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We introduce the categories of quasi-measurable spaces, which are slight
generalizations of the category of quasi-Borel spaces, where we now allow for
general sample spaces and less restrictive random variables, quasi-measurable
spaces and maps. We show that each category of quasi-measurable spaces is
bi-complete and cartesian closed. We also introduce several different strong
probability monads. Together these constructions provide convenient cate-
gories for higher probability theory that also support semantics of higher-
order probabilistic programming languages in the same way as the category
of quasi-Borel spaces does.

An important special case is the category of quasi-universal spaces, where
the sample space is the set of the real numbers R together with the σ-algebra
of all universally measurable subsets. The induced σ-algebras on those quasi-
universal spaces then have explicit descriptions in terms of intersections of
Lebesgue-complete σ-algebras. A central role is then played by countably
separated quasi-universal spaces and universal quasi-universal spaces, which
replace the role of standard Borel measurable spaces. We then go on and
prove in this setting, besides others, a Fubini theorem, a disintegration theo-
rem for Markov kernels, a Kolmogorov extension theorem and a conditional
de Finetti theorem. We also translate our findings into properties of the
corresponding Markov category of Markov kernels between universal quasi-
universal spaces.

Furthermore, we formalize probabilistic graphical models like causal Bayesian
networks in terms of quasi-universal spaces and prove a global Markov prop-
erty for them. For this we need to translate the notion of transitional con-
ditional independence into this setting and study its (asymmetric) separoid
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rules. Together with the existence of exponential objects in this category
we are now able to reason about conditional independence relations between
variables and causal mechanisms on equal footing. Finally, we also highlight
how one can use exponential objects and random functions for counterfactual
reasoning.
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1 Introduction

1 Introduction

1.1 Motivation

Even though mathematicians have been on the quest for finding the right framework for
persuing topology for more than 50 years and been rewarded with the discovery of the
convenient category of compactly generated weakly Hausdorff spaces, quasi-topologies
and the category of condensed sets, see [Spa63,Ste67,McC69,EH99,EH02,Str09,SC19,
SC20], the same endavour for persuing higher probability theory just started rather re-
cently. However, by mirroring the found principles for those categories of topological
spaces, a major milestone was quickly achieved by the construction of the category of
quasi-Borel spaces QBS, see [HKSY17,ŚKV`17,SSSW21].

The main motivation for the latter was to enable probabilistic programming to in-
corporate higher-order functions, see [SWY`16, HKSY17]. Even though the probabil-
ity monad of Giry, see [Law62, Gir82], is strong and provides a semantic foundation
for first-order probabilistic programming language, see [SWY`16], it does not support
higher-order functions, because the category of measurable spaces Meas is not cartesian
closed, see [Aum61]. The category of quasi-Borel spaces was then constructed to allow
for such higher-order functions and was shown to be cartesian closed, see [HKSY17],
which thus solved those problems.

Since the lack of exponential objects inside the category of measurable spaces Meas

also provides obstacles and complications in other application domains like probabilistic
graphical models and causal reasoning, see below, the authors of the paper at hand
were motivated to further investigate those topics in slightly more generality under the
umbrella term of the categories of quasi-measurable spaces.

X Y Z

Figure 1: A Markov chain with output variables X, Y , Z. The graph allows us to read
off the conditional independence: Z KKX |Y .

To motivate further, consider a Markov chain with three variables X, Y , Z, see Figure
1. Their joint distribution is then given by the factorization:

P pX, Y, Zq “ P pZ|Y q b P pY |Xq b P pXq. (I)

This factorization then shows the conditional independence:

Z KKX |Y.

One could have as well read this off the graph in Figure 1 via the d-separation statement
Z KX |Y and the global Markov property, see e.g. [LDLL90,Lau96,Ric03,KF09,Pea09,
FM17,FM18,FM20,For21]. Z KKX |Y means that when the value of Y is provided then
X has no additional information about the state of Z. From the factorization in Equation
I we can even read off that the value of Z is only determined through the Markov kernel
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1 Introduction

P pZ|Y q when Y is provided. So the distribution P pXq of X and the Markov kernel
P pY |Xq of Y both have no influence on Z when conditioned on Y . So in some sense Z
is independent not only of X, but also of P pXq and P pY |Xq when conditioned on Y . If
we use QpXq, QpY |Xq as variables for the values P pXq, P pY |Xq, resp., then we would
like to be able, first, to formalize a conditional independence statement of form:

Z KK pX,QpXq, QpY |Xqq |Y,

and, second, to read this off a graph like in Figure 2 via some global Markov property.
This comes with several challenges.

First, the variables QpXq and QpY |Xq are not random variables in the usual sense as
there is no distribution defined over them. The problem of treating random variables and
such deterministic non-random variables on equal footing was generally solved in [For21]
in the category of measurable space Meas by introducing the notion of transitional
conditional independence.

QpXq QpY |Xq

X Y Z

Figure 2: The partially generic causal Bayesian network with output variables X in X

and Y in Y and Z in Z and input variables QpXq in PpX q and QpY |Xq in
PpYqX . The graph allows us to read off the transitional conditional indepen-
dence: Z KK pX,QpXq, QpY |Xqq |Y .

Second, for a global Markov property to hold we need to incorporate variables QpY |Xq
into a (causal) Bayesian network. For this, note thatX and Y take values in a measurable
spaces pX ,BX q and pY ,BYq, resp., while QpY |Xq takes values in the space L of Markov
kernels from X to Y :

L :“ Meas
`
pX ,BX q, pGpY ,BYq,BGpY ,BYqq

˘
,

where GpY ,BYq is the space of all probability measures on pY ,BYq endowed with the
smallest σ-algebra BGpY ,BYq that makes all evaluation maps µ ÞÑ µpBq, B P BY , measur-
able. So, to incorporate QpY |Xq into a Baysian network, we would need to construct
a (measurable) Markov kernel from the product space X ˆ L to Y . More precisely, we
would need to construct a σ-algebra BL on L such that the following map is measurable:

ev : pX ˆ L,BX b BLq Ñ
`
GpY ,BYq,BGpY ,BYq

˘
, px,QpY |Xqq ÞÑ QpY |X “ xq.

Unfortunately and related to the fact that the category of measurable spaces Meas is not
cartesian closed, in general, there does not exist any σ-algebra BL on L that makes the
above map ev measurable, where BX b BL is the product σ-algebra, which is generated
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1 Introduction

by the cylinder sets A ˆ D, with A P BX and D P BL; not even in the case where
the measurable spaces X and Y are (uncountable) standard Borel measurable spaces,
see [Aum61].

To remedy this shortcoming we engage in studying quasi-Borel spaces and, slightly
more general, quasi-measurable spaces. The main idea behind quasi-measurable spaces
can best be described when contrasted with the classical setup of measure-theoretic
probability theory:

In the classical setup of measure-theoretic probability theory one usually starts with
the assumption of the presence of a (typically not further specified) measurable space
pΩ,BΩq, the sample space, and a probability measure P on it. Then one considers the
data spaces X , typically R or RD, where the real world measurements happen. One then
specifies a σ-algebra BX of subsets of X as the collection of all admissible events on X .
When BX is given then the admissible random variables on X that are used to describe
the data points or random measurements on X are all measurable maps X from pΩ,BΩq
to pX ,BX q. The set of all admissible random variables is then:

XΩ :“ FpBX q :“ Meas ppΩ,BΩq, pX ,BX qq .

Note that the set of random variables is dependent on the choice of the σ-algebra. So if
we change the σ-algebra BX we implicitely change the set of admissible random variables
XΩ with it.

In the theory of quasi-measurable spaces we swap the roles of the set of admissible
events BX and set of admissible random variables XΩ. We again start with a sample
space pΩ,BΩq, but then directly specify the admissible set of random variables XΩ on
the data space X . This then induces a σ-algebra of admissible events on X via:

BX :“ BpXΩq :“
 
A Ď X

ˇ̌
@X P XΩ. X´1pAq P BΩ

(
.

Note that if we now change the set of admissible random variables XΩ we would im-
plicitely change the σ-algebra BX . Also note that the σ-algebra BX is now dependent
on the choice of pΩ,BΩq and the set of random variables XΩ.

The tuple pX ,XΩq will then be called a quasi-measurable space w.r.t. pΩ,BΩq. The
properties of the corresponding category of quasi-measurable spaces QMS will then be
dependent on the choice of the sample space pΩ,BΩq, which thus needs to be specified
and studied more closely, in contrast to the classical setup.

If we are now coming back to our example of Markov chains we will need to con-
struct/formalize probabilistic graphical models in this setting, here causal Bayesian net-
works. Furthermore, we need to study probability monads and Markov kernels between
quasi-measurable spaces. Also, to translate the mentioned notion of transitional con-
ditional independence from the category of measurable spaces Meas to the category
of quasi-measurable spaces QMS we need to follow the steps in [For21] and prove a
disintegration theorem for Markov kernels in QMS.

For such disintegration results one usually needs close control over the σ-algebras of
the involved spaces, see [For21] Cor. C.8. This is the point where the quasi-Borel spaces
from [HKSY17] become rather inconvenient to work with. The reason is that the induced
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1 Introduction

σ-algebras come, as described above, as push-forward σ-algebras of the sample space
along the quasi-measurable functions. This roughly means that the induced σ-algebras
will be pushed onto the images of such maps and then extended by null-sets outside,
without necessarily including null-sets on that image. So the induced σ-algebras will, in
general and in some sense, be partially complete and partially incomplete. To overcome
this inconsistency and harmonize the situation it seems natural to use sample spaces
that are complete with respect to all relevant probability measures. Since, furthermore,
for the disintegration theorem one requires perfect probability measures and universally
countably generated σ-algebras, see [Fad85,Pac78,Fre15,For21], one then almost neces-
sarily1 ends up requiring a sample space that is an uncountable Polish space endowed
with its σ-algebra of universally measurable subsets, which then satisfies all those con-
straints and requirements. The corresponding category of quasi-measurable spaces with
such a sample space will be called the category of quasi-universal spaces QUS. These
are the reasons we strongly engage in developing the theory for quasi-universal spaces
in this paper.

1.2 Contributions

Closely following the construction of quasi-Borel spaces QBS, see [HKSY17], we intro-
duce the categories of quasi-measurable spaces QMS. For this we mainly make two
slight changes:

First, we set up the theory of quasi-measurable spaces to allow for different samples
spaces Ω, 2.2, other than the real numbers R with its Borel σ-algebra.

Second, for the Definition 2.5 of quasi-measurable spaces we drop the 3rd property in
the definition of quasi-Borel spaces, see [HKSY17] Def. 7. This simplifies and generalizes
the theory of quasi-measurable spaces QMS at the same time. For our purposes, we
(almost) loose none of the good properties of QBS, see below:

The categories of quasi-measurable spaces QMS are shown to have all (small) limits
and colimits, see Theorem 2.38 and 2.45. Arbitrary (small) products and coproducts
distribute, see Theorem 2.42. The categories of quasi-measurable spaces QMS are
cartesian closed, see Theorem 2.32, thus allowing for higher-order functions and simply
typed λ-calculus. We also maintain the adjunction between the category of measurable
spaces Meas and each of the categories of quasi-measurable spaces QMS, see Theorem
2.16.

By not insisting on the mentioned 3rd property that quasi-Borel spaces have, [HKSY17]
Def. 7, the right-adjoint F of that adjunction does not perserve countable coproducts of
measurable spaces anymore. However, we will study quasi-measurable spaces with that
property on its own in Section 4 and name them patchable quasi-measurable spaces.
We then show in Theorem 4.10 that the corresponding category of patchable quasi-
measurable spaces PQMS is a reflexive subcategory of QMS, and in fact, an exponential
ideal. This allows us to just reflect back to PQMS, if needed, e.g. for the mentioned
countable coproducts. We then also study under which constructions patchability is

1See Lemma 5.18.
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1 Introduction

perserved, like products and quotients, etc.
In Section 3 we introduce and study several probability monads Q, K, P, R, S.

Since the Giry construction G, see [Law62,Gir82], does not interact well with the (new)
structures, e.g. products, of quasi-measurable spaces we do not expect it to induce a
strong monad on QMS and quickly drop it from further analysis. Instead, we restrict
to probability measures that interact well with such products and get the noval strong
probability monad Q out, see Theorem 3.16. The monads of push-forward probability
measures K, P, R, S are all slight variations of P on QBS from [HKSY17], one more
general (K), one more restrictive (S), and one complementary (R) to P. Under the
assumption that the sample space Ω satisfies Ω ˆ Ω – Ω in QMS all those probability
monads become strong, see Theorem 3.25, and thus allow for semantics for a probabilistic
programming language in the monadic style with higher-order functions similar to how
the category of quasi-Borel spaces does, see [Mog91,HKSY17,ŚKV`17,SSSW21].

The assumption Ω ˆ Ω – Ω is satisfied, for instance, if Ω is a (countable) infinite
product of another space Ω0 like Ω – ΩN

0 or if Ω is an (uncountable) Polish space, like
the Hilbert cube r0, 1sN or just R, either endowed with its Borel σ-algebra BR or its
universal completion pBRqG , i.e. its σ-algebra of all universally measurable subsets.

For any uncountable Polish space with the σ-algebra of all universally measurable
subsets, e.g. pΩ,BΩq “ pR, pBRqGq, we call the corresponding category the category of
quasi-universal spaces QUS. This comes with further convenient properties. The in-
duced σ-algebras BX on quasi-universal spaces pX ,XΩq now have a description as the
intersection of Lebesgue-complete σ-algebras, see Lemma 5.5. This becomes most pro-
nounced for countably separated quasi-universal spaces, see Theorem 5.16. Note that
giving such a clear description of the induced σ-algebras was not possible for quasi-Borel
spaces, see [HKSY17]. We also show that the strong probability monads of push-forward
probability measures K, P, R, S all agree for quasi-universal spaces, see Theorem 5.29.
Furthermore, we are able to prove several important theorems for quasi-universal spaces.
This ranges from a Fubini Theorem 5.33, over a Disintegration Theorem 5.35 for Markov
kernels and Kolmogorov Extension Theorems 5.40 and 5.41, to a Conditional De Finetti
Theorem 5.47.

Quasi-universal spaces that have similar good properties like standard Borel spaces
have are called universal quasi-universal spaces and its category is abbreviated as UQUS.
Universal quasi-universal spaces are exactly the retracts of the sample space Ω in QUS,
see Lemma 5.22. We then also express the found properties of UQUS in terms of
categorical probability theory, see Theorem 5.46:

The category of universal quasi-universal spaces pUQUS,ˆ, 1q is a symmetric carte-
sian (but not closed) monoidal category with countable products and countable coprod-
ucts. The triple pP, δ,Mq is a strong affine symmetric monoidal/commutative monad
on pUQUS,ˆ, 1q. Its Kleisli category KlpPq on UQUS is an a.s.-compatibly repre-
sentable Markov category with conditionals and Kolmogorov powers, see [Kle65,CJ19,
FR20,Fri20,FGPR20,FGP21].

In Section 6 we study conditional independence relations and causal models in the
category of quasi-universal spaces QUS. There we translate the notion of transitional
conditional independence in [For21] from Meas to QUS, see Definition 6.5, and show all
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2 The Category of Quasi-Measurable Spaces

the corresponding (asymmetric) separoid rules in Theorem 6.7. These are then used to
prove the global Markov property for causal Bayesian networks, see Theorem 6.19, which
relates the underlying graphical structure to the transitional conditional independencies
of its variables via a d-separation criterion.

We then introduce the notion of partially generic causal Bayesian networks, see Defin-
tion 6.21. Finally, with this and together with the strong probability monad P, the
exponential objects PpX qZ in QUS, and the global Markov property we now arrive at
our goal and can formulate conditional independence relations between variables and
causal mechanisms on equal footing and reason with them graphically as wanted and
explained in the beginning with the example of Markov chains, see Figure 2.

2 The Category of Quasi-Measurable Spaces

In this section we will construct the category of quasi-measurable spaces QMS w.r.t.
a fixed sample space Ω. These construction closely follow the constructions of quasi-
Borel spaces from [HKSY17], also see [ŚKV`17, SSSW21], but where we now allow for
different sample spaces Ω other than the set of real numbers R. We will have products,
coproducts, limits, colimits and function spaces/exponential objects, etc., in QMS.

2.1 Quasi-Measurable Spaces

In this subsection we will go through the basic definitions of the sample space Ω, quasi-
measurable spaces and quasi-measurable maps. This will then constitute a category, the
category of quasi-measurable spaces QMS w.r.t. Ω.

Notation 2.1. For two sets X and Y we denote by:

rX Ñ Ys :“ SetspX ,Yq :“ tf : X Ñ Yu

the set of all (set-theoretic) maps from X to Y.

