but constant time, computation to obtain
a fast implementer ({(G1, v1), . . . , (Gm, vm), (G1, v1), . . . , (GM , vM}, U) for λ0.
Denote for i = 1, . . . ,M , µi := RGi,vi and χi := RGi,vi

and gi := fµi
◦ fχi

.
The algorithm of Lemma 5.6.2 applied to P returns in time poly(size(ε, P ))

a sequence of ratios ω1 . . . , ωK ∈ {λ0} ∪ ⋃Mi=1{µi, χi} that, by Lemma 5.2.6,
correspond to the implementation of the trees Gi and Gi on a path with K =
O(max (log(1/ε), log(|P |/ε)) vertices. The resulting rooted tree (T, v) has max-
imum degree at most ∆ and root degree 1 and satisfies |RT,v(λ0) − P | ≤ ε.
Denote the rooted tree corresponding to the sequence ω1, . . . ωi by (Ti, ui). Then
(Ti+1, ui+1) is obtained from (Ti, ui) by adding the edge {vi+1, ui} to Ti and glu-
ing a rooted tree (H, v) ∈ {K1, (Gj , vj), (Gj , vj) | j = 1, . . . ,M} to ui+1 (here K1

denotes a single vertex.) We then have(
Z in
Ti+1,ui+1

(λ0), Z
out
Ti+1,ui+1

(λ0)
)
=
(
Z in
H,v(λ0)Z

out
Ti,ui

(λ0), Z
out
H,v(λ0)ZTi

(λ0)
)
.

(5.8)
Note that (5.8) describes a simple recurrence to compute Z in

T,v(λ0) and Zout
T,v(λ0)

in time linear in the number of vertices of T .
Finally, we remark that Zout

T,v(λ0) ̸= 0 since λ0 /∈ E∆ by assumption.

We can now prove the desired inclusion of the density-locus in the #P-locus.

Theorem 5.6.6. For any integer ∆ ≥ 3 the density-locus D∆ is contained in the
#P-locus #P∆.

Proof. We will show that for any λ0 ∈ (D∆∩Q[i])\E∆ the computational problem
#Hard-CoreNorm(λ0,∆) is #P-hard. Since D1

∆ is an open set and E∆ is finite,
this implies the theorem.

This in fact follows directly from the work of [BGGŠ20]. Let us briefly indicate
why. In [BGGŠ20, Section 6] the authors show that a polynomial time algorithm
for #Hard-CoreNorm(λ0,∆) combined with the statement of Corollary 5.6.5 for
λ0 yields an algorithm that on input of a graph G of maximum degree at most ∆
exactly computes ZG(1), the number of independent sets of G, in polynomial time
in the number of vertices of G. (The algorithm is obtained by cleverly utilizing
Corollary 5.6.5 for suitable choices of P and gluing combinations of the obtained
trees to G and applying the assumed algorithm for #Hard-CoreNorm(λ0,∆) to
the resulting graph.) Since determining ZG(1) is a known #P-complete problem,
this implies that #Hard-CoreNorm(λ0,∆) is #P-hard.
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We note that our result does not allow us to say anything about the complexity
of #Hard-CoreNorm(λ0,∆) for λ0 ∈ ∂(D∆)∩Q[i]. For example, for λ0 ∈ ∂(D∆)∩
Q≤0 it follows from [BGGŠ20] that the problem #Hard-CoreNorm(λ,∆) is #P-
hard. For λ ∈ Q such that λ ≥ λc(∆) := (∆−1)∆−1)

(∆−2)∆ we know from [BGGŠ20] that
λ ∈ ∂(D∆), while the complexity of #Hard-CoreNorm(λc(∆),∆) is unknown.
For λ > λc(∆) the problem Hard-CoreNorm(λ,∆) is only known to be NP-
hard [SS14], and unlikely to be #P-hard cf.[BGGŠ20].

5.6.1 Proofs of Lemma 5.6.1 and Lemma 5.6.2
The next lemma directly implies Lemma 5.6.1.

Lemma 5.6.7. Given z0 ∈ C \ {−1, 0}, a dense subset D of C∗ and a non-
empty open subset A of the unit disk D then there exists a finite set of tuples
{(µi, χi)}Mi=1 ⊂ D × D and an arbitrarily small open disk U ⊆ C containing z0
such that the maps gi := fµi ◦ fχi are loxodromic Möbius transformations and

1. the attracting fixed point zi of gi lies in U for all i,

2. U ⊆ ∪Mi=1gi(U),

3. g′i(z) ∈ A for all i and all z ∈ U .

Proof. We denote gµ,χ = fµ ◦ fχ throughout this proof. Note gµ,χ is a Möbius
transformation for µ, χ ̸= 0. Without loss of generality assume that A is bounded
away from 0. Take α ∈ A such that α ̸= z0

z0+1 . Note that χ0 = (z0+1)2α
z0−(z0+1)α and

µ0 = z0(z0+χ0+1)
z0+1 are nonzero and well-defined as z0 ̸= −1, 0 and α ̸= z0

z0+1 , 0.
Furthermore we have gµ0,χ0

(z0) = z0 and g′µ0,χ0
(z0) = α.

Define F : (C∗)2×C → Ĉ as F (µ, χ, z) = gµ,χ(z)−z. Now as ∂F
∂z (µ0, χ0, z0) =

α − 1 ̸= 0, the implicit function theorem gives an open neighborhood W of
(µ0, χ0) and a holomorphic function h : W → C with h(µ0, χ0) = z0 and
F (µ, χ, h(µ, χ)) = 0 for all (µ, χ) ∈ W . As h is a non-constant holomorphic
map, it is an open map and so h(W ) is an open neighborhood of z0.

Let B ⊆ A be an open set in C with α ∈ B and B ⊆ A. Denote H(µ, χ, z) =
∂gµ,χ

∂z (z) = µχ
(1+z+χ)2 , note that H is continuous as a function on C3 \ {(µ, χ, z) :

χ+z+1 = 0}. It follows there is an open neighborhood C of z0 such that we have
H(µ0, ξ0, z) ∈ B for all z ∈ C. We have {(µ0, χ0)} × C ⊆ H−1(B) ⊆ H−1(A).
As H−1(A) is an open subset of C3 \ {(µ, χ, z) : χ+ z+1 = 0} containing the set
{(µ0, χ0)}×C, by a compactness argument it follows that H−1(A) contains a set
of the form L × C, for some open neighborhood L of the point (µ0, χ0). Hence
the set Y := L∩W ∩ h−1(C) is an open neighborhood of (µ0, χ0) and so h(Y ) is
an open neighborhood of z0.
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Take U ⊂ h(Y ) an open disk containing z0, such that U ⊂ h(Y ). Note that
we can take U arbitrarily small. By construction, we have for all (µ, χ) ∈ Y that
g′µ,χ(z) ∈ A for all z ∈ U . Furthermore, we have F (µ, χ, h(µ, χ)) = 0, so h(µ, χ)
is the attracting fixed point of gµ,χ. Note D ×D is dense in h−1(U), hence the
fixed points of gµ,χ for (µ, χ) ∈ h−1(U) ∩ (D × D) lie dense in U . There is a
uniform lower bound on the diameters of the disks gµ,χ(U) for (µ, χ) ∈ h−1(U),
because g′µ,χ(z) ∈ A for all z ∈ U and A is bounded away from 0. Therefore{

gµ,χ(U) : (µ, χ) ∈ h−1(U) ∩ (D ×D)
}

is an open cover of U . There is a finite set of tuples {(µi, χi)}Mi=1 ⊆ h−1(U) ∩
(D ×D) such that U ⊆ ∪Mi=1gµi,χi(U) by compactness of U . We thus found the
desired set of tuples in D ×D and the open disk U containing z0.

We next focus on proving Lemma 5.6.2. To this end let λ0 ∈ C \ R and let
({(G1, v1), . . . , (Gm, vm), (G1, v1), . . . , (GM , vM )}, U) be a fast implementer for
λ0. We fix these throughout this section. We denote the repelling fixed point
of fλ0

by z0 and we denote for i = 1, . . . ,M , µi := RGi,vi , χi := RGi,vi
and

gi := fµi
◦ fχi

. We distinguish between the case that P is close to the attracting
fixed point of fλ0 and the case that it is not. In the first case the algorithm is
much simpler.

Let a be the attracting fixed point of fλ0
. Because fλ0

(∞) = 0 we observe
that ∞ is not a fixed point and thus a ∈ C. Suppose that |P − a| ≤ ε/2.
Choose δ > 0 for which there is a constant η < 1 such that |f ′λ0

(z)| < η for all
z ∈ B(a, δ). The point 0 is not a fixed point of fλ0 because fλ0(0) = λ0 ̸= 0 and
thus fnλ0

(0) converges to a as n→ ∞. It follows that there is a constant N0 such
that fN0

λ0
(0) ∈ B(a, δ). Note that the value of N0 does not depend on the input

parameters. Now let Nε = max {⌈logη( ε2δ )⌉, 0}+1. Then for any w ∈ B(a, δ) we
have

|fNε

λ0
(w)− a| < ηNε |w − a| < ε/2

and thus for K = N0 +Nε we have

|fKλ0
(0)− P | ≤ |fNε

λ0
(fNλ0

(0))− a|+ |a− P | < ε/2 + ε/2 < ε.

Because K = O(log(1/ε)) this describes the algorithm when |P − a| ≤ ε/2.
The case that |P−a| > ε/2 is more involved and we will describe the algorithm

as a sequence of simpler subroutines. Just as in Lemma 5.6.7 let zi denote the
attracting fixed point of gi. We will show first show that, given a parameter Q
that is at most distance ε away from some zi, we only have to apply gi to the
starting value 0 an O(log(1/ε)) number of times to get ε close to Q. Morally,
this should be true because after a fixed number of steps the orbit of 0 converges
exponentially quickly to zi and because zi is close to Q the orbit should also get
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close to Q. The only way that this reasoning could be incorrect is if zi and Q
are almost ε apart and the orbit of 0 converges to zi from the wrong direction.
An example of this is given by the red orbit in Figure 5.6. This is the reason
that we required g′i(zi) to have an argument close to 2π/3 in which case the
above reasoning is correct as the green orbit in Figure 5.6 demonstrates. In the
following proof most time is spent on making this precise.

Q

ε

zi

Figure 5.6: An example of two orbits with the same initial value converging to
zi under iteration of two different maps. For the red orbit the derivative at zi is
real. For the green orbit the derivative at zi has the same magnitude, while its
argument is a little less than 2π/3.

Lemma 5.6.8. There exists an algorithm that, given ε > 0, Q ∈ C and i ∈
{1, . . . ,M} such that |Q− zi| < ε, yields an integer K such that |gKi (0)−Q| < ε,
where K = O(log(1/ε)). If λ0 ∈ Q[i] and the input parameters Q, ε lie in Q[i]
then the algorithm runs in poly(size(Q, ε)) time.

Proof. Let δ be such that B(zi, δ) ⊆ U and let ε′ = min{ε/2, δ}. Note that
gi(0) = µi

1+χi
̸= 0 and thus 0 is not a fixed point of gi. Because zi is the

attracting fixed point of gi we can find (in a similar way as described above) a
positive integer K̃ that is O(log(1/ε′)) = O(log(1/ε)) such that |gK̃i (0)−zi| < ε′.
If |Q− zi| ≤ ε/2 we are done because then

|gK̃i (0)−Q| ≤ |gK̃i (0)− zi|+ |Q− zi| < ε′ + ε/2 ≤ ε.

So from now on we assume that |Q− zi| > ε/2. Define the following sector S of
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B(zi, ε
′)

S = {zi + ξ ·
(
Q− zi
|Q− zi|

)
: |ξ| < ε′,−π/3 ≤ arg(ξ) ≤ π/3}.

We claim that S ⊆ B(Q, ε). To show this note that∣∣∣∣Q−
[
zi + ξ ·

(
Q− zi
|Q− zi|

)]∣∣∣∣ = |Q− zi| ·
∣∣∣∣1− ξ

|Q− zi|

∣∣∣∣ < ε ·
∣∣∣∣1− ξ

|Q− zi|

∣∣∣∣ .
If ξ is as in the definition of S the complex number ξ/|Q− zi| has its argument
between −π/3 and π/3. Furthermore, because |ξ| < ε/2 and |Q − zi| > ε/2, its
norm is bounded above by 1. It follows that the norm of 1− ξ/|Q− zi| is at most
1. Indeed, because |1− reiϕ|2 = 1 + r2 − 2r cos(ϕ), the statement |1− reiϕ| ≤ 1
is equivalent to r = 0 or r ≤ 2 cos(ϕ), and the latter is satisfied for all 0 ≤ r ≤ 1
and −π/3 ≤ ϕ ≤ π/3. The claim follows.

We claim that for w ∈ B(zi, ε
′) the intersection of {w, gi(w), g2i (w), g3i (w)}

with S is not empty. Note that because ε′ ≤ δ we have that B(zi, ε
′) ⊆ U and

thus g′(w) ∈ A for every w ∈ B(zi, ε
′). It follows that applying gi to w has the

effect of rotating around zi with an angle strictly between 2π/3− 0.01 and 2π/3
and contracting towards zi. Therefore applying gi to w three times has the effect
of rotating w a little less than a full circle around zi, with steps that are strictly
less than 2π/3 radians. Because the internal angle of the sector S is 2π/3 the
orbit w, gi(w), g2i (w), g3i (w) cannot miss S.

To summarize the algorithm, define ε′ and determine K̃ such that gK̃i (0) ∈
B(zi, ε

′). Then determine a j ∈ {0, 1, 2, 3} such that |gK̃+j
i (0) − Q| < ε. We

have shown that there exists at least one such j. The output of the algorithm is
K = K̃ + j.

We shall now describe an algorithm that does the following. Given a disk D
of radius ε inside U , it returns an index i, a disk D̃ of radius at least ε containing
zi and a sequence of indices j1, . . . , jK such that (gj1 ◦ · · · ◦ gjK−1

)(D̃) ⊆ D. To
describe the computational complexity of this algorithm, we need a finite way
to represent disks in the complex plane. A pleasant way for our purposes is to
represent an open disk D by three distinct points P1, P2, P3 on its boundary. This
is an unambiguous way to represent a disk because three different points on a
circle uniquely determine that circle. If P1, P2, P3 ∈ Q[i] we say that the disk D
is rational and that size(D) = size(P1) + size(P2) + size(P3).

Recall that a Möbius transformation maps generalized circles (circles and
straight lines) to generalized circles. In what follows, we will apply Möbius trans-
formations to disks in the complex plane. We shall make sure that the image of
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the disks involved is always again a disk in the complex plane and not the com-
plement of a disk or a half-plane as it could in general be. Therefore, if D is a
disk represented by P1, P2 and P3 and g is one of the Möbius transformations,
then g(D) will be a disk represented by g(P1), g(P2) and g(P3). Note that if D is
rational and g has rational coefficients then g(D) is a again rational. The Möbius
transformations that we will apply come from a fixed finite set and thus there is
a fixed constant C for which size(g(D)) ≤ C · size(D).

Let us denote Pj = xj + iyj for j ∈ {1, 2, 3}. The center cD = x + yi of the
disk D is known as the circumcenter of the triangle with vertices P1, P2 and P3.
The coordinates of cD can be calculated using the well known and easy to derive
formulas

x =
(x21 + y21)(y2 − y3) + (x22 + y22)(y3 − y1) + (x23 + y23)(y1 − y2)

2(x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))
,

y =
(x21 + y21)(x3 − x2) + (x22 + y22)(x1 − x3) + (x23 + y23)(x2 − x1)

2(x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))
.

We note that if D is rational, then cD is rational and can be computed in time
linear in size(D). We can also decide whether a given point Q ∈ Q[i] lies in a
given rational disk D in time linear in size(Q) and size(D).

We next need a lemma concerning a geometric construction involving disks.

AB

cAcB

S1

S2

Figure 5.7: -

Lemma 5.6.9. There exists an algorithm that, given two disks A,B in the com-
plex plane for which the center of A is contained in B and B is not contained
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Pi+1

Pi

Pi+Pi+1

2

cDcA cA

Q1

Q2

Pi
cD

Figure 5.8: -

in A, returns a disk D contained in both A and B, such that the area of D is
at least 1/128 times that of A. Furthermore, if A and B are rational then D is
rational and both the running time of the algorithm and size(D) are bounded by
a fixed constant times size(A,B).

Proof. For a disk D we denote its center by cD and its radius by rD and recall
that if D is rational then cD is rational and can be computed efficiently. For two
distinct points P,Q on the boundary of D we denote the closed counterclockwise
arc from P to Q by ArcD (P,Q) and we denote the sector given by the convex hull
of ArcD (P,Q) and cD by SecD (P,Q). We note that the internal angle of both
ArcD (P,Q) and SecD (P,Q) is given by the arclength of ArcD (P,Q) divided by
rD. We claim that either a sector of A whose internal angle is greater than 2π/3
is contained in the closure of B or a sector of B whose internal angle is greater
than 2π/3 is contained in the closure of A.

If the boundaries of A and B either do not intersect or intersect in one
point then A is contained in B and the claim is obvious. Otherwise let S1, S2

be the two intersection points such that ArcA (S1, S2) is contained in B and
thus ArcB (S2, S1) is contained in A, see Figure 5.7. Consider the quadrilateral
□cBS1cAS2 and suppose towards contradiction that the internal angles at both
cA and cB are at most 2π/3, then the sum of the internal angles at S1 and S2

is at least 2π/3 and since they are equal by symmetry the internal angle at S1

is at least π/3. By then considering the triangle △cBS1cA it should follow that
|cB−cA| ≥ |cB−S1| = rB , which contradicts the assumption that cA is contained
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in B. We therefore find that either the angle ∠S2cBS1 or ∠S2cAS1 is at least
2π/3. If the latter is the case then both ArcA (S1, S2) and cA are contained in
the closure of B and thus the same is true for SecA (S1, S2). If the angle ∠S2cAS1

is less than 2π/3, then ∠S2cBS1 is at least 2π/3. It follows that ∠cAcBS1 is the
largest internal angle of the triangle △cBS1cA and thus |cA−cB | < |cA−S1| = rA,
from which it follows that cB is contained in A. So in this case SecB (S2, S1) is
contained in A.

For the algorithm we do not need to know whether a large sector of B is
contained in A or vice versa. Assume for simplicity that a sector S of A with
internal angle at least 2π/3 is contained in B. Take S to be as large as possible.
In the case that A is contained in B we let S = A. Let P0 denote one of the given
(rational) points on the boundary of A. Now for i = 0, 1, 2 inductively define
Pi+1 as Pi rotated around cA with an angle of π/2. Calculating these points is
computationally easy because Pi+1 = cA + i(Pi − cA). Now one of the following
is guaranteed to be the case.

1. Two consecutive points Pi and Pi+1 are contained in S.

2. There is a unique index i such that Pi ∈ S.

Determining which of the two cases is true is easy since checking membership
of S is equivalent to checking membership of B. In the first case we note that
SecA (Pi, Pi+1) is contained in both the closures of A and B. Now let R =
(Pi + Pi+1)/2 and cD = (cA + 3R)/4 and let D be the disk with center cD and
the point R on the boundary, see Figure 5.8. It can be checked that D is now
contained in SecA (Pi, Pi+1) and its area is 1/32 that of A.

In the second case note that the arc ArcA (Q1, Q2) containing Pi such that
the internal angle of both ArcA (Q1, Pi) and ArcA (Pi, Q2) is π/6 contained in
S, otherwise, since the internal angle of S is at least 2π/3, S has to contain two
consecutive points Pi and Pi+1. Now let D be the disk with center (cA + 3Pi)/4
containing Pi on its boundary, see Figure 5.8. It can be checked that D is
contained in SecA (Q1, Q2) and its area is 1/16 that of A.

The algorithm above is only guaranteed to successfully return a disk contained
in both A and B if a large sector of A is contained in B. Therefore we have to
run the algorithm described above (and let it fail if neither of the two described
cases is true) and run the same algorithm with the roles of A and B reversed. If
both instances of the algorithm return a disk, say D1 and D2, then at least one
of them is contained in both A and B but the other one might not be. So in this
case we have to run one final check to see which one of the two disks is indeed
contained in both A and B (which is computationally easy). If they both are we
can return either D1 or D2.

In conclusion we obtain a disk D contained in both A and B that is either at
least 1/32 of the area of A or 1/32 of the area of B. Because the area of B is at
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least 1/4 that of A (otherwise rB < rA/2 and cA ∈ B would imply B ⊆ A), we
can conclude that the area of D is at least (1/4) · (1/32) = 1/128 that of A.

Lemma 5.6.10. There exists an algorithm that, given a disk D1 ⊆ U with
radius ε, returns an index i ∈ {1, . . . ,M}, a sequence of indices j1, . . . , jK ∈
{1, . . . ,M} and a disk DK such that zi ∈ DK , the radius of DK is at least ε
and (gj1 ◦ · · · ◦ gjK−1

)(DK) ⊆ D1. Furthermore, K = O(log(1/ε)). If λ0 ∈ Q[i]
and D1 and ε are both rational then DK is rational and the algorithm runs in
poly(size(D1, ε)) time.

Proof. For every index i let Ui = gi(U). Recall that we took U as a rational disk.
Because the derivative of gi is bounded on U , the image Ui is again a disk in
the complex plane. If λ0 is rational, the coefficients of gi are rational and then
Ui is also rational. The point zi is fixed for gi and contained in U , therefore,
also contained in Ui. We describe a procedure to generate a sequence of disks
{Dn}n≥1, starting with the given disk D1. The sequence is defined in such a way
such that Dn ⊆ U for all n, which is, by assumption, the case for D1.

Suppose we have arrived at disk Dn ⊆ U . Check if there is any index i ∈
{1, . . . ,M} such that zi ∈ Dn, if there is stop the procedure and let K = n.
Otherwise, let mn be the center of Dn and determine an index jn ∈ {1, . . . ,M}
such that mn ∈ Ujn . Such an index must exist because mn ∈ U and the disks
U1, . . . , UM cover U . Because the center of Dn lies in Ujn but Ujn is not contained
in Dn (zjn does not lie in Dn) we can use Lemma 5.6.9 to generate a disk D̃n that
is contained in both Dn and Ujn whose area is at least 1/128 times that of Dn and
which can be assumed to be rational if Dn is. Now we define Dn+1 = g−1

jn
(D̃n).

Because D̃n ⊆ Ujn the disk Dn+1 lies in U and because D̃n ⊆ Dn the disk
gjn(Dn+1) lies in Dn. Furthermore, by the properties of the fast implementer,
g−1
jn

is expanding the norm on Ujn with a factor at least 16, the area of Dn+1 is
at least 162 ·(1/128) = 2 times that of Dn. This means that the area of Dn grows
exponentially with n and thus, because the area of U is fixed, the procedure will
terminate after K = O(log(1/ε)) steps. Note that indeed zi ∈ DK for some i,
the radius of DK is at least that of D1 and (gj1 ◦ · · · ◦ jK−1)(DK) ⊆ D1.

Recall that we had defined a and z0 to be the attracting and repelling fixed
point of fλ0 respectively. We have already described the algorithm in Lemma 5.6.2
when P is near a. What follows is the final lemma needed to describe the algo-
rithm when P is not near a.

Lemma 5.6.11. There exists a fixed positive constant c and an algorithm that,
given P ∈ C and ε > 0 such that |P − a| ≥ ε/2, yields a disk D ⊆ U and a
positive integer K with fKλ0

(D) ⊆ B(P, ε), such that the radius of D is at least
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c · min (ε, ε/|P |2) and K = O(log(1/ε)). If both λ0 and the input parameters
are in Q[i] then D is also rational and both size(D) and the running time of the
algorithm is polynomial in size(P, ε).

Proof. Let V be a compact neighborhood of a such that |f ′λ0
(z)| < ξ < 1 for

some constant ξ for all z ∈ V . We first claim that there is an integer N such
that the complement of fNλ0

(U) is contained in V . To show this let Un = fnλ0
(U).

Recall that we assumed that U = U0 ⊆ U1 and thus inductively Un ⊆ Un+1.
Under iteration of f−1

λ0
every initial point that is not a converges to z0 and thus

eventually lands in U . Therefore,

∞⋃
n=1

Un = Ĉ \ {a}.

For n large enough the point ∞ is contained in Un and from then on the sequence
(Un)

c consists of nested disks, containing a, whose radii must necessarily converge
to 0, proving that there is an N such that (UN )c is contained in V . Note that N
does not depend on the input parameters. Let D0 be the interior of (UN )c, this is
a rational disk whose size also does not depend on the input, and letDi = f iλ0

(D0)
for i ∈ {1, 2, 3}. Let δ > 0 be a constant smaller than the minimum distance
between points on the boundary of Di and Di−1. From now on we will assume
that ε < δ. Finally let h = f

−(N+3)
λ0

.
If P lies outside D2, then let D̃ be the disk of radius ε represented by P +

ε, P+iε and P−ε. Note that D̃ lies outside D3 and thus D = h(D̃) ⊂ U . Because
the derivative of a Möbius transformation of the form z 7→ (az + b)/(cz + d) is
z 7→ ad−bc

(cz+d)2 there is a constant c1 such that the radius of D is at least c1 ·
min (ε, ε/|P |2). In this case D and K = N + 3 are the output of the algorithm.

If P lies inside D2 we determine N0 such that for PN0 := f−N0

λ (P ) we have
PN0 ∈ D1 and PN0 ̸∈ D2. Because |P − a| ≥ ε/2 and D1 ⊂ V we find that
N0 = O(log(1/ε)). Let D̃ be the disk of radius ε represented by PN0

+ε, PN0
+ iε

and PN0
− ε. Note that again D̃ lies outside D3 and thus D = h(D̃) ⊆ U .

Furthermore, because D̃ ⊂ D0 ⊂ V and fλ0
is attracting on V it follows that

fN0

λ0
(D̃) ⊆ B(P, ε). Finally, if we let c2 be the minimum of |h′(z)| for z ∈ D0, we

find that the radius of D is at least c2 · ε. So in this case the output is the disk
D together with K = N0 +N + 3.

We are now ready to complete the proof of Lemma 5.6.2.

Proof of Lemma 5.6.2. Recall we had defined a to be the attracting fixed point
of fλ0

and that we already described the algorithm in the case that |P −a| < ε/2,
therefore we assume that |P − a| ≥ ε/2.
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It follows from Lemma 5.6.11 that we can generate a disk D1 ⊆ U of ra-
dius r = O(min {ε, ε/|P |2}) and whose size is polynomial in size(P, ε) together
with a positive integer K1 that is O(log(1/ε)) such that fK1

λ0
(D1) is contained in

B(P, ε). From Lemma 5.6.10 it follows that we can find an index i ∈ {1, . . . ,M},
a sequence of indices j1, . . . , jK2

and a disk D2 such that zi ∈ D2, the radius of
D2 is at least r, its size is polynomial in size(r,D1), which is again polynomial in
size(ε, P ), and such that

(gj1 ◦ · · · ◦ gjK2
)(D2) ⊆ D1.

Furthermore K2 = O(log(1/r)) = O(max (log(1/ε), log(|P |/ε))). Finally let Q
be the center of D2 and note that size(Q) is polynomial in size(D2). Then,
because |Q−zi| < r, it follows from Lemma 5.6.8 that we can generate a K3 such
that gK3

i (0) ∈ D2, where K3 = O(log(1/r)) = O(max (log(1/ε), log(|P |/ε))).
Concluding, we find that

(fK1

λ0
◦ gj1 ◦ · · · ◦ gjK2

◦ ◦gK3
i )(0) ∈ B(P, ε).

Furthermore, adding the running times of the individual algorithms, we find that
the final algorithm runs in poly(size(P, ε)) time.

5.7 Activity and zeros for Cayley trees

For fixed ∆ ≥ 2 notions such as the activity-locus and the zero sets can be
considered for subcollections of G∆. Particularly interesting subcollections from
a physical viewpoint are given by subgraphs of regular lattices. However, it is
notoriously difficult to rigorously deduce the properties for such collections.

A much simpler collection of rooted graphs in G∆ is given by finite Cayley
trees, and we will describe the properties of those in this section. The trees are
uniquely determined by the conditions that every leaf has fixed distance n to the
root vertex v, and every non-leaf has down-degree d = ∆ − 1. The root vertex
therefore has degree d, while every other non-leaf has degree ∆. We denote the
Cayley tree of depth n by Tn, and its root by vn.

As an immediate consequence of Lemma 5.2.4 we obtain

RTn,vn(λ) = fλ,d(RTn−1,vn−1
(λ)),

where fλ,d(z) = λ/(1+z)d. Since the ratio of a single point is given by λ = fλ,d(0),
it follows inductively that

RTn,vn(λ) = fn+1
λ,d (0).

In fact, since
ZoutTn,vn(λ) =

(
ZTn−1,vn−1(λ)

)d
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and
ZinTn,vn(λ) = λ

(
ZoutTn−1,vn−1

(λ)
)d

it follows by induction on n that for λ ∈ C \ {0} the polynomials ZinTn,vn
(λ)

and ZoutTn,vn
(λ) cannot vanish simultaneously. For λ ∈ C \ {0} it follows that

ZTn(λ) = 0 if and only if RTn,vn(λ) = fnλ,d(0) = −1.
In what follows we deduce properties of the zeros of ZTn

(λ) and the activity-
locus of fnλ,d(0) from well known results in the field of holomorphic dynamical
systems, occasionally adapting the proofs to our setting. We refer the reader to
the standard references [Mil06, CG93].

Observe that fλ,d(−1) = ∞ and fλ,d(∞) = 0, and f ′λ,d(−1) = f ′λ,d(∞) = 0.
Thus if fnλ0,d

(0) = −1 for some λ0 and n, then 0 is an attracting periodic cycle of
period n + 2. This cycle is stable under perturbations of λ0, i.e. the attracting
cycle persists and in fact varies holomorphically for nearby parameters λ ∼ λ0
by the implicit function theorem.

Recall that every attracting cycle attracts the orbit of a critical point. But
fλ,d has only one critical orbit: the orbit of −1, ∞ and 0. Thus whenever fλ,d
has an attracting cycle, the orbit fnλ,d(0) converges to the attracting cycle. In
fact, the convergence is uniform in a neighborhood of the parameter λ0, hence λ0
cannot lie in the activity-locus. The situation is therefore fundamentally different
from the setting where the whole family of graphs G∆ is considered, as there λ0
must lie in the activity-locus. The following however does hold:

Proposition 5.7.1. The activity-locus of the family {Tn, vn} equals the collection
of accumulation points of the zeros of the collection {ZTn

}.

Proof. If there are no zeros in a neighborhood of some λ0, then the family
{RTn,vn} avoids the values 0,−1 and ∞, and is normal by Montel’s Theorem.

Suppose on the other hand that λ0 is an accumulation point of zeros λ1, λ2, . . ..
Let n1, n2, . . . be the minimal integers for which fni(λi) = −1. Since for fixed n
the zeros of ZTn

are isolated, we may assume that ni → ∞ and (ni) is strictly
increasing.

When for a parameter λ the rational function f has an attracting periodic
cycle, the unique critical orbit {fn(0)}n≥1 must converge to this periodic orbit.
Since attracting periodic cycles are stable, i.e. they persist under small changes
of the parameter λ, such parameters lie in a passivity component, i.e., a maximal
connected open subset where the family {λ 7→ fn(0)} is normal. The passivity
component agrees exactly with the connected component where the attracting
periodic cycle persists, since by [MnSS83] the parameter must become active
when the periodic cycle becomes neutral.

Thus, λi lies in a connected component of the open set where the family
{λ 7→ fn(0)} is normal, and associated to this component is the unique period
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ni + 2. Since the sequence {ni}i≥1 is strictly increasing, the parameters λi must
all lie in distinct connected components. It follows that the limit parameter λ0
cannot lie in an open component where the family is normal, and therefore λ0
must be an active parameter.

The activity-locus for Cayley trees of down degree d = 2, 3 and 4 is illustrated
in Figure 5.9. Each of these diagrams represents the spherical derivative of the
function λ 7→ f120λ,d (0).

It follows from Proposition 5.7.1 above, plus the observation that zeros do not
lie in the activity-locus for the Cayley tree setting, that the Cayley tree activity-
locus never has interior. On the other hand, it follows from the universality of the
Mandelbrot set, a result due to McMullen [McM00], that the activity-locus must
contain a quasiconformal image of the Mandelbrot set of some degree. Therefore
by Shishikura’s result [Shi98] the Hausdorff dimension of the activity-locus is
equal to 2 for any d ≥ 2.

It follows from the proof of Proposition 5.7.1 that the complement of the
activity-locus consists of infinitely many connected components. Each λ for which
fλ,d has an attracting periodic cycle lies in such a passive component, a so-
called hyperbolic component associated to the period k. Whether all connected
components are hyperbolic is an open question, which is conjectured to hold for
quadratic polynomials.

For any down-degree d there are two special connected components that can
easily be identified. The unbounded component is always a hyperbolic component
of period 2. For degree 2 this is the complement of the closed disk of radius 4.
For down-degrees 3 and 4 the boundary has respectively 1 and 2 singular points.

For each down-degree d = ∆ − 1 there is a single hyperbolic component of
period 1, which contains of course the parameter λ = 0 and equals the cardioid
Λ∆.

Apart from these two special hyperbolic components, any hyperbolic compo-
nent contains a unique zero of the partition function, i.e. a unique parameter λ
for which fnλ,d(λ) = −1 for some n ∈ N. Since f2λ,d(−1) = 0 and f−2

λ,d(0) = {−1},
these are exactly the parameters λ ∈ C \ {0} for which the unique critical orbit
{f iλ,d(0)}i∈N is periodic, i.e. for which fλ,d is super-attracting.

For the family pc(z) = z2+ c the fact that every hyperbolic component of the
Mandelbrot set contains a unique super-attracting parameter is a consequence of
the Multiplier Theorem, due to Douady-Hubbard and Sullivan, see [Dou83].

Let us recall this fundamental result in the field. Let H be a hyperbolic
component of the Mandelbrot set, say of period n. For every parameter c ∈ H
there exist an attracting periodic cycle a0, a1, . . . , an = a0. The multiplier h(c) =
(fnc )

′(a0) is independent from the choice of an, and gives a holomorphic map
from H to the unit disk.
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down-degree 2 down-degree 4

down-degree 3

Figure 5.9: The activity-locus of Cayley trees for down-degrees 2, 3 and 4. For
each pixel the spherical derivative of the occupation ratio is computed for the
Cayley tree of depth 120. Pixels for which this derivative is sufficiently large are
depicted in white, suggesting that the corresponding parameter λ lies approxi-
mately on the activity locus.
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Theorem 5.7.2 (Multiplier Theorem). For every hyperbolic component H the
map c 7→ h(c) gives a conformal bijection from H to the unit disk.

The proof of the Multiplier Theorem can be found in [CG93], Theorem 2.1
on page 133, and can be applied almost directly to our setting. We present a
high-level discussion to outline how the proof adapts to our setting.

Let H be a hyperbolic component of period at least 3. One easily sees that
h(λ), the multiplier of the attracting periodic cycle of fλ,d is a holomorphic and
surjective map from the hyperbolic component H to the unit disk D, hence is
a branched covering. Let Z be the set of super-attracting parameters in H, i.e.
Z = h−1(0). If it can be shown that h : H \ Z → D \ {0} is a covering map, it
follows from the Riemann-Hurwitz Theorem that card(Z) = 1.

Thus, it needs to be shown that h is locally invertible near parameters λ0 ∈
H \ Z. Write η0 = h(λ0) ∈ D, and consider values of η near η0. Following the
proof of the Multiplier Theorem one applies quasiconformal surgery by modifying
the ellipse field near the attracting periodic cycle in order to obtain attracting
periodic cycles with multipliers η. Using the dynamics the ellipse field can be
extended to the full basin of the attracting cycle, obtaining an invariant ellipse
field that is invariant under the map fλ0,d. The ellipse field corresponds to a
Beltrami coefficient, which can be extended to the entire Riemann sphere by
setting it equal to 0 outside of the basin of attraction. The Measurable Riemann
Mapping Theorem gives a holomorphic family of quasiconformal maps φη, with
φη0 the identity. By composing with suitable Möbius transformations we can
guarantee that the points −1,∞ and 0 are fixed under all φη.

Since each ellipse field is invariant under fλ0,d, conjugating fλ,d by φη yields a
holomorphic family of self-maps of the Riemann sphere gη,d , which are necessarily
rational functions of the same degree d. In fact, since each φη fixes the points
−1,∞ and 0, each rational function fη,d must send −1 to ∞ and ∞ to 0, each
with local degree d. It follows that the rational function gη,d must be of the form

gη,d(z) =
λ(η)

(1 + z)d
.

It follows that λ(η) gives a local inverse of the multiplier function h, completing
this step of the proof. This step guarantees that there exists a unique zero in
each hyperbolic component of period at least 3, which equals the super-attracting
center of the hyperbolic component. The proof of the Multiplier Theorem in our
setting can be concluded by analyzing the local degree near the center. We have
therefore obtained the following description of the zeros of the Cayley trees:

Corollary 5.7.3. Every λ ∈ C for which ZTn
(λ) = 0 for some n ∈ N is the

center of a hyperbolic component of the complement of the activity locus. On
the other hand: apart from the two special hyperbolic components, the unbounded
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component and the component containing 0, for each center λ of a hyperbolic
component there exists an n ∈ N for which ZTn(λ) = 0. As a consequence zero-
parameters are isolated.





CHAPTER

SIX

ON BOUNDEDNESS OF ZEROS OF THE
INDEPENDENCE POLYNOMIAL OF TORI

6.1 Introduction

6.1.1 Main results
The independence polynomial of a finite simple graph G = (V,E) is defined by

ZG(λ) =
∑
I

λ|I|,

where the summation runs over all independent subsets I ⊆ V . Besides its
relevance in graph theory, the independence polynomial is studied extensively in
the statistical physics literature, where it appears as the partition function of
the hard-core model, and in theoretical computer science, where one is primarily
interested in the (non-)existence of efficient algorithms for the computation or
approximation of ZG.

From the physical viewpoint it is particularly interesting to consider sequences
of graphs Gn that converge to a regular lattice. We will consider the integer
lattice, and focus on sequences of d-dimensional tori converging to Zd for d ≥ 2,
i.e. tori whose minimal cycle lengths tend to infinity. Write Zn for Z/nZ. A
d-dimensional torus with side lengths ℓ1, . . . , ℓd is the Cartesian product Zℓ1 ×
· · · × Zℓd . For technical reasons explained below we only consider tori for which
all side lengths are even and call those tori even. The main result of this paper
is the following:



124 On boundedness of zeros of the independence polynomial of tori

Main Theorem. Let F be a family of even d-dimensional tori. If F is balanced,
then the zeros of the independence polynomials {ZT : T ∈ F} are uniformly
bounded. If F is highly unbalanced, then the zeros are not uniformly bounded.

Here we say that a family of d-dimensional tori F is balanced if there exists
a C > 0 such that for all T ∈ F we have that ℓd ≤ exp(C · ℓ1), where ℓ1 ≤
· · · ≤ ℓd denote the side lengths of T . On the other hand we say that the
family is highly unbalanced if there is no uniform constant C > 0 such that
ℓd ≤ exp(C · (ℓ1 · · · ℓd−1)

3
) for all T ∈ F . Intuitively, for highly unbalanced tori

the longest side length dominates to the extend that they behave more like a
one-dimensional object than a d-dimensional object. In the statistical physics
literature various other properties of models on unbalanced volumes are studied,
see for example [BI92] and [Bea09].

We remark that a family that is not balanced is not necessarily highly unbal-
anced, hence the addition of the adjective highly. It is not clear to the authors
that either estimate is sharp, and it would be interesting if one or both of the re-
sults could be sharpened in order to obtain a conclusive statement for all families
of even tori.

6.1.2 Motivation from statistical physics
Understanding the location and distribution of zeros of the independence poly-
nomial plays a prominent role in statistical physics. For a sequence of graphs
Gn = (Vn, En) and for λ ≥ 0 the free energy per site is defined by

ρ(λ) := lim
n→∞

logZGn(λ)

|Vn|
,

whenever this limit exists. It was shown by Yang and Lee [YL52] that the free
energy per site exists for induced subgraphs Gn of Zd that converge in the sense
of van Hove, i.e. sequences of graphs for which

|∂Vn|
|Vn|

→ 0.

It turns out that the limit also exists and agrees for many other sequences of
graphs, including cylinders, i.e. products of paths and cycles, and tori, i.e. prod-
ucts of cycles, as long as the length of the shortest path or cycle diverges. This
motivates the notion of sequences of tori converging to Zd. However, we empha-
size that the convergence above occurs specifically for real parameters λ ≥ 0.

Independence polynomials have positive coefficients and their zeros therefore
never lie on the positive real axis. The location of the complex zeros is however
closely related to the behavior of the normalized limit ρ(λ). Let Gn be again
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a sequence of graphs converging to Zd in the sense discussed above. Yang and
Lee [YL52] showed that if there exists a zero-free neighborhood of the parameter
λ0 ≥ 0, then ρ is analytic near λ0. In the other direction, knowledge of the
distribution of the zeros can be used to characterize the regularity near phase
transitions: parameters λ0 where the free energy is not analytic.

As remarked above, the limit behavior on the positive real axis of the normal-
ized logarithm of the independence polynomials is to a large extent independent
from the sequence of graphs. The motivating question for this work is to what
extent this remains true for the distribution and location of the complex zeros
of the independence polynomial. In particular we focus on the question whether
the zero sets are uniformly bounded or not.

It was shown by Helmuth, Perkins and the last author [HPR19] that for
sequences of padded induced subgraphs of Zd the zeros are uniformly bounded.
We recall that an induced subgraph of Zd is said to be padded if all of its boundary
points share the same parity.

Our main result shows that the boundedness of zeros for tori requires addi-
tional assumptions on the relative dimensions of the tori.

6.1.3 Inspiration from holomorphic dynamics
When studying the independence polynomial on sequences of graphs that are in
some sense recursively defined, one can often express the independence polynomi-
als in terms of iterates of a rational function or map. A clear example is provided
by the sequence of Cayley trees of down-degree d. For this sequence of graphs
the zero sets can be described using iterates of the rational function

fλ,d(z) =
λ

(1 + z)d
.

This iterative description is exploited in current work of Rivera-Letelier and Som-
bra [RL19] to characterize the order of the unique phase transition.

Let us describe the relationship between the independence polynomial and
iterates of fλ,d in some more detail. To be more precise, for a rooted graph (G, v)
we say the occupation ratio RG,v is given by the rational function

RG,v(λ) =
Z in
G,v(λ)

Zout
G,v(λ)

,

where Z in
G,v and Zout

G,v respectively sum only over independent subsets that do or
do not contain the marked vertex v. The occupation ratio of a Cayley tree Tn of
down-degree d and depth n and top vertex p is given by

RTn,p(λ) = f◦nλ,d(λ) = f
◦(n+1)
λ,d (0).
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Figure 6.1: The figure on the left depicts the zeros of the independence polynomial
the subgraph B22(0) in Z2. The figure on the right depicts spherical derivative
of the occupation ratio of (B22(0), 0).

Since ZG = Z in
G,v +Zout

G,v, the parameters for which ZG,v = 0 are essentially equal
to the parameters for which RG,v = −1; see Chapter 5 for a more detailed discus-
sion. As a consequence the accumulation set of the zeros equals the non-normality
locus of the family of rational functions RTn,p(λ), i.e. the parameters λ for which
the maps λ 7→ f◦nλ,d(0) does not form a normal family. Thus, zeros accumulate at
parameters where the spherical derivative of λ 7→ f◦nλ,d(0) is unbounded.

The relationship between the zeros of partition functions on the one hand
and non-normality of a related family of rational functions or maps on the other
holds in much greater generality; see for example [PR20, BHR23]. The extent to
which the one-to-one correspondence also holds for specific sequences of graphs
that are not recursively defined is yet to be determined.

Figure 1 contains two illustrations focusing instead on the graph B22(0), the
induced subgraph of Z2 that contains all vertices of distance at most 22 to the
origin. The figure on the left depicts the zeros of the independence polynomial,
while the figure on the right depicts the spherical derivative of the occupation
ratio, hinting at the non-normality locus of the sequence {Bn(0)}n∈N. We are
grateful for Raymond van Venetië for writing the code used to compute the rele-
vant independence polynomial. The two illustrations suggest a clear relationship
between the zero sets and the non-normality locus. Moreover, both illustrations
suggest boundedness of the zero sets; known by [HPR19] since B22(0) is a padded
subgraph of Z2. Figure 6.2 depicts the zeros, on the left, and the spherical deriva-
tive of the occupation ratio, on the right, for the 18× 18 torus. The resemblance
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Figure 6.2: The figure on the left depicts the zeros of the independence polynomial
of the 2-dimensional torus of size 18×18. The figure on the right depicts spherical
derivative of the occupation ratio of this torus.

with Figure 6.1 is striking. A desire to better understand the structures that
seem to appear in Figures 6.1 and 6.2 is an important motivation for the current
project.

6.1.4 Proof techniques
The proof of the main theorem relies upon two different techniques: the zero-
freeness for balanced tori relies heavily on Pirogov-Sinai theory, while the ex-
istence of unbounded zeros for highly unbalanced tori uses the transfer-matrix
expression of the independence polynomial on tori.

Pirogov-Sinai theory

Intuitively, for λ ∈ C with large norm, the value of independence polynomial in
λ is determined by the large independent sets. Pirogov-Sinai theory builds on
this intuition [PS75]. The main idea is to study the independence polynomial
as deviations from the maximal independent sets. For even tori, there are two
distinct largest independent sets, one containing the even vertices of the torus
and the other containing the odd vertices. The vertices where an independent
set locally differs from one of these maximal independent sets will be part of so-
called contours. The use of contours goes back to Peierls [Pei36] and was further
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developed by Minlos and Sinai in [MS67] and [MS68], both originally for the Ising
model. Using ideas from Pirogov-Sinai theory the independence polynomial can
be expressed as a partition function of a polymer model, similar to as was done
in [HPR19] for padded regions in Zd, where the polymers will be certain sets of
contours. One of the challenges in this rewriting is posed by the geometry of
the torus. We deal with this by defining a suitable compatibility relation we call
torus-compatibility and we exploit the symmetry of the torus. In our analysis,
we apply Zahradník’s truncated-based approach to Pirogov-Sinai theory [Zah84],
and take inspiration from its usage by Borgs and Imbrie in [BI89]. The idea of
this approach is to first restrict the polymer partition function to well-behaved
contours, so-called stable contours. Then one applies the theory to the truncated
partition function and with the estimates that follow one shows in fact all contours
are stable, obtaining bounds for the original polymer partition function.