2.1.1 The Sample Space

Here we will introduce the basic requirements for the sample space Ω for the category
of quasi-measurable spaces QMS.

Notation 2.2 (The sample space). In the following let pΩ,BΩ,Ω
Ωq be a triple consisting

of:2

1. a measurable space pΩ,BΩq, i.e. BΩ is a σ-algebra of subsets of Ω,

2. a set of functions ΩΩ Ď Meas ppΩ,BΩq, pΩ,BΩqq that:

2We will later further assume that Ω – Ω ˆ Ω. This will be needed to get well-defined and strong
probability monads.
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2 The Category of Quasi-Measurable Spaces

3. is closed under composition:

˝ : ΩΩ ˆ ΩΩ Ñ ΩΩ, pϕ1, ϕ2q ÞÑ ϕ1 ˝ ϕ2,

4. contains the constant maps:

Ω1 :“ r1 Ñ Ωs ˝ rΩ Ñ 1s Ď ΩΩ,

5. and the identity map idΩ P ΩΩ.

Remark 2.3. 1. If pΩ,BΩq is a given measurable space then a valid choice for ΩΩ in
2.2 is:

ΩΩ :“ FpBΩq :“ Meas ppΩ,BΩq, pΩ,BΩqq .

2. If Ω is a set and ΩΩ a set of functions from Ω to Ω that is closed under composition
and that contains the constant maps Ω1 and idΩ P ΩΩ then a valid choice for BΩ

in 2.2 is:
BΩ :“ σ

` 
ϕ´1
2 pϕ1pΩqq

ˇ̌
ϕ1, ϕ2 P ΩΩ

(˘
,

or even its universal completion. We clearly then have:

ΩΩ Ď Meas ppΩ,BΩq, pΩ,BΩqq .

Example 2.4. Let Ω “ R and ΩΩ “ ToppR,Rq the set of continuous maps from R to
R, which is closed under composition and contains the identity and all constant maps.
Then we have that:

BΩ :“ σ
` 
ϕ´1
2 pϕ1pΩqq

ˇ̌
ϕ1, ϕ2 P ΩΩ

(˘
,

is the Borel σ-algebra of R, and:

BΩ :“
` 
ϕ´1
2 pϕ1pΩqq

ˇ̌
ϕ1, ϕ2 P ΩΩ

(˘
G
,

the σ-algebra of all universally measurable subsets of R. In any case, we have:

ΩΩ Ď Meas ppΩ,BΩq, pΩ,BΩqq .

Proof. Let ϕ1, ϕ2 P ToppR,Rq. Then ϕ1pRq is the countable union of closed compact
subsets of R. So ϕ´1

2 pϕ1pRqq Ď R is a countable union of closed subsets of R thus a
Borel subset of R. Since we can generate all intervals pa, bq “ ϕ1pRq for appropriate ϕ1

and with ϕ2 “ idR we generate the whole Borel σ-algebra of R.

2.1.2 Quasi-Measurable Spaces

Here we will introduce the most important definition of this paper: quasi-measurable
spaces. The definition resembles the definition of quasi-Borel spaces from [HKSY17]
Def. 7. There is one main difference though: we do not require our quasi-measurable
spaces to satisfy the 3rd property of [HKSY17] Def. 7. That property will separately
be studied in Section 4 in Definition 4 under the name of patchable quasi-measurable
spaces. The reason we can drop that property for the most part of this paper is that
almost all constructions we encounter in this paper work without that property. The
only point where it matters is clarified in Lemma 4.12.

11



2 The Category of Quasi-Measurable Spaces

Definition 2.5 (Quasi-measurable spaces). A quasi-measurable space pX ,XΩq w.r.t.
pΩ,ΩΩq is a set X together with a set of maps:

XΩ Ď rΩ Ñ X s

such that:

1. for all α P XΩ and ϕ P ΩΩ we also have: α ˝ ϕ P XΩ, in short:

XΩ ˝ ΩΩ Ď XΩ.

2. all constant maps Ω Ñ X , mapping all elements to one point, are in XΩ, in short:

X 1 :“ r1 Ñ X s ˝ rΩ Ñ 1s Ď XΩ.

By abuse of notations, we will refer to X as the quasi-measurable space, while actually
meaning pX ,XΩq w.r.t. pΩ,ΩΩq.

Example 2.6. If X is a set and XΩ :“ rΩ Ñ X s then pX ,XΩq is a quasi-measurable
space.

Example 2.7 (Measurable spaces as quasi-measurable spaces). 1. If pX ,BX q is a mea-
surable space and:

XΩ :“ FpBX q :“ Meas ppΩ,BΩq, pX ,BX qq “ tα : pΩ,BΩq Ñ pX ,BX q measurableu ,

then pX ,XΩq is a quasi-measurable space w.r.t. Ω.

Indeed, the composition of measurable maps is measurable and constant maps are
measurable.

2. Note that pΩ,ΩΩq and pΩ,FpBΩqq might, in general, be two different quasi-measurable
spaces (w.r.t. pΩ,ΩΩq).

3. If pX , TX q is a topological space (e.g. RD, etc.) we usually endow it with the set of
maps induced by its Borel σ-algebra. More explicitely this is:

XΩ :“ FpσpTX qq “
 
α : Ω Ñ X

ˇ̌
@A P TX . α

´1pAq P BΩ

(
.

4. If X is a countable set (e.g. 1 :“ t0u, 2 :“ t0, 1u, N, etc.) we usually endow it
with the discrete topology, power-set σ-algebra, and use the above quasi-measurable
space structure, which reduces to the discrete quasi-measurable space structure,
defined by:

XΩ :“
 
α : Ω Ñ X

ˇ̌
@x P X . α´1pxq P BΩ

(
.

12



2 The Category of Quasi-Measurable Spaces

2.1.3 Quasi-Measurable Maps

The second ingredient for the category of quasi-measurable spaces QMS are its mor-
phisms: the quasi-measurable maps. This again closely follows [HKSY17].

Definition 2.8 (Quasi-measurable maps). Let pY ,YΩq and pZ,ZΩq be quasi-measurable
spaces w.r.t. Ω. A map:

h : Y Ñ Z,

is called YΩ-ZΩ-quasi-measurable, or just quasi-measurable, for short, if:

@α P YΩ. h ˝ α P ZΩ,

or in short:
h ˝ YΩ Ď ZΩ.

The set of all quasi-measurable maps (under pΩ,ΩΩq) will be denoted by:

QMS
`
pY ,YΩq, pZ,ZΩq

˘
,

or just:
QMS pY ,Zq ,

where we keep the dependence on the choice of pΩ,ΩΩ,BΩq implicit.

Remark 2.9. Note that the composition of quasi-measurable maps is quasi-measurable.

Remark 2.10. Let pX ,XΩq be a quasi-measurable space. Then we have the identifica-
tion:

QMSppΩ,ΩΩq, pX ,XΩqq “ XΩ.

Proof. For f P XΩ Ď rΩ Ñ X s we by the point 1. of Definition 2.5 have:

f ˝ ΩΩ Ď XΩ.

This directly implies the inclusion:

XΩ Ď QMSppΩ,ΩΩq, pX ,XΩqq.

If, on the other hand, g P QMSppΩ,ΩΩq, pX ,XΩqq then we have:

g ˝ ΩΩ Ď XΩ.

Since idΩ P ΩΩ we get that:
g “ g ˝ idΩ P XΩ.

We thus also get:
QMSppΩ,ΩΩq, pX ,XΩqq Ď XΩ.

This shows the equality.

13



2 The Category of Quasi-Measurable Spaces

Notation 2.11. 1. The category of all quasi-measurable spaces together with quasi-
measurable maps w.r.t. pΩ,ΩΩ,BΩq will be denoted by:

QMS.

2. The category of all patchable (see Definition 4.2) quasi-measurable spaces w.r.t.
the special choice pΩ,BΩq “ pR,BRq of the real numbers together with its Borel
σ-algebra will be called the category of quasi-Borel spaces:

QBS.

3. The category of all quasi-measurable spaces w.r.t. the special choice pΩ,BΩq “
pR, pBRqGq of the real numbers together with the σ-algebra of all universally mea-
surable subsets will be called the category of quasi-universal (measurable) spaces:

QUS.

2.2 Adjunction: Measurable Spaces - Quasi-Measurable Spaces

In this subsection we study how the category of measurable spaces Meas and the cat-
egory of quasi-measurable spaces QMS are related to each other. The result can be
expressed in an adjunction of two functors between those categories. The right-adjoint
F maps a σ-algebra BX to all BΩ-BX -measurable maps FpBX q and the left-adjoint B

maps a set of random variables/quasi-measurable functions XΩ to the σ-algebra BpXΩq
they generate. The notion of adjoint functors, limits and colimits we are going to use
were defined in [Kan58] Ch. II, also see e.g. [Joh02,ML98].

In the following let pΩ,ΩΩ,BΩq be a fixed sample space (see Notation 2.2).

Notation 2.12 (σ-algebra induced by functions). For any set X and any subset of maps
XΩ Ď rΩ Ñ X s we define the following σ-algebra on X :

BpXΩq :“
 
A Ď X

ˇ̌
@α P XΩ. α´1pAq P BΩ

(
,

which is the biggest σ-algebra BX on X such that all α P XΩ are still BΩ-BX -measurabel.

Notation 2.13 (Functions induced by σ-algebras). Let X be any set and BX any σ-
algebra of subsets of X . Then we put:

FpBX q :“ Meas ppΩ,BΩq, pX ,BX qq Ď rΩ Ñ X s.

which is the biggest set of BΩ-BX -measurable functions XΩ Ď rΩ Ñ X s such that pX ,XΩq
is still a quasi-measurable space.

Lemma 2.14. Let X be a set BX be a σ-algebra of subsets of X and XΩ Ď MeasppΩ,BΩq, pX ,BX qq
any subset of measurable maps. Then we have the inclusions:

BX Ď BpFpBX qq Ď BpXΩq,

14



2 The Category of Quasi-Measurable Spaces

and:
XΩ Ď FpBpXΩqq Ď FpBX q.

In particular, we get:
BpFpBpXΩqqq “ BpXΩq,

and:
FpBpFpBX qqq “ FpBX q.

Proof. Since by assumption we have: XΩ Ď FpBX q we get the reverse inclusion when
applying B (smaller set of functions means less constraints on the measurable subsets):

BpFpBX qq Ď BpXΩq.

Since by assumption every α P XΩ is BΩ-BX -measurable we have that for every A P BX

that α´1pAq P BΩ. Since this holds for every α P XΩ we see that A P BpXΩq. This shows
the inclusion:

BX Ď BpXΩq.

Since this would also hold for the special choice XΩ “ FpBX q we get:

BX Ď BpFpBX qq.

This completes the first chain of inclusions.
By applying F we get the reverse inclusion (smaller σ-algebras mean less constraints on
the measurability of functions):

FpBpXΩqq Ď FpBX q.

Since BpXΩq is the biggest σ-algebra such that all functions from XΩ are measurable we
also have the inclusion:

XΩ Ď MeasppΩ,BΩq, pX ,BpXΩqqq “ FpBpXΩqq.

This completes the second chain of inclusions.
If we use the corner case: BX :“ BpXΩq, then the first chain of inclusions become
equalities:

BpXΩq Ď BpFpBpXΩqqq Ď BpXΩq.

If we use the corner case: XΩ :“ FpBX q, then the second chain of inclusions become
equalities:

FpBX q Ď FpBpFpBX qqq Ď FpBX q.

Remark 2.15. Consider the sample space pΩ,ΩΩ,BΩq. Then we have:

BpΩΩq “ BΩ.

This means that there is no ambiguity in notation for BΩ. Note that, in general, we
might have: FpBΩq Ľ ΩΩ.

15



2 The Category of Quasi-Measurable Spaces

Proof. By Lemma 2.14 we have:
BΩ Ď BpΩΩq.

On the other hand, since idΩ P ΩΩ, we get for B P BpΩΩq that B “ id´1
Ω pBq P BΩ. This

shows the other inclusion:
BpΩΩq Ď BΩ.

Theorem 2.16 (Adjunction). The functor:

B : QMS Ñ Meas, pX ,XΩq ÞÑ pX ,BpXΩqq, Bpfq “ f,

with:
BpXΩq :“

 
A Ď X

ˇ̌
@α P XΩ. α´1pAq P BΩ

(
,

is left-adjoint to the functor:

F : Meas Ñ QMS, pY ,BYq ÞÑ pY ,FpBYqq, Fpgq “ g,

where:
FpBYq :“ Meas ppΩ,BΩq, pY ,BYqq .

That means for quasi-measurable pX ,XΩq and measurable pY ,BYq we have canonical
identifications:

Meas
`
pX ,BpXΩqq, pY ,BYq

˘
“ QMS

`
pX ,XΩq, pY ,FpBYqq

˘
.

Furthermore, we have:

B ˝ F ˝ B “ B, F ˝ B ˝ F “ F ,

and: BY Ď BFpBYq and XΩ Ď FBpXΩq.

Proof. Most of this was already shown in Lemma 2.14.
For the adjunction let g P Meas

`
pX ,BpXΩqq, pY ,BYq

˘
and α P XΩ Ď Meas

`
pΩ,BΩq, pX ,BpXΩqq

˘
.

Then g ˝ α P Meas ppΩ,BΩq, pY ,BYqqq “ FpBYq. Since this holds for all α P XΩ we get
that: g P QMS

`
pX ,XΩq, pY ,FpBYq

˘
. This implies the inclusion:

Meas
`
pX ,BpXΩqq, pY ,BYq

˘
Ď QMS

`
pX ,XΩq, pY ,FpBYq

˘
.

Now let f P QMS
`
pX ,XΩq, pY ,FpBYq

˘
then f P Meas

`
pX ,BpXΩqq, pY ,BFpBYq

˘
Ď

Meas
`
pX ,BpXΩqq, pY ,BYq

˘
. This shows the inclusion:

Meas
`
pX ,BpXΩqq, pY ,BYq

˘
Ě QMS

`
pX ,XΩq, pY ,FpBYq

˘
.

Definition 2.17 (Sturdy (quasi-)measurable spaces). We define the full subcategories:

16



2 The Category of Quasi-Measurable Spaces

1. SMeas :“ BpQMSq of sturdy measurable spaces inside Meas.

2. SQMS :“ FpMeasq of sturdy quasi-measurable spaces inside QMS.

Remark 2.18. 1. A measurable space pX ,BX q is sturdy iff BX “ BFpBX q.

2. A quasi-measurable space pX ,XΩq is sturdy iff XΩ “ FBpXΩq.

Proof. This directly follows from:

B ˝ F ˝ B “ B, F ˝ B ˝ F “ F .

Corollary 2.19. The adjunction:

QMS Meas

B

F

%

restricts to an equivalence on the full subcategories given by the essential images of B
and F , resp.:

SQMS SMeas.

B

F

%

Proof. Every adjunction L % R restricts to an equivalence on the full subcategories
given by those objects where the unit η : id Ñ RL, the counit ε : LR Ñ id, resp., is an
isomorphism. In our case this follows from:

B ˝ F ˝ B “ B, F ˝ B ˝ F “ F .

Remark 2.20. The main point of Corollary 2.19 is that sturdy measurable spaces can
be identified with sturdy quasi-measurable spaces and their relations are the same either
considered as sturdy measurable spaces or as sturdy quasi-measurable spaces.

Example 2.21. 1. If FpBΩq “ ΩΩ and pX ,BX q – pΩ,BΩq (in Meas) then pX ,BX q P
SMeas.

2. The latter, for instance, is the case if pΩ,BΩq “ pR,BRq with the Borel σ-algebra
and pX ,BX q is any (uncountable) standard measurable space, e.g. if X “ RN – R

or X “ RD – R is the product space with the Borel σ-algebra.

3. If pX ,BX q is discrete in the sense that BX “ tA Ď X u is the power-set σ-algebra
then pX ,BX q P SMeas (e.g. any countable discrete space). Indeed, BFpBX q Ě BX

must then be an equality.

17
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4. If pΩ,BΩq “ pR, pBRqGq is endowed with the σ-algebra of universally measurable
subsets and X “ RN – R or X “ RD – R is the product space with the universal
completion of the Borel σ-algebra then pX ,BX q P SMeas.

Theorem 2.22. The full subcategory SQMS “ FpMeasq of sturdy quasi-measurable
spaces inside the category of all quasi-measurable spaces QMS is reflexiv. The reflector
is given by:

FB : QMS Ñ SQMS, pX ,XΩq Ñ pX ,FBpXΩqq, FBpfq “ f,

and preserves all colimits and coproducts (indexed over sets).