Transfer-matrices

The transfer-matrix method, introduced by Kramers and Wannier in [KW41a,
KW41b], can be applied to rewrite the partition function of a one-dimensional
lattice. It is heavily used in the literature to obtain both rigorous results and
numerical approximations regarding the accumulation of zeros on physical pa-
rameters for other models; see for example [Ons44, Shr00, SS97, CS09, CS15].

In our setting we fix even integers n1, . . . , nd−1 and consider the sequence of
tori T n = Zn1

×· · ·×Znd−1
×Zn. The transfer-matrix method allows us to write

the independence polynomials of these tori as

ZT n
(λ) = Tr (Mn

λ ) .

Here Mλ is a matrix whose entries are indexed by independent sets of the fixed
torus Zn1

× · · · × Znd−1
and contain monomials in λ; see Section 6.4.1 details.

If we denote the (generalized) eigenvalues of Mλ by e1(λ), . . . , eN (λ), the above
equation translates to

ZT (λ) = e1(λ)
n + · · ·+ eN (λ)n.

For |λ| large we will show that there are two simple eigenvalues, which we denote
by q+ and q−, of approximately the same norm that dominate the remaining
eigenvalues. Normality arguments then give a relatively quick proof that zeros of
{ZT n}n≥1 accumulate at ∞. This can be seen as a special case of a theorem by
Sokal [Sok04]; see also [BKW78].

The normality argument does not give any bounds on how large n has to
be with respect to (n1, . . . , nd−1) to obtain zeros of a certain magnitude. We
will more thoroughly investigate the eigenvalues of Mλ, and in particular q±, to
explicitly describe such bounds. These bounds imply the unboundedness of zeros
for highly unbalanced tori.
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6.1.5 Implications for efficient approximation algorithms
The distribution of zeros of the independence polynomial is not only closely re-
lated to the analyticity of the limiting free energy, but also to the existence of
efficient algorithms for the approximation of the independence polynomial. In-
deed, let G be a class of bounded degree graphs. Then if ZG(λ) ̸= 0 for all
G ∈ G and λ in some open set U containing 0, then by Barvinok’s interpolation
method [Bar16] and follow up work of Patel and the last author [PR17] there
exists an algorithm that for each λ ∈ U and ε > 0 computes on input of an
n-vertex graph G from G a number ξ such that

|ξ − ZG(λ)| ≤ ε|ZG(λ)| (6.1)

in time polynomial in n/ε. Such an algorithm is called a Fully Polynomial Time
Approximation Scheme or FPTAS for short.

Recently, Helmuth, Perkins and the last author [HPR19] were able to extend
this algorithmic approach to zero-free regions that do not contain the point 0, but
rather the point ∞, for certain subgraphs of the integer lattice. See also [JKP20]
for extensions of this to other families of bounded degree graphs. The algorithmic
results from [HPR19] also apply to the torus with all side lengths equal and of
even length n, but the resulting algorithm is technically not an FPTAS, since it
restricts the choice of ε to be at least e−cn for some constant c > 0. The results
of the present paper allow to remedy this and moreover extend it to non-positive
evaluations and the collection of all balanced tori (at the cost of decreasing the
domain).

The following result is almost a direct corollary of our main result combined
with the algorithmic approach from [HPR19]; we will provide details for its proof
in Section 6.5.

Proposition 6.1.1. Let d ∈ Z≥2 and let Td be a family of balanced even d-
dimensional tori. Then there exists a Λ > 0 such that for each λ ∈ C with
|λ| > Λ there exists an FPTAS for approximating ZT (λ) for T ∈ Td.

The interpolation method crucially depends on there being an open set not
containing any zeros of the independence polynomial for graphs in the given
family. There is essentially no way to circumvent this, at least for the family of all
graphs of a given maximum degree d ≥ 3, Gd. Indeed, it was shown in Chapter 5
that the closure of the set of λ ∈ C for which approximating the evaluation of
independence polynomial at λ (in the sense of (6.1)) is computationally hard
(technically #P-hard) contains the closure of the set λ ∈ C for which there exists
a graph G ∈ Gd such that ZG(λ) = 0. It would be interesting to see to what
extent such a result hold for more restricted families of bounded degree graphs.
We suspect that, by slightly enlarging the family of highly unbalanced tori, using
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the techniques of Chapter 5, it can be shown that approximating the evaluation
of the independence polynomial at large λ for graphs in this family (in the sense
of (6.1)) is as hard as computing the evaluation exactly.

6.1.6 Questions for future work
When it comes to describing the complex zeros of the independence polyno-
mials for graphs that converge to the integer lattice, the results in this paper
barely touch the surface and raise a number of interesting questions. A first
issue, already addressed above, is to close the gap between balanced and highly-
unbalanced tori.

Several steps of the proof for boundedness of zeros of balanced tori rely in
an essential way on the assumption that the tori are balanced. On the other
hand, the highly-unbalanced assumption on the family of tori that guarantees
the existence of unbounded zeros seems far from sharp, evidenced for example
by the fact that the demonstrated zeros of the tori escape very rapidly in terms
of the sizes of the tori. It therefore seems reasonable to expect that the balanced
assumption is necessarily, while the highly-unbalanced assumption is not.

Question 6.1.2. Let F be a family of even d-dimensional tori for which the
zeros of the independence polynomials are uniformly bounded. Is F necessarily
balanced?

As discussed above, there are many other natural families of graphs that
converge to the integer lattice, in the sense that the free energy per site converges
to the same limit. Knowing that for families of induced subgraphs of Zd with
padded boundaries the zeros are automatically uniformly bounded, while for tori
an additional assumption is required, it would be interesting to have a more
general criterion that guarantees boundedness of the zero sets.

Question 6.1.3. Let F be a family of graphs for which the free energy per
site exists and agrees with the free energy per site of d-dimensional balanced
even tori. Under which conditions are the zeros of the independence polynomials
uniformly bounded? Of particular interest are graphs with boundaries that are
not necessarily padded, such as rectangles and cylinders.

The non-normality loci depicted in Figures 6.1 and 6.2 show a strong similarity
to the non-normality loci that occur for Cayley trees of different degrees; see
for example the discussion in Section 5.7 in Chapter 5. For Cayley trees the
complement of the activity locus consists of infinitely many components, and
apart from the two zero-free components containing 0 and ∞, each components
contains exactly one zero-parameter. Almost nothing in this direction is known
for graphs converging to integer lattices, and a first question in this direction is
the following:
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Question 6.1.4. Consider the zero-free components of the family of balanced
even tori of fixed dimension. Are the zero-free components containing the points
0 and ∞ distinct?

As we remarked in Chapter 5 the zero-locus and the non-normality locus
coincide for the family of all bounded degree graphs. It is not clear whether this
is true for families of balanced even tori. Figure 6.2 suggests that there may be
strong similarity between these two sets. While we have been able to confirm
one of the suggestions in this figure, namely the boundedness of the zeros, the
relation between non-normality and zeros is still completely open.

Question 6.1.5. What is the relation between the zeros of the independence
polynomial and the non-normality locus of the occupation ratios for the family
of balanced even tori?

6.1.7 Organization of the paper
Section 6.2 provides a self-contained background in Pirogov-Sinai theory used to
prove boundedness of zeros for balanced tori in Section 6.3. We prove the un-
boundedness of zeros for highly unbalanced tori in Section 6.4. In Section 6.5 we
finish by proving implications to efficient approximation algorithms for balanced
tori.

Acknowledgment The authors are grateful to Ferenc Bencs for inspiring dis-
cussions related to the topic of this paper.

6.2 Pirogov-Sinai theory

This section provides a self-contained background in Pirogov-Sinai theory. We
closely follow the framework of [HPR19], but apply it to the independence polyno-
mial of tori, which requires several adjustments. While much of this background
section is classical, proofs in the literature are often omitted or stated in a differ-
ent context. For this reason this section contains several results and proofs that
are not original but may be difficult to find in the literature.

In Subsection 6.2.1 we discuss contains the required background on polymer
partition functions. in what follows we rewrite the independence polynomial of
the torus as a suitable polymer partition function.

6.2.1 Polymer models and the Kotecký-Preiss theorem
A polymer model consists of a finite set of polymers S, an anti-reflexive and
symmetric compatibility relation ∼ on S and a weight function w : S → C. We



132 On boundedness of zeros of the independence polynomial of tori

define Ω to be the set of collections of pairwise compatible polymers. The polymer
partition function is defined as

Zpol :=
∑
Γ∈Ω

∏
γ∈Γ

w(γ).

We note ∅ ∈ Ω, hence if w(γ) = 0 for all γ ∈ S we see Zpol = 1.

Remark 8. Whenever f is a holomorphic function with f(0) > 0, we write
log f(z) for a branch with log f(0) ∈ R. We will use this convention throughout
the paper.

The cluster expansion, see for example [KP86] and Section 5.3 in [FV17],
states that the polymer partition function can be expressed in terms of the fol-
lowing formal power series in the weights:

logZpol =
∑
k≥1

1

k!

∑
(γ1,...,γk)

ψ(γ1, . . . , γk)

k∏
i=1

w(γi), (6.2)

where the sum runs over ordered k-tuples of polymers and ψ is the Ursell function
defined as follows. Let H be the incompatibility graph of the polymers γ1, . . . , γk,
i.e. the graph with vertex set [k] and an edge between i and j if γi is incompatible
with γj . Then

ψ(γ1, . . . , γk) :=
∑

E⊆E(H)
spanning, connected

(−1)|E|.

A multiset {γ1, . . . , γk} of polymers is a cluster if its incompatibility graph is
connected. For a cluster X := {γ1, . . . , γk} of polymers we define

Φ(X) =
∏
γ∈S

1

nX(γ)!
ψ(γ1, . . . , γk)

k∏
i=1

w(γi),

with nX(γ) the number of times the polymer γ appears in X. Then one sees the
cluster expansion (6.2) can be equivalently written as

logZpol =
∑

Xcluster

Φ(X). (6.3)

The Kotecký-Preiss theorem provides a sufficient condition on the weights
that guarantees convergence of the cluster expansion, see Theorem 1 in [KP86]:
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Theorem 6.2.1. Suppose there are functions a : S → [0,∞), b : S → [0,∞)
such that for every polymer γ ∈ S we have∑

γ′ ̸∼γ

|w(γ′)|ea(γ′)+b(γ′) ≤ a(γ),

then Zpol ̸= 0, the cluster expansion of the polymer partition function is conver-
gent and for any polymer γ ∈ S we have∑

X ̸∼γ

|Φ(X)|eb(X) ≤ a(γ),

where for a cluster X we define b(X) =
∑
γ∈X b(γ) and we write X ̸∼ γ if and

only if there is a γ′ ∈ X with γ′ ̸∼ γ.

6.2.2 Contour representation of the independence polyno-
mial on tori

In this section we express the independence polynomial of a torus as a sum of
two polymer partition functions, using contours as polymers. This is based on
ideas and definitions from Pirogov-Sinai theory [PS75, Zah84], as applied to the
independence polynomial in [HPR19]. In [HPR19] the contour models are defined
for padded induced subgraphs in Zd; we will modify the ideas and definitions such
that they apply to tori instead.

Preliminaries on the topology of tori

Definition 6.2.2. We denote a d-dimensional torus by T := Zℓ1 ×· · ·×Zℓd with
ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓd and write | T | := ∏d

i=1 ℓi. Let C > 0. A torus T is said
to be C-balanced if | T | ≤ eCℓ1 . We denote the set of all even d-dimensional
C-balanced tori by Td(C).

Note that a family of d-dimensional tori is balanced as defined in the intro-
duction if and only if there exists a uniform C > 0 such that every torus in
the family is C-balanced. In particular the d-dimensional torus with equal side
lengths, denoted by Zdn, is in Td(1) for any d and any even n ≥ ed.

We label the vertices of T as (v1, . . . vd) with vi ∈ {−ℓi/2, . . . , 0, . . . , ℓi/2− 1}
for each i ∈ [d]. Denote the d-dimensional zero vector by 0⃗. Throughout this and
later sections we let T be an even d-dimensional torus, for a fixed d ≥ 2. When
T is assumed to be balanced or unbalanced we will state so explicitly.

Definition 6.2.3. We denote the ∞-neighborhood of v ∈ T by

N∞[v] := {u ∈ T : ∥v − u∥∞ ≤ 1}.
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Note that each neighborhood N∞[v] consists of 3d distinct vertices. We say an
induced subgraph Λ ⊂ T is ∞-connected if for each u, v ∈ Λ there is a sequence
(v0, . . . , vn) of vertices in Λ such that v0 = v, vn = u and for each i we have
vi+1 ∈ N∞[vi]. Such a sequence is called an ∞-path from v to u in Λ.

We denote the set of connected components of a graph G by C(G).

Definition 6.2.4. For subsets A,B ⊆ V (T ) we define their distance and the
box-diameter as

dist(A,B) := min
a∈A, b∈B

dist(a, b) and diam□(A) := max
i=1,...,d

|Ai|,

where dist denotes the graph distance on T and Ai denotes the ith marginal of
A. We define diam□(∅) = 0. Define the closure of A as

cl(A) = A1 × · · · ×Ad.

When we apply these parameters to induced subgraphs of T it should be read as
applying it to their vertex sets.

Let ℓ1 denote the length of the shortest side of T . If diam□(A) < ℓ1 it is not
hard to see that T \cl(A) is contained in a unique connected component of T \A,
which we will denote by ext(A). We let int(A) = T \ (A ∪ ext(A)).

The following lemma will be used implicitly several times.

Lemma 6.2.5. Let A1, A2 be induced subgraphs of a torus T with shortest side
ℓ1 such that diam□(Ai) < ℓ1, dist(A1, A2) ≥ 2 and both A1 ⊆ ext(A2) and
A2 ⊆ ext(A1). Then int(A1) ∩ int(A2) = ∅.

Proof. Suppose for the sake of contradiction that A1, A2 is a counterexample for
which | int(A1)| is minimized. Let v be a vertex of int(A1) that is connected to a
vertex in A1, say u. Because dist(A1, A2) ≥ 2 it follows that u ̸∈ A2. Therefore u
and v lie in the same connected component of T \A2. Because u lies in ext(A2)
it follows that v ∈ ext(A2). Note also that v is not connected to an element
of A2 because A2 ⊆ ext(A1) and v ∈ int(A1). Because diam□(A1 ∪ int(A1)) =
diam□(A1) it follows that

• diam□(A1 ∪ {v}) < ℓ and diam□(A2) < ℓ1;

• dist(A1 ∪ {v}, A2) ≥ 2;

• both A1 ∪ {v} ⊆ ext(A2) and A2 ⊆ ext(A1 ∪ {v});

• int(A1∪{v})∩ int(A2) = int(A1)∩ int(A2), which is non-empty by assump-
tion.
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This is a contradiction because int(A1 ∪{v}) is strictly smaller than int(A1).

Let Λ ⊆ T be an induced subgraph. We denote the boundary of Λ by ∂Λ ⊆ Λ,
i.e. the subgraph of Λ induced by the vertices of Λ with at least one neighbor in
T \Λ. We define ∂cΛ := ∂(T \Λ). Denote by Λ◦ = Λ \ ∂Λ the interior of Λ. We
write |Λ| instead of |V (Λ)| and we write v ∈ Λ instead of v ∈ V (Λ).

Remark 9. Let T be a d-dimensional even torus with minimal side length ℓ1. For
any induced subgraph Λ in T with diam□(Λ) < ℓ1, the induced subgraph ext(Λ)∩
∂cΛ is ∞-connected by Proposition B.82 in [FV17].

Lemma 6.2.6. Let T be a d-dimensional even torus with minimal side length
ℓ1. Let Λ1, . . . ,Λn and A be induced subgraphs of T satisfying

1. for each i we have diam□(Λi) < ℓ1 and Λ◦
i ⊆ A;

2. for i ̸= j we have dist(Λi,Λj) ≥ 2;

3. A is ∞-connected,

then ∩ni=1 ext(Λi) ∩A is ∞-connected.

Proof. Take u, v ∈ ∩ni=1 ext(Λi) ∩ A. Because A is ∞-connected, there is an ∞-
path from u to v through A. Denote this path by (a0, . . . , ak) for some k ≥ 0,
where a0 = u and ak = v. If the path has empty intersection with the sets Λi,
we are done. Let l denote the minimal index such that al ∈ Λi for some i. As
u, v ∈ ext(Λi), there is a minimal index m with l < m < k such that am ̸∈ Λi.
As Λ◦

i ⊆ A, we see al−1, am ∈ ext(Λi) ∩ ∂cΛi. We now claim there is a ∞-path
from al−1 to am which does not intersect Λi.

To prove this claim, first note for each i we have diam□(Λi) < ℓ1 and thus the
induced subgraph ext(Λi) ∩ ∂cΛi is ∞-connected by Remark 9. Since Λ◦

i ⊆ A,
we see ext(Λi) ∩ ∂cΛi ⊆ A. As for any j ̸= i we have dist(Λi,Λj) ≥ 2 we see
ext(Λi) ∩ ∂cΛi does not intersect Λj . Hence there is a ∞-path from al−1 to am
using only vertices from ext(Λi) ∩ ∂cΛi, and none of the vertices of this path
intersect Λj for j ̸= i. This proves the claim from which the lemma follows.

Contour representation of independent sets

Definition 6.2.7. Let Λ ⊆ T be an induced subgraph. A map σ : V (Λ) → {0, 1}
is called a feasible configuration on Λ if Iσ = {v ∈ V (Λ) : σ(v) = 1} is an
independent set of Λ.

Given an independent set I we denote the associated feasible configuration
by σI .
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0

γ

Figure 6.3: A contour γ in a 10 by 10 torus. Vertices v such that σ(v) = 1 are
in dark gray and vertices v such that σ(v) = 0 are in white. The shaded gray
region denotes the support of γ. The label of Z2

10 \ γ is even.

Definition 6.2.8. We call a vertex of T either even or odd if the sum of its co-
ordinates is even or odd respectively. For an induced subgraph Λ ⊂ T we denote
by Λeven the subgraph induced by the even vertices of Λ and Λodd the subgraph
induced by the odd vertices of Λ. The feasible configurations corresponding to
the two maximal independent subsets of T , consisting of either all even or all
odd vertices, are denoted by σeven and σodd. We refer to {even, odd} as the set
of ground states. Given a ground state φ, the complementary ground state will
be denoted by φ.

Definition 6.2.9. Let Λ ⊆ T be an induced subgraph. Given any feasible
configuration σ : V (Λ) → {0, 1} we say a vertex v ∈ V (Λ) is correct if there
exists a ground state φ ∈ {even, odd} such that for all u ∈ N∞[v] ∩ Λ we have
σ(u) = σφ(u), otherwise v is defined to be incorrect. We write Γ(Λ, σ) for the
subgraph of Λ induced by the set of incorrect vertices in Λ with respect to σ.

Definition 6.2.10. Let γ be a tuple (γ, σγ) with support γ a nonempty induced
subgraph of T and a feasible configuration σγ : V (γ) → {0, 1} for which there
exists a labeling function labγ : C(T \γ) → {even, odd} such that the map σ̂γ :
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V (T ) → {0, 1} given by

σ̂γ(v) =

{
σγ(v) if v ∈ V (γ)

σlabγ(A)(v) if v ∈ V (A) with A ∈ C(T \γ)

is a feasible configuration on T and γ = Γ(T , σ̂γ). Let ℓ1 denote the minimal
side length of T . We say that γ is a small contour if γ is connected and satisfies
diam□(γ) < ℓ1. We say that γ is a large contour if each connected component of
γ satisfies diam□(γ) ≥ ℓ1. A contour is either a small or a large contour. Two
contours γ1, γ2 in T have compatible support if

dist(γ1, γ2) ≥ 2.

See Figure 6.3 for an illustration of a contour γ in the torus Z2
10.

Remark 10. A contour γ = (γ, σγ) uniquely determines the labeling function,
labγ , and the associated feasible configuration, σ̂γ .

Definition 6.2.11. We denote the exterior of a small contour γ by ext(γ) instead
of ext(γ). The label of ext(γ) is called the type of γ. For a set Γ of small contours
we define the exterior ext(Γ) = ∩γ∈Γ ext(γ), with the convention that ext(∅) = T .
For a large contour we do not define the exterior, but we artificially define the
type of a large contour to be even.

For any contour γ and any ground state ξ ∈ {even, odd} we define the ξ-
interior of γ as the union over all non-exterior connected components of T \γ
with label ξ, we denote this induced subgraph of T by intξ(γ). Denote the
interior of a contour γ by int(γ) = inteven(γ) ∪ intodd(γ).

We note that the interior of any small contour γ cannot contain a connected
component of a large contour because its box-diameter is strictly less than ℓ1
(where ℓ1 denotes the minimum side length of the underlying torus).

Definition 6.2.12. Let Γ be a set of contours with pairwise compatible supports
containing at most one large contour. We say Γ is a matching set of contours if
there is a labeling function

labΓ : C
(
T \

⋃
γ∈Γ

γ
)
→ {even, odd}

such that for each A ∈ C
(
T \ ⋃γ∈Γ γ

)
and γ ∈ Γ with dist(A, γ) = 1 we have

that σ̂γ is equal to σlab(A) when restricted to A.

For any contour γ the set Γ = {γ} is a matching set of contours.
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Definition 6.2.13. For non-empty Γ the labeling function labΓ is unique. If Γ
is empty there are two possible labeling functions, namely the one that assigns
either even or odd to T . We view these as distinct matching sets of contours and
denote them by ∅even and ∅odd. Formally we thus define

Ωmatch(T ) = {Γ : Γ a non-empty matching set of contours} ∪ {∅even} ∪ {∅odd}

as the set of all matching sets of contours.

See Figure 6.4 for an illustration of a matching set of contours in an 18 by 18
torus.

Definition 6.2.14. For a contour γ = (γ, σγ) in T we define the surface energy
as

||γ|| := 1

4d

∑
v∈V (γ)
σγ(v)=0

(
2d−

∑
u∈N(v)

σ̂γ(u)
)
.

For a matching set of contours Γ we define ||Γ|| =∑γ∈Γ ||γ||.

In Theorem 6.2.15 we show the surface energy is always integer.

Theorem 6.2.15. There is a bijection between the set of all sets of matching
contours Ωmatch(T ) and the set of feasible configurations on an even torus T
such that for any Γ ∈ Ωmatch(T ) and its corresponding feasible configuration
τ : V (T ) → {0, 1} we have

||Γ|| = | T |
2

− |Iτ |. (6.4)

Proof. For Γ ∈ Ωmatch(T ) we define the feasible configuration τΓ as

τΓ(v) =

{
σγ(v) if v ∈ γ for some γ ∈ Γ

σlabΓ(A)(v) if v ∈ A for some A ∈ C
(
T \⋃γ∈Γ γ

)
.