Proof. Let pX ,XΩq be a quasi-measurable space and pY ,YΩq a sturdy quasi-measurable
space. Then we need to show that that FB is left-adjoint to the forgetful functor
SQMS ãÑ QMS, i.e. that we have a natural identification:

QMS
`
pX ,FBpXΩqq, pY ,YΩq

˘
“ QMS

`
pX ,XΩq, pY ,YΩq

˘
.

Let f P QMS
`
pX ,FBpXΩqq, pY ,YΩq

˘
then we have:

f ˝ XΩ Ď f ˝ FBpXΩq Ď YΩ.

This shows: f P QMS
`
pX ,XΩq, pY ,YΩq

˘
.

For the reverse inclusion consider g P QMS
`
pX ,XΩq, pY ,YΩq

˘
. Then g is BpXΩq-

BpYΩq-measurable. Every α P FBpXΩq is, by definition, BΩ-BpXΩq-measurable. So the
composition g ˝ α is BΩ-BpYΩq-measurable. So we get:

g ˝ α P FBpYΩq “ YΩ.

This shows that g P QMS
`
pX ,FBpXΩqq, pY ,YΩq

˘
.

This shows that SQMS is a reflexiv subcategory of QMS.
As a left-adjoint FB always preserves arbitrary colimits like coproducts (indexed over
sets).

Remark 2.23. Similarly, for a measurable space pY ,BYq and a sturdy measurable space
pX ,BX q we have the natural identification:

Meas ppX ,BX q, pY ,BYqq “ Meas ppX ,BX q, pY ,BFpBYqqq .

Proof. Let g P Meas ppX ,BX q, pY ,BYqq and B P BFpBYq and α P FpBX q. Then g ˝ α P
FpBYq. Since B P BFpBYq we get:

α´1pg´1pBqq P BΩ.

Since this holds for all α P FpBX q we get:

g´1pBq P BFpBX q “ BX .

This shows that g P Meas ppX ,BX q, pY ,BFpBYqqq.
The other inclusion is clear.
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2 The Category of Quasi-Measurable Spaces

2.3 Products of Quasi-Measurable Spaces

In this subsection we define the categorical product of quasi-measurable spaces. The
construction again closely follows [HKSY17].

Definition 2.24 (Product of quasi-measurable spaces). Let pXi,X
Ω
i q, i P I, be a family

of quasi-measurable spaces indexed by a set I. Then we endow the set-theoretic product:
ź

iPI

Xi “ tx “ pxiqiPI | @i P I. xi P Xiu ,

with the following set of maps:

˜
ź

iPI

Xi

¸Ω

:“

#
α : Ω Ñ

ź

iPI

Xi

ˇ̌
ˇ̌
ˇ @i P I. αi :“ pri ˝ α P XΩ

i

+
,

where pri is the canonical projection map onto Xi. In short, we can also write this as:

˜
ź

iPI

Xi

¸Ω

“
ź

iPI

XΩ
i ,

by identifying α with pαiqiPI .
We thus define the product of quasi-measurable spaces w.r.t. Ω as:

ź

iPI

pXi,X
Ω
i q :“

˜
ź

iPI

Xi,
ź

iPI

XΩ
i

¸

Lemma 2.25. The product of quasi-measurable spaces w.r.t. Ω:

ź

iPI

pXi,X
Ω
i q :“

˜
ź

iPI

Xi,
ź

iPI

XΩ
i

¸

is a quasi-measurable space w.r.t. Ω.

Proof. We check the points from Definition 2.5:

1. For α “ pαiqiPI P
ś

iPI X
Ω
i and ϕ P ΩΩ we by assumption have:

@i P I. αi ˝ ϕ P XΩ
i .

It follows that:
α ˝ ϕ “ pαi ˝ ϕqiPI P

ź

iPI

XΩ
i .

2. If α “ pαiqiPI is a constant map, then every αi is a constant map. By assumption
such constant αi P XΩ

i . It then follows that also α P
ś

iPI X
Ω
i .
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This shows that
ś

iPIpXi,X
Ω
i q is a quasi-measurable space.

Lemma 2.26. The product of quasi-measurable spaces:

ź

iPI

pXi,X
Ω
i q :“

˜
ź

iPI

Xi,
ź

iPI

XΩ
i

¸

defines a categorical product in QMS, i.e. for every quasi-measurable space pZ,ZΩq the
natural map:

QMS

˜
Z,

ź

iPI

Xi

¸
„

ÝÑ
ź

iPI

QMS pZ,Xiq , g ÞÑ ppri ˝ gqiPI

is a bijection.

Proof. First note that the canonical projection map:

prk :
ź

iPI

pXi,X
Ω
i q Ñ pXk,X

Ω
k q,

is a quasi-measurable map for every k P I.
Next let pZ,ZΩq be another quasi-measurable space and:

gk : pZ,ZΩq Ñ pXk,X
Ω
k q

a quasi-measurable map for each k P I. Then g :“ pgiqiPI is the only (set theoretic) map
that makes the following diagram commute for all k P I:

pZ,ZΩq

gk ))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

D!g //
ś

iPIpXi,X
Ω
i q

prk

��
pXk,X

Ω
k q.

It is left to check that g is a quasi-measurable map. If γ P ZΩ by assumption we know
that gk ˝ γ P XΩ

k for all k P I. It thus follows that:

g ˝ γ “ pgi ˝ γqiPI P
ź

iPI

XΩ
i .

This thus shows the claim.

Lemma 2.27 (F on products of measurable spaces). Let pXi,Biq measurable spaces,
i P I. Then we have:

F

˜
â
iPI

Bi

¸
“
ź

iPI

FpBiq.

This means that the functor F : Meas Ñ QMS preserves arbitrary products.
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Proof. Right adjoints always preserve arbitrary limits, like products.
A more concrete proof goes as follows. By the univsersal property of the product (σ-
algebra), the adjunction from Theorem 2.16 and that BΩ “ BpΩΩq (see Remark 2.15)
we get:

F

˜
â
iPI

Bi

¸
“ Meas

˜
pΩ,BΩq,

˜
ź

iPI

Xi,
â
iPI

Bi

¸¸

“
ź

iPI

Meas ppΩ,BΩq, pXi,Biqq

“
ź

iPI

Meas
`
pΩ,BpΩΩqq, pXi,Biq

˘

“
ź

iPI

QMS
`
pΩ,ΩΩq, pXi,FpBiqq

˘

“
ź

iPI

FpBiq.

2.4 Function Spaces of Quasi-Measurable Spaces

In this subsection we will introduce the function space of quasi-measurable spaces. It will
serve as an exponential object/internal hom in the category of quasi-measurable spaces
QMS, making QMS cartesian closed. The construction again closely follows [HKSY17].

Definition 2.28 (Function space of quasi-measurable spaces). Let pX ,XΩq and pY ,YΩq
be two quasi-measurable spaces w.r.t. Ω. We then define their function space as:

YX :“ QMSppX ,XΩq, pY ,YΩqq.

We further endow it with the following set of functions:

`
YX

˘Ω
:“

 
β : Ω Ñ YX

ˇ̌
@ϕ P ΩΩ @α P XΩ. βpϕqpαq P YΩ

(
.

Lemma 2.29. Let pX ,XΩq and pY ,YΩq be two quasi-measurable spaces. Then the

function space
´
YX ,

`
YX

˘Ω¯
is a quasi-measurable space.

Proof. We check the points from Definition 2.5:

1. If β P
`
YX

˘Ω and ϕ1, ϕ P ΩΩ and α P XΩ then we get:

pβ ˝ ϕ1qpϕqpαq “ βpϕ1 ˝ ϕqpαq P YΩ,

since ϕ1 ˝ ϕ P ΩΩ. By definition we then get:

β ˝ ϕ1 P
`
YX

˘Ω
.
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2. If β : Ω Ñ YX is constant then there is a ϕ P YX such that for all ω we have
βpωq “ ϕ. Since:

ϕ P YX “ QMSpX ,Yq,

we have for all α P XΩ that ϕpαq P YΩ. So for ϕ P ΩΩ, α P XΩ we have:

βpϕqpαq “ ϕpαq P YΩ.

By definition of
`
YX

˘Ω we get that: β P
`
YX

˘Ω.

This shows the claims.

Lemma 2.30. Let pX ,XΩq and pY ,YΩq be two quasi-measurable spaces. Then
´
YX ,

`
YX

˘Ω¯

has the universal property of a function space in the category QMS of all quasi-measurable
spaces w.r.t. Ω, i.e. for any other quasi-measurable space pZ,ZΩq the canonical curry
map:

QMSpZ ˆ X ,Yq
„

ÝÑ QMSpZ,YX q, f ÞÑ pz ÞÑ px ÞÑ fpz, xqqq,

is a natural bijection.

Proof. For the universal property now consider a fixed quasi-measurable map g : Z Ñ
YX . Then the map g̃ : Z ˆ X Ñ Y given by:

g̃pz, xq :“ gpzqpxq,

is quasi-measurable. Indeed, for all ϕ P ZΩ and α P XΩ we have that:

g̃pϕ, αq “ gpϕpidΩqqpαq P YΩ.

The inverse construction is given for quasi-measurable f : Z ˆ X Ñ Y by f̂ : Z Ñ YX

via:
f̂pzqpxq :“ fpz, xq.

To show the quasi-measurability of f̂ let γ P ZΩ and ϕ P ΩΩ and α P XΩ. We need to
show that:

f̂pγpϕqqpαq “ fpγpϕq, αq P YΩ,

which holds by assumption on f and since γ ˝ ϕ P ZΩ.
It is then easy to see that g ÞÑ g̃ and f ÞÑ f̂ are inverse to each other.
Finally, we mention that this bijection is natural in all three arguments, which can just
be checked via composition.

Remark 2.31. Let pX ,XΩq and pY ,YΩq be two quasi-measurable spaces w.r.t. Ω.

1. Note that by Remark 2.10 we can identify:

a) YΩ from Definition 2.5,

b) QMSppΩ,ΩΩq, pY ,YΩqq from Definition 2.8,

c) YΩ “ YX for pX ,XΩq “ pΩ,ΩΩq in Definition 2.28.
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2. By Lemma 2.30 we can identify: pYX qΩ “ YΩˆX .

3. The evaluation map is quasi-measurable:

ev : YX ˆ X Ñ Y , pϕ, xq ÞÑ ϕpxq.

This follows from the identification of ev and id in:

ev P QMSpYX ˆ X ,Yq – QMSpYX ,YX q Q id

Theorem 2.32. The category QMS together with (finite) products ˆ and the one-
point quasi-measurable space 1 :“ t0u, which is a terminal object, is a cartesian closed
(symmetric braided strict monoidal) category.

Proof. The product ˆ constitutes a functor from the product category to QMS:

ˆ : QMSˆQMS Ñ QMS, pf : X Ñ Y , g : W Ñ Zq ÞÑ pfˆg : X ˆW Ñ YˆZq.

The unit object is 1 P QMS.
We have an associator natural isomorphism, given for all triples as:

AX ,Y ,Z “ id : pX ˆ Yq ˆ Z – X ˆ pY ˆ Zq,

which in this case is always the identity (definition of strict).
We have the left and right unitor natural isomorphisms, on objects given as:

LX “ prX : 1 ˆ X – X , RX “ prX : X ˆ 1 – X ,

which here are the canonical projections on the first and second component, resp.
We have the braiding natural isomorphism, on objects given as:

BX ,Y : X ˆ Y – Y ˆ X ,

which here are given by swapping first and second entry.
Furthermore, the associator satisfies the pentagon identity (associativity law), which
states the commutativity of the following diagram:

pW ˆ X q ˆ pY ˆ Zq
AW,X ,YˆZ

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

ppW ˆ X q ˆ Yq ˆ Z

AWˆX ,Y,Z

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

AW,X ,YˆidZ

��

W ˆ pX ˆ pY ˆ Zqq

pW ˆ pX ˆ Yqq ˆ Z
AW,XˆY,Z

// W ˆ ppX ˆ Yq ˆ Zq.

idWˆAX ,Y,Z

OO
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2 The Category of Quasi-Measurable Spaces

Indeed, since the associator is given by the identity there is nothing much to show.
The left and right unitors together with the associator satisfy the triangle identity, which
states the commutativity of the following diagram:

pX ˆ 1q ˆ Y
AX ,1,Y //

RX ˆidY ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

X ˆ p1 ˆ Yq

idX ˆLYww♦♦♦
♦♦
♦♦
♦♦
♦♦

X ˆ Y .

The braiding and the associator satisfy the (first) hexagon identity, which states the
commutativity of the following diagram:

pX ˆ Yq ˆ Z
AX ,Y,Z //

BX ,YˆidZ

��

X ˆ pY ˆ Zq
BX ,YˆZ // pY ˆ Zq ˆ X

AY,Z,X

��
pY ˆ X q ˆ Z

AY,X ,Z

// Y ˆ pX ˆ Zq
idYˆBX ,Z

// Y ˆ pZ ˆ X q.

Finally, the braiding satisfies the symmetry relation:

BY ,X ˝ BX ,Y “ idXˆY ,

which in this case needs no explanation.
It follows that pQMS,ˆ, 1q is a symmetric (braided strict) monoidal category. Since
the monoidal structure is given by the category-theoretic product it is a (symmetric)
cartesian (monoidal) category. Since by Lemma 2.30 QMS is cartesian closed, i.e. it is
closed w.r.t. its cartesian monoidal structure, i.e. there is always an exponential object
ZY “ QMSpY ,Zq and a natural adjunction isomorphism:

QMSpX ˆ Y ,Zq – QMSpX ,ZYq,

that is natural in all three arguments.

Lemma 2.33. Let pX ,XΩq, pY ,YΩq, pY ,YΩq be quasi-measurable spaces. Consider a
quasi-measurable map:

f : X Ñ Y .

Then the induced map:
fZ : XZ Ñ YZ , α ÞÑ f ˝ α,

is a well-defined quasi-measurable map.
Furthermore, the well-defined map:

QMSpX ,Yq Ñ QMSpXZ ,YZq, f ÞÑ fZ ,

is quasi-measurable.
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2 The Category of Quasi-Measurable Spaces

Proof. fZ is well-defined, i.e. f ˝ α P YZ for α P XZ . Indeed, the compositum of two
quasi-measurable maps is quasi-measurable:

Z
α
ÝÑ X

f
ÝÑ Y .

Furthermore, fZ is quasi-measurable. If α P pXZqΩ “ XΩˆZ then f ˝α P YΩˆZ “ pYZqΩ

by the same argument as above. This shows that the map:

p_qZ : QMSpX ,Yq Ñ QMSpXZ ,YZq, f ÞÑ fZ ,

is well-defined. To show that it is quasi-measurable let h P QMSpΩ ˆ X ,Yq. We need
to show that: hZ P QMSpΩ ˆ XZ ,YZq, which reduces to show that the (well-defined)
map:

Ω ˆ XZ ˆ Z Ñ Y , pω, α, zq ÞÑ hpω, αpzqq,

is quasi-measurable. For this let ϕ P ΩΩ, α P XΩˆZ and γ P ZΩ. It is then left to show
that the map:

Ω Ñ Y , ω ÞÑ hpϕpωq, αpω, γpωqq,

is quasi-measurable, which is true as the composition of the quasi-measurable maps:

Ω
idΩˆidΩˆγ
ÝÝÝÝÝÝÑ Ω ˆ pΩ ˆ Zq

ϕˆα
ÝÝÑ Ω ˆ X

h
ÝÑ Y .

This shows the claim.

Remark 2.34 (Change of sample space). To be explicit let QMS be the category of
quasi-measurable spaces w.r.t. the sample space pΩ,BΩ,Ω

Ωq. Now consider a quasi-
measurable space pW,WΩq in QMS. Its σ-algebra is then BW :“ BpWΩq. With the
usual notations we have:

WW “ QMS
`
pW,WΩq, pW,WΩq

˘
Ď Meas ppW,BWq, pW,BWqq .

By the conditions 2.2 then pW,BW ,W
Wq qualifies as a sample space for its own category

of quasi-measurable space ČQMS (w.r.t. pW,BW ,W
Wq). We then have a functor, see

Lemma 2.33:

QMS Ñ ČQMS, pX ,XΩq ÞÑ pX ,XWq, g ÞÑ g,

where we use:
XW “ QMS

`
pW,WΩq, pX ,XΩq

˘
.

Note that:
XW ˝ WW Ď XW , X 1 Ď XW .

So we are able to functorially shift from the sample space pΩ,BΩ,Ω
Ωq to the sample space

pW,BW ,W
Wq.
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2 The Category of Quasi-Measurable Spaces

Lemma 2.35. Let pX ,XΩq and pZ,ZΩq be quasi-measurable spaces. Then the map:

i : XZ Ñ
ź

zPZ

X , g ÞÑ pgpzqqzPZ ,

is a well-defined, injective quasi-measurable map.
If, furthermore, XΩ “ FpBX q and pZ,ZΩq is countable with the discrete quasi-measurable
space structure then i is an isomorphism of quasi-measurable spaces.

Proof. It is clear that i is a well-defined map and injective. Now let α P
`
XZ

˘Ω
–
`
XΩ

˘Z .
Under this identification we see that for every z P Z we have that αpzq P XΩ and thus:

pαpzqqzPZ P
ź

zPZ

XΩ.

This shows that i is quasi-measurable and thus the claim.
Now assume that pZ,ZΩq is countable and discrete, w.l.o.g. pZ,ZΩq “ pN,NΩq and that
XΩ “ MeasppΩ,BΩq, pX ,BX qq holds. Then consider the map:

j :
ź

nPN

X Ñ X N, pxnqnPN ÞÑ x “ pn ÞÑ xnq.

This is well-defined. Indeed, since N is a discrete measurable space the map:

x : N Ñ X , n ÞÑ xn,

is measurable for every choice of pxnqnPN . Since also each β P NΩ is measurable we have
that: x ˝ β P MeasppΩ,BΩq, pX ,BX qq “ XΩ. This shows that j is well-defined.
Now consider the induced map:

j˚ :
ź

nPN

XΩ Ñ pX NqΩ, pαnqnPN ÞÑ α “ ppω, nq ÞÑ αnpωqq.

We need to show that α is quasi-measurable:

α : Ω ˆ N Ñ X .

For this let ϕ P ΩΩ and β P NΩ and A P BX . Then we get:

αpϕ, βq´1pAq “
 
ω P Ω

ˇ̌
αβpωqpϕpωqq P A

(

“
ď

nPN

ϕ´1pα´1
n pAqq X β´1pnq

P BΩ,

because ϕ, β and each αn is measurable. It follows that:

αpϕ, βq P MeasppΩ,BΩq, pX ,BX qq “ XΩ.

So j is a well-defined quasi-measurable map. It is easily seen that j and i are inverse to
each other. This shows the claim.
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2.5 Limits of Quasi-Measurable Spaces

In this subsection we will quickly show that we have all (small) limits inside the category
of quasi-measurable spaces QMS. Since we already have products we mainly only need
to look into equalizers.

Definition 2.36 (Equalizer). Let pX ,XΩq and pY ,YΩq two quasi-measurable spaces and

f1, f2 : pX ,XΩq Ñ pY ,YΩq,

two quasi-measurable maps. Then we define the equalizer of f1 and f2 as:

Eqpf1, f2q :“ tx P X | f1pxq “ f2pxqu ,

which we endow with the quasi-measurable functions:

Eqpf1, f2q
Ω :“

 
α : Ω Ñ Eqpf1, f2q

ˇ̌
ι ˝ α P XΩ

(
“ ι˚XΩ,

where ι : Eqpf1, f2q ãÑ X is the inclusion map.

Lemma 2.37. pEqpf1, f2q,Eqpf1, f2q
Ωq is quasi-measurable space and satisfies the uni-

versal property of an equalizer in the category of quasi-measurable spaces QMS.

Proof. That pEqpf1, f2q,Eqpf1, f2q
Ωq is quasi-measurable space can be checked directly

or via Lemma 2.56. Now consider a quasi-measurable map:

g : pZ,ZΩq Ñ pX ,XΩq,

such that f1 ˝ g “ f2 ˝ g. Then for all z P Z we get that:

f1 ˝ gpzq “ f2 ˝ gpzq,

which implies: gpzq P Eqpf1, f2q. By the same argument we get:

g ˝ ZΩ Ď ι˚XΩ “ Eqpf1, f2q
Ω.

So g uniquely factorizes through the inclusion:

ι : pEqpf1, f2q,Eqpf1, f2q
Ωq ãÑ pX ,XΩq.

This shows that pEqpf1, f2q,Eqpf1, f2q
Ωq hat the universal property of an equalizer in

QMS.

Theorem 2.38. The category QMS is complete, i.e. it contains all (small)3 limits.

Proof. QMS contains all (small) products by Lemma 2.26 and equalizers by Lemma
2.37, thus all (small) limits by the existence theorem for limits, see [ML98] Thm. V.2.1.

3Small means indexed over sets.
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2 The Category of Quasi-Measurable Spaces

Example 2.39. 1. The terminal object 1 is a limit in QMS.

2. Equalizers (with possibly more than two maps) are limits in QMS.

3. Products are limits in QMS.

4. Pull-backs aka fibre products, e.g. X ˆS Y, are limits in QMS.

5. Inverse/projective limits (over directed sets) are limits in QMS.

2.6 Coproduct of Quasi-Measurable Spaces

In this subsection we define the categorical coproduct of quasi-measurable spaces. Note
that the coproduct we define here is different from the coproduct defined in [HKSY17].
The reason is that we did not insist on the 3rd property in Def. 7 from [HKSY17],
making our coproduct in some sense more “rigid”. The difference will be highlighted and
resolved later in Theorem 4.10 and Lemma 4.12.

Definition 2.40 (Coproduct of quasi-measurable spaces). Let pXi,X
Ω
i q, i P I, be a

family of quasi-measurable spaces indexed by a set I. Then we endow the set-theoretic
coproduct: ž

iPI

Xi “ tpi, xq | i P I, x P Xiu ,

with the set of maps:
˜
ž

iPI

Xi

¸Ω

:“
 
incli ˝ αi

ˇ̌
αi P XΩ

i , i P I
(

“
ž

iPI

XΩ
i Ď

«
Ω Ñ

ž

iPI

Xi

ff
,

where the canonical inclusion maps for k P I are given by:

inclk : Xk Ñ
ž

iPI

Xi, x ÞÑ pk, xq.

This then defines the coproduct of quasi-measurable spaces:

ž

iPI

pXi,X
Ω
i q :“

¨
˝ž

iPI

Xi,

˜
ž

iPI

Xi

¸Ω
˛
‚.

Lemma 2.41. The coproduct of quasi-measurable spaces:

ž

iPI

pXi,X
Ω
i q “

˜
ž

iPI

Xi,
ž

iPI

XΩ
i

¸

is a quasi-measurable space. Furthermore, it has the universal property of a coproduct
in the category QMS of quasi-measurable spaces, i.e. for every quasi-measurable space
pZ,ZΩq the natural map:

QMS

˜
ž

iPI

Xi,Z

¸
„

ÝÑ
ź

iPI

QMS pXi,Zq , g ÞÑ pg ˝ incliqiPI

is a bijection.
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Proof. That
š

iPIpXi,X
Ω
i q is a quasi-measurable space is clear as all quasi-measurable

maps are closed under ˝ΩΩ and all constant maps are contained.
It is also clear the canonical inclusion maps;

inclk : Xk Ñ
ž

iPI

Xi, x ÞÑ pk, xq,

are quasi-measurable because by definition of p
š

iPI Xiq
Ω.

For the universal property let pZ,ZΩq be another quasi-measurable space and gi :

pXi,X
Ω
i q Ñ pZ,ZΩq quasi-measurable maps for i P I. Then the map:

g :“
ž

iPI

gi :
ž

iPI

Xi Ñ Z, pk, xq ÞÑ gkpxq,

is the only (set-theoretic) map that makes the following diagrams commute for all k P I:

pXk,X
Ω
k q

inclk
��

gk

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

š
iPIpXi,X

Ω
i q

D!g
// pZ,ZΩq.

We are left to check that g is a quasi-measurable map. We already have by assumption
that:

g ˝ inclk ˝ αk “ gk ˝ αk P ZΩ,

for every k P I and αk P XΩ
k . So we get:

g ˝

˜
ž

iPI

Xi

¸Ω

“
 
g ˝ incli ˝ αi

ˇ̌
αi P XΩ

i , i P I
(

Ď ZΩ.

This shows the claim.

Theorem 2.42 (Distributive law for quasi-measurable spaces). Let I be an (index) set
and for i P I let Ji be another (index) set. For every i P I and ji P Ji let pXi,ji,X

Ω
i,ji

q
be a quasi-measurable space. Then we have a canonical well-defined isomorphism of
quasi-measurable spaces:

ž

jP
ś

iPI Ji

˜
ź

iPI

Xi,ji

¸
–
ź

iPI

˜
ž

jiPJi

Xi,ji

¸
, ppjiqiPI , pxiqiPIq ÞÑ pji, xiqiPI .

Proof. This is clearly a bijection. Similarly note that this map induces the bijection:
¨
˝ ž

jP
ś

iPI Ji

˜
ź

iPI

Xi,ji

¸˛
‚

Ω

“
ž

jP
ś

iPI Ji

˜
ź

iPI

Xi,ji

¸Ω

“
ž

jP
ś

iPI Ji

˜
ź

iPI

XΩ
i,ji

¸

–
ź

iPI

˜
ž

jiPJi

XΩ
i,ji

¸
“
ź

iPI

˜
ž

jiPJi

Xi,ji

¸Ω

“

˜
ź

iPI

˜
ž

jiPJi

Xi,ji

¸¸Ω

.
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This shows the claim.

2.7 Colimits of Quasi-Measurable Spaces

In this subsection we will quickly show that we have all (small) colimits inside the
category of quasi-measurable spaces QMS. Since we already have coproducts we mainly
only need to look into coequalizers.

Definition 2.43 (Coequalizer). Let pX ,XΩq and pY ,YΩq two quasi-measurable spaces
and

f1, f2 : pX ,XΩq Ñ pY ,YΩq,

two quasi-measurable maps. Then we define the coequalizer of f1 and f2 as the quotient:

CoEqpf1, f2q :“ Y{„,

where the equivalence relation is the smallest equivalence relation such that:

f1pxq „ f2pxq

for x P X . The quotient map:

t : Y ։ CoEqpf1, f2q,

endows CoEqpf1, f2q with the following quasi-measurable functions:

CoEqpf1, f2q
Ω :“ t ˝ YΩ.

Lemma 2.44. The coequalizer pCoEqpf1, f2q,CoEqpf1, f2qΩq is quasi-measurable space
and has the universal property of an equalizer in the category of quasi-measurable spaces
QMS.

Proof. That pCoEqpf1, f2q,CoEqpf1, f2q
Ωq is quasi-measurable space can easily be checked.

Consider a quasi-measurable map:

g : pY ,YΩq Ñ pZ,ZΩq,

such that g ˝ f1 “ g ˝ f2. Then for every x P X we get:

g ˝ f1pxq “ g ˝ f2pxq.

So there exists a unique (set-theoretic) map:

h : CoEqpf1, f2q Ñ Z, h ˝ t “ g.

We then get:
h ˝ CoEqpf1, f2q

Ω “ h ˝ t ˝ YΩ “ g ˝ YΩ Ď ZΩ.

This shows that h is quasi-measurable and thus that pCoEqpf1, f2q,CoEqpf1, f2qΩq has
the universal property of an equalizer in QMS.
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Theorem 2.45. The category QMS is cocomplete, i.e. it contains all (small)3 colimits.

Proof. QMS contains all (small) coproducts by Lemma 2.41 and coequalizers by Lemma
2.44, thus all (small) colimits by the existence theorem of colimits, see [ML98] Thm. V.2.1
(dual version).

Example 2.46. 1. Coproducts are colimits in QMS.

2. Coequalizers (over possible more than two maps) are colimits in QMS.

3. Pushouts are colimits in QMS.

4. Direct limits (over directed sets) are colimits in QMS.

2.8 The Sigma-Algebra as a Quasi-Measurable Space

In this subsection we show that the induced σ-algebra BX of a quasi-measurable space
pX ,XΩq can be turned into a quasi-measurable space pBX , pBX qΩq in its own right. This
allows us to compare σ-algebras and quasi-measurable spaces on the same footing inside
QMS. Note that this was not possible inside the category of measurable spaces Meas

(without difficulties or topological considerations).

Definition 2.47 (The σ-algebra of a quasi-measurable space). Let pX ,XΩq be a quasi-
measurable space. Then X is endowed with the following σ-algebra:

BX :“ BpXΩq :“ pXΩq˚BΩ :“
 
A Ď X

ˇ̌
@α P XΩ. α´1pAq P BΩ

(
.

Similarly, we get the same construction on the product Ω ˆ X :

BΩˆX :“ BpΩΩ ˆ XΩq “
 
D Ď Ω ˆ X

ˇ̌
@ϕ P ΩΩ @α P XΩ. pϕ, αq´1pDq P BΩ

(
.

Using these notations we define the quasi-measurable space structure on BX as follows:

pBX qΩ :“ tΨ : Ω Ñ BX | DD P BΩˆX . @ω P Ω.Ψpωq “ Dωu ,

where we define the section Dω as:

Dω :“ tx P X | pω, xq P Du P BX .

Lemma 2.48. Let pX ,XΩq be a quasi-measurable space. Then also its σ-algebra BX “
BpXΩq forms a well-defined quasi-measurable space pBX , pBX qΩq.

Proof. We first note that for D P BΩˆX each section Dω lies in BX . For this consider
α P XΩ and the constant map ϕ “ ω. Since ϕ P ΩΩ and by definition of BΩˆX we then
have that:

α´1pDωq “ pϕ, αq´1pDq P BΩ.

Since this holds for all α P XΩ we get that Dω P BX . This shows the claim that the map
ω ÞÑ Dω is a well-defined map Ω Ñ BX for D P BΩˆX .
We now check the points from Definition 2.5:
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1. Let ϕ P ΩΩ and Ψ P pBX qΩ be given via the sections of D P BΩˆX . Consider:

D̃ :“ pϕ, idX q´1pDq “ tpω, xq P Ω ˆ X | pϕpωq, xq P Du Ď Ω ˆ X .

It is then D̃ P BΩˆX . Indeed, for every ϕ̃ P ΩΩ and α̃ P XΩ we have:

pϕ̃, α̃q´1pD̃q “ pϕ ˝ ϕ̃, α̃q´1pDq P BΩ.

Since this holds for all ϕ̃ P ΩΩ and α̃ P XΩ we have that: D̃ P BΩˆX .
With these considerations we then get:

Ψ ˝ ϕpωq “ Dϕpωq “ tx P X | pϕpωq, xq P Du “ D̃ω.

So Ψ ˝ ϕ is given via the sections of D̃ P BΩˆX . So we can conclude that Ψ ˝ ϕ P
pBX qΩ.

2. Let Ψ : Ω Ñ BX be the constant map ω ÞÑ A P BX . Then D :“ Ω ˆ A P BΩˆX .
Indeed, for ϕ P ΩΩ and α P XΩ we get:

pϕ, αq´1pDq “ tω P Ω | pϕpωq, αpωqq P Ω ˆ Au “ α´1pAq P BΩ.

Since this holds for all ϕ P ΩΩ and α P XΩ we get D P BΩˆX .
With this we get for all ω P Ω:

Dω “ tx P X | pω, xq P Ω ˆ Au “ A “ Ψpωq.

So Ψ P pBX qΩ.

This shows that pBX , pBX qΩq is a well-defined quasi-measurable space.

Lemma 2.49. Let pX ,XΩq and pY ,YΩq be a quasi-measurable space. Then the following
map:

BY ˆ YX Ñ BX , pB, fq ÞÑ f´1pBq.

is quasi-measurable.

Proof. The map is clearly well-defined (image in BX ). The same holds for the induced
map:

BΩˆY ˆ YΩˆX Ñ BΩˆX , pB, fq ÞÑ pidΩ ˆ fq´1pBq,

where:
idΩ ˆ f : Ω ˆ X Ñ Ω ˆ Y , pω, xq ÞÑ pω, fpω, xqq.

This shows the claim.
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2.9 The Indicator Functions of a Quasi-Measurable Space

In this subsection we look at a special case of function spaces: the function space of indi-
cator functions 2X . We will see that indicator functions precisely indicate the measurable
sets inside quasi-measurable spaces. Even more, we will show that the quasi-measurable
space of the induced σ-algebra is isomorphic to the function space of indicator functions.

Notation 2.50. We consider the set:

2 :“ t0, 1u ,

and endow it with the quasi-measurable functions:

2Ω :“ FpB2q “ MeasppΩ,BΩq, p2,B2qq “
 
ψ : Ω Ñ 2

ˇ̌
ψ´1p1q P BΩ

(
.

In other words, we endow it with all measurable functions ψ : Ω Ñ 2, where we consider
2 to be discrete.
We will in the following always consider 2 as this quasi-measurable space p2, 2Ωq.
If now pX ,XΩq is another quasi-measurable space then the function space p2X , p2X qΩq is
also a well-defined quasi-measurable space.

Lemma 2.51. Let pX ,XΩq be a quasi-measurable space. Then the indicator function
(inclusion check) induces an isomorphism of quasi-measurable spaces:

1 : pBX , pBX qΩq Ñ p2X , p2X qΩq A ÞÑ 1A.