We recall here that Γ ∈ Ωmatch(T ) contains two copies of the empty set with
either an even or an odd label. These correspond to σeven and σodd respectively.
It follows directly from the definition of Ωmatch(T ) that τΓ is indeed feasible.

We now define a map from the set of feasible configurations to Ωmatch(T ).
Let τ : V (T ) → {0, 1} be a feasible configuration. The induced subgraph Γ(T , τ)
consists of a union of say s ≥ 0 connected components with box-diameter strictly
less than ℓ1 and m ≥ 0 connected components with box-diameter ≥ ℓ1. If s =
m = 0 then τ is equal to either σeven or σodd which we map to ∅even or ∅odd
respectively. If m ≥ 1 then we denote the union of all connected components
with box-diameter ≥ ℓ1 by γlarge. Denote the remaining connected components of
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0

γ2

γ1

γ3

Figure 6.4: A matching set of contours in an 18 by 18 torus. The contour γ1 is
small of type even, γ2 is small of type odd and γ3 is large. The contours γ2 and
γ1 lie in the odd-interior of γ3, the contour γ1 lies in the even-interior of γ2.
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Γ(T , τ) by γi for i ∈ {1, . . . , s}. By restricting τ , we define a feasible configuration
σγ on each support γ ∈ {γlarge, γ1, . . . , γs}. We have to show that for each such
γ we can define a labeling function labγ on the connected components of T \γ
that makes γ into a well-defined contour.

To do this it is sufficient to show that, given A ∈ C(T \γ), there exists φ ∈
{even, odd} such that τ restricted to the vertices of A ∩ ∂c(γ) is equal to σφ.
Indeed, if this is the case then we can define labγ(A) = φ. It is not hard to see
that the corresponding configuration σ̂γ as defined in Definition 6.2.10 is then
feasible and satisfies γ = Γ(T , σ̂γ). We distinguish between two cases.

In the first case γ is not γlarge and A = ext(γ). It then follows from Remark 9
that A ∩ ∂c(γ) is a ∞-connected set of correct vertices with respect to τ . It
follows that there is a unique φ such that τ = σϕ when restricted to A ∩ ∂c(γ).

In the second case A has empty intersection with γlarge and thus any γ′ con-
tained in A has box-diameter strictly less than ℓ1. Let Γ′ be the collection
of these γ′. Any γ′ ∈ Γ′ must be contained in A◦ because otherwise γ ∪ γ′

would be a single component of Γ(T , τ). It now follows from Lemma 6.2.6 that
A′ := ∩γ′∈Γ′ ext(γ′) ∩ A is ∞-connected. Because A′ consists of correct vertices
with respect to τ and ∂c(γ)∩A ⊆ A′ it follows that there is a φ such that τ = σφ
when restricted to ∂c(γ) ∩A.

We have shown that Γτ := {γlarge, γ1, . . . , γs} is a set of contours with pairwise
compatible supports. The labeling function labΓ that assigns to any component
with vertex v the label inherited from τ shows that indeed Γτ ∈ Ωmatch(T ). By
definition the maps τ 7→ Γτ and Γ 7→ τΓ are each others inverse.

We now prove the equality in equation (6.4). Let Γ be a set of matching
contours and τ its corresponding feasible configuration. We count the number of
edges in T in two ways. The total number of edges in T is 2d · | T |

2 , as there are
| T |
2 even vertices in T and each even vertex is incident to 2d distinct edges. The

number of edges in T also equals the number of edges between Iτ and T \Iτ plus
the number of edges within T \Iτ . The number of edges between Iτ and T \Iτ is
equal to 2d · |Iτ |, as each vertex of Iτ has degree 2d and Iτ is independent. For
a vertex v ∈ T \Iτ the number of neighbors of v in T \Iτ is 2d −∑u∈N(v) τ(u),
the degree of v minus the number of neighbors of v in Iτ . The number of edges
within T \Iτ is the sum of the number of neighbors of v in T \Iτ over all v ∈ T \Iτ
divided by 2, hence

|E(T \Iτ )| =
1

2

∑
v∈V (T )
τ(v)=0

(
2d−

∑
u∈N(v)

τ(u)
)

=
1

2

∑
γ∈Γ

∑
v∈V (γ)
τ(v)=0

(
2d−

∑
u∈N(v)

τ(u)
)
= 2d · ||Γ||,
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where the second equality follows as each vertex outside of ∪γ∈ΓV (γ) is correct
with respect to τ . From this we see

2d · ||Γ||+ 2d · |Iτ | = 2d · | T |
2
,

hence ||Γ|| = | T |
2 − |Iτ |.

Definition 6.2.16. We define the matching contour partition function on T as

Zmatch(T ; z) :=
∑

Γ∈Ωmatch(T )

∏
γ∈Γ

z||γ||.

Let Zind(G;λ) deote the independence polynomial of a graph G evaluated at
λ.

Corollary 6.2.17. We have

Zind(T ;λ) := λ
| T |
2 · Zmatch(T ;

1

λ
).

Proof. This follows from Theorem 6.2.15 and the definition of the matching con-
tour partition function.

As Zmatch(T ; 0) = 2 ̸= 0, the first part of the main theorem is equivalent to
finding a zero free region around z = 0 of Zmatch(T ; z) for all C-balanced tori.

Contours as polymers

We next collect some definitions allowing us to split up Zmatch up into two parts
which we can then interpret as polymer partition functions.

Definition 6.2.18. We partition Ωmatch(T ) into three subsets. We let Ωlarge
match(T )

consists of those Γ ∈ Ωmatch(T ) that contain a large contour. If Γ consists of small
contours we define the type of Γ as the label assigned to ext(Γ) by labΓ. We denote
those Γ with type φ ∈ {even, odd} by Ωφmatch(T ). Note that ∅even ∈ Ωeven

match(T ),
∅odd ∈ Ωodd

match(T ) and

Ωmatch(T ) = Ωeven
match(T ) ∪ Ωodd

match(T ) ∪ Ωlarge
match(T ).

For φ ∈ {even, odd, large} we define

Zφmatch(T ; z) =
∑

Γ∈Ωφ
match(T )

∏
γ∈Γ

z||γ||.
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Definition 6.2.19. For any φ ∈ {even, odd} and Γ ∈ Ωφmatch(T ) we define

Γext = {γ ∈ Γ : γ ⊆ ext(γ′) for all γ′ ∈ Γ not equal to γ}. (6.5)

We furthermore define

Ωφext(T ) = {Γ ∈ Ωφmatch(T ) : Γ = Γext}.

We will further rewrite Zmatch(T ; z) in order to apply the framework outlined
in Section 6.2.1. The first step in rewriting is a standard technique from Pirogov-
Sinai theory, analogous to what was done for finite induced subgraphs Λ ⊆ Zd
with padded boundary conditions in [HPR19].

We define a class of well-behaved induced subgraphs of tori.

Definition 6.2.20. Let Λ ⊆ T be an induced subgraph. If for any small contour
γ with γ ⊆ Λ◦ we have int(γ) ⊆ Λ◦ we say Λ is closed under taking interiors of
small contours, or more succinctly closed.

Note T is closed, and for any contour γ the induced subgraphs intodd(γ),
inteven(γ) and int(γ) are also closed.

Definition 6.2.21. Let Λ ⊆ T be an induced closed subgraph and let φ ∈
{even,odd} be a ground state. We define

Ωφmatch(Λ) := {Γ ∈ Ωφmatch(T ) : for all γ ∈ Γ we have γ ⊆ Λ◦}.

and
Ωφext(Λ) := {Γ ∈ Ωφext(T ) : for all γ ∈ Γ we have γ ⊆ Λ◦}

We also define the matching contour partition function as

Zφmatch(Λ; z) =
∑

Γ∈Ωφ
match(Λ)

∏
γ∈Γ

z||γ||.

Note if Λ◦ = ∅ then Zφmatch(Λ; z) = 1 as in that case Ωφmatch(Λ) = {∅φ}.

Lemma 6.2.22. For induced closed subgraphs Λ1,Λ2 ⊂ T with dist(Λ1,Λ2) ≥ 2
and any φ ∈ {even, odd} we have

Zφmatch(Λ1 ∪ Λ2; z) = Zφmatch(Λ1; z) · Zφmatch(Λ1; z).

Proof. Note that the induced subgraph Λ1 ∪ Λ2 is closed. The equality follows
from the bijection between Ωφmatch(Λ1)× Ωφmatch(Λ2) and Ωφmatch(Λ1 ∪ Λ2) given
by (Γ1,Γ2) 7→ Γ1 ∪ Γ2.
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Lemma 6.2.23. For any induced closed subgraph Λ ⊆ T , any ground state
φ ∈ {even, odd} and any z ∈ C we have

Zφmatch(Λ; z) =
∑

Γ∈Ωφ
ext(Λ)

∏
γ∈Γ

z||γ||Zeven
match(inteven(γ); z)Z

odd
match(intodd(γ); z).

Proof. Given an induced closed subgraph Λ ⊆ T and a set Γ ∈ Ωφext(Λ) we have∑
Γ′∈Ωφ

match(Λ)

Γ′
ext=Γ

∏
γ∈Γ′\Γ

z||γ|| = Zeven
match(∪γ∈Γ inteven(γ); z)Z

odd
match(∪γ∈Γ intodd(γ); z),

because any Γ′ ∈ Ωφmatch(Λ) with Γ′
ext = Γ gives an associated set of matching

contours in

Ωeven
match(∪γ∈Γ inteven(γ))× Ωodd

match(∪γ∈Γ intodd(γ)),

as any non external contour γ′ ∈ Γ′ lies in the interior of a unique contour
γ ∈ Γ. By Lemma 6.2.22 we see for any induced closed subgraph Λ ⊆ T and any
Γ ∈ Ωφext(Λ) that∏

γ∈Γ

Zeven
match(inteven(γ); z)Z

odd
match(intodd(γ); z) =

Zeven
match(∪γ∈Γ inteven(γ); z)Z

odd
match(∪γ∈Γ intodd(γ); z).

Combined, these two facts yield

Zφmatch(Λ; z) =
∑

Γ∈Ωφ
ext(Λ)

∑
Γ′∈Ωφ

match(Λ)

Γ′
ext=Γ

∏
γ∈Γ′

z||γ|| =

∑
Γ∈Ωφ

ext

Zeven
match(∪γ∈Γ inteven(γ); z)Z

odd
match(∪γ∈Γ intodd(γ); z)

∏
γ∈Γ

z||γ|| =

∑
Γ∈Ωφ

ext(Λ)

∏
γ∈Γ

z||γ||Zeven
match(inteven(γ); z)Z

odd
match(intodd(γ); z).

Definition 6.2.24. We define for a contour γ in T of type φ the weight to be
the following rational function in z

w(γ; z) := z||γ||
Zφmatch(intφ(γ); z)

Zφmatch(intφ(γ); z)
.



144 On boundedness of zeros of the independence polynomial of tori

Recall that the type of a large contour is defined to be even. Note that for
any induced closed subgraph Λ ⊂ T and any contour γ in Λ the contour γ is also
a contour in T and hence w(γ; z) is defined. We also note the denominator of
w(γ; z) has constant term 1 for any contour γ.

The definition of these weights is a standard trick in Pirogov-Sinai theory
used to rewrite the independence polynomial as a polymer partition function; see
for example [HPR19]. To also do this for tori, we define a suitable compatibility
relation, which is a modification of the compatibility relation used in [HPR19] to
accommodate for the large contours.

Definition 6.2.25. We define two contours γ1, γ2 in T to be torus-compatible
if they have compatible supports and if either (1) γ1 and γ2 are both small and
of the same type or if (2) one contour is large and the other is small and of
type even. Denote by Υφsmall(T ) the collection of sets containing small pairwise
torus-compatible contours in T of type φ and by Υeven(T ) the collection of sets
of torus-compatible contours in T of type even in which we allow both large and
small contours.

Note that torus-compatibility is an anti-reflexive and symmetric relation on
the set of contours.

Definition 6.2.26. Let Λ ⊆ T be an induced closed subgraph and let φ ∈
{even,odd} be a ground state. We define

Υφsmall(Λ) := {Γ ∈ Υφsmall(T ) : for all γ ∈ Γ we have γ ⊆ Λ◦}.

For any Γ ∈ Υφsmall(Λ) we can define Γext exactly how is done in (6.5) in Defi-
nition 6.2.19. It is not difficult to see that then Γext ∈ Ωφext(Λ). This observation,
together with Lemma 6.2.23 and the choice of weights in Definition 6.2.24, allows
us to rewrite the matching contour partition function, which is a sum over match-
ing sets of contours, as a sum over sets that only require pairwise compatibility.

Lemma 6.2.27. Let Λ ⊆ T be an induced closed subgraph and let φ ∈ {even,odd}
be a ground state. We have for any z ∈ C

Zφmatch(Λ; z) =
∑

Γ∈Υφ
small(Λ)

∏
γ∈Γ

w(γ; z).

Furthermore, we have

Zeven
match(T ; z) + Z large

match(T ; z) =
∑

Γ∈Υeven(T )

∏
γ∈Γ

w(γ; z).
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Proof. We prove the first claim by induction on |Λ|. The base case is trivial.
Suppose the claim holds for |Λ′| ≤ k. Next suppose that |Λ| = k + 1. By
Lemma 6.2.23 we have

Zφmatch(Λ; z) =
∑

Γ∈Ωφ
ext(Λ)

∏
γ∈Γ

z||γ||Zφmatch(intφ(γ); z)Z
φ
match(intφ(γ); z),

which by definition of the weights is equal to∑
Γ∈Ωφ

ext(Λ)

∏
γ∈Γ

w(γ; z)Zφmatch(int(γ); z) =∑
Γ∈Ωφ

ext(Λ)

∏
γ∈Γ

w(γ; z)
∑

Γ′∈Υφ
small(int(γ))

∏
γ′∈Γ′

w(γ′; z) =
∑

Γ∈Υφ
small(Λ)

∏
γ∈Γ

w(γ; z),

where the first equality uses the induction hypothesis on the induced closed sub-
graph int(γ) and the last equality follows by definition of torus-compatibility.
This proves the first part.

Note that Z large
match is a sum over matching set of contours that contain a large

contour. Therefore we can instead write Z large
match as a sum over all large contours.

Reasoning as above we obtain

Z large
match(T ; z) =

∑
γ

z∥γ∥ · Zeven
match(inteven(γ); z) · Zodd

match(intodd(γlarge); z) =∑
γ

w(γ; z) · Zeven
match(int(γ); z) =

∑
γ

w(γ; z)
∑

Γ∈T even
small(int(γlarge))

∏
τ∈Γ

w(τ ; z),

where each sum is over large contours γ and where the last inequality follows as
int(γ) is an induced closed subgraph of T . By the definition of torus-compatibility
of contours we obtain

Zeven
match(T ; z) + Z large

match(T ; z) =
∑

Γ∈Υeven(T )

∏
γ∈Γ

w(γ; z),

as desired.

Remark 11. An automorphism t : T → T acts on contours by pushing forward
their support and pulling back their configurations and associated labels and
type. We note that labels are preserved when t(⃗0) is even, and switched when
t(⃗0) is odd. The surface energy is always preserved.

Lemma 6.2.28. For all z ∈ C we have Zeven
match(T ; z) = Zodd

match(T ; z).

Proof. Let t : T → T be the translation by (0, . . . , 0, 1). By Remark 11 any even
contour γ corresponds to an odd contour t(γ) with the same weight.
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Denote the set of small contours of type φ with support contained in an in-
duced closed subgraph Λ ⊆ T by Sφsmall(Λ). Denote the set of all small and
large contours of even type with support contained in T by Seven(T ). Us-
ing Lemma 6.2.27 and the definition of torus-compatibility it follows that for
a type φ ∈ {even, odd} and any induced closed subgraph Λ ⊆ T the function
Zφmatch(Λ; z) equals a polymer partition function as defined in Section 6.2.1 with
set of polymers Sφsmall(Λ) and torus-compatibility as compatibility relation on
Sφsmall(Λ). Similarly, we see that Zeven

match(T ; z)+Z large
match(T ; z) equals a polymer par-

tition function with set of polymers Seven(T ). We observe that by Lemma 6.2.28

Zmatch(T ; z) = Zodd
match(T ; z) + Zeven

match(T ; z) + Z large
match(T ; z)

= 2Zeven
match(T ; z) + Z large

match(T ; z),

giving us the promised way of writing Zmatch(T ; z) as the sum of two polymer
partition functions. Note that we cannot view Zmatch(T ; z) as a single polymer
partition function since it contains the occurrence of two ‘distinct’ empty sets of
matching contours.

6.2.3 Applying the Kotecký-Preiss theorem

In order to apply the Kotecký-Preiss theorem to Zodd
match(T ; z) and Zeven

match(T ; z)+

Z large
match(T ; z), we use Zahradník’s truncated-based approach to Pirogov-Sinai the-

ory [Zah84], which is also used in [BI89]. The idea is to first restrict to contours for
which the weights respect a proper bound which helps us to check the condition
of the Kotecký-Preiss theorem. This process ‘truncates’ the partition function.
We then prove, using bounds we obtain from the Kotecký-Preiss theorem on the
truncated partition function, that in fact all contours satisfy this bound. To de-
fine the bound om the weights of the contours, we need the following lemmas and
definition.

Lemma 6.2.29. Let Sm denote the set of small contours γ in T with support of
size m containing 0⃗. Then there is a constant Cd depending only on d such that
|Sm| ≤ Cmd .

Proof. The size of Sm is bounded by the number of connected subsets in Zd of
size m containing 0⃗ times 2m, as a contour is uniquely determined by its support
and its configuration. In [BBR10] connected subsets of size m containing 0⃗ are
called strongly-embedded lattice site animals and in [Mad99] just site animals.
The number of strongly embedded lattice site animals of size m grows as λmd for
a constant λd depending on d, see [Mad99] and [BBR10], which implies that there
exists a constant Cd such that |Sm| ≤ Cmd .
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We also need a lower bound on the surface energy of contours in terms of the
number of vertices in the support.

Lemma 6.2.30 (Peierls condition). Let γ be a contour in T . For ρ = ρ(d) :=
1

2d·3d the surface energy of a contour satisfies

ρ|γ| ≤ ||γ|| ≤ |γ|.

Proof. The inequality ||γ|| ≤ |γ| is trivial. For the other inequality, note for each
incorrect vertex v ∈ γ there is at least one vertex u ∈ N∞[v] and a neighbor
w ∈ N∞[v] of u such that σγ(u) = σγ(w) = 0. Hence we see that at least two
of the 3d vertices in N∞[v] have a contribution of at least 1

4d each to ||γ||. We
double count this contribution at most 3d times, as |N∞[v]| = 3d. This yields
||γ|| ≥ ρ|γ| for ρ = ρ(d) = 2 · 1

4d · 1
3d

= 1
2d·3d .

Definition 6.2.31. Define for any d ∈ Z≥2 and any x > 0 the real number

δ1(d, x) := e−(log(2Cd)+4d+5·e−x3d+x)/ρ(d),

where Cd is the constant from Lemma 6.2.29 and ρ(d) = 1
2d·3d is the constant

from Lemma 6.2.30.

We can now define stability of contours.

Definition 6.2.32. Let C > 0 and T ∈ Td(C). We define a small contour γ in
T to be C-stable if for all |z| < δ1(d,C)

|w(γ; z)| ≤ |z|||γ||e5e−C3d ·|γ|.

We define a large contour in T to be C-stable if for all |z| < δ1(d,C)

|w(γ; z)| ≤ |z|||γ||e5e−C3d ·|γ| · e4.

For an induced closed subgraph Λ ⊆ T denote by CφΛ(T , C) the set of clusters
X consisting of contours γ in T that are small and of type φ, C-stable and
satisfy γ ⊆ Λ◦. Recall that the condition of being a small contour depends on
the shortest side length ℓ1 of T . When Λ = T we write Cφ(T , C) instead of
CφT (T , C).

Definition 6.2.33. Let T ∈ Td(C). For any induced closed subgraph Λ ⊆ T
and ground state φ ∈ {even, odd} we define

Zφtrunc(Λ; z) :=
∑

Γ∈Cφ
Λ(T ,C)

∏
γ∈Γ

w(γ; z).



148 On boundedness of zeros of the independence polynomial of tori

We also define
Z large

trunc(T ; z) :=
∑

Γ∈Υlarge(T )
all γ ∈ Γ C-stable

∏
γ∈Γ

w(γ; z).

Note each of these partition functions is a polymer partition function.

Analogous to Lemma 6.2.28 we also see

Zeven
trunc(T ; z) = Zodd

trunc(T ; z).

Convergence of logZφtrunc

We apply the Kotecký-Preiss theorem to Zφtrunc(Λ; z) for induced closed subgraphs
Λ ⊆ T and φ ∈ {even, odd}. The set of polymers is the set of small C-stable
contours of type φ in Λ ⊆ T , the weights of a polymer γ is defined as w(γ; z) and
the compatibility relation is torus-compatibility. The cluster expansion takes the
form

logZφtrunc(Λ; z) =
∑

X∈Cφ
Λ(T ,C)

Φ(X; z), (6.6)

where Φ(X; z) =
∏
γ∈Γ

1
nX(γ)!ψ(γ1, . . . , γn)

∏n
i=1 w(γi; z) is defined as in Sec-

tion 6.2.1. We define the support of a cluster X = {γ1, . . . , γk} to be X = ∪ki=1γi
and we denote by |X| the size of the vertex set of X. Because X is a cluster the
incompatibility graph induced by γ1, . . . , γk is connected, which by definition of
torus-compatibility implies thatX is connected, because the γi are small contours
and thus themselves connected.

Theorem 6.2.34. Let C > 0, d ∈ Z≥2 and φ ∈ {even, odd}. Let T ∈ Td(C)
and let Λ ⊆ T be any induced closed subgraph. For all z ∈ C with |z| < δ1(d,C)
the cluster expansion for logZφtrunc(Λ; z) is convergent, where δ1(d,C) defined in
Definition 6.2.31. Furthermore for any v ∈ Λ and any |z| < δ1(d,C) we have∑

X∈Cφ
Λ(T ,C)

v∈X

|Φ(X; z)|e
∑

γ∈X C|γ| ≤ 2.

Proof. Fix v ∈ Λ. Define the artificial contour vγ with support v, weight 0, and
which is torus incompatible with each small contour γ for which v ∈ V (γ). Add
vγ to the set of small C-stable contours of type φ in Λ. With the artificial contour
added, Zφtrunc(Λ; z) is still equal to the sum over torus-compatible collections of
small contours of type φ, as the weight of vγ is zero. For |z| < δ1(d,C) we verify
the condition of Theorem 6.2.1 with a(γ) = 4d|γ| and b(γ) = C|γ|. For any
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contour γ ∑
γ′ ̸∼γ

|w(γ′; z)|ea(γ′)+b(γ′) ≤
∑
γ′ ̸∼γ

|z|||γ′||e5·e
−C3d ·|γ′|ea(γ

′)+b(γ′)

≤
∑
γ′ ̸∼γ

|z|ρ|γ′|e(4d+5·e−C3d+C)|γ′|,

where the sums run over non-artificial contours γ′. In the final inequality we used
||γ′|| ≥ ρ|γ′|. Since |z| < δ1(d,C) we have∑

γ′ ̸∼γ

|z|ρ|γ′|e(4d+5·e−C3d+C)|γ′| <
∑
γ′ ̸∼γ

e− log(2Cd)|γ′|.