Proof. We first show that 1 is a well-defined map. For this let A P BX “ BpXΩq. Clearly,
1A P rX Ñ 2s. To check that 1A P 2X let α P XΩ and note that:

1A ˝ α “ 1α´1pAq : Ω Ñ 2.

Since α´1pAq P BΩ we have that 1α´1pAq is measurable and thus 1A ˝ α P 2Ω. Since this
holds for all α P XΩ we get that 1A P QMSpX , 2q “ 2X . So 1 is well-defined.
As a next step we show that 1 is a quasi-measurable map. For this let ψ P pBX qΩ be
given by the sections of D P BΩˆX . Then note that:

p1 ˝ ψpωqqpxq “ 1ψpωqpxq “ 1Dω
pxq “ 1Dpω, xq.

Via (un-)currying we can thus identify 1˝ψ and 1D. SinceD P BΩˆX the same arguments
as above show that: 1D P 2ΩˆX . Via (un-)currying this shows that 1 ˝ψ P p2X qΩ. Since
this holds for all ψ P pBX qΩ we have that 1 is a quasi-measurable map.
We now claim that the inverse to 1 is the map:

ρ : 2X Ñ BX , χ ÞÑ χ´1p1q.

We first show that ρ is a well-defined map. For this let χ : X Ñ 2 be an element of 2X .
Then for all functions α P XΩ we have that χ˝α P 2Ω. This means that α´1pχ´1p1qq P BΩ

for all α P XΩ, which implies:
χ´1p1q P BX .
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This shows that ρ is well-defined.
Next we show that ρ is quasi-measurable. For this we again identify p2X qΩ with 2ΩˆX

and pBX qΩ with BΩˆX . Then let ξ P 2ΩˆX . The same arguments as above show that
ξ´1p1q P BΩˆX , which then represents the corresponding function: ω ÞÑ ξ´1p1qω in
pBX qΩ. Translating back, this means we have a well-defined map:

ρ˚ : p2X qΩ Ñ pBX qΩ, ξ ÞÑ pω ÞÑ ξ´1p1qω “ tx P X | ξpωqpxq “ 1uq,

implying that: ρ ˝ p2X qΩ Ď pBX qΩ. This shows that ρ is a well-defined quasi-measurable
map.
Finally, we show that 1 and ρ are inverse to each other.

ρ ˝ 1 : BX Ñ BX , A ÞÑ p1Aq´1p1q “ A,

and:
1 ˝ ρ : 2X Ñ 2X , χ ÞÑ 1χ´1p1q “ χ.

Since these relations also hold for BΩˆX and 2ΩˆX similarly, we get that ρ ˝ 1 “
idpBX ,pBX qΩq and 1 ˝ ρ “ idp2X ,p2X qΩq. This shows the claim.

2.10 Image and Pre-Image Quasi-Measurable Spaces

In this subsection we will shortly look at how one can transfer the structure of a quasi-
measurable space to another set through maps in and out of that space.

Definition 2.52. Let pZ,ZΩq be a quasi-measurable space and Y a set and

g : Z Ñ Y

a map. Then we define the image or push-forward quasi-measurable space structure
pY , g˚Z

Ωq via:
g˚Z

Ω :“
`
g ˝ ZΩ

˘
Y
`
Y1

˘
.

Note that g˚Z
Ω is the smallest set of maps YΩ Ď rΩ Ñ Ys such that g becomes a

ZΩ-YΩ-quasi-measurable map.

Remark 2.53. Note that g ˝ ZΩ might not satisfy all the points from Definition 2.5.
For instance, if g is not surjective, then there are constant maps β : Ω Ñ 1 Ñ Y that
do not factorize through g.

Lemma 2.54. Let pZ,ZΩq be a quasi-measurable space and Y a set and

g : Z Ñ Y

a surjective map. Then pY ,YΩq with YΩ :“ g ˝ ZΩ is quasi-measurable space.

Proof. We check the the points from Definition 2.5:
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1. Let β “ g ˝ γ P g ˝ZΩ and ϕ P ΩΩ. Then γ ˝ϕ P ZΩ and thus g ˝ pγ ˝ϕq P g ˝ZΩ.

2. Let y P Y . Since g is surjective there exists a z P Z such that gpzq “ y. Then
the constant map γ “ z exists in ZΩ. Then g ˝ γ is the constant map y and is in
g ˝ ZΩ.

Definition 2.55. Let pY ,YΩq be a quasi-measurable space and X a set and

f : X Ñ Y

a map. Then we define the pre-image or pull-back quasi-measurable space structure
pX , f˚YΩq via:

f˚YΩ :“
 
α : Ω Ñ X

ˇ̌
f ˝ α P YΩ

(
.

Lemma 2.56. Let pY ,YΩq be a quasi-measurable space and X a set and

f : X Ñ Y

a map. Then the pull-back pX , f˚YΩq is a quasi-measurable space w.r.t. Ω.
Note that f˚YΩ is the biggest set of maps XΩ Ď rΩ Ñ X s such that f becomes a XΩ-
YΩ-quasi-measurable map.

Proof. We check the the points from Definition 2.5:

1. Let α P f˚YΩ and ϕ P ΩΩ. Then f ˝ α P YΩ and by assumption f ˝ α ˝ ϕ P YΩ as
well. By definition of f˚YΩ we have that α ˝ ϕ P f˚YΩ.

2. If α : Ω Ñ X is constant, then f ˝ α : Ω Ñ Y is constant as well. So we have
f ˝ α P YΩ by assumption and thus α P f˚YΩ.

Lemma 2.57. Let pX ,XΩq and pY ,YΩq be two quasi-measurable spaces and Z Ď Y a
subset with inclusion map ι : Z Ñ Y. Further, let:

f : pX ,XΩq Ñ pY ,YΩq

be a quasi-measurable map with fpX q Ď Z. Then f induces a quasi-measurable map:

f : pX ,XΩq Ñ pZ, ι˚YΩq,

with:
ι˚YΩ “

 
β P YΩ

ˇ̌
βpΩq Ď Z

(
“ rΩ Ñ Zs X YΩ.

Proof. If fpX q Ď Z then for any α P XΩ we have that:

f ˝ αpΩq Ď fpX q Ď Z.

So f ˝ α P rΩ Ñ Zs X YΩ “ ι˚YΩ. This shows the claim.
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Lemma 2.58. Let t : pX ,XΩq Ñ pY ,YΩq be quasi-measurable with:

YΩ “ t˚X
Ω :“ pt ˝ XΩq Y Y1.

Then we have:
t˚BpXΩq “ Bpt ˝ XΩq “ Bpt˚X

Ωq “ BpYΩq.

Proof.

t˚BpXΩq :“
 
B Ď Y

ˇ̌
t´1pBq P BpXΩq

(

“
 
B Ď Y

ˇ̌
@α P XΩ. α´1pt´1pBqq P BΩ

(

“
 
B Ď Y

ˇ̌
@β P t ˝ XΩ. β´1pBq P BΩ

(
“ Bpt ˝ XΩq

“
 
B Ď Y

ˇ̌
@β P pt ˝ XΩq Y Y1. β´1pBq P BΩ

(

“ Bpt˚X
Ωq.

2.11 Quotient Spaces and Embeddings between
Quasi-Measurable Spaces

In this subsection we quickly look at monomorphisms, epimorphisms, embeddings and
quotients of quasi-measurable spaces.

Lemma 2.59 (Injective maps are monomorphisms, monomorphisms are injective). A
quasi-measurable map i : pX ,XΩq Ñ pY ,YΩq is a monomorphism in QMS if and only
if i is injective (as a map).

Proof. Assume that i is a monomorphism and ipx1q “ ipx2q for xi P X , i “ 1, 2. Then
consider the constant maps: gi :“ xi, i “ 1, 2. Clearly: gi P QMSpZ,X q. Then we have
i ˝ g1 “ i ˝ g2, which by the assumption that i is a monomorphisms implies: g1 “ g2, and
thus x1 “ x2.
Let i now be injective and g1, g2 P QMSpZ,X q such that i ˝ g1 “ i ˝ g2. For every z P Z

we then get: ipg1pzqq “ ipg2pzqq. Since i is injective we get that: g1pzq “ g2pzq for every
z P Z. So g1 “ g2 as maps and thus as quasi-measurable maps.

Lemma 2.60 (Surjective maps are epimorphisms). A surjective quasi-measurable map
t : pX ,XΩq Ñ pY ,YΩq is an epimorphism in QMS.

Proof. Assume that t is surjective and let hi : pY ,YΩq Ñ pZ,ZΩq, i “ 1, 2, be quasi-
measurable maps with h1 ˝ t “ h2 ˝ t. Since t is surjective, for every y P Y there is an
x P X with tpxq “ y. Then we get:

h1pyq “ h1 ˝ tpxq “ h2 ˝ tpxq “ h1pyq.

Since this holds for every y P Y we get h1 “ h2 as maps and thus as quasi-measurable
maps.
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Lemma 2.61 (Some epimorphisms are surjective). Let t : pX ,XΩq Ñ pY ,YΩq be an
epimorphism in QMS with tpX q P BY . Then t is surjective.

Proof. Since tpX q P BY we have that the indicator function 1tpX q P 2Y . We also have
that the constant map 1Y P 2Y , which maps everything to 1 P 2. Then for all x P X we
get:

1tpX q ˝ tpxq “ 1 “ 1Y ˝ tpxq.

This implies the equality of quasi-measurable maps:

1tpX q ˝ t “ 1Y ˝ t.

Since t is an epimorphism we get the equality:

1tpX q “ 1Y ,

which when evaluated at y P YztpX q would give the contradiction 0 “ 1. Thus YztpX q “
H and t must be surjective.

Definition 2.62 (Quotient of a quasi-measurable space). A quasi-measurable space
pY ,YΩq is called a quotient of the quasi-measurable space pX ,XΩq if there exists a sur-
jective quasi-measurable map, called the quotient map:

t : pX ,XΩq ։ pY ,YΩq,

such that:
t˚X

Ω :“ t ˝ XΩ :“
 
t ˝ α : Ω Ñ Y

ˇ̌
α P XΩ

(
“ YΩ.

Definition 2.63 (Embedded quasi-measurable subspace). A measurable space pX ,XΩq
is called an embedded quasi-measurable subspace of the quasi-measurable space pY ,YΩq
if there exists an injective quasi-measurable map, called the embedding:

i : pX ,XΩq ãÑ pY ,YΩq,

such that:

XΩ “ i˚YΩ :“
 
α : Ω Ñ X

ˇ̌
i ˝ α P YΩ

(
“
 
β P YΩ

ˇ̌
βpΩq Ď X

(
.

3 Probability Monads on the Category of

Quasi-Measurable Spaces

In this section we will introduce several different spaces of probability measures for a
quasi-measurable space: GpX q, QpX q, KpX q, PpX q, RpX q, SpX q. These notions will
in general all be different. To study their functorial properties we need to review the
notion of a monad.
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3.1 Monads

In this subsection we remind the reader of the definition of a (strong) monad. For
literature about monads see [Koc70,Koc72,Str72,ML98,Mog91]. As a first example we
will recall the strong probability monad of Giry, see [Law62,Gir82].

Definition 3.1 (Monad, see [Koc70, Koc72, ML98, Mog91]). Let C be a category. A
monad on C is a triple pQ, δ,Mq consisting of:

1. a functor Q : C Ñ C,

2. a natural transformation δ : idC Ñ Q,

3. a natural transformation M : Q2 :“ Q ˝ Q Ñ Q,

such that:

a. M ˝ QM “ M ˝ MQ as natural transformations Q3 Ñ Q,

b. M ˝ Qδ “ M ˝ δQ “ idQ as natural transformations Q Ñ Q.

A monad pQ, δ,Mq on a category C is called affine, see [Koc71,Lin79,Jac16], if C has a
terminal object 1 and the unique morphism:

! : Qp1q Ñ 1

is an isomorphism.

Definition 3.2 (Strong monad, see [Koc72,Mog91] Def. 3.2). A strong monad over a
monoidal category pC,ˆ, 1q is a monad pQ, δ,Mq on C together with a natural transfor-
mation, called strength:

τX ,Y : X ˆ QpYq Ñ QpX ˆ Yq,

such that:

1. Left unitor and strength satisfy the commutative diagram:

1 ˆ QpX q

LQpXq &&▲▲
▲▲

▲▲
▲▲

▲▲

τ1,X // Qp1 ˆ X q

QpLX qxxrrr
rr
rr
rr
r

QpX q.

2. Associator and strength satisfy the commutative diagram:

pX ˆ Yq ˆ QpZq
τXˆY,Z //

AX ,Y,QpZq

��

Q ppX ˆ Yq ˆ Zq

QpAX ,Y,Zq

��
X ˆ pY ˆ QpZqq

idX ˆτY,Z

// X ˆ QpY ˆ Zq τX ,YˆZ

// QpX ˆ pY ˆ Zqq.
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3. Monad unit δ and strength satisfy the commutative diagram:

X ˆ Y
idX ˆδY

xxqqq
qq
qq
qq
qq δXˆY

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

X ˆ QpYq τX ,Y

// QpX ˆ Yq.

4. Monad action M commutes with strength, expressed via the commutative diagram:

X ˆ QpQpYqq
τX ,QpYq //

idX ˆMY

��

QpX ˆ QpYqq
QpτX ,Y q

// QpQpX ˆ Yqq

MXˆY

��
X ˆ QpYq τX ,Y

// QpX ˆ Yq.

Example 3.3 (The strong probability monad of Giry, [Law62,Gir82,Sat18]). Let pMeas,ˆ, 1q
be the category of all measurable spaces and measurable maps, where the cartesian
monoidal structure ˆ is given by the usual product-σ-algebra:

pX ,BX q ˆ pY ,BYq “ pX ˆ Y ,BX b BYq,

with:
BX b BY “ σ ptAˆ B |A P BX , B P BYuq .

It is known that Meas is bi-complete, i.e. it has all small limits and colimits, but it is
not cartesian closed, see [Aum61]. The Giry monad pG, δ,Mq is given by:

GpX ,BX q :“ tµ : BX Ñ r0, 1s probability measureu ,

endowed with the smallest σ-algebra that makes evaluation maps measurable:

BGpX ,BX q :“ σ
` 
ev´1

A ppt, 1sq
ˇ̌
A P BX , t P R

(˘
.,

where the evaluation maps are given by:

evA : GpX ,BX q Ñ r0, 1s, evApµq :“ µpAq.

The monad unit δ is given by mapping points to their Dirac delta point measures:

δ : pX ,BX q Ñ
`
GpX ,BX q,BGpX ,BX q

˘
, x ÞÑ δx “ pA ÞÑ 1Apxqq.

The monad action M is given (while suppressing the σ-algebras for readability) via:

M : GpGpX qq Ñ GpX q, MpπqpAq :“

ż

GpX q

evApµq πpdµq.

The Giry monad is affine and strong, see also [Gir82,Pan09,Jac16], and its strength is
given by:

τX ,Y : X ˆ GpYq Ñ GpX ˆ Yq, px, µq ÞÑ δx b µ,

The Giry monad supports first order semantics of contiuous probabilistic programming
languages, but not higher-order ones, as Meas is not cartesian closed, see [Aum61].
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3.2 Strong Probability Monad Q

In this subsection we will highlight a novel and strong probability monad Q. In contrast
to the Giry construction G the probability monad Q is well-behaved w.r.t. the categorical
constructions inside the category of quasi-measurable spaces QMS, e.g. w.r.t. products
and σ-algebras.

Definition 3.4 (The spaces of probability measures for quasi-measurable spaces). Let
pX ,XΩq be a quasi-measurable space and BX :“ BpXΩq its induced σ-algebra, which we
will also consider as the quasi-measurable space pBX , pBX qΩq. Then we define:

GpX ,XΩq :“ GpX ,BX q “ tµ : BX Ñ r0, 1s probability measureu ,

GpX ,XΩqΩ :“ F
`
BGpX ,BX q

˘

“
 
κ : Ω Ñ GpX ,XΩq

ˇ̌
@A P BX . pω ÞÑ κpωqpAqq P r0, 1sΩ

(
,

QpX ,XΩq :“ GpX ,XΩq X r0, 1sBX

“
 
µ : BX Ñ r0, 1s probability measure

ˇ̌
@D P BΩˆX . pω ÞÑ µpDωqq P r0, 1sΩ

(
,

QpX ,XΩqΩ :“ rΩ Ñ QpX ,XΩqs X pr0, 1sBX qΩ

“
 
κ : Ω Ñ QpX ,XΩq

ˇ̌
@ϕ P ΩΩ. @D P BΩˆX . pω ÞÑ κpϕpωqqpDωqq P r0, 1sΩ

(
.

Remark 3.5. Let pX ,XΩq be a quasi-measurable space.

1. pGpX q,GpX qΩq is a quasi-measurable space as it is induced from the underlying
measurable space endowed with the smallest σ-algebra that makes all evaluation
maps measurable, see Example 2.7.

2. pQpX q,QpX qΩq is a quasi-measurable space with the subspace structure of r0, 1sBX ,
also see Lemma 2.57.

3. It is then clear that the evaluation map:

ev : QpX q ˆ BX
inclˆid
ÝÝÝÝÑ r0, 1sBX ˆ BX

ev
ÝÑ r0, 1s, pµ,Aq ÞÑ µpAq,

is quasi-measurable.

4. Note that this might not be true for GpX q in place of QpX q. This is the reason
that we will focus on QpX q in the framework of quasi-measurable spaces.

5. The inclusion map pQpX q,QpX qΩq Ñ pGpX q,GpX qΩq is quasi-measurable.

Indeed, for κ P QpX qΩ and A P BX and ω P Ω we have that Ω ˆ A P BΩˆX , that
pΩ ˆ Aqω “ A and the map:

ω ÞÑ κpωqpAq “ κpidΩpωqqppΩ ˆ Aqωq

is measurable.
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6. If for some reason we have that BΩˆX “ BΩ b BX then we have the equality:

pQpX q,QpX qΩq “ pGpX q,GpX qΩq.

Indeed, for A P BX and B P BΩ the map:

ω ÞÑ κpϕpωqqppB ˆ Aqωq “ κpϕpωqqpAq ¨ 1Bpωq,

is measurable if ω ÞÑ κpωqpAq is.

7. The mentioned condition holds, for instance, for Ω “ X “ R with the Borel-
structure.

8. Similarly, if BΩ “ pBΩqG and BΩˆX “ pBΩ b BX qG then we also have equality:

pQpX q,QpX qΩq “ pGpX q,GpX qΩq.

This holds for instance for Ω “ X “ R with the universally measurable structure
as we will see later in Lemma 5.28.

Lemma 3.6. Let pX ,XΩq be a quasi-measurable space. Then the integration map:

r0,8sX ˆ QpX q Ñ r0,8s, pf, µq ÞÑ

ż
f dµ,

is quasi-measurable.

Proof. Let g P r0,8sΩˆX and ν P QpX qΩ. Then we need to show that the map:

ω ÞÑ

ż
gpω, xq νpωqpdxq

is BΩ-Br0,8s-measurable, where Br0,8s is the Borel σ-algebra of r0,8s. Since g is quasi-
measurable it is BΩˆX -Bpr0,8sΩq-measurable. Since the Borel σ-algebra Br0,8s Ď Bpr0,8sΩq
we see that g is BΩˆX -Br0,8s-measurable. By Theorem 1.96 in [Kle20] there are (at most)
countably many measurable sets En P BΩˆX and an P r0,8s for n P N such that:

gpω, xq “
ÿ

nPN

an ¨ 1En
pω, xq.

By definition of QpX qΩ we already know that:

ω ÞÑ

ż
1En

pω, xq κpωqpdxq “ κpωqpEn,ωq

is BΩ-Br0,8s-measurable for every n P N. So we immediately get that the map:

ω ÞÑ

ż
gpω, xq κpωqpdxq “

ÿ

nPN

an ¨

ż
1En

pω, xq κpωqpdxq,

is also BΩ-Br0,8s-measurable. This shows the claim.
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Lemma 3.7. Let pX ,XΩq, pY ,YΩq, pZ,ZΩq be quasi-measurable spaces. Then the map:

r0,8sXˆYˆZˆQpX qYˆZˆQpYqZˆZ Ñ r0,8s, pg, µ, ν, zq ÞÑ

ż ż
gpx, y, zqµpy, zqpdxq νpzqpdyq,

is a well-defined quasi-measurable map.

Proof. By Lemma 3.6 the map:

r0,8sX ˆ QpX q
ş

ÝÑ r0, 1s, pf, µq ÞÑ

ż
fdµ

is quasi-measurable. By Lemma 2.33 then also the exponentiated map;

r0,8sXˆY ˆ QpX qY
ş

ÝÑ r0,8sY,

is quasi-measurable, where we used the universal property of the product pW ˆ UqY “
WY ˆ UY on the left. Again, by Lemma 3.6 also the integration map:

r0,8sY ˆ QpYq Ñ r0,8s, ph, νq ÞÑ

ż
h dν,

is quasi-measurable. So the composition of the two constructions above:

`
r0,8sXˆY ˆ QpX qY

˘
ˆ QpYq

ş
ˆid

ÝÝÝÑ r0,8sY ˆ PpYq
ş

ÝÑ r0,8s,

is quasi-measurable as well. Exponentiating with Z, again by Lemma 2.33, then gives
the quasi-measurable map:

r0,8sXˆYˆZ ˆ QpX qYˆZ ˆ QpYqZ Ñ r0,8sZ,

pg, µ, νq ÞÑ

ˆ
z ÞÑ

ż ż
gpx, y, zqµpy, zqpdxq νpzqpdyq

˙
,

which induces the quasi-measurable adjoint evaluation map:

r0,8sXˆYˆZ ˆ QpX qYˆZ ˆ QpYqZ ˆ Z Ñ r0,8s,

pg, µ, ν, zq ÞÑ

ż ż
gpx, y, zqµpy, zqpdxq νpzqpdyq.

This shows the claim.

Lemma 3.8. Let pX ,XΩq, pY ,YΩq, pZ,ZΩq be quasi-measurable spaces. Then the map:

QpX qYˆZ ˆ QpYqZ ˆ BXˆYˆZ ˆ Z Ñ r0, 1s, pµ, ν,D, zq ÞÑ

ż
µpy, zqpDy,zq νpzqpdyq,

is a well-defined quasi-measurable map.
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Proof. This directly follows from Lemma 3.7 together with the quasi-measurable map:

1 : BXˆYˆZ Ñ r0, 1sXˆYˆZ, D ÞÑ 1D.

Proposition 3.9. Let pX ,XΩq, pY ,YΩq, pZ,ZΩq be quasi-measurable spaces. Then the
map:

b : QpX qYˆZ ˆ QpYqZ Ñ QpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq,

is a well-defined quasi-measurable map.

Proof. By Lemma 3.8 we get a quasi-measurable map:

b : QpX qYˆZ ˆ QpYqZ Ñ
`
r0, 1sBXˆY

˘Z
.

By Lemma 2.57 we only need to check that the image evaluated at each z always is a
probability measure on BXˆY , which is obvious.

Lemma 3.10. Let pX ,XΩq, pY ,YΩq be quasi-measurable spaces. Then the push-forward
map is quasi-measurable:

pf : YX ˆ QpX q Ñ QpYq, pf, µq ÞÑ f˚µ.

Proof. The following map is quasi-measurable:

QpX q ˆ YX ˆ BY Ñ r0, 1s, pµ, f, Bq ÞÑ µpf´1pBqq.

Indeed, it is the composition of the following quasi-measurable map from Lemma 2.49:

YX ˆ BY Ñ BX , pf, Bq ÞÑ f´1pBq,

and the quasi-measurable evaluation map:

QpX q ˆ BX Ñ r0, 1s, pµ,Aq ÞÑ µpAq.

By adjuction we get the quasi-measurable map:

QpX q ˆ YX Ñ r0, 1sBY , pµ, fq ÞÑ f˚µ “ pB ÞÑ µpf´1pBqqq.

By Lemma 2.57 is left to show that f˚µ is a probability measure, which is clear. So the
claims are shown.

Remark 3.11. 1. By Theorem 2.32 the triple pQMS,ˆ, 1q is a cartesian closed
(symmetric strict) monoidal category, where 1 is the one-point space, which is
also a terminal object of QMS.
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2. Q : QMS Ñ QMS is a functor by Lemma 3.10:

pf : X Ñ Yq ÞÑ pQpfq : QpX q Ñ QpYq, µ ÞÑ f˚µq .

Lemma 3.12. Let pX ,XΩq be a quasi-measurable space. Then the map:

δ : X Ñ QpX q, x ÞÑ δx “ pA ÞÑ 1Apxqq,

is a well-defined quasi-measurable map.
Furthermore, if we have a quasi-measurable map:

f : pX ,XΩq Ñ pY ,YΩq,

then we get a commutive diagram of quasi-measurable maps:

X
f //

δ

��

Y

δ

��
QpX q

f˚ // QpYq.

In other words, δ : idQMS Ñ Q is a natural transformation of endo-functors of QMS.

Proof. To show that δ is well-defined we need to show that δx P QpX q for x P X . For
this let D P BΩˆX . Then the map:

ω ÞÑ δxpDωq “ 1Dpω, xq “ 1Dx
pωq,

is measurable since Dx P BΩ. Thus we have δx P QpX q.
To show that δ is quasi-measurable let α P XΩ and ϕ P ΩΩ and again D P BΩˆX . Then
we see that the map:

ω ÞÑ δα˝ϕpωqpDωq “ 1Dpω, αpϕpωqqq “ 1pidΩ,α˝ϕq´1pDqpωq,

is measurable as α ˝ ϕ P XΩ. It follows that δ ˝ α P QpX qΩ and thus δ : X Ñ QpX q
quasi-measurable.
To check the commutativity of the diagram observe that for B P BY :

f˚δxpBq “ δxpf´1pBqq “ 1f´1pBqpxq “ 1Bpfpxqq “ δfpxqpBq.

Lemma 3.13. Let pX ,XΩq be a quasi-measurable space. Then the map:

MX : QpQpX qq Ñ QpX q, π ÞÑ MX pπq “

ˆ
A ÞÑ

ż
evpµ,Aq πpdµq

˙
,

is a well-defined quasi-measurable map.
Furthermore, if we have a quasi-measurable map:

f : pX ,XΩq Ñ pY ,YΩq,
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then we get a commutive diagram of quasi-measurable maps:

QpQpX qq
QpQpfqq//

MX

��

QpQpYqq

MY

��
QpX q

Qpfq
// QpYq.

In other words, M : Q2 Ñ Q is a natural transformation of endo-functors of QMS.

Proof. It is easy to see that MX pπq is a probability measure on BX . To check that MX

is quasi-measurable let e be the map:

e : BX Ñ r0, 1sQpX q, epAqpµq :“ evpµ,Aq,

which is quasi-measurable as the adjoint to the quasi-measurable evaluation map (see
Remark 3.5):

ev : QpX q ˆ BX Ñ r0, 1s.

Since by Lemma 3.6 also the integration pairing is quasi-measurable the following com-
position of quasi-measurable maps is also quasi-measurable:

ż
˝pid ˆ eq : QpQpX qq ˆ BX Ñ r0, 1s, pπ,Aq ÞÑ

ż
evpµ,Aq πpdµq.

Taking the adjoint we get the quasi-measurable map:

MX : QpQpX qq Ñ r0, 1sBX ,

whose image lies inside r0, 1sBX X GpX q “ QpX q.
To check the commutative diagram let B P BY . Then we have with f˚ :“ Qpfq and
f˚˚ :“ Q2pfq :“ QpQpfqq:

MYpf˚˚πqpBq “

ż
evpν, Bq pf˚˚πqpdνq

“

ż
evpf˚µ,Bq πpdµq

“

ż
evpµ, f´1pBqq πpdµq

“ MX pπqpf´1pBqq

“ f˚MX pπqpBq.

This shows the claim.

Proposition 3.14. The triple pQ, δ,Mq defines a monad on QMS.

Proof. By Lemma 3.10 we know that Q : QMS Ñ QMS is a functor. By Lemma 3.12
we know that δ : idQMS Ñ Q is a natural transformation. By Lemma 3.13 we know
that M : Q2 Ñ Q is a natural transformation. So we are left to check the following
coherence conditions:
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1. M ˝ QM “ M ˝ MQ as natural transformations Q3 Ñ Q,

2. M ˝ Qδ “ M ˝ δQ “ idQ as natural transformations Q Ñ Q.

For simple notations note that:
ż
1ApxqMX pπqpdxq “ MX pπqpAq “

ż ż
1Apxqµpdxq πpdµq,

or in short: MX pπqpdxq “
ş
µpdxq πpdµq.

For the first let τ P QpQpQpX qqq. Then we have for A P BX :

pMX ˝ QpMX qpτqqpAq “

ż ż
1Apxq νpdxq ppMX q˚τqpdνq

“

ż ż
1ApxqMX pπqpdxq τpdπq

“

ż ż ż
1Apxqµpdxq πpdµq τpdπq

“

ż ż
1Apxqµpdxq pMQpX qpτqqpdµq

“ pMX ˝ MQpX qpτqqpAq.

It is easily seen that M ˝ QM is a natural transformation: Q3 Ñ Q. Indeed, for quasi-
measurable f : X Ñ Y we can use the above and the functoriality rules from Lemmata
3.12 and 3.13:

MY ˝ QpMYq ˝ Q3pfq “ MY ˝ QpMY ˝ Q2pfqq

“ MY ˝ QpQpfq ˝ MX q

“ MY ˝ Q2pfq ˝ QpMX q

“ Qpfq ˝ MX ˝ QpMX q.

To show the coherence conditions 2) let ν P QpX q. Then we get for A P BX :

MX pδνqpAq “

ż
evpµ,Aq δνpdµq

“ evpν, Aq

“ νpAq,

MX pQpδqpνqqpAq “

ż
evpµ,AqQpδqpνqpdµq

“

ż
evpµ,Aq pδ˚νqpdµq

“

ż
evpδx, Aq νpdxq

“

ż
1Apxq νpdxq

“ νpAq.
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Note that in the first set of equations δ is the map:

δ : QpX q Ñ QpQpX qq, ν ÞÑ δν .

In the second set of equations we use the usual:

δ : X Ñ QpX q, x ÞÑ δx,

where then:
Qpδq “ δ˚ : QpX q Ñ QpQpX qq, ν ÞÑ δ˚ν,

is its push-forward, where we then used the usual substitution rule.

Lemma 3.15. Let pX ,XΩq and pY ,YΩq be two quasi-measurable spaces. Then the
following map:

τX ,Y : X ˆ QpYq Ñ QpX ˆ Yq, px, µq ÞÑ δx b µ “ pD ÞÑ µpDxqq,

is a well-defined quasi-measurable map.
Furthermore, if f : X Ñ X 1 and g : Y Ñ Y 1 are quasi-measurable we get a commutative
diagram of quasi-measurable spaces:

X ˆ QpYq
τX ,Y //

fˆQpgq
��

QpX ˆ Yq

Qpfˆgq
��

X 1 ˆ QpY 1q τX 1,Y1
// QpX 1 ˆ Y 1q.

Proof. It is easily seen that τpx, µq is a probability measure, as it is the push-forward of
µ along the quasi-measurable slice map:

ιx : Y Ñ X ˆ Y , y ÞÑ px, yq.

τ is quasi-measurable as the adjoint to the compositions of the following quasi-measurable
maps:

X ˆ BXˆY ˆ QpYq Ñ pX ˆ YqY ˆ BXˆY ˆ QpYq Ñ BY ˆ QpYq
ev
ÝÑ r0, 1s,

which is composed of the quasi-measurable map:

X Ñ pX ˆ YqY , x ÞÑ ιx,

together with the quasi-measurable map (see Lemma 2.49):

pX ˆ YqY ˆ BXˆY Ñ BY , pf,Dq ÞÑ f´1pDq,

and the quasi-measurable evaluation map (see Remark 3.5). It follows that

τ : X ˆ QpYq Ñ r0, 1sBXˆY , px, µq ÞÑ pD ÞÑ µpDxqq,

47



3 Probability Monads on the Category of Quasi-Measurable Spaces

is quasi-measurable and with image in QpX ˆYq. So it is a well-defined quasi-measurable
map until there (see Lemma 2.57).
To check that the diagram is commutative let x P X and µ P QpYq and D1 P BX 1ˆY 1.
Then we get:

τX 1,Y 1pfpxq,QpgqpµqqpD1q “ QpgqpµqpD1
fpxqq

“ µpg´1pD1
fpxqqq

“ µppf ˆ gq´1pD1qxqq

“ τX ,Ypx, µqqppf ˆ gq´1pD1qq

“ Qpf ˆ gqpτX ,Ypx, µqqpD1q.

This shows the claim.

Theorem 3.16. The triple pQ, δ,Mq defines a strong monad on the (cartesian closed)
monoidal category pQMS,ˆ, 1q.

Proof. By Theorem 2.32 is a (cartesian closed) monoidal category pQMS,ˆ, 1q. By
Proposition 3.14 the triple pQ, δ,Mq defines a monad structure on QMS. We then
define the strength of the monad via τ from Lemma 3.15, where it was also shown that τ
is a natural transformation p_q ˆQp_q Ñ Qp_ ˆ _q. We are left to check its coherence
conditions.
Left unitor and strength satisfy the commutative diagram:

1 ˆ QpX q

LQpXq &&▲▲
▲▲

▲▲
▲▲

▲▲

τ1,X // Qp1 ˆ X q

QpLX qxxrrr
rr
rr
rr
r

QpX q.