There are at most (|γ| + |∂cγ|)Cmd small contours γ′ ̸∼ γ with |γ′| = m, where
Cd is the constant from Lemma 6.2.29. This can be seen by upper bounding
the number of small contours that is torus incompatible with a single vertex and
applying this bound for each vertex of γ ∪ ∂cγ. Note that |∂cγ| < (2d − 1)|γ|.
Hence ∑

γ′ ̸∼γ

e− log(2Cd)|γ′| < (|γ|+ |∂cγ|) ·
∑
m≥0

(Cd)
me− log(2Cd)m

≤ 2(|γ|+ |∂cγ|) ≤ 4d|γ| = a(γ).

This shows the condition of Theorem 6.2.1 holds, which implies the cluster
expansion is convergent for |z| < δ1(d,C). By Theorem 6.2.1 and the definition
of vγ we have for any v ∈ Λ and any |z| < δ1(d,C) we obtain∑

X∈Cφ
Λ(T ,C)

v∈X

|Φ(X; z)|e
∑

γ∈X C|γ| =
∑

X∈Cφ
Λ(T ,C)

X ̸∼vγ

|Φ(X; z)|eb(X) ≤ a(vγ) = 2.

All contours are stable

To prove that all contours are stable we need some estimates on certain subseries
of the cluster expansion.

Lemma 6.2.35. Let C > 0 and let φ ∈ {even, odd}. Then for any z ∈ C with
|z| < δ1(d,C) the limit

lim
n→∞

∑
X∈Cφ(Zd

n,C)

0⃗∈X, |X|<n

Φ(X; z)

|X|

exists and is an analytic function of z.
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Proof. First note for any C > 0, there is an N = N(d) > 0 such that for all
n ≥ N we have Zdn ∈ Td(C), as for large enough n we have eC·n ≥ nd. For each
n ≥ N and each z ∈ C with |z| < δ1(d,C) define the series

Sn(z) :=
∑

X∈Cφ(Zd
n,C)

0⃗∈X, |X|<n

Φ(X; z)

|X| .

By Theorem 6.2.34 we see |Sn(z)| ≤ 2 for all n ≥ N and all |z| < δ1(d,C). Thus
the family of maps {Sn}n≥N is normal on Bδ1(d,C), where Br denotes the open
disk centered at 0 with radius r. For n2 > n1 any cluster X of small contours
in Zdn1

with |X| < n1 and 0⃗ ∈ X can be unambiguously viewed as a cluster in
Zdn2

with |X| < n1 and 0⃗ ∈ X. From this and the fact that for any contour γ we
have ||γ|| ≥ ρ|γ|, where ρ = ρ(d) denotes the constant from Lemma 6.2.30, we
see for n2 > n1 that the first ρn1 coefficients of the power series expansions of
Sn1(z) and Sn2(z) are the same. Hence the coefficients of Sn(z) are stabilizing,
which implies that every convergent subsequence of Sn converges to the same
limit. Normality implies that the entire sequence converges to this limit.

Definition 6.2.36. We denote the the limit function in the lemma above by
fφ,C(z).

In fact, for the definition of fφ,C(z) one can take any sequence of tori T ∈
Td(C) with increasing minimal side length ℓ1, as is implied by the following
lemma.

Lemma 6.2.37. Let C > 0 and let T ∈ Td(C). Denote the smallest side length
of T by ℓ1 and let φ ∈ {even, odd}. For any |z| < δ1(d,C) we have∑

X∈Cφ(T ,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| =
∑

X∈Cφ(Zd
ℓ1
,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| .

Proof. As T ∈ Td(C) with minimal side length ℓ1, we have Zdℓ1 ∈ Td(C). Hence
Theorem 6.2.34 implies that both series are convergent for |z| < δ1(d,C). Any
cluster X in either Cφ(Zdℓ1 , C) or Cφ(T , C) with 0⃗ ∈ X and |X| < ℓ1 can unam-
biguously be viewed as being supported on {−(ℓ1 − 1), . . . , ℓ1 − 1}d because X is
connected. This yields a weight preserving bijection between the two sets, which
implies the equality holds for all |z| < δ1(d,C).

The following estimate is well-known in the statistical physics literature. It
is for example used in the proof of Lemma 5.3 of [BI89], though no formal proof
is given there. The proof we provide here is based on Section 5.7.1 in [FV17],
adapted to our setting.
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Theorem 6.2.38. Let C > 0 and let T ∈ Td(C). Denote the smallest side
length of T by ℓ1 let φ ∈ {even, odd}. Let Λ ⊆ T be an induced closed subgraph.
For any |z| < δ1(d,C) we have

|logZφtrunc(Λ; z)− |Λ◦
even|fφ,C(z)− |Λ◦

odd|fφ,C(z)| ≤ |∂Λ| · 2 · e−C3d + |Λ◦| 4

ℓ1eCℓ1
,

where fφ(z) and fφ(z) are the functions defined in Definition 6.2.36.

Proof. For |z| < δ1(d,C) we have the following equalities of convergent power
series

logZφtrunc(Λ; z) =
∑

X∈Cφ
Λ(T ,C)

Φ(X; z) =
∑
v∈Λ◦

∑
X∈Cφ

Λ(T ,C)

v∈X

Φ(X; z)

|X| =

∑
v∈Λ◦

( ∑
X∈Cφ(T ,C)

v∈X

Φ(X; z)

|X| −
∑

X∈Cφ(T ,C)

v∈X ̸⊂Λ◦

Φ(X; z)

|X|
)
=

|Λ◦
even|

∑
X∈Cφ(T ,C)

0⃗∈X

Φ(X; z)

|X| + |Λ◦
odd|

∑
X∈Cφ(T ,C)

0⃗∈X

Φ(X; z)

|X| −
∑
v∈Λ◦

∑
X∈Cφ(T ,C)

v∈X ̸⊂Λ◦

Φ(X; z)

|X| ,

where in the final equality we use that a cluster of contours containing v ∈ Λ◦

can be translated to a cluster of contours containing 0⃗; see Remark 11.
We prove the following bounds:

|
∑
v∈Λ◦

∑
X∈Cφ(T ,C)

v∈X ̸⊂Λ◦

Φ(X; z)

|X| | ≤ |∂Λ| · 2 · e−C3d , (6.7)

and for ξ ∈ {φ,φ}, ∣∣∣∣∣ ∑
X∈Cξ(T ,C)

0⃗∈X

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣ ≤ 4

ℓ1eCℓ1
. (6.8)

Since |Λ◦| = |Λ◦
even|+ |Λ◦

odd| these bounds together complete the proof.
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To prove (6.7) we bound∣∣∣∣∣ ∑
v∈Λ◦

∑
X∈Cφ(T ,C)

v∈X ̸⊂Λ◦

Φ(X; z)

|X|

∣∣∣∣∣ =
∣∣∣∣∣ ∑
X∈Cφ(T ,C)

X ̸⊂Λ◦

∑
v∈Λ◦

Φ(X; z)1X(v)

|X|

∣∣∣∣∣ =
∣∣∣∣∣ ∑

X∈Cφ(T ,C)

X ̸⊂Λ◦, X∩Λ◦ ̸=∅

Φ(X; z)|X ∩ Λ◦|
|X|

∣∣∣∣∣ ≤ ∑
w∈∂Λ

∑
X∈Cφ(T ,C)

w∈X ̸⊂Λ◦

∣∣∣Φ(X; z)|X ∩ Λ◦|
|X|

∣∣∣ ≤
∑
w∈∂Λ

∑
X∈Cφ(T ,C)

w∈X ̸⊂Λ◦

|Φ(X; z)| ≤ |∂Λ| max
w∈∂Λ

∑
X∈Cφ(T ,C)

w∈X ̸⊂Λ◦

|Φ(X; z)| ≤ |∂Λ| · 2 · e−C3d ,

where the last inequality follows from Theorem 6.2.34 using that any cluster X
with w ∈ X satisfies

∑
γ∈X |γ| ≥ 3d.

Next we show (6.8). We split the clusters in T based on size and use the
triangle inequality∣∣∣∣∣ ∑

X∈Cξ(T ,C)

0⃗∈X

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
X∈Cξ(T ,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣
+

∣∣∣∣∣ ∑
X∈Cξ(T ,C)

0⃗∈X, |X|≥ℓ1

Φ(X; z)

|X|

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
X∈Cξ(T ,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣+ 2

ℓ1 · eCℓ1
=

∣∣∣∣∣ ∑
X∈Cξ(Zd

ℓ1
,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣+ 2

ℓ1 · eCℓ1
,

where the last inequality follows from Theorem 6.2.34 and the last equality follows
from Lemma 6.2.37.

For any ε > 0 there is an ℓ∗ large enough such that for any |z| ≤ δ1(d,C) we
have ∣∣∣∣∣ ∑

X∈Cξ(Zd
ℓ∗ ,C)

0⃗∈X, |X|<ℓ∗

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣ ≤ ε,

by Lemma 6.2.35. By increasing ℓ∗ if necessary we may assume ℓ∗ > 2ℓ1. We
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have∣∣∣∣∣ ∑
X∈Cξ(Zd

ℓ1
,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
X∈Cξ(Zd

ℓ1
,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| −
∑

X∈Cξ(Zd
ℓ∗ ,C)

0⃗∈X, |X|<ℓ∗

Φ(X; z)

|X|

∣∣∣∣∣
+ ε =

∣∣∣∣∣ ∑
X∈Cξ(Zd

ℓ∗ ,C)

0⃗∈X, ℓ1≤|X|<ℓ∗

Φ(X; z)

|X|

∣∣∣∣∣+ ε ≤ 2

ℓ1eCℓ1
+ ε,

where we used Theorem 6.2.34 in the last inequality. As this holds for any ε > 0,
we see ∣∣∣∣∣ ∑

X∈Cξ(T ,C)

0⃗∈X, |X|<ℓ1

Φ(X; z)

|X| − fξ,C(z)

∣∣∣∣∣ ≤ 2

ℓ1eCℓ1
.

This finishes the proof of (6.8).

With this bound, we can now finally show that all contours are C-stable.

Theorem 6.2.39. Let C > 0 and let T ∈ Td(C). Let Λ ⊆ T be an induced closed
subgraph of T and let φ ∈ {even, odd} be a ground state. For all |z| < δ1(d,C),
we have

Zφmatch(Λ; z) = Zφtrunc(Λ; z)

and
Z large

match(T ; z) = Z large
trunc(T ; z).

Proof. We first prove by induction on |Λ| that all small contours of type φ are C-
stable. The base case follows as the weight of an empty contour is 1. Suppose the
claim holds for all Λ with |Λ| ≤ k for some k ≥ 0. Let Λ be such that |Λ| = k+1
and take any small contour γ of type φ in Λ. We aim to bound |w(γ; z)| by
|z|||γ||e5·e−C3d |γ|, which shows γ is C-stable. By the induction hypothesis we see∣∣∣∣w(γ; z)z||γ||

∣∣∣∣ = ∣∣∣∣Zφmatch(intφ(γ); z)

Zφmatch(intφ(γ); z)

∣∣∣∣ = ∣∣∣∣Zφtrunc(intφ(γ); z)

Zφtrunc(intφ(γ); z)

∣∣∣∣.
Write V = intφ(γ). For any ε > 0 there exists ℓ large enough such that |V ◦| 4

ℓeCℓ <

ε and such that V is isomorphic to an induced closed subgraph of Zdℓ . Fix such
an ℓ.

Define
hφ,C(V ; z) = |V ◦

even|fφ,C(z) + |V ◦
odd|fφ,C(z),
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where fφ,C(z) and fφ,C(z) denote the functions defined in Definition 6.2.36. We
also write gC(z) = fφ,C(z) − fφ,C(z). By Theorem 6.2.34 and Lemma 6.2.35 we
see for any z ∈ C with |z| ≤ δ1(d,C) we have

|gC(z)| ≤ |fφ,C(z)|+ |fφ,C(z)| ≤
4

3d
· e−C3d ≤ e−C3d ,

using the fact that any cluster X with 0⃗ ∈ X satisfies |X| ≥ 3d.
Theorem 6.2.38 applied to V as a induced closed subgraph of Zdℓ now gives∣∣∣∣∣Zφtrunc(V ; z)

Zφtrunc(V ; z)

∣∣∣∣∣ =
∣∣∣∣∣elogZ

φ
trunc(V ;z)−hφ,C(V ;z)

elogZ
φ
trunc(V ;z)−hφ,C(V ;z)

∣∣∣∣∣ ·
∣∣∣∣ehφ,C(V ;z)

ehφ,C(V ;z)

∣∣∣∣ ≤
e| logZ

φ
trunc(V ;z)−hφ,C(V ;z)|

e−| logZφ
trunc(V ;z)−hφ,C(V ;z)| ·

∣∣∣∣ehφ,C(V ;z)

ehφ,C(V ;z)

∣∣∣∣ < e2e
−C3d |∂V |+|V ◦| 4

ℓeCℓ

e−2e−C3d |∂V |−|V ◦| 4
ℓeCℓ

∣∣∣∣ehφ,C(V ;z)

ehφ,C(V ;z)

∣∣∣∣ ≤
e4e

−C3d ·|∂V |+|V ◦ 8
ℓeCℓ ·

∣∣∣∣ehφ,C(V ;z)

ehφ,C(V ;z)

∣∣∣∣ . (6.9)

Using that |V ◦| 4
ℓeCℓ < ε and the definitions of hφ,C(V ; z) and gC(z) we can

further bound this by

e4·e
−C3d |∂V | · e2ε ·

∣∣∣e(|V ◦
even|−|V ◦

odd|)gC(z)
∣∣∣ ≤ e4·e

−C3d |∂V | · e2ε · ee−C3d ||V ◦
even|−|V ◦

odd||.

(6.10)

We next claim that for any induced closed subgraph V ⊆ T it holds that

||V ◦
even| − |V ◦

odd|| < |∂V |. (6.11)

Indeed, define e(A) for A ⊆ V to be the set of edges of T with at least
one endpoint in A. We have |e(V )| = |e(V ◦

even)| + |e((∂V )even)| = |e(V ◦
odd)| +

|e((∂V )odd)|. As each vertex in V ◦ has degree 2d and each vertex in ∂V has
degree strictly less than 2d we see that

||V ◦
even| − |V ◦

odd|| =
1

2d
||e(V ◦

even)| − |e(V ◦
odd)||

=
1

2d
||e((∂V )odd)| − |e((∂V )even)|| < |∂V |,

proving (6.11). Substituting (6.11) into (6.10) we get for any ε > 0,∣∣∣∣∣Zφtrunc(V ; z)

Zφtrunc(V ; z)

∣∣∣∣∣ < e2ε · e5·e−C3d ·|∂V | ≤ e2ε · e5·e−C3d ·|γ|.
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As ε→ 0 we get ∣∣∣∣∣Zφtrunc(V ; z)

Zφtrunc(V ; z)

∣∣∣∣∣ ≤ e5·e
−C3d ·|γ|

and hence we see that the small contour γ is C-stable.
Now let γ be a large contour. As we already proved that for any induced

closed subgraph Λ ⊆ T all small contours are C-stable, we obtain∣∣∣∣w(γ; z)z||γ||

∣∣∣∣ = ∣∣∣∣Zodd
match(intodd(γ); z)

Zeven
match(intodd(γ); z)

∣∣∣∣ = ∣∣∣∣Zodd
trunc(intodd(γ); z)

Zeven
trunc(intodd(γ); z)

∣∣∣∣ .
Again write V = intodd(γ), and write

hφ,C(V ; z) = |V ◦
even|fφ,C(z) + |V ◦

odd|fφ,C(z),

and gC(z) = fφ,C(z)− fφ,C(z). As above we have |gC(z)| ≤ e−C3d for any z ∈ C
with |z| ≤ δ1(d,C).

By Theorem 6.2.38, now applied to V as an induced closed subgraph of T ,
and thus replacing ℓ by ℓ1 in (6.9) we obtain,∣∣∣∣∣Zφtrunc(V ; z)

Zφtrunc(V ; z)

∣∣∣∣∣ = e
4·e−C3d |∂V |+|V ◦| 8

ℓ1eCℓ1 ·
∣∣∣e(|V ◦

even|−|V ◦
odd|)gC(z)

∣∣∣
≤ e

4·e−C3d |∂V |+|V ◦| 8

ℓ1eCℓ1 · ee−C3d |∂V |

≤ e5·e
−C3d ·|∂V | · e|V

◦| 8

ℓ1eCℓ1 ≤ e5·e
−C3d ·|γ| · e4,

using (6.11) and the bound on gC(z) for the second to last inequality and eCℓ1 ≥
| T | ≥ |V ◦| and ℓ1 ≥ 2 for the final inequality. Therefore each large contour γ is
C-stable.

6.3 Bounded zeros for balanced tori

In this section we prove the zeros of families of balanced tori are bounded, building
on the framework and results of the previous section.

Recall by Lemma 6.2.28 and Theorem 6.2.39 that we have

Zmatch(T ; z) = 2Zeven
trunc(T ; z) + Z large

trunc(T ; z).

Our first aim this section is to bound |Z large
match(T ; z))| away from 2|Zeven

trunc(T ; z)|,
these bounds are the final ingredient we need to prove the zeros of families of
balanced tori are bounded.
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To obtain bounds on |Z large
match(T ; z))| we apply the Kotecký-Preiss theorem

to log(Zeven
match(T ; z) + Z large

match(T ; z)), which in turn means we need to bound the
number of relevant contours.

Lemma 6.3.1. Let T be an even d-dimensional torus. Let Lm denote the set of
contours γ in T containing 0⃗ with support of size m that are either large or small
and of even type. Then we have

|Lm| ≤ (4Cd| T |1/ℓ1)m,

where Cd is the constant from Lemma 6.2.29.

Proof. Let k denote the number of connected components of a large contour
γlarge with |γlarge| = m. Each connected component of γlarge has size at least ℓ1,
hence k ≤ ⌊m/ℓ1⌋. Denote by mi the size of the i-th connected component for
i ∈ {1, . . . , k}. For each connected component of the large contour that does not
contain 0⃗ choose a vertex vi of T in the component for i ∈ {1, . . . , k − 1}, this
can be done in | T |k−1 many ways.

Denote by Pl the set of connected large contours of size l incompatible with
a specified vertex v. The number of connected sets in T of size l containing v is
bounded by the number of connected sets of size l containing 0⃗ in Zd. As there
are at most 2l possible feasible configurations on a set of size l, we obtain with
the same argument as in Lemma 6.2.29 that |Pl| ≤ Cld. We apply this bound
to each connected component and see the total number of large contours γ in T
with support of size m containing 0⃗ is bounded by

∑
m1,...,mk∑

mi=m and mi≥ℓ1

k∏
i=1

Cmi

d (| T |)k−1 ≤
( ∑
m1,...,mk∑
mi=m

1
)
Cmd | T |k−1 ≤ 4mCmd | T |k−1.

(6.12)
Accounting also for the small even contours of size m, we get

|Lm| ≤ 4mCmd (| T |)k ≤ (4Cd| T |1/ℓ1)m.

We also need a tighter bound on the absolute value of |z|.

Definition 6.3.2. We define for any x > 0 the number

δ2(d, x) = e−(log(8exCd)+4de4+5·e−x3d )/ρ(d),

where Cd is the constant from Lemma 6.2.29 and ρ(d) = 1
2d·3d is the constant

from Lemma 6.2.30.
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Note that δ1(d, x) > δ2(d, x) for all d ∈ Z≥2 and x > 0. We apply the
framework of Section 6.2.1 to log(Zeven

match(T ; z) + Z large
match(T ; z)). In this case our

polymers are contours of type even, i.e. both large and small. The weights of
a contour γ equals w(γ; z) and the compatibility relation is torus-compatibility.
Denote by Ceven

large(T ) the set of clusters of even and large contours. The cluster
expansion takes the form

log(Zeven
match(T ; z) + Z large

match(T ; z)) =
∑

X∈Ceven
large(T )

Φ(X; z), (6.13)

where Φ(X; z) =
∏
γ∈Γ

1
nX(γ)!ψ(γ1, . . . , γn)

∏n
i=1 w(γi; z) is defined as in Sec-

tion 6.2.1.

Theorem 6.3.3. Let C > 0 and let T ∈ Td(C). For any |z| < δ2(d,C) the clus-
ter expansion for log(Zeven

match(T ; z) + Z large
match(T ; z)) is convergent, where δ2(d,C)

is defined in Definition 6.3.2. Furthermore for any v ∈ V (T )∑
X∈Ceven

large(T )

v∈X

|Φ(X; z)| ≤ 4de4.

Proof. Fix v ∈ V (T ). Define the artificial contour vγ with support v, weight
0 and which is torus incompatible with each contour γ such that v ∈ V (γ).
Add vγ to the set of contours. With the artificial contour added, Zeven

match(T ; z) +

Z large
match(T ; z) is still equal to the sum over torus-compatible collections of large

and even contours, as the weight of vγ is zero. Throughout this proof ∼ denotes
the relation of torus-compatibility. We verify the condition of Theorem 6.2.1 with
a(γ) = 4de4|γ| and b(γ) = 0.

Theorem 6.2.39 applies as δ2(d,C) < δ1(d,C). Hence for any contour γ∑
γ′ ̸∼γ

|w(γ′; z)|ea(γ)+b(γ) ≤
∑
γ′ ̸∼γ

|z|ρ|γ′|e(4de
4+5·e−C3d )|γ′| · e4

≤
∑
γ′ ̸∼γ

|z|ρ|γ′|e(4de
4+5·e−C3d )|γ′| · e4,

where without loss of generality we may assume the first sum is over non-artificial
contours γ′, as w(vγ ; z) = 0. As |z| < δ2(d,C) = e−(log(8eCCd)+4de4+5·e−C3d )/ρ,
we have ∑

γ′ ̸∼γ

|z|ρ|γ′|e(4de
4+5·e−C3d )|γ′|e4 < e4

∑
γ′ ̸∼γ

(8eCCd)
−|γ′|.

There are at most (|γ|+ |∂cγ|)(4| T |1/ℓ1Cd)m contours γ′ ̸∼ γ with |γ′| = m,
where Cd is the constant from Lemma 6.2.29, this can be seen by upper bounding
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how many ways a contour can be torus incompatible with a single vertex using
Lemma 6.3.1 and applying this bound for each vertex of γ. We also note that as
T is C-balanced, we have | T |1/ℓ1 ≤ eC . Hence∑

γ′ ̸∼γ

(8eCCd)
−|γ′| < e4(|γ|+ |∂cγ|) ·

∑
m≥0

(4| T |1/ℓ1Cd)m(8eCCd)
−m

≤ 2de4|γ| ·
∑
m≥0

(
1
2

)m
= a(γ),

where we used |γ|+ |∂cγ| ≤ 2d|γ|.
This shows the condition of Theorem 6.2.1 holds, which implies the cluster

expansion is convergent for |z| < δ2(d,C). By Theorem 6.2.1 and the definition
of vγ we have for any v ∈ T we have∑

X∈Ceven
large(T )

v∈X

|Φ(X; z)|e
∑

γ∈X b(γ) =
∑

X∈Ceven
large(T )

X ̸∼vγ

|Φ(X; z)| ≤ a(vγ) = 4de4,

where we can assume the clusters X do not contain vγ , as for any cluster X
containing vγ we have Φ(X; z) = 0 as w(vγ ; z) = 0.

Lemma 6.3.4. Let C > 0. The family{ log(Zeven
match(T ; z) + Z large

match(T ; z))

| T |
}
T ∈Td(C)

(6.14)

is normal on |z| < δ2(d,C).

Proof. For any T ∈ Td(C) and any z such that |z| < δ2(d,C) we have∣∣∣ log(Zeven
match(T ; z) + Z large

match(T ; z))

| T |
∣∣∣ = ∣∣∣∣∣ 1

| T |
∑

v∈V (T )

∑
X∈Ceven

large(T )

v∈X

Φ(X; z)

|X|

∣∣∣∣∣
≤ max
v∈V (T )

∑
X∈Ceven

large(T )

v∈X

|Φ(X; z)|
|X| ≤ 4de4,

where the last inequality follows from Theorem 6.2.39, Theorem 6.3.3. Therefore
the family defined in (6.14) is normal by Montel’s theorem.

To bound |Z large(T ; z))|, we show the influence of adding large contours to
the even contours is negligible, for small enough z as the sizes of the tori tend to
infinity.
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Lemma 6.3.5. For any C > 0 and any |z| < δ1(d,C) the function

fC(z) = lim
| T |→∞
T ∈Td(C)

log(Zeven
match(T ; z))

| T |

is well-defined and fC(z) = 1
2feven,C(z) +

1
2fodd,C(z). For any |z| < δ2(d,C) the

function

gC(z) = lim
| T |→∞
T ∈Td(C)

log(Zeven
match(T ; z) + Z large

match(T ; z))

| T |

is well-defined and gC(z) = fC(z).

Proof. Take any torus T ∈ Td(C) and let ℓ1 denote the minimal side length of
T . From Theorem 6.2.39 and Theorem 6.2.38 we obtain for all |z| < δ1(d,C)∣∣∣∣ logZeven

match(T ; z)

| T | − 1

2
feven,C(z)−

1

2
fodd,C(z)

∣∣∣∣ < 2

| T | ,

where in the last equality we used ℓ1e
Cℓ1 ≥ 2| T |, as ℓ1 ≥ 2 and eCℓ1 ≥ | T |.

This implies fC(z) exists and fC(z) = 1
2feven,C(z) +

1
2fodd,C(z).

The first ρℓ1 terms of the power series logZeven
match(T ; z) and log(Zeven

match(T ; z)+

Z large
match(T ; z)) are equal, where ρ is the constant from Lemma 6.2.30 as each large

contour contributes at least zρℓ1 in each cluster X containing the large contour.
Therefore, as | T | → ∞, and hence ℓ1 → ∞, the first ρℓ1 coefficients of

log(Zeven
match(T ; z) + Z large

match(T ; z))

| T |
converge to the first ρℓ1 coefficients of fC(z). Lemma 6.3.4 now implies that
gC(z) is well-defined on Bδ2(d,C)(0) and moreover satisfies gC(z) = fC(z).

Remark 12. The function fC(z) is the free energy per site for the polymer model
with polymers the small even contours in T . It is related to the free energy per
site for the independence polynomial defined in the introduction, which we denote
by ρ(λ). For λ ∈ R≥0 and |λ| > 1/δ1(d,C) both functions are well-defined and
satisfy ρ(λ) = λ

2 + fC(
1
λ ).

The following lemma provides sufficient conditions to bound |Z large
match(T ; z)|

away from 2|Zeven
match(T ; z)|, which is the final ingredient to prove zeros are bounded

for C balanced tori.

Lemma 6.3.6. Suppose there exists δ > 0 and for each n ∈ N there are holo-
morphic functions fn, gn : Bδ(0) → C and functions a, b : N → N such that for
all z ∈ Bδ(0) we have
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1. the functions fn(z) + za(n)gn(z) and fn(z) are nonzero for each n,

2. limn→∞
1

b(n) · (log(fn(z) + za(n)gn(z))− log fn(z)) = 0,

3. there is a constant κ > 0 such that for all n we have a(n) > κ log b(n),

then there is a constant N > 0 such that for |z| < δ
e1/κ

and n ≥ N we have

|za(n)gn(z)| < |fn(z)|.

Furthermore, the inequality in (3) is necessary.

Proof. We have

log(fn(z) + za(n)gn(z))− log fn(z) = log
(
1 +

za(n)gn(z)

fn(z)

)
= za(n)hn(z)

for some convergent power series hn(z), using item (1). By item (2) we see
limn→∞

za(n)hn(z)
b(n) = 0 for |z| < δ. Hence for any ε > 0 and large enough n we

have
∣∣∣ za(n)hn(z)

b(n)

∣∣∣ < ε. By the maximum principle we see
∣∣∣hn(z)
b(n)

∣∣∣ < ε
δa(n) . Now take

|z| < δ
e1/κ

where κ > 0 is the constant from item (3), then |z|a(n)
∣∣∣hn(z)
b(n)

∣∣∣ < ε
ea(n)/κ

therefore |za(n)||hn(z)| < b(n)
ea(n)/κ ε < ε, by item (3) of the assumptions. Therefore∣∣∣∣log (1 + za(n)gn(z)

fn(z)

)∣∣∣∣ = |za(n)||hn(z)| < ε,

for large n and |z| < δ
e1/κ

. From this we conclude |za(n)gn(z)| < ε|fn(z)| <
|fn(z)|, which finishes the first part of the proof.

To prove the estimate in (3) is sharp, let δ = 1 and a(n) = n, choose any
holomorphic map h : D → C and define fn(z) = eb(n)h(z) and zngn(z) :=
fn(z)(e

znb(n) − 1) so that items (1) and (2) hold. Now suppose for any κ > 0
there is an n ≥ 1 such that κ log b(n) > n, i.e. b(n) > (e1/κ)n. We have

zngn(z)

fn(z)
= ez

nb(n) − 1,

which does not converge to 0 on any disc Br(0). In fact, by the assumption
on b(n), we see that for any r > 0 there exist infinitely many n ≥ 1 such that
b(n) > (1/r)n. It follows for z = r that znb(n) > 1, from which we see er

nb(n) −
1 > e− 1 > 1. Hence we do not have |za(n)gn(z)| < |fn(z)| for all z small enough
and n large enough.
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Theorem 6.3.7. Let C > 0. There exists δ = δ(d,C) > 0 such that for all z ∈ C
with |z| < δ and for all tori T ∈ Td(C) we have

Zmatch(T ; z) ̸= 0.

Proof. We claim there exists an N > 0 such that for any z ∈ C with |z| < δ2(d,C)
eC

and any torus T ∈ Td(C) with | T | ≥ N we have Zmatch(T ; z) ̸= 0. Since
there are finitely many tori T ∈ Td(C) with | T | < N , by choosing M larger if
necessary the theorem follows.

To prove the claim, note Zmatch(T ; z) = 2Zeven
match(T ; z) + Z large

match(T ; z), by
Lemma 6.2.27 and Lemma 6.2.28. Given d ∈ N≥2 and C > 0 the set Td(C) is
countable and we can choose a bijection h : N → Td(C) such that n > m implies
|h(n)| ≥ |h(m)|.

We define maps ã, b̃ : Td(C) → N as follows. For T ∈ Td(C) with shortest
side length ℓ1 we define ã(T ) = ⌊ρℓ1⌋, where ρ is the constant from Lemma 6.2.30.
Furthermore we define b̃(T ) = | T |. Define maps a, b : N → N as a = ã ◦ h and
b = b̃ ◦ h.

For n ∈ N the function Z large
match(h(n); z)/(z

a(n)) is a polynomial in z which
we denote by gn(z). Write fn(z) = Zeven

match(h(n); z), thus Z(h(n); z) = 2fn(z) +
za(n)gn(z). We check the conditions of Lemma 6.3.6 for functions fn, gn, a(n)
and b(n) as above with δ = δ2(d,C). Assumption (1) of Lemma 6.3.6 holds
by Theorems 6.2.39, 6.2.34 and 6.3.3. Assumption (2) of Lemma 6.3.6 holds
by choice of the bijection h and Lemma 6.3.5. Assumption (3) of Lemma 6.3.6
also holds with κ = 1/C by definition of Td(C) and the functions a and b. It
follows from Lemma 6.3.6 there is a constant M > 0 such that for |z| < δ

eC

and n ≥ M we have |za(n)gn(z)| < |fn(z)| < 2|fn(z)|. Hence |Z(h(n); z)| =
|2fn(z) + za(n)gn(z)| ≥ |2|fn(z)| − |za(n)gn(z)|| > 0. As for n > m we have
|h(n)| ≥ |h(m)|, it follows for N = |h(M)|, any z ∈ C with |z| < δ2(d,C)

eC
and

any torus T ∈ Td(C) with | T | ≥ N we have Zmatch(T ; z) ̸= 0. This proves the
claim, completing the proof of the theorem.

Remark 13. Let C > 0. For |z| < δ2(d,C)
eC

the limit exists

lim
| T |→∞
T ∈Td(C)

logZmatch(T ; z)

| T |

and converges to the function fC(z) defined in Lemma 6.3.5. For any two con-
stants C1 > C2 > 0 and any z ∈ C with |z| < min( δ2(d,C1)

eC1
, δ2(d,C2)

eC2
) we have

fC1
(z) = fC2

(z), hence the function f does not depend on C. This justifies
referring to f as the limit free energy of balanced tori around infinity.

From Theorem 6.3.7, we immediately obtain the first part of the main theo-
rem.
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Theorem (First part of Main Theorem). Let F be a family of even d-dimensional
tori. If F is balanced, then the zeros of the independence polynomials {ZT : T ∈
F} are uniformly bounded.

Proof. The family F is balanced if and only if there is a C > 0 such that F ⊂
Td(C). By Corollary 6.2.17 and Theorem 6.3.7, we see there exists a uniform
Λ(d,C) = 1/δ(d,C) such that for any λ ∈ C with |λ| > Λ(d,C) and any T ∈
Td(C) we have Zind(T ;λ) ̸= 0.

6.4 Unbounded zeros of highly unbalanced tori

In this section we will prove that the independence polynomials of highly un-
balanced tori have unbounded zeros. First we will consider tori for which all
dimensions except one are constant. The fact that zeros are unbounded when
the last dimension diverges will immediately imply that for sufficiently unbal-
anced sequences of tori the zeros are unbounded. A more careful analysis then
provides explicit bounds on the required relative dimensions of the tori. The
proofs in this section rely on an analysis of the corresponding transfer-matrices.

For positive integers n we will let Cn denote the cycle graph on n vertices.
We let G1□G2 denote the cartesian product of two graphs G1, G2, i.e. the graph
with vertex set V (G1) × V (G2) and (v1, u1) ∼ (v2, u2) iff either v1 = v2 and
u1 ∼ u2 in G2 or u1 = u2 and v1 ∼ v2 in G1. What was previously denoted by
Zn1 × · · · × Znd

shall in this section be denoted by Cn1□ · · ·□Cnd
.

There will be no other partition function than the independence polynomial
which, for a graph G and parameter λ, we denote by Z(G;λ).

6.4.1 Transfer-matrix method
Fix G to be a finite graph and let I denote the set of its independent sets. Two
independent sets S, T ∈ I are said to be compatible if S ∩ T = ∅ and we write
S ∼ T . We let A denote the adjacency matrix of the compatibility graph, i.e.
the rows and columns of A are indexed by elements of I and AS,T = 1 if S ∼ T
and AS,T = 0 otherwise. Furthermore, for a variable λ, we let Dλ denote the
diagonal matrix with (Dλ)S,S = λ|S|.

Theorem 6.4.1 (Transfer-matrix method). For any n ∈ Z≥1

Z(Cn□G;λ) = Tr [(DλA)
n] .

Proof. Let P ⊆ In denote those tuples (S1, . . . , Sn) for which Si ∼ Si+1 for
all i = 1, . . . , n, reducing the index modulo n. The independent sets of Cn□G
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correspond one to one with the elements of P. We therefore find that

Tr [(DλA)
n] =

∑
(S1,...,Sn)∈In

n∏
i=1

(DλA)SiSi+1

=
∑

(S1,...,Sn)∈P

λ
∑n

i=1 |Si| = Z(Cn□G;λ).

Throughout this section we will frequently use that for any complex valued
square matrix M and integer n ≥ 1

Tr(Mn) =
∑

s eigenvalue of M

sn.

This observation reveals the strength of the transfer-matrix method. It shows
that Z(Cn□G;λ) can be written as a simple expression in n and a fixed set of
values. This motivates the study of the eigenvalues of the transfer-matrix.

Lemma 6.4.2. Let λ ∈ R≥0. The eigenvalues of DλA are real and there is a
simple positive eigenvalue r such that r > |s| for all other eigenvalues s.

Proof. We first consider λ = 0. The only non-zero entry of the diagonal matrixD0

is (D0)∅,∅. Therefore the matrix D0A has rank at most 1 and thus the eigenvalue
0 appears with multiplicity at least |I| − 1. Observe that D0Ae∅ = e∅ and thus
1 is an eigenvalue, which must necessarily be simple.

Now assume λ > 0. The matrix DλA is conjugate to the real symmetric
matrix Dλ1/2ADλ1/2 and thus all its eigenvalues are real. The entries of DλA
are all non-negative and its support matrix is A. The matrix A is the adjacency
matrix of a connected graph because S ∼ ∅ for every S ∈ I. The diagonal
entry (DλA)∅,∅ = 1 is non-zero. These facts allow us to conclude that DλA is
an aperiodic irreducible matrix. The Perron–Frobenius theorem states that we
can conclude that the eigenvalue of maximal norm of DλA is simple and positive
real.

Corollary 6.4.3. Let λ0 ∈ R≥0. The zeros of the polynomials {Z(Cn□G;λ)}n≥1

do not accumulate on λ0.

Proof. According to Lemma 6.4.2 the matrix Dλ0
A has a unique eigenvalue of

maximal norm, which we denote by r(λ0). Because r(λ0) is simple there exists
a neighborhood U ⊆ C of λ0 such that r : U → C is the analytic continuation
of this eigenvalue, i.e. r holomorphic and r(λ) is an eigenvalue of DλA for all
λ ∈ U .
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Because the set of eigenvalues of DλA moves continuously with λ there is
a radius R > 0 and a constant ζ < 1 such that ζ · |r(λ)| > |s| for all other
eigenvalues s of DλA for all λ with |λ− λ0| ≤ R. For these λ we have∣∣∣∣Z(Cn□G;λ)r(λ)n

− 1

∣∣∣∣ = ∣∣∣∣Z(Cn□G;λ)− r(λ)n

r(λ)n

∣∣∣∣ = ∑
s̸=r(λ)

(
s

r(λ)

)n
< ζn · (|I| − 1) ,

where the sum runs over eigenvalues of DλA not equal to r(λ). For n sufficiently
large the quantity on the right-hand side is strictly less than 1, which implies
that Z(Cn□G;λ) cannot be zero. The disk of radius R around λ0 can therefore
only contain finitely many zeros.

We can deduce that the sequence {Cn□G}n≥1 undergoes no phase-transition.
Indeed, the free energy per site converges:

lim
n→∞

log(Z(Cn□G;λ))
n|V (G)| =

log(r(λ))

|V (G)| ,

where r(λ) is the largest eigenvalue of DλA. This is an analytic function of λ on
[0,∞).

6.4.2 Constant width tori
We now move from general graphs to tori. Let T be a fixed even torus (we allow
T to be an even cycle). We again let I denote the collection of independent sets
of T . We will show that the zeros of the tori Cn□T are unbounded or, in other
words, accumulate at ∞.

Define α = 1
2 |V (T )|. There are two maximum independent sets, namely

Seven = {v ∈ T : v is even} and Sodd = {v ∈ T : v is odd}.
For any S ∈ I define

∥S∥ = α− |S|.
Although related, this definition should not be confused with the surface energy
of a contour ∥γ∥. We observe that ∥Seven∥ = ∥Sodd∥ = 0 and ∥S∥ > 0 for all
other S ∈ I.

We write z = 1/λ. Define the diagonal matrix D̂z by (D̂z)S,S = z∥S∥ and re-
call that A denotes the compatibility matrix of the independent sets. We observe
that

zαD1/z = D̂z and Tr
[
(D̂zA)

n
]
= znα · Z(Cn□T ; 1/z).

From now on we let Mz = D̂zA. For any S ∈ I we let eS denote the |I|-
dimensional unit vector belonging to index S. We turn our attention to the
eigenvalues of Mz in a neighbourhood of z = 0.
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Lemma 6.4.4. There is a neighbourhood U of 0 and holomorphic functions q+
and q− defined on U such that

• q+(z) and q−(z) are eigenvalues of Mz for all z ∈ U and

• q+(0) = 1 and q−(0) = −1 are the only non-zero eigenvalues of M0.

Proof. We can write

M0 = eSeven

∑
S∈I

S∼Seven

eTS + eSodd

∑
S∈I

S∼Sodd

eTS .

We see that M0 has rank two, M(eSeven + eSodd) = eSeven + eSodd and M(eSeven −
eSodd) = −(eSeven − eSodd). Therefore q+(0) = 1 and q−(0) = −1 are the only two
non-zero eigenvalues of M0 and they are both simple. By the implicit function
theorem these can be analytically extended to eigenvalues of Mz on a neighbor-
hood of z = 0.

We will keep referring to q+ and q− as they are defined in Lemma 6.4.4. We
can now give a reasonably short proof that the zeros of Cn□T accumulate at ∞
using Montel’s theorem as a black box.

Lemma 6.4.5. Let R > 0. There are only finitely many n such that all zeros of
Z(Cn□T ;λ) are less than R in norm.

Proof. Let U be a connected neighborhood of z = 0 such that there is a ζ < 1
for which |s| < ζ ·min{|q+(z)|, |q−(z)|} for all other eigenvalues s of Mz for every
z ∈ U . We can assume that q+ and q− are defined on U and that U is contained
in a ball of radius 1/R. Let N0 be such that ζN0(|I| − 2) ≤ 1/2. Let I ⊆ Z≥N0

be the set of indices such that for n ∈ I the polynomial znα · Z(Cn□T ; 1/z) has
no zeros in U \ {0}. We will show that the family of functions

F =

{
znα · Z(Cn□T ; 1/z)

q+(z)n

}
n∈I

is a normal family on U \ {0}. We will do this by applying the strong version of
Montel’s theorem, i.e. we show that F avoids three values in the Riemann-sphere.

Because znα · Z(Cn□T ; 1/z) is a polynomial f(z) ̸= ∞ for every f ∈ F and
z ∈ U . By definition of I we see that f(z) ̸= 0 for every f ∈ F and nonzero
z ∈ U . We also claim that F avoids 1. To prove it we assume that there is a
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z ∈ U and an index n ∈ I that show otherwise. Then

0 =

∣∣∣∣znα · Z(Cn□T ; 1/z)− q+(z)n

q−(z)n

∣∣∣∣ =
∣∣∣∣∣∣
Tr
[
(D̂zA)

n
]
− q+(z)n

q−(z)n

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 +
∑

s̸=q±(z)

(
s

q−(z)

)n∣∣∣∣∣∣ ≥ 1− ζn(|I| − 2) ≥ 1/2,

where the sum runs over the eigenvalues of Mz not equal to q±(z). This is a
contradiction and we can thus conclude that F is a normal family. We will now
show that this implies that F is finite.

Define β(z) = q+(z)/q−(z). We observe that β(0) = −1 and, by Lemma 6.4.2,
|β(z)| > 1 for z > 0. The map β is holomorphic and non-constant and thus an
open map. Let U+ = {z ∈ U : |β(z)| > 1} and U− = {z ∈ U : |β(z)| < 1}. These
are both open non-empty subsets of U \ {0}. For z ∈ U+ we have that

lim
n→∞

znα · Z(Cn□T ; 1/z)

q+(z)n
= lim
n→∞

β(z)n + 1 +
∑

s̸=q±(z)

(
s

q+(z)

)n = ∞,

while for z ∈ U− this limit is equal to 1. If F were to have a sequence of elements
whose indices converge to ∞, it should have a subsequence that converges to a
holomorphic function that is constant ∞ on U+ and constant 1 on U−. Because
U \ {0} is connected, such a function does not exist.

This shows that the index-set I is finite. It follows that there is an N1 such
that for all n ≥ N1 the polynomial znα · Z(Cn□T ; 1/z) has a zero z0 ̸= 0 in U .
Therefore λ0 = 1/z0 is a zero of Z(Cn□T ;λ) with |λ0| > R.

Remark 14. The proof of Corollary 6.4.3 works just as well to show that zeros
of Z(Cn□G;λ) cannot accumulate on any λ0 for which Dλ0A has a unique largest
(in norm) eigenvalue. Similarly, the proof of Lemma 6.4.5 works to show that
zeros accumulate on any parameter λ0 for which Dλ0

A has two or more simple
eigenvalues {r1(λ0), . . . , rk(λ0)} of the same norm that are larger than all the
eigenvalues if no pair of such eigenvalues persistently has the same norm. That
is, if there is no distinct pair i, j and neighborhood U of λ0 for which the analytic
continuations ri, rj satisfy |ri(λ)| = |rj(λ)| for all λ ∈ U .

This shows that, in the case that there are no eigenvalues that persistently
have the same norm, the accumulation points of the zeros of Z(Cn□G;λ) are
exactly those parameters λ0 for whichDλ0

A has two or more maximal eigenvalues
of the same norm; a special case of [Sok04, Theorem 1.5]. It then follows that
the set of accumulation points is a union of real algebraic curves; see Figure 6.5
for two examples.
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−1 1/4

i/4

−i/4

Figure 6.5: Parameters z = 1/λ for which the transfer matrix has two max-
imal eigenvalues (non-persistently) of the same norm for C2 in blue and C4

in red. These curves are accumulation points of the zeros of the polynomials
{Z(Cn□C2;λ)}n≥1 and {Z(Cn□C4;λ)}n≥1 respectively. The other accumula-
tion points in λ coordinates are given by the real intervals with approximate
bounds [−1,−0.172] and [−1,−0.126] respectively.
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Let Tm = Zd−1
m and let am ≥ 2m be an even integer such that Z(Cam□T2m;λ)

has a zero with norm at least m. Such an am exists by Lemma 6.4.5. Now
{Cam□T2m}m≥1 is a sequence of tori whose sidelengths all converge to ∞ and
whose zeros are unbounded. The first part of the main theorem, proved in the
previous section, shows that for every C > 0 there are only finitely many m such
that am ≤ eCm, i.e. log(am) = ω(m). In the next section we will show that
log(am) can be chosen to not grow faster than m3(d−1).

6.4.3 Explicit bounds
The remainder of this section is dedicated to proving a more quantitative version
of Lemma 6.4.5. Let T be an even torus, α = |V (T )|/2 and N = |I(T )|. We
shall prove the following.