Associator and strength satisfy the commutative diagram:

pX ˆ Yq ˆ QpZq
τXˆY,Z //

AX ,Y,QpZq

��

Q ppX ˆ Yq ˆ Zq

QpAX ,Y,Zq

��
X ˆ pY ˆ QpZqq

idX ˆτY,Z

// X ˆ QpY ˆ Zq τX ,YˆZ

// QpX ˆ pY ˆ Zqq.

Monad unit δ and strength satisfy the commutative diagram:

X ˆ Y
idX ˆδY

xxqqq
qq
qq
qq
qq δXˆY

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

X ˆ QpYq τX ,Y

// QpX ˆ Yq.
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Monad action M commutes with strength, expressed via the commutative diagram:

X ˆ QpQpYqq
τX ,QpYq //

idX ˆMY

��

QpX ˆ QpYqq
QpτX ,Y q

// QpQpX ˆ Yqq

MXˆY

��
X ˆ QpYq τX ,Y

// QpX ˆ Yq.

To check this let x P X and π P QpQpYqq and D P BXˆY . Then we get:

MXˆY

`
QpτX ,YqpτX ,QpYqpx, πqq

˘
pDq

“

ż
evpρ,DqQpτX ,YqpτX ,QpYqpx, πqqpdρq

“

ż
evpτX ,Ypt, νq, Dq pτX ,QpYqpx, πqqpdpt, νqq

“

ż
evpτX ,Ypx, νq, Dq πpdνq

“

ż
evpν,Dxq πpdνq

“ MYpπqpDxq

“ τX ,Ypx,MYpπqqpDq.

This shows the claim.

3.3 Strong Probability Monads K, P, R, S

In this subsection we will introduce different versions of the probability monad of push-
forward probability measures on quasi-measurable spaces: K, P, R, S. P will resemble
the probability monad P from [HKSY17]. K will be a bit more general than P, while
S will be a bit more restrictive than P. R will in some sense be complementary to P.
We then study under which conditions these probability monads agree and also when
they become strong. The main requirement will be that the sample space Ω satisfies
Ω ˆ Ω – Ω in QMS.

Definition 3.17 (The space of push-forward probability measures). Let pX ,XΩq be a
quasi-measurable space and BX :“ BpXΩq the induced σ-algebra. Then we define the
quasi-measurable space of push-forward probability measures on pX ,XΩq:

KpX q :“ pf
`
XΩ ˆ QpΩq

˘
Ď QpX q,

with the quotient quasi-measurable space structure, where we used the quasi-measurable
push-forward map, see Lemma 3.10:

pf : XΩ ˆ QpΩq Ñ QpX q.
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More concretely, we have:

KpX q “
 
α˚µ : BX Ñ r0, 1s

ˇ̌
α P XΩ, µ P QpΩq

(
,

KpX qΩ “ pf ˝
´`

XΩ
˘Ω

ˆ QpΩqΩ
¯

“
!
α˚κ : Ω Ñ KpX q

ˇ̌
ˇα P

`
XΩ

˘Ω
, κ P QpΩqΩ

)
.

The α˚κ for α P
`
XΩ

˘Ω
and κ P QpΩqΩ in KpX qΩ is given by:

pα˚κqpωqpAq “ αpωq˚κpωqpAq “ κpωq
`
αpωq´1pAq

˘
“ κpωq ptω1 P Ω |αpωqpω1q P Auq .

We then also define the quasi-measurable spaces of probability measures:

PpX q :“ KpX q,

PpX qΩ :“ pf ˝
´`

XΩ
˘1

ˆ QpΩqΩ
¯

Ď KpX qΩ,

RpX q :“ KpX q,

RpX qΩ :“ pf ˝
´`

XΩ
˘Ω

ˆ QpΩq1
¯

Ď KpX qΩ,

SpX q :“ KpX q,

SpX qΩ :“ pf ˝
´`

XΩ
˘1

ˆ
`
ΩΩ

˘Ω
ˆ QpΩq1

¯

“
!
α˚φ˚ν : Ω1 Ñ SpX q

ˇ̌
ˇα P XΩ3 , φ P

`
ΩΩ2

3

˘Ω1

, ν P QpΩ2q
)

Ď PpX qΩ X RpX qΩ,

with indices for clarity: Ωi :“ Ω.

Lemma 3.18. Let pX ,XΩq be a quasi-measurable space. Then the spaces of push-
forward probability measures pKpX q,KpX qΩq and pPpX q,PpX qΩq and pRpX q,RpX qΩq
and pSpX q,SpX qΩq are all quasi-measurable spaces. Furthermore, all the inclusion maps
are quasi-measurable:

SpX q Ď PpX q Ď KpX q Ď QpX q Ď GpX q, SpX q Ď RpX q Ď KpX q.

Proof. This immediately follows from Lemma 3.10 and Lemma 2.54.

Lemma 3.19. Let pX ,XΩq be a quasi-measurable space.

1. Assume that there exists an an isomorphism of quasi-measurable spaces:

θ : Ω – Ω ˆ Ω.

Then we have the equalities and inclusions of sets:

SpX qΩ “ RpX qΩ Ď PpX qΩ “ KpX qΩ.

50



3 Probability Monads on the Category of Quasi-Measurable Spaces

2. Assume that the following push-forward map is surjective:

pf :
`
ΩΩ

˘Ω
ˆ QpΩq ։ QpΩqΩ, pγ, νq ÞÑ γ˚ν “ pω ÞÑ γpωq˚νq .

Then we have the equalities and inclusions of sets:

SpX qΩ “ PpX qΩ Ď RpX qΩ “ KpX qΩ.

Proof. 1.) Let α˚κ P KpX qΩ1 with α P
`
XΩ2

˘Ω1 and κ P QpΩ2qΩ1, where we use indices
for clarity: Ωi :“ Ω. In the following we will identify all maps with their (un)curried
form. Define φ1 P

`
ΩΩ1

1

˘Ω1 and φ2 P
`
ΩΩ2

2

˘Ω1 on elements via:

φ1pω1qpω1
1q :“ ω1,

φ2pω1qpω2q :“ ω2.

Let ν P QpΩq be any probability measure. Note that φ2pω1q “ idΩ2
and:

φ1pω1q˚ν “ δω1
, pφ1pω1q ˆ φ2pω1qq˚pν b κqpω1q “ δω1

b κpω1q.

With this we then get:

αpω1q˚κpω1q “ α˚ pδω1
b κpω1qq

“ α˚φpω1q˚ pν b κpω1qq

“ α˚θ˚θ
´1
˚ φpω1q˚θ˚θ

´1
˚ pν b κpω1qq

“ pα ˝ θq˚ pθ´1 ˝ φpω1q ˝ θq˚

`
θ´1

˚ pν b κpω1qq
˘
,

with pα ˝ θq P XΩ3 , pθ´1 ˝ φ ˝ θq P
`
ΩΩ3

3

˘Ω1 and θ´1
˚ pν b κq P QpΩ3qΩ1 . This shows that:

α˚κ P PpX qΩ. So we showed the inclusion (and thus equality):

KpX qΩ Ď PpX qΩ.

The same arguments hold for κ P QpΩq. Then θ´1
˚ pν b κq P QpΩ3q. This then shows

the inclusion (and thus equality):

RpX qΩ Ď SpX qΩ.

2.) Again let α˚κ P KpX qΩ1 with α P
`
XΩ2

˘Ω1 and κ P QpΩ2qΩ1 . By assumption there

exist φ P
`
ΩΩ3

2

˘Ω1 and ν P QpΩ3q such that for all ω1 P Ω1:

κpω1q “ φpω1q˚ν.

Define α ˝ φ P
`
XΩ3

˘Ω1 on elements via:

pα ˝ φqpω1qpω3q :“ αpω1qpφpω1qpω3qq.
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This gives us:
αpω1q˚κpω1q “ αpω1q˚φpω1q˚ν “ pα ˝ φqpω1q˚ν.

This shows that α˚κ “ pα ˝ φq˚ν P RpX qΩ1 . With this we get the inclusions (and thus
equality):

KpX qΩ Ď RpX qΩ.

The same proof for α P XΩ2 shows:

α˚κpω1q “ α˚φpω1q˚ν,

and thus the inclusion (and equality):

PpX qΩ Ď SpX qΩ.

This shows the claims.

Lemma 3.20. Let pX ,XΩq be a quasi-measurable space and f : X Ñ Y a quasi-
measurable map. Then we get a commutative diagrams of quasi-measurable maps:

SpX q
inclX //

Spfq
��

PpX q
inclX //

Ppfq
��

KpX q

Kpfq
��

inclX // QpX q

Qpfq
��

inclX // GpX q

Gpfq
��

SpYq
inclY

// PpYq
inclY

// KpYq
inclY

// QpYq
inclY

// GpYq.

The same holds true if we replace P with R.

Proof. That the horizontal lines are inclusions and quasi-measurable is clear.
Since the push-forward is at each vertical map given by:

pf˚µqpBq :“ µpf´1pBqq,

the commutativity is clear as soon as all vertical maps are shown to be well-defined (with
the corresponding codomain) and quasi-measurable.
For Qpfq both claims were shown in Lemma 3.10.
Gpfq is clearly well-defined since f˚µ is a probability measure on BY . To see that Gpfq
is quasi-measurable let κ P GpX qΩ and B P BY . Then f´1pBq P BX and the map:

Ω Ñ r0, 1s, ω ÞÑ pf˚κqpωqpBq “ κpωqpf´1pBqq,

is BΩ-Br0,1s-measurable by assumption on κ. So f˚κ P GpYqΩ.
To show that Kpfq, Ppfq, Rpfq are well-defined consider α˚µ with α P XΩ and µ P QpΩq.
Since f is quasi-measurable we have f ˝ α P YΩ and thus:

f˚pα˚µq “ pf ˝ αq˚µ P KpYq “ PpYq “ RpYq.

To show that Kpfq is quasi-measurable let now α P
`
XΩ2

˘Ω1 and κ P QpΩ2qΩ1. Again,
since f is quasi-measurable we get that the composition:

f ˝ α : Ω2 ˆ Ω1
α
ÝÑ X

f
ÝÑ Y ,
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is quasi-measurable and thus f ˝ α P
`
YΩ2

˘Ω1. So we get:

f˚pα˚κqpω1q “ f˚αpω1q˚κpω1q “ pf ˝ αqpω1q˚κpω1q.

So it follows that:
f˚pα˚κq “ pf ˝ αq˚κ P KpYqΩ1.

Note that if in the above we have that α P
`
XΩ2

˘1 then also f ˝ α P
`
YΩ2

˘1, showing
that Ppfq is quasi-measurable.
Similarly, if κ P QpΩ2q1 then it stays that way for the push-forward, so clearly Rpfq is
quasi-measurable.
For Spfq note that we can use the previous arguments to get:

f ˝ SpX qΩ “ f ˝
`
PpX qΩ X RpX qΩ

˘
Ď PpYqΩ X RpYqΩ “ SpYqΩ.

Lemma 3.21. Let pX ,XΩq be a quasi-measurable space. Then the map:

δ : X Ñ SpX q, x ÞÑ δx “ pA ÞÑ 1Apxqq,

is a well-defined quasi-measurable map.
Furthermore, if we have a quasi-measurable map:

f : pX ,XΩq Ñ pY ,YΩq,

then we get a commutive diagram of quasi-measurable maps:

X
δ //

f

��

SpX q
iX //

Spfq
��

PpX q
iX //

Ppfq
��

KpX q

Kpfq
��

iX // QpX q

Qpfq
��

iX // GpX q

Gpfq
��

Y
δ // SpYq

iY

// PpYq
iY

// KpYq
iY

// QpYq
iY

// GpYq.

In other words, we have natural transformations of endo-functors of QMS:

idQMS
δ

ÝÑ S
incl
ÝÝÑ P

incl
ÝÝÑ K

incl
ÝÝÑ Q

incl
ÝÝÑ G.

All the above statements also hold true if we replace P by R.

Proof. To show that δ is well-defined we need to show that δX ,x P SpX q “ KpX q for
x P X . For any ν P QpΩq and the constant map x1 P X 1 with value x P X we get:

δX ,x “ x1˚ν P SpX q “ KpX q.

To show that δX is quasi-measurable let α P XΩ and define: φpω1qpω2q :“ ω1. Then we
get:

pα˚φ˚νq pω1q “ α˚φpω1q˚ν

“ α˚δΩ,ω1

“ δX ,αpω1q

“ pδX ˝ αqpω1q.
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So we get: δX ˝ α “ α˚φ˚ν P SpX qΩ.
To check the commutativity of the diagrams, by Lemma 3.20 we only need to consider
the first one with S. Observe that:

f˚δX ,x “ f˚x
1
˚ν “ fpxq1˚ν “ δY ,fpxq P SpYq “ KpYq,

where with x1 and fpxq1 we mean the corresponding constant maps with those values.
This shows the claims.

Lemma 3.22. Let pX ,XΩq be a quasi-measurable space. Assume that there exists an
an isomorphism of quasi-measurable spaces:

θ : Ω – Ω ˆ Ω.

Then the map:

MX : KpKpX qq Ñ KpX q, π ÞÑ MX pπq “

ˆ
A ÞÑ

ż
evpµ,Aq πpdµq

˙
,

is a well-defined quasi-measurable map.
Furthermore, if we have a quasi-measurable map:

f : pX ,XΩq Ñ pY ,YΩq,

then we get a commutive diagram of quasi-measurable maps:

KpKpX qq
KpKpfqq//

MX

��

KpKpYqq

MY

��
KpX q

Kpfq
// KpYq.

In other words, M : K2 Ñ K is a natural transformation of endo-functors of QMS.
Finally, all the analogous statements hold as well when K is replaced by R or P or S.

Proof. The proof that MX maps to KpX q follows the same lines as the proof that it
is quasi-measurable. So we directly assume that π P KpKpX qqΩ1 . Then there are ρ P

QpΩ2qΩ1 and ψ P
`
KpX qΩ2

˘Ω1 such that:

πpω1q “ pψ˚ρqpω1q “ ψpω1q˚ρpω1q P KpKpX qq.

Since by assumption we have Ω1 ˆ Ω2 – Ω we get that:

ψ P
`
KpX qΩ2

˘Ω1

– KpX qΩ.

So there are α P
´`

XΩ3

˘Ω2

¯Ω1

and κ P QpΩ3qΩ1ˆΩ2 such that:

ψpω1qpω2q “ αpω1qpω2q˚κpω1, ω2q P KpX q.
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Then we get with A P BX and ω1 P Ω1:

MX pπqpω1qpAq “

ż
evpµ,Aq πpω1qpdµq

“

ż
evpµ,Aq pψ˚ρqpω1qpdµq

“

ż
evpµ,Aqψpω1q˚ρpω1qpdµq

“

ż
evpψpω1qpω2q, Aq ρpω1qpdω2q

“

ż
evpαpω1qpω2q˚κpω1, ω2q, Aq ρpω1qpdω2q

“

ż
κpω1, ω2qpαpω1qpω2q

´1pAqq ρpω1qpdω2q

“

ż
κpω1, ω2qpα´1pAqω1,ω2

q ρpω1qpdω2q

“ pκ b ρqpω1qpα´1pAqω1
q

“ pκ b ρqpω1qpαpω1q
´1pAqq

“ αpω1q˚pκ b ρqpω1qpAq,

where now κb ρ P QpΩ3 ˆ Ω2qΩ1 – QpΩqΩ1 and α P
´`

XΩ3

˘Ω2

¯Ω1

–
`
XΩ

˘Ω1. It follows
that:

MX pπq “ α˚pκb ρq P KpX qΩ1 .

This shows that MX is well-defined and quasi-measurable.
To show the commutative diagram we apply the above calculation to:

f˚˚π “ pf˚ψq˚ρ “ pf˚α˚κq˚ρ “ ppf ˝ αq˚κq˚ρ.

So replacing α with f ˝ α in the calculation from above we get:

MYpf˚˚πq “ pf ˝ αq˚pκb ρq “ f˚α˚pκb ρq “ f˚MX pπq.

This shows the claim for K.
For the corresponding statements for P note that ψ will not be dependent on ω1 and
thus α will not be dependent on ω2 and ω1 and κ will not be dependent on ω2. In this
case we do not even need the isomorphism Ω ˆ Ω – Ω and we get:

MX pπq “ α˚pκ ˝ ρq P PpX qΩ1.

For the R case note that ρ will not be dependent on ω1 and κ will not be dependent on
ω2 and ω3, which shows that κbρ will not be dependent on ω1, which in this case shows
that:

MX pπq “ α˚pκb ρq P RpX qΩ1.