Theorem 6.4.6. Let R > (6N2)α+2 and n ≥ 80 · Rα then Z(Cn□T ;λ) has at
least 1

16nR
−α distinct zeros with magnitude at least R.

Once we have proved the above, we quickly obtain a proof of the second part
of the main theorem:

Theorem (Second part of Main Theorem). Let F be a highly unbalanced family
of even tori. The zeros of the independence polynomials {Z(T ;λ) : T ∈ F} are
not uniformly bounded.

Proof. For every T ∈ F write ℓ(T ) for the longest side length of T . Furthermore,
let R(T ) be the torus for which T ∼= Cℓ(T )□R(T ). Now define

F ′ = {T ∈ F : ℓ(T ) ≥ 80 · 63|R(T )|2 · 26|R(T )|3}.

Because F is highly unbalanced F ′ contains infinitely many elements. We dis-
tinguish between the case where {R(T ) : T ∈ F} is finite or infinite.

In the former case there is a fixed torus T such that F contains infinitely
many elements of the form Cn□T . Their zeros are unbounded according to
Lemma 6.4.5.

In the latter case let Tn ∈ F ′ be a sequence for which |R(Tn)| tends to
infinity. Let RT = 63|R(T )| · 26|R(T )|. Because |I(R(T ))| < 2|R(T )| we can apply
Theorem 6.4.6 to see that Z(T ;λ) = Z(Cℓ(T )□R(T );λ) has at least one zero
with magnitude at least RT for any T ∈ F ′. The theorem now follows from the
fact that RTn

tends to infinity.

The remainder of this section focuses on proving Theorem 6.4.6.
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The eigenvalues q+ and q−

We again let T be a fixed torus whose sidelengths are all even. We recall that
we defined the rescaled transfer-matrix Mz with eigenvalues q+, q− holomorphic
in a neighborhood of z = 0. We also recall the two independent sets Seven and
Sodd of size α. In this section we will investigate the series expansion of q±. For
example when T = C8 we have

q+(z) = 1 + 4z + 6z2 + 8z3 + 44z4 +O(z5) and

q−(z) = −1− 4z − 6z2 − 8z3 + 26z4 +O(z5).

We will show that the coefficient of zm of q+ is minus that of q− for m =
0, . . . , α− 1, while the coefficients of zα differ in magnitude. This is done so that
in the end we can get a handle on the map β(z) = q+(z)/q−(z) and the branches
of its inverse.

For any k ∈ {0, . . . , α} we define Qk as the projection of a vector on the
subspace spanned by {eS}∥S∥=k, i.e.

Qk =
∑
S∈I

∥S∥=k

eSe
T
S .

Observe that Q0 +Q1 + · · ·+Qα = I|I|.
We define v+0 = eSeven + eSodd and v−0 = eSeven − eSodd . We also define q+0 = 1

and q−0 = −1. For n ≥ 1 recursively define the sequences of vectors v±n and of
integers q±n by

v±n = q±0

(min (n,α)∑
k=1

QkAv
±
n−k −

n−1∑
i=1

q±i v
±
n−i

)
and q±n = eTSeven

Av±n . (6.15)

Observe that q±n = eTSeven
Av±n also holds for n = 0. We furthermore define the

(formal) power series

v±(z) =

∞∑
n=0

v±n z
n and q±(z) =

∞∑
n=0

q±n z
n. (6.16)

We will show that (q±, v±) form two eigenvalue-eigenvector pairs corresponding
to q± as defined in Lemma 6.4.4. This is will technically be an equality of formal
power series until we prove that q± and and the entries of v± are analytic around
0, which we will subsequently do. We first identify a certain symmetry in the
entries of vn.

Let σ ∈ Aut(T ). For any S ∈ I we define

Sσ = {σ(v) : v ∈ S}.
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The map ε : Aut(T ) → {±1} given by ε(σ) = 1 if Sσeven = Seven and ε(σ) = −1 if
Sσeven = Sodd is a group homomorphism. An autormorphism σ ∈ Aut(T ) is called
even or odd according to whether ε(σ) = 1 or ε(σ) = −1 respectively. We define
the permutation matrix Pσ by PσeS = eSσ and we observe that PσQk = QkPσ
and PσA = APσ.

Lemma 6.4.7. Let n ∈ Z≥0 and σ ∈ Aut(T ). If σ is even then Pσv
±
n = vn,

while if σ is odd then Pσv
±
n = ±v±n .

Proof. For n = 0 the statement follows directly from the definitions. For n ≥ 1
we have

Pσv
±
n = q±0

(min (n,α)∑
k=1

QkAPσv
±
n−k −

n−1∑
i=1

q±i Pσv
±
n−i

)
.

The statement follows inductively.

We now prove that (q±, v±) indeed form two eigenvalue-eigenvector pairs.

Lemma 6.4.8. As power series in z we have Mzv
±(z) = q±(z)v±(z).

Proof. We first claim that for any n ∈ Z≥0 we have Q0Av
±
n = q±n v

±
0 . Let σ ∈

Aut(T ) be an odd permutation. Then

Q0Av
±
n = eSevene

T
Seven

Av±n + eSodde
T
Sodd

Av±n

= eSevene
T
Seven

Av±n + eSodde
T
Sodd

PσAPσ−1v±n

= (eSeven ± eSodd)e
T
Seven

Av±n

= q±n v
±
0 ,

where we have used Lemma 6.4.7 to equate Pσ−1v±n with ±vn.
We now prove the statement in the lemma. Observe that

Mzv
±(z) =

( α∑
k=0

QkAz
k
)( ∞∑

n=0

v±n z
n
)
=

∞∑
n=0

[min(n,α)∑
k=0

QkAv
±
n−k

]
zn.

Moreover,

q±(z)v±(z) =
( ∞∑
n=0

q±n z
n
)( ∞∑

n=0

v±n z
n
)
=

∞∑
n=0

[ n∑
i=0

q±i v
±
n−i

]
zn.

It is thus sufficient to prove that for all n

n∑
i=0

q±i v
±
n−i =

min(n,α)∑
k=0

QkAv
±
n−k.
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For n = 0 the statement reads q±0 v
±
0 = Q0Av

±
0 , which is equivalent to the claim

above for n = 0. For n ≥ 1 we reason inductively as follows.
n∑
i=0

q±i v
±
n−i =

n−1∑
i=1

q±i v
±
n−i + q±0 v

±
n + q±n v

±
0

=

n−1∑
i=1

q±i v
±
n−i +

(
q±0
)2 (min (n,α)∑

k=1

QkAv
±
n−k −

n−1∑
i=1

q±i v
±
n−i

)
+Q0Av

±
n

=

min(n,α)∑
k=0

QkAv
±
n−k.

This concludes the proof of the lemma.

Now we will prove that both q± and the entries of v± are indeed analytic
around z = 0. In what follows we let N = |I| so that the vectors v±n are
N -dimensional. We first prove an elementary lemma on a certain sequence of
integers that will serve as an upper bound for the entries of vn and qn.

Lemma 6.4.9. Define the sequence {xn}n≥0 by x0 = 1 and for n ≥ 1

xn = N ·
(
xn−1 +

n−1∑
i=1

xixn−i

)
.

Then xn ≤ (6N2)n.

Proof. Let yn(N) = xn/N
2n. We observe that y0(N) = 1 and

yn(N) =
1

N
yn−1(N) +N

n−1∑
i=1

yi(N)yn−i(N).

It follows that y1(N) = 1/N and inductively yn(N) is a polynomial in 1/N
with positive coefficients and constant term equal to zero. We can conclude that
yn(N) ≤ yn(1) and thus it remains to show that yn(1) ≤ 6n for all n ≥ 0.

We denote yn(1) by yn and prove that

yn ≤ 6n

(n+ 1)2
, (6.17)

which of course implies the desired inequality. Computer computations show that
(6.17) is satisfied for n = 1, . . . , 199. Suppose that (6.17) is satisfied for all values
0, . . . , n− 1 for some n ≥ 200. We observe

yn = yn−1 +

n−1∑
i=1

yiyn−i ≤ yn−1 + 2

99∑
i=1

yiyn−i + 2

⌊n/2⌋∑
i=100

yiyn−i.
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Using the induction hypothesis we find that

(n+ 1)2

6n

(
yn−1 + 2

99∑
i=1

yiyn−i

)
≤ (n+ 1)2

( 1

6n2
+ 2

99∑
i=1

yi
6i(n+ 1− i)2

)
.

The right-hand side is an explicit decreasing rational function in n and thus
upper bounded by the value obtained from plugging in n = 200, yielding an
upper bound of 0.87. We also find

(n+ 1)2

6n

(
2

⌊n/2⌋∑
i=100

yiyn−i

)
≤ 2

⌊n/2⌋∑
i=100

(
n+ 1

(i+ 1)(n+ 1− i)

)2

≤ 8

∞∑
i=100

1

(i+ 1)2
≤ 0.08.

Putting these two estimates together we conclude that yn ≤ (0.87+0.08) 6n

(n+1)2 ≤
6n

(n+1)2 .

Lemma 6.4.10. We have |q±n | ≤ N · (6N2)n and |(v±n )S | ≤ (6N2)n for all n ≥ 0
and S ∈ I.

Proof. For a vector v let |v| denote the vector whose entries are the magnitudes
of the entries of v. For two vectors v1, v2 we write v1 ≤ v2 if the inequality holds
entrywise. We let 1 denote the N -dimensional vector whose entries are all equal
to 1. We inductively prove that |v±n | ≤ xn · 1 and |q±n | ≤ N · xn, where xn is
defined as in Lemma 6.4.9. This is sufficient by the bound proved in that lemma.

For n = 0 this follows by definition. For larger n we use the recursion in
equation (6.15) to obtain

|v±n | ≤
min (n,α)∑
k=1

|QkAv±n−k|+
n−1∑
i=1

|q±i v±n−i|

≤ xn−1

min (n,α)∑
k=1

QkA 1+
( n−1∑
i=1

Nxixn−i

)
1

≤ N ·
(
xn−1 +

n−1∑
i=1

xixn−i

)
· 1 = xn · 1.

We also obtain |q±n | = |eTSeven
Av±n | ≤ eTSeven

A 1 · xn ≤ N · xn.

Corollary 6.4.11. The functions q± and the entries of v± define holomorphic
functions in a disk of radius 1/(6N2). On that disk they form two eigenvalue-
eigenvector pairs.
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The sum q+ + q−

Define un = 1
2 (v

+
n + v−n ), an = 1

2 (q
+
n + q−n ) and bn = 1

2 (q
+
n − q−n ). Our goal is to

show that an = 0 for n = 0, . . . , α − 1 and aα > 0. We will start by deriving a
useful recurrence for the un.

Lemma 6.4.12. Let σ ∈ Aut(T ) be an odd permutation. Then for all n ≥ 1

un =

min (n,α)∑
k=1

QkAu
σ
n−k −

n−1∑
i=1

(
aiu

σ
n−i + biun−i

)
,

moreover,
an = eTSeven

Aun and bn = eTSodd
Aun.

Proof. It follows from Lemma 6.4.7 that uσn = 1
2 (v

+
n −v−n ) and thus v±n = un±uσn.

We similarly have q±n = an±bn. We now use the recursion for v±n defined in (6.15)
to get a recursion for un:

1

2

[(min (n,α)∑
k=1

QkAv
+
n−k −

n−1∑
i=1

q+i v
+
n−i

)
−
(min (n,α)∑

k=1

QkAv
−
n−k −

n−1∑
i=1

q−i v
−
n−i

)]
=

min (n,α)∑
k=1

QkAu
σ
n−k −

n−1∑
i=1

1

2

(
q+i v

+
n−i − q−i v

−
n−i
)
.

The claimed recursive formula for un now follows from the following equality:

1

2

(
q+i v

+
n−i − q−i v

−
n−i
)
=

1

2

[
(ai + bi)(un−i + uσn−i)− (ai − bi)(un−i − uσn−i)

]
= aiu

σ
n−i + biun−i.

We use the part of equation (6.15) that defines q±n to observe that

an =
1

2

(
eTSeven

Av+n + eTSeven
Av−n

)
= eTSeven

Aun and

bn =
1

2

(
eTSeven

Av+n − eTSeven
Av−n

)
= eTSeven

Auσn = eTSeven
PσAPσ−1uσn = eTSodd

Aun.

The goal is to write the elements of un as weighted paths of independent sets
of T ; see Lemma 6.4.14. To make this formal we introduce some notation from
formal language theory.

For any set F let F ∗ denote the set of finite words of elements of F (including
the empty word denoted by ∅F ). For f ∈ F and w ∈ F ∗ we use f ∈ w to indicate
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that f is a letter in the word w. For concatenation of two words w1, w2 ∈ F ∗ we
write w1 · w2.

Let I≥1 = {S ∈ I : ∥S∥ ≥ 1}. We define

P = I≥1 × Z∗
≥1.

For r ∈ Z∗
≥1 we let ∥r∥ denote the sum of its entries with ∥∅Z≥1

∥ = 0. For p ∈ P
of the form (S, r) we define the length and weight of p respectively as

ℓ(p) = ∥S∥+ ∥r∥ and W (p) =
∏
n∈r

(−bn).

For an element w ∈ P∗ we define

ℓ(w) =
∑
p∈w

ℓ(p) and W (w) =
∏
p∈w

W (p).

An empty sum or product we treat as 0 or 1 respectively.
Fix an odd σ ∈ Aut(T ) with the property that σ2 = id, for example the

automorphism (n1, n2, . . . , nd) 7→ (1− n1, n2, . . . , nd). Define the subset Q ⊆ P∗

by

Q = {(S1, r1) · · · (Sm, rm) ∈ P∗ :Sodd ∼ S1 and Sσi ∼ Si+1

for all i = 1, . . . ,m− 1} ∪ {∅P}.

For any S ∈ I≥1 we let Q[S] denote the elements in Q that end in (S, r) for
some r. We let Q[Seven] = {∅P}.

Lemma 6.4.13. Let S ∈ I such that S ∼ Seven. For any w ∈ Q[S] we have
ℓ(w) ≥ α, moreover if ℓ(w) = α then W (w) = 1.

Proof. Because Seven is not compatible with itself w is not the empty word and
thus we can write w = (S1, r1) · · · (Sm, rm). Let v be a vertex of T . If v ∈ Si for
some i then it follows from the requirement that Sσi ∼ Si+1 that σ(v) ̸∈ Si+1.
Applying this fact to σ(v) and using that σ2 is the identity we see that σ(v) ∈ Si
implies that v ̸∈ Si+1. The possible transitions for (1(v ∈ Si),1(σ(v) ∈ Si)) are
thus given in the following diagram.

(1, 1)

(1, 0) (0, 0) (0, 1)
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Assume that v is an even vertex. Because S1 ∼ Sodd we see that (1(v ∈
S1),1(σ(v) ∈ S1)) is of the form (∗, 0). Similarly, because Sm ∼ Seven, we
see that (1(v ∈ Sm),1(σ(v) ∈ Sm)) is of the form (0, ∗). It thus follows that
(1(v ∈ Si),1(σ(v) ∈ Si)) takes on the value (0, 0) at least once more often than
it takes on the value (1, 1). From this we can conclude that

m∑
i=1

[1− 1(v ∈ Si)− 1(σ(v) ∈ Si)] ≥ 1. (6.18)

We now find that

ℓ(w) =

m∑
i=1

∥Si∥+ ∥ri∥ =

m∑
i=1

[ ∑
v∈T
v even

1− 1(v ∈ Si)− 1(σ(v) ∈ Si)

]
+

m∑
i=1

∥ri∥

≥ α+

m∑
i=1

∥ri∥ ≥ α,

where we interchanged the two summations and used (6.18). We see that indeed
ℓ(w) ≥ α. Moreover, if ℓ(w) = α then the final two inequalities must be equalities
and thus ri = ∅Z≥1

for all i, which implies that W (w) = 1.

For any n ≥ 0 and S ∈ I define

Qn[S] = {p ∈ Q[S] : ℓ(p) = n}.
Lemma 6.4.14. Let 0 ≤ n ≤ α and S ∈ I. Then

eTSun =
∑

w∈Qn[S]

W (w). (6.19)

Moreover, if n ̸= α then an = 0, while aα ≥ 1.

Proof. By definition a0 = 0 and u0 = eSeven . Moreover, Q0[S] is non-empty only
if S = Seven in which case it consists of the empty word. Therefore we see that
for n = 0 both sides of equation (6.19) are equal to 1 if S = Seven and equal to 0
otherwise.

We will now prove the statement inductively, i.e. we let 1 ≤ n ≤ α and we
assume that for all values k < n both (6.19) holds and ak = 0.

First suppose that either ∥S∥ = 0 or ∥S∥ > n. Then it follows that Qn[S] is
empty and thus the right-hand side of (6.19) is equal to 0. Because eTSQk = 0
for k ̸= ∥S∥ we inductively obtain by Lemma 6.4.12 that in this case indeed the
left-hand side is equal to

eTSun = −
n−1∑
i=1

bie
T
Sun−i = 0.



176 On boundedness of zeros of the independence polynomial of tori

Now suppose 1 ≤ ∥S∥ ≤ n. We inductively find that the left-hand side of
(6.19) is equal to

eTSun = eTSAu
σ
n−∥S∥ −

n−1∑
i=1

bie
T
Sun−i

=
∑
X∈I
Xσ∼S

eTXun−∥S∥ +

n−1∑
i=1

(−bi)eTSun−i

=
∑
X∈I
Xσ∼S

∑
w∈Qn−∥S∥[X]

W (w) +

n−1∑
i=1

∑
w∈Qn−i[S]

(−bi)W (w).

For any T ∈ I, k ∈ Z≥1 and i ∈ Z≥1 let Qi[T, k] be those elements of Qi[T ]
ending in (T, r) with r ending in k. Moreover, let Qi[T, 0] denote those elements
ending in (T, ∅Z≥1

). For w ∈ Qi[T ] we can write w = w′ · (T, r) for some r. We
let w ⊕ k denote the element w′ · (T, r · k) ∈ Qi+k[T ]. We have∑
w∈Qn[S,0]

W (w) =
∑
X∈I
Xσ∼S

∑
w′∈Qn−∥S∥[X]

W (w′ · (S, ∅)) =
∑
X∈I
Xσ∼S

∑
w′∈Qn−∥S∥[X]

W (w′).

While, if i ∈ {1, . . . , n− 1} we have∑
w∈Qn[S,i]

W (w) =
∑

w′∈Qn−i[S]

W (w ⊕ i) = (−bi) ·
∑

w′∈Qn−i[S]

W (w).

We thus have

∑
w∈Qn[S]

W (w) =

n−1∑
i=0

∑
w∈Qn[S,i]

W (w)

=
∑
X∈I
Xσ∼S

∑
w∈Qn−∥S∥[X]

W (w) +

n−1∑
i=1

∑
w∈Qn−i[S]

(−bi)W (w),

which proves equality (6.19).
We now have to show that an = 0 if n < α and aα ≥ 1. It follows from

Lemma 6.4.12 that

an = eTSeven
Aun =

∑
S∈I

S∼Seven

eTSun =
∑
S∈I

S∼Seven

∑
w∈Qn[S]

W (w).
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In Lemma 6.4.13 it is shown that if S ∼ Seven and w ∈ Qn[S], then n ≥ α.
This shows that an = 0 for n < α. Moreover, if n = α the lemma states that
W (w) = 1. This shows that an ≥ 0. Because ∅ is compatible with both Seven and
Sodd we see that (∅, ∅Z≥1

) ∈ Qα[∅] and thus we can conclude that aα ≥ 1.

The other eigenvalues

In this section we study the other eigenvalues of the transfer matrix Mz, i.e.
those not equal to q±(z). Recall from Section 6.4.2 that Mz = D̂zA, where A
is the compatibility matrix of the independent sets of T and D̂z is a diagonal
matrix with (D̂z)S,S = z∥S∥. In this section it will be more convenient to look
at the symmetric transfer-matrix M̂z = Dz1/2ADz1/2 , where (for now) we make
an arbitrary choice of z1/2 for each z. The symmetric transfer-matrix M̂z is
conjugate to Mz and thus has the same eigenvalues.

Recall that the matrix M̂z is N -dimensional. For this section we order the
indices of the N -dimensional vectors, indexed by elements of I, in such a way
that Seven and Sodd correspond to the final two coordinates. The 2×2 submatrix
of M̂z induced by the final two coordinates therefore has 0s on the diagonal and
1s on the off diagonal. Every other non-zero entry of M̂z is a strictly positive
power of z1/2.

For ε > 0 we define the forward and backward cones C+(ε) and C−(ε) by

C+(ε) = {(v1, . . . , vN ) ∈ CN : ∥(v1, . . . , vN−2)∥1 ≤ ε · ∥(vN−1, vN )∥1}

and

C−(ε) = {(v1, . . . , vN ) ∈ CN : ε · ∥(v1, . . . , vN−2)∥1 ≥ ∥(vN−1, vN )∥1}

For ε < 1 these two cones intersect only in the origin.

Lemma 6.4.15. The symmetric transfer-matrix M̂z maps CN\C−(ε) into C+(ε)
whenever

|z| < ε4

N2(1 + ε)2
.

Proof. Let v = (v1, . . . , vN ) ∈ CN \ C−(ε) and write M̂zv = w = (w1, . . . , wN ).
It follows that

∥(w1, . . . , wN−2)∥1 ≤(N − 2) · max
j≤N−2

|wj | ≤ (N − 2)|z| 12 ·
N∑
i=1

|vi|

=(N − 2)|z| 12 ∥v∥1 ≤ (N − 2)|z| 12 ε+ 1

ε
∥(vN−1, vN )∥1.
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On the other hand

∥(wN−1, wN )∥1 ≥ |vN−1|+ |vN | − 2

N−2∑
i=1

|z| 12 |vi|

= ∥(vN−1, vN )∥1 − 2|z| 12 ∥(v1, . . . , vN−2)∥1

≥
(
1− 2|z| 12

ε

)
∥(vN−1, vN )∥1.

The inclusion Mz(CN \ C−(ε)) ⊂ C+(ε) is therefore satisfied whenever

ε
(
1− 2|z| 12

ε

)
≥ (N − 2)|z| 12 ε+ 1

ε
,

which is satisfied whenever

|z| ≤ ε4

N2(1 + ε)2
.

From now on we fix ε = 1
3 so that the forward and backward cones C+( 13 )

and C−( 13 ) are forward respectively backward invariant whenever |z| < 1
144N2 .

Corollary 6.4.16. For |z| < 1
144N2 the two eigenvectors v̂+(z) and v̂−(z) of

M̂z corresponding to the maximal eigenvalues q+(z) and q−(z) are contained in
C+( 13 ), while all other (generalized) eigenvectors are contained in C−( 13 ).

Proof. The statement clearly holds for |z| sufficiently small. For any fixed z the
entries of the matrix M̂√

xz1/2 are continuous functions of x for x ∈ [0, 1]. The
statement therefore follows for any |z| < 1

144N2 from the previous lemma, using
the continuity of the set of eigenvectors of M̂√

xz1/2 .

Lemma 6.4.17. For |z| < 1
144N2 the absolute values of the two eigenvalues q+(z)

and q−(z) are at least twice as large as the absolute value of any other eigenvalue.

Proof. Let us first write v for one of the eigenvectors v̂+(z) or v̂−(z) of M̂z, and
write w = M̂zv. Using that v ∈ C+(1/3) we obtain

∥(wN−1, wN )∥1 ≥ ∥(vN−1, vN )∥1 − 2|z| 12 ∥(v1, . . . , vN−2)∥1
= ∥(vN−1, vN )∥1 ·

(
1− 1

18N

)
,

which implies that |q+(z)| and |q−(z)| are bounded from below by 17/18.
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Now let w = M̂zv for an eigenvector v ∈ C−(1/3). Then

∥(w1, . . . , wN−2)∥1 ≤ (N − 2) · max
j≤N−2

∥wj∥

≤ (N − 2)
(
|z| 12 ∥(vN−1, vN )∥1 + |z|∥(v1, . . . , vN−2)∥1

)
≤ (N − 2)

(
1

36N + 1
144N2

)
∥(v1, . . . , vN−2)∥1

≤ 1
36∥(v1, . . . , vN−2)∥1.

It follows that the corresponding eigenvalue is bounded above by 1/36, which
proves the statement for any N ≥ 1.

Proof of the main theorem

In this section we will again prove that zeros of Z(Cn□T ;λ) accumulate at ∞,
as is done in Lemma 6.4.5. Similar to the proof of that lemma, we use that
znα·Z(Cn□T ;1/z)

q+(z)n = 1 + q−(z)/q+(z) +O(z). This culminates in a proof of Theo-
rem 6.4.6, which, as we showed in the beginning of this section, leads to a proof
of the second part of the main theorem. We define β(z) = q−(z)/q+(z).

Lemma 6.4.18. Suppose z ∈ C satisfies |z| < 1
(6N2)α+2 then |β(z) + 1| ≥ 1

2 |z|α.
Proof. We can assume that z ̸= 0. We have

|q+(z)| = |1 +
∞∑
n=1

q+n z
n| ≤ 1 +

∞∑
n=1

|q+n ||z|n ≤ 1 +

∞∑
n=1

N · (6N2)n|z|n

≤ 1 +N

∞∑
n=1

(
1

(6N2)α+1

)n
= 1 +

N

(6N2)α+1 − 1
<

3

2
,

where we used Lemma 6.4.10 for the bound on |q+n |. We now also have

|β(z) + 1| =
∣∣∣∣q+(z) + q−(z)

q+(z)

∣∣∣∣ ≥ 2

3

∣∣q+(z) + q−(z)
∣∣ = 2

3
|z|α ·

∣∣∣∣q+(z) + q−(z)

zα

∣∣∣∣ .
We now use Lemma 6.4.14, which says that q+n + q−n = 0 for n < α, while
q+α + q−α ≥ 1. We get∣∣∣∣q+(z) + q−(z)

zα

∣∣∣∣ ≥ 1−
∞∑
n=1

(|q+α+n|+ |q−α+n|)|z|n

≥ 1− 2N

∞∑
n=1

(6N2)n+α|z|n = 1− 2N(6N2)α

(6N2)α+1 − 1
>

3

4
.

We therefore find that |β(z) + 1| > 1
2 |z|α.
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The following is a purely geometric lemma that will be useful in the subsequent
proof.

Lemma 6.4.19. Let 0 < ρ < 1. The disk of radius ρ around −1 contains the
sector

Sρ = {z ∈ C : 1− 1

2
ρ ≤ |z| ≤ 1 +

1

2
ρ and π − 1

5
πρ ≤ arg(z) ≤ π +

1

5
πρ}.

Moreover, for an integer n with n ≥ 40/ρ the sector Sρ contains at least 1
8nρ+2

distinct nth roots of unity, i.e. ζ ∈ C such that ζn = 1.

Proof. Take z ∈ Sρ. We can write −z = r(cos(θ) + i sin(θ)) for real values r, θ
with |1− r| ≤ 1

2ρ and |θ| ≤ 1
5πρ. We thus find

|1− z|2 = 1− 2r cos(θ) + r2 ≤ (1− r)2 + rθ2 ≤ 1

4
ρ2 +

3

2
(
1

5
π)2ρ2 < ρ2,

where we used that cos(θ) ≥ 1 − θ2/2. We conclude that the distance from −1
to z is indeed less than ρ.

Now let n ∈ Z≥1. For even n the distinct roots of unity inside Sρ are given by
− exp(2πik/n) for integer k satisfying |k| ≤ 1

10ρn. There are 2⌊ 1
10ρn⌋+1 such k.

For odd n the distinct roots of unity inside Sρ are given by − exp(πi(2k + 1)/n)
for integer k satisfying |2k+1| ≤ 1

5nρ there are ⌊ 1
10nρ− 1

2⌋+ ⌊ 1
10nρ+

1
2⌋+1 such

k. In both cases there are at least

1

5
nρ− 1 =

1

8
nρ+

3

40
nρ− 1 ≥ 1

8
nρ+ 2

roots of unity inside Sρ.

We can now prove Theorem 6.4.6, which we restate here for convenience.

Theorem 6.4.6. Let R > (6N2)α+2 and n ≥ 80 · Rα then Z(Cn□T ;λ) has at
least 1

16nR
−α distinct zeros with magnitude at least R.

Proof. Let B1/R denote the disk of radius 1/R. By Lemma 6.4.18 the image
β(B1/R) contains a disk of radius 1

2R
−α around −1. By Lemma 6.4.19 this disk

contains a sector S 1
2R

−α as defined in that lemma.
Let k = ⌈ 1

16nR
−α⌉. It follows from from Lemma 6.4.19 that there are at least

k + 2 angles θ1, . . . , θk+2, ordered increasingly, such that einθm = 1 and eiθm is
contained in S 1

2R
−α for all m. For m = 1, . . . , k + 1 define

Tm = {z ∈ C : 1− 1

4
R−α ≤ |z| ≤ 1 +

1

4
R−α and θm ≤ arg(z) ≤ θm+1}.
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Observe that Tm ⊆ β(B1/R) for all m.
We claim that for any w ∈ ∂Tm we have |1 +wn| >

(
1
2

)n
N . Because n≫ N

clearly
(
1
2

)n
N < 1

2 , so it will be sufficient to prove that |1 + wn| > 1
2 . On the

radial arcs of ∂Tm we have wn = |w|n so |1+wn| = 1+ |w|n > 1
2 . If w lies in the

inner circular arc of ∂Tm we have

|1 + wn| ≥ 1− |w|n = 1−
(
1− 1

4
R−α

)n
≥ 1− exp

[
−n
4
R−α

]
≥ 1− e−20 >

1

2
.

If w lies on the outer circular arc of ∂Tm we have

|1 + wn| ≥ |w|n − 1 =

(
1 +

1

4
R−α

)n
− 1 ≥ 1 +

n

4
R−α − 1 ≥ 20 >

1

2
.

This proves the claim.
We now recall that

znα · Z(Cn□T ; 1/z)

q+(z)n
= 1 + β(z)n +

∑
s̸=q±(z)

(
s

q+(z)

)n
,

where the sum runs over the eigenvalues of Mz not equal to q±(z). Let Q(z)
denote this latter sum. By Lemma 6.4.17 we have that |Q(z)| ≤

(
1
2

)n
N for all

z ∈ B1/R. Note that Tm contains an element w0 such that wn0 = −1. Consider
a connected component Cm of β−1(Tm) inside B1/R. By the maximum modulus
principle Cm is simply connected and ∂Cm is mapped to ∂Tm by β. Moreover,
Cm contains an element z0 in its interior with β(z0) = w0. For z ∈ ∂Cm we thus
have

|1 + β(z)n| >
(
1
2

)n
N ≥ |Q(z)|,

while 1 + β(z0)
n = 0. It follows from Rouché’s theorem that 1 + β(z)n + Q(z)

contains a zero inside the interior of Cm. Therefore znα ·Z(Cn□T ; 1/z) has k+1
distinct zeros inside B1/R. As long as such a zero z is itself nonzero then λ = 1/z
is a zero of Z(Cn□T ;λ) with norm at least R. We conclude that Z(Cn□T ;λ)
has at least k = ⌈ 1

16nR
−α⌉ such zeros.

This theorem leads to a proof of the second part of the main theorem as is
shown in the beginning of this section.

6.5 An FPTAS for balanced tori

In this section we give a proof of Proposition 6.1.1. We will require the Newton
identities that we recall here for convenience of the reader. Let p(x) =

∑n
j=0 ajx

j
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be a polynomial with positive constant term and let

log p(x) = log(a0) +
∑
j≥1

−pj x
j

j

be the series expansion of the logarithm of p around 0. Then the Newton identities
yield (cf. [PR17, Proposition 2.2])

kak = −
k−1∑
i=0

aipk−i (6.20)

for each k ≥ 1, where ai = 0 for i > n.
Proposition 6.1.1 immediately follows from the following more detailed result.

Proposition 6.5.1. Let d ∈ Z≥2 and let C > 0. Let δ(d,C) be the constant from
Theorem 6.3.7. For each λ such that |λ| > 1/δ(d,C) there exists an FPTAS for
approximating ZT (λ) for T ∈ T(d,C).

Proof. Let us write p1(z) := Zeven
match(T ; z) + Z large

match(T ; z), p2(z) := Zodd
match(T ; z)

and p(z) = p1(z) + p2(z). Taking z = 1/λ, it suffices to approximate p(z) by
Corollary 6.2.17.

Since p has no zeros in the disk of radius δ(d,C) it suffices by Barvinok’s
interpolation method ([Bar16, Section 2.2]) to compute an ε-approximation to
log p(z). This can be done by computing the first O(log(n/ε)) coefficients of
the Taylor series of log p(z). By (6.20) we can compute the first m coefficients
of the Taylor series of log p(z) from the first m coefficients of the polynomial
p(z) in O(m2) time. These coefficients in turn can be obtained from the first m
coefficients of p1(z) and p2(z), which in turn, using (6.20) again, can be computed
from the firstm coefficients of the Taylor series of log p1(z) and log p2(z) in O(m2)
time. To obtain an FPTAS it thus suffices to compute the first O(log(n/ε)) of
the Taylor series of log p1(z) and log p2(z) in time polynomial in n/ε.

By the cluster expansion we have power series expressions for log p1(z) given
in (6.13) and for log p2(z) given in (6.6) using Theorem 6.2.39. From these we can
extract the coefficients of the respective Taylor series. Indeed, we can restrict the
sum (6.13) to clusters X = {γ1, . . . , γk} such that

∑k
i=1 ∥γi∥ ≤ m and compute

the coefficients of zj for j ≤ m of this restricted series. The idea is to do this
iteratively, since the weights appearing in the sum, w(γ; z) are ratios of partition
functions of smaller domains for which we can assume that we have already
computed the first m coefficients of its Taylor expansion around 0.

To make this precise we need to combine some ingredients from [HPR19]. We
wish to apply Theorem 2.2 from [HPR19]1. For this we should view both p1 and

1In the published version there is an error in the proof of that result, but this is corrected
in a later arXiv version arXiv:1806.11548v3
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p2 as polymer partition functions of a collection of bounded degree graphs. For
us this collection will be the collection of all induced closed subgraphs of tori
contained in Td(C) and denoted by G. (Here we maintain the information of
the torus containing the closed induced subgraph.) For p2 this is clear but for
p1 this is a bit more subtle since in [HPR19] supports of polymers are connected
subgraphs of graphs in G. We would like to view our contours as polymers,
but large contours may have disconnected support. With this change, there are
some potentials issues with the proof of Theorem 2.2. We first indicate how to
circumvent these issues and then verify the assumptions of that theorem.

One potential issue is in the use of [HPR19, Lemma 2.4]. We sidestep this in
a similar way as in the proof of Lemma 6.3.1.

Let G ∈ G. We know that G is an induced closed subgraph of some torus
T in Td(C). Let ℓ1 be the shortest side length of T . Then the number of
vertices of G, denoted by n, is at most exp(Cℓ1). We need to list all subgraphs
H of G such that either H is connected or that each component of H has size
at least ℓ1 (since any component of a large contour has at least ℓ1 vertices) in
time exp(O(m)). For connected graphs H this follows directly from [HPR19,
Lemma 2.4]. We now address the listing of subgraphs H that are not necessarily
connected. The number of components of such H is at most m/ℓ1. By [HPR19,
Lemma 2.4] it takes time n exp(O(mi)) to list all connected subgraphs Hi of size
mi and therefore it takes time nt exp(

∑t
i=1O(mi)) to list all subgraphs H with t

components of sizes m1, . . . ,mt respectively. Let us denote k := ⌈m/ℓ1⌉. Putting
this together this gives a running time bound of∑

m1,...,mk∑
mi=m and mi≥ℓ1

k∏
i=1

n exp(O(mi)) ≤
(
m+ k

m

)
nk exp(O(m))

= nk exp(O(m)) ≤ exp(kCℓ1) exp(O(m)) = exp(O(m)),

for listing these graphs, as desired.
Another potential issue is in the use of cluster graphs in the proof of [HPR19,

Theorem 2.2]. In [HPR19] cluster graphs are assumed to be connected, but for us
they may be disconnected (in case one of the contours in the cluster is large). In
that case we have a lower bound of ℓ1 on the size of each component. So as above
we can construct the list of all cluster graphs of size O(m) in time exp(O(m)).
With these modifications the proof of Theorem 2.2 given in [HPR19] still applies.

We next verify all the assumptions of (the modification of) Theorem 2.2
in [HPR19].

The first assumption in the theorem is clearly satisfied, since ∥γ∥ ≤ |γ| for
any contour γ.

Our weight functions satisfy Assumption 1 in [HPR19] by Lemma 6.2.30. It
follows from the proof of [HPR19, Lemma 3.3] that the first m coefficients of the
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weights w(γ; z) can be computed in time exp(m+ log |γ|). Here we need to take
into account that large contours may consist of more than one component, and
they should come first in the ordering of contours that is created in the proof of
that lemma.

In our setting the third requirement translates that for a subgraph H of some
G ∈ G we need to be able to list all polymers whose support is equal to H in time
exp(O(|V (H)|). Let T be the torus containing G. Let ℓ1 denote its smallest side
length. In case H is not connected we know that we are dealing with a potentially
large contour, while if H is connected we have to compute its box-diameter to
check whether or not the contour is large or small. This can be done in time
polynomial in |V (H)|. If H is a candidate large contour it must have size at least
ℓ1 and since the number of vertices of G is at most exp(O(ℓ1) = exp(O(|V (H)|), it
follows that we can determine all components of T \V (H) in time exp(O(|V (H)|).
If H is a candidate small contour, we can determine all components of T \V (H)
of size bounded by |V (H)|d in time polynomial in |V (H)|, by breadth first search.
The remaining component must then be the exterior of the candidate contour.
We then go over all possible ways of assigning 0, 1 to the vertices of V (H) and
types to the components, i.e. select even or odd and check whether this yields a
valid configuration. For this we need to check that vertices of H are incorrect as
per Definition 6.2.9. Since the number of components is at most O(|V (H)|) this
takes time exp(O(|V (H)|).

The fourth assumption requires zero-freeness, which follows from convergence
of the cluster expansion given in Theorem 6.2.34 in combination with Theo-
rem 6.2.39 for p2 and in Theorem 6.3.3 for p1.

This finishes the proof.



SUMMARY

In this dissertation I study various questions related to models from statistical
physics. Another motivation for the questions I study comes from computer
science. Techniques from (complex) dynamical systems are used throughout this
dissertation, as the questions I study have natural related dynamical systems
associated to them. In this way my work lies at the intersection of statistical
physics, computer science and dynamical systems.

In Part I of this dissertation I study the antiferromagnetic Potts model, which
originates in statistical physics. In particular I study the transition from multiple
Gibbs measures to a unique Gibbs measure for the antiferromagnetic Potts model
on the infinite regular tree. This is called a uniqueness phase transition. The
uniqueness phase transition for the antiferromagnetic Potts model on the infinite
regular tree is much less well understood then the ferromagnetic counterpart, see
Theorem 5 in [GŠVY16].

Folklore conjecture. Let q,∆ ∈ Z≥2. Define wc := max(1− q
∆ , 0). The q-state

antiferromagnetic Potts model on the infinite regular tree T∆ with edge interaction
w has a unique Gibbs measure if and only if{

w > 0 for ∆ = q,

w ≥ wc otherwise.

This conjecture was confirmed for q = 2 and all ∆ by Srivastava, Sinclair
and Thurley [SST14] and for q = 3 and ∆ ≥ 3 by Galanis, Goldberg and Yang
[GGY18]. For random regular graphs of large enough degree, uniqueness of the
Gibbs measure implies the existence an efficient randomized algorithm to approx-
imately sample from the Gibbs measure by Theorem 2.7 in [BGG+20].

In Chapter 3 I confirm the folklore conjecture for q = 4. The proof uses a
geometric condition, which comes from analysing an associated dynamical system.
This also provides a new proof of the folklore conjecture for q = 3.

In Chapter 4 I confirm the folklore conjecture for any integer q ≥ 5, provided
∆ is large enough. I employ a similar proof strategy as in Chapter 3, using the
fact that the dynamical system is more well behaved in the limit ∆ → ∞.
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Part II of this dissertation concerns zeros of the independence polynomial.
The independence polynomial originates in statistical physics as the partition
function of the hard-core model. The location of the complex zeros of the inde-
pendence polynomial is related to phase transitions in terms of the analycity of
the free energy [YL52] and plays an important role in the design of efficient algo-
rithms to approximately compute evaluations of the independence polynomial.

In Chapter 5 I directly relate the location of the complex zeros of the inde-
pendence polynomial to computational hardness of approximating evaluations of
the independence polynomial. This is done by moreover relating the set of zeros
of the independence polynomial to chaotic behaviour of a naturally associated
family of rational functions; the occupation ratios.

In Chapter 6 of this dissertation I study boundedness of zeros of the indepen-
dence polynomial of tori for sequences of tori converging to the integer lattice
Zd. It is shown that zeros are bounded for sequences of balanced tori, but un-
bounded for sequences of highly unbalanced tori. Here balanced means that the
size of the torus is at most exponential in the shortest side length, while highly
unbalanced means that the longest side length of the torus is super exponential
in the product over the other side lengths cubed. For technical reasons I only
consider tori for which all side lengths are even and call those tori even.

From the boundedness of zeros of balanced even tori it follows there exist
efficient algorithms for approximating the independence polynomial on balanced
even tori. This provides a slight improvement on the approximation algorithm
in [HPR19].



SAMENVATTING

In dit proefschrift bestudeer ik verscheidene vragen gerelateerd aan modellen
uit de statische fysica. Er is ook motivatie voor de vragen die ik bestudeer
vanuit de theoretische informatica. Technieken uit de (complexe) dynamische
systemen worden in dit proefschrift gebruikt, gezien de vragen die ik bestudeer
op natuurlijke wijze een bijbehorend dynamisch systeem hebben. Op deze manier
bevindt mijn werk zich in de doorsnede van de statistiche fysica, de theoretische
informatica en dynamische systemen.

In Deel I van dit proefschrift bestudeer ik het antiferromagnetische Potts-
model, dat zijn oorsprong kent in de statistische fysica. Meer specifiek bestudeer
ik de overgang van meerdere Gibbs-maten naar een unieke Gibbs-maat voor het
antiferromagnetische Potts-model op de oneindige reguliere boom. Dit wordt een
uniciteitsfaseovergang genoemd. Deze uniciteitsfaseovergang voor het antiferro-
magnetische Potts-model op de oneindige reguliere boom is veel minder goed
begrepen dan de ferromagnetische tegenhanger, zie Stelling 5 in [GŠVY16].

Folklore vermoeden. Laat q,∆ ∈ Z≥2. Definieer wc := max(1 − q
∆ , 0). Het

antiferromagnetische Potts model met q toestanden op de oneindig reguliere boom
T∆ met kantinteractieparameter w heeft een unieke Gibbsmaat dan en slechts dan
als {

w > 0 voor ∆ = q,

w ≥ wc anders.

Dit vermoeden is bewezen voor q = 2 en alle ∆ door Srivastava, Sinclair
en Thurley [SST14] en voor q = 3 en ∆ ≥ 3 door Galanis, Goldberg en Yang
[GGY18]. Voor random reguliere grafen van voldoende grote graad impliceert
uniciteit van de Gibbs-maat het bestaan van efficiënte gerandomiseerde algorit-
men om bij benadering een steekproef te nemen uit de Gibbs-maat, zie Stelling
2.7 in [BGG+20]. In Hoodstuk 3 bevestig ik het folklore vermoeden voor q = 4.
Het bewijs gebruikt een meetkundige conditie die voortkomt uit een analyse van
het bijbehorende dynamische systeem. Dit geeft ook een nieuw bewijs van het
folklore vermoeden voor q = 3.
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In Hoofdstuk 4 bevestig ik het folklore vermoeden voor elk geheel getal q ≥ 5,
onder de voorwaarde dat ∆ voldoende groot is. Ik gebruik een vergelijkbare be-
wijsstrategie als in Hoofdstuk 3, gebruikmakend van het feit dat het dynamische
systeem zich beter gedraagd in het limiet ∆ → ∞.

Deel II van dit proefschrift betreft nulpunten van de onafhankelijkheidspoly-
noom. De onafhankelijkheidspolynoom vindt zijn oorsprong in de statische fysica
als de partitiefunctie van het harde-kern-model. De ligging van de complexe nul-
punten van de onafhankelijkheidspolynoom is gerelateerd aan faseovergangen in
termen van de analyticiteit van de vrije energie [YL52] en speelt een belangrijke
rol in het ontwerp van efficiënte algoritmen om bij benadering evaluaties van de
onafhankelijkheidspolynoom uit te rekenen.

In Hoofdstuk 5 relateer ik de ligging van de complexe nulpunten van de on-
afhankelijkheidspolynoom aan de computationele moeilijkheid van het bij be-
nadering evaluaties van de onafhankelijkheidspolynoom uitrekenen. Dit wordt
gedaan door middel van het relateren van de verzameling van de complexe nul-
punten van de onafhankelijkheidspolynoom aan het chaotische gedrag van een
natuurlijke bijbehorende familie van rationale functies; de bezettingsratios.

In Hoofdstuk 6 van dit proefschrift bestudeer ik de begrensdheid van de nul-
punten van de onafhankelijkheidspolynoom van tori voor rijen van tori die naar
het geheeltallige rooster Zd convergeren. Bewezen wordt dat nulpunten begrensd
blijven voor rijen van gebalanceerde tori, maar onbegrensd zijn voor rijen van
zeer ongebalanceerde tori. Hier betekent gebalanceerd dat de grootte van de to-
rus hoogstens exponentieel is in de kortste zijdelengte, terwijl zeer ongebalanceerd
betekent dat de langste zijdelengte super exponentieel is in het product over de
andere zijdelengten tot de derdemacht. Wegens technische redenen bestudeer ik
alleen tori waarvan alle zijdelengten even zijn en noem dergelijke tori even.

Uit de begrensdheid van de nulpunten van de onafhankelijkheidspolynoom
van gebalanceerde tori volgt het bestaan van efficiënte algoritmen om bij bena-
dering evaluaties van de onafhankelijkheidspolynoom van gebalanceerde tori uit
te rekenen. Dit vormt een kleine verbetering op het benaderingsalgoritme in
[HPR19].
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