The statement for S is the same as for R, see Lemma 3.19.
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Proposition 3.23. The triple pP, δ,Mq defines a monad on QMS. If, furthermore, we
have an isomorphism of quasi-measurable spaces:

θ : Ω – Ω ˆ Ω,

then also the triples pK, δ,Mq and pR, δ,Mq and pS, δ,Mq each define a monad on QMS.

Proof. By Lemma 3.20 we know that P : QMS Ñ QMS is a functor. By Lemma 3.21
we know that δ : idQMS Ñ P is a natural transformation. By Lemma 3.22 we know that
M : P2 Ñ P is a natural transformation. Note that for P the isomorphism Ω ˆ Ω – Ω

was not needed. So we are left to check the following coherence conditions:

1. M ˝ PM “ M ˝ MP as natural transformations P3 Ñ P,

2. M ˝ Pδ “ M ˝ δP “ idP as natural transformations P Ñ P.

These calculations follow exactly the same as in Proposition 3.14.
All the same arguments also hold for pK, δ,Mq and pR, δ,Mq and pS, δ,Mq under the
assumed isomorphism.

Theorem 3.24. Let pX ,XΩq, pY ,YΩq, pZ,ZΩq be quasi-measurable spaces. Assume
that there exists an an isomorphism of quasi-measurable spaces:

θ : Ω – Ω ˆ Ω.

Then the maps:

b : KpX qYˆZ ˆ KpYqZ Ñ KpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq,

b : PpX qYˆZ ˆ PpYqZ Ñ PpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq,

b : RpX qYˆZ ˆ RpYqZ Ñ RpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq,

b : SpX qYˆZ ˆ SpYqZ Ñ SpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq,

are well-defined quasi-measurable maps.

Proof. To keep better track of the interplay between different versions of Ω in this proof
we will index them as Ωk :“ Ω for k “ 1, 2, . . . .
To show that b is well-defined let µ P KpX qYˆZ and ν P KpYqZ . We then need to show
that for every z P Z:

pµ b νqpzq P KpX ˆ Yq,

and that for every γ P ZΩ1 we have:

pµb νq ˝ γ P KpX ˆ YqΩ1.
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The latter means that we need to show that for every γ P ZΩ1 there exist π P QpΩ5qΩ1

and ψ P
`
pX ˆ YqΩ5

˘Ω1 such that:

pµb νq ˝ γ “ ψ˚π P KpX ˆ YqΩ1.

Since the first statement can be considered a special case of the second one (with constant
γ “ z P Z1 Ď ZΩ1 and constant π P QpΩ2q1 Ď QpΩ2qΩ1) we directly focus on arbitrary
γ P ZΩ1 .
By composing ν P KpYqZ with γ P ZΩ1 then have that ν ˝ γ P KpYqΩ1 . So by definition
of KpYqΩ1 there exist ρ P QpΩ2qΩ1 and β P

`
YΩ2

˘Ω1 such that for every ω1 P Ω1:

ν ˝ γpω1q “ βpω1q˚ρpω1q.

Then note that β ˆ γ is given by:

β ˆ γ : Ω2 ˆ Ω1 Ñ Y ˆ Z, pω2, ω1q ÞÑ pβpω1qpω2q, γpω1qq.

Together with the isomorphism θ : Ω4 – Ω2 ˆ Ω1 we get the quasi-measurable map:

pβ ˆ γq ˝ θ : Ω4
θ
ÝÑ Ω2 ˆ Ω1

βˆγ
ÝÝÑ Y ˆ Z, ω4 ÞÑ pβpθ2pω4qqpθ1pω4qq, γpθ2pω4qq.

Similarly to before by composing the latter map with µ P KpX qYˆZ we have that:

µ ˝ pβ ˆ γq ˝ θ P KpX qΩ4.

So by definition of KpX qΩ4 there exist ε P
`
XΩ3

˘Ω4 and λ P QpΩ3qΩ4 such that for all
ω4 P Ω4:

µ ˝ pβ ˆ γq ˝ θpω4q “ εpω4q˚λpω4q.

For every pω2, ω1q P Ω2 ˆ Ω1 we take ω4 :“ θ´1pω2, ω1q in the above equation and get:

µ ˝ pβ ˆ γqpω2, ω1q “ εpθ´1pω2, ω1qq˚λpθ´1pω2, ω1qq.

We then define κ P QpΩ3qΩ2ˆΩ1 via the composition of quasi-measurable maps:

κ :“ λ ˝ θ´1 : Ω2 ˆ Ω1 Ñ Ω4 Ñ QpΩ3q,

and α P
`
XΩ3

˘Ω2ˆΩ1 via the composition of quasi-measurable maps:

α :“ ε ˝ θ´1 : Ω2 ˆ Ω1 Ñ Ω4 Ñ XΩ3.

We then get for all pω2, ω1q P Ω2 ˆ Ω1:

µ ˝ pβ ˆ γqpω2, ω1q “ αpω2, ω1q˚κpω2, ω1q.

With this so defined κ P QpΩ3qΩ2ˆΩ1 and ρ P QpΩ2qΩ1 we get that κbρ P QpΩ3 ˆΩ2qΩ1.
We then again use the isomorphism θ : Ω5 – Ω3 ˆ Ω2 and define:

π :“ θ´1
˚ pκb ρq P QpΩ5qΩ1 .
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Furthermore, we define the quasi-measurable map pα ˆ βq P
`
pX ˆ YqΩ3ˆΩ2

˘Ω1 via:

pα ˆ βqpω1qpω3, ω2q :“ pαpω2, ω1qpω3q, βpω1qpω2qq P X ˆ Y ,

and the quasi-measurable map ψ P
`
pX ˆ YqΩ5

˘Ω1 via:

ψpω1qpω5q :“ pα ˆ βqpω1q ˝ θpω5q “ pαpθ2pω5q, ω1qpθ3pω5qq, βpω1qpθ2pω5qqq P X ˆ Y .

With all these settings and D P BXˆY and ω1 P Ω1 we get the calculations:

pµ b νqpγpω1qqpDq “

ż
µpy, γpω1qqpDyq νpγpω1qqpdyq

“

ż
µpy, γpω1qqpDyq pβpω1q˚ρpω1qqpdyq

“

ż
µpβpω1qpω2q, γpω1qqpDβpω1qpω2qq ρpω1qpdω2q

“

ż
µ ppβ ˆ γqpω2, ω1qq pDβpω1qpω2qq ρpω1qpdω2q

“

ż
αpω2, ω1q˚κpω2, ω1qpDβpω1qpω2qq ρpω1qpdω2q

“

ż
κpω2, ω1qpαpω2, ω1q

´1pDβpω1qpω2qqq ρpω1qpdω2q

“

ż
κpω2, ω1qppα ˆ βqpω1q

´1pDqω2
q ρpω1qpdω2q

“ pκb ρqpω1qppαˆ βqpω1q
´1pDqq

“ pα ˆ βqpω1q˚pκb ρqpω1qpDq

“ pα ˆ βqpω1q˚ ˝ θ˚ ˝ θ´1
˚ pκb ρqpω1qpDq

“ ψpω1q˚πpω1qpDq.

So we get that:
pµb νq ˝ γ “ ψ˚π P KpX ˆ YqΩ1.

This shows that b is a well-defined map.
To show that b is quasi-measurable we need to use the exaxt same arguments as above
but where we replace Z with ΩˆZ and γ P ZΩ with ϕˆγ P ΩΩ ˆZΩ everywhere. This
then shows the claim for KpX ˆ YqZ .
To show the claim for PpX ˆ YqZ the same proof applies by noticing that if β is not
dependent on ω1 and ε not dependent on ω4 then α does not depend on pω2, ω1q and
thus αˆ β and ψ will not depend on ω1. It then follows:

pµb νq ˝ γ “ ψ˚π P PpX ˆ YqΩ1.

Similarly the claim for RpX ˆ YqZ follows by the same arguments by noticing that if ρ
is not dependent on ω1 and λ not dependent on ω4 then κ is not dependent on pω2, ω1q
and thus κ b ρ and π will not depend on ω1. It then follows that:

pµ b νq ˝ γ “ ψ˚π P RpX ˆ YqΩ1.
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Finally, the claim for S follows from the the case of R, see Lemma 3.19.

The case for PpX ˆ YqZ can be visualized via the commutative diagrams:

Ω

ρ

��

ϕˆγ // Ω ˆ Z

ν

��
QpΩq

β˚

// PpYq

Ω
θ
„

//

λ ""❊
❊❊

❊❊
❊❊

❊❊
Ω ˆ Ω

κ

��

βˆpϕˆγq // Y ˆ Ω ˆ Z

µ

��
QpΩq α˚

// PpX q

Ω

κbρ

��

ϕˆγ //

π

xxrrr
rr
rr
rr
rr

Ω ˆ Z

µbν
��

QpΩq
θ˚

„ // QpΩ ˆ Ωq
pαˆβq˚

// PpX ˆ Yq.

Theorem 3.25. Assume that there exists an an isomorphism of quasi-measurable spaces:

θ : Ω – Ω ˆ Ω.

Then the triples pK, δ,Mq, pP, δ,Mq, pR, δ,Mq, pS, δ,Mq each define a strong monad on
the (cartesian closed) monoidal category pQMS,ˆ, 1q.

Proof. We define the strength of the monad as follows:

τX ,Y : X ˆ PpYq Ñ PpX ˆ Yq, px, µq ÞÑ δx b µ,

which is a well-defined quasi-measurable map by Theorem 3.24. The rest follows the
same steps as in Theorem 3.16. For this note that all involved maps are already shown
to be well-defined and quasi-measurable. One then only needs to check those coherence
equations on elements. This follows exactly the same as in Theorem 3.16.
Also note that the bind/extension operation:

p_q˝ : PpYqX Ñ PpYqPpX q, κ ÞÑ κ˝, κ˝pµqpBq :“ pκ˝µqpBq :“

ż
κpxqpBqµpdxq,

is a well-defined quasi-measurable map (as the adjunction of the push-forward of b, see
Theorem 3.24), which is functorial in X and Y .
The same arguments hold for the other monads.

Lemma 3.26. Let pX ,YΩq, pX ,YΩq be quasi-measurable spaces. Then the push-forward
map:

pf : YX ˆ KpX q Ñ KpYq, pf, µq ÞÑ f˚µ,

is a well-defined and quasi-measurable map. The same holds true for R in place of K.

59



3 Probability Monads on the Category of Quasi-Measurable Spaces

Proof. We already know from Lemma 3.20 that the map is well-defined. Consider the
following commutative diagram of quasi-measurable maps, see 3.10:

YX ˆ XΩ ˆ QpΩq

idˆpf
����

p_˝_qˆid // YΩ ˆ QpΩq

pf

��
YX ˆ KpX q

pf
// QpYq.

This then induces the following commutative diagram of quasi-measurable maps:

`
YX

˘Ω1 ˆ
`
XΩ2

˘Ω1 ˆ QpΩ2qΩ1

idˆpf
����

p_˝_qˆid //
`
YΩ2

˘Ω1 ˆ QpΩ2qΩ1

pf

��`
YX

˘Ω1 ˆ KpX qΩ1

pf
// QpYqΩ1 .

The vertical left map is surjective by definition of KpX qΩ1 . This shows that:

pf
´`

YX
˘Ω1

ˆ KpX qΩ1

¯
Ď pf

´`
YΩ2

˘Ω1

ˆ QpΩ2qΩ1

¯
“: KpYqΩ1.

This shows that the bottom push-forward map lands in KpYqΩ1 , showing our claim.
The same arguments hold for R instead of K via the diagram:

`
YX

˘Ω1 ˆ
`
XΩ2

˘Ω1 ˆ QpΩ2q1

idˆpf
����

p_˝_qˆid //
`
YΩ2

˘Ω1 ˆ QpΩ2q1

pf

��`
YX

˘Ω1 ˆ RpX qΩ1

pf
// QpYqΩ1.

This shows the claims.

Remark 3.27. Note that the proof of Lemma 3.26 would not work for P (or S) instead
of K because in the following diagram the top composition map would not be well-defined:

`
YX

˘Ω1 ˆ
`
XΩ2

˘1
ˆ QpΩ2qΩ1

idˆpf
����

p_˝_qˆid //
`
YΩ2

˘1
ˆ QpΩ2qΩ1

pf

��`
YX

˘Ω1 ˆ PpX qΩ1

pf
// QpYqΩ1,

since for f P
`
YX

˘Ω1

and α P
`
XΩ2

˘1
one would have that:

pf ˝ αqpω1qpω2q “ fpω1qpαpω2qq

depended on ω1 P Ω1, which one needs to avoid for the image to land in:

pf
´`

YΩ2

˘1
ˆ QpΩ2qΩ1

¯
“: PpYqΩ1 .
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4 The Category of Patchable Quasi-Measurable

Spaces

In this section we will study the 3rd property in the definition of quasi-Borel spaces from
Def. 7 in [HKSY17] transferred to quasi-measuable spaces. We will call quasi-measurable
spaces that satsify that property patchable. Note that until now and througout the
whole Sections 2 and 3 the requirement of patchability was never needed. The main
reason one would anyways impose patchability onto quasi-measurable spaces is stated
in Lemma 4.12, namely to preserve countable coproducts when going from measurable
spaces to quasi-measurable spaces via the functor F . We will see in Theorem 4.10 that
the category of patchable quasi-measurable spaces PQMS is a reflexive subcategory
of the category of quasi-measurable spaces QMS. Furthermore, it will turn out that
PQMS is an exponential ideal of QMS and thus cartesian closed on its own.

Remark 4.1. For the purpose of this section we will in the following assume that the
sample space pΩ,ΩΩ,BΩq satisfies:

ΩΩ “ FpBΩq “ Meas ppΩ,BΩq, pΩ,BΩqq .

4.1 Patchable Quasi-Measurable Spaces

Here we shortly define the notion of patchable quasi-measurable spaces. It resembles the
3rd property of quasi-Borel spaces from Def. 7 in [HKSY17].

Definition 4.2 (Patchable quasi-measurable spaces). We call a quasi-measurable space

pX ,XΩq patchable if for every countable disjoint decomposition: Ω “ 9
Ť
iPI Ci with Ci P

BΩ, i P I Ď N, and for αi P XΩ, i P I, we have that:

α :“
9ď

iPI

αi|Ci
P XΩ,

where, more precisely, α is defined as:

αpωq :“ αipωq for ω P Ci.

Example 4.3. 1. If X is a set and XΩ :“ rΩ Ñ X s then pX ,XΩq is a patchable
quasi-measurable space.

2. If pX ,XΩq is a quasi-measurable space with XΩ “ FpBX q for any σ-algebra BX

then pX ,XΩq is patchable.

Indeed, if α :“ 9
Ť
iPI αi|Ci

P XΩ with αi P XΩ and D P BX and Ci P BΩ, i P I Ď N,
then:

α´1pDq “
ď

iPI

`
Ci X α´1

i pDq
˘

P BΩ.

So α is measurable and thus α P FpBX q “ XΩ.
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4.2 Heredity of Patchability

In this subsection we study under which conditions the property of being patchable is
inherited by categorical constructions, like products or quotients, etc.

Lemma 4.4. Let pY ,YΩq be a patchable quasi-measurable space.

1. Let g : X Ñ Y be any map. Then pX , g˚YΩq is also patchable quasi-measurable
space.

2. Let h : Y ։ Z be any surjective map. Then pZ, h ˝ YΩq is also a patchable
quasi-measurable space.

Proof. 1.) We clearly have X 1 Ď g˚YΩ. If ϕ P ΩΩ then:

α P g˚YΩ ùñ g ˝ α P YΩ ùñ g ˝ α ˝ ϕ P YΩ ùñ α ˝ ϕ P g˚YΩ.

Let αi P g˚YΩ then g ˝ αi P YΩ, which implies for every countable measurable disjoint
union decomposition Ω “ 9

Ť
iPI Ci that:

g ˝
9ď

iPI

αi|Ci
“

9ď

iPI

pg ˝ αiq|Ci
P YΩ.

Thus: 9
Ť
iPI αi|Ci

P g˚YΩ. This shows the first claim.
2.) Since h is surjective we have Z1 Ď h ˝ YΩ. We also have:

ph ˝ YΩq ˝ ΩΩ “ h ˝ pYΩ ˝ ΩΩq Ď h ˝ YΩ.

Similarly to the first point we have that:

9ď

iPI

ph ˝ βiq|Ci
“ h ˝

9ď

iPI

βi|Ci
P h ˝ YΩ,

because if βi P YΩ, i P I, then also 9
Ť
iPI βi|Ci

P YΩ. This shows the second claim.

Lemma 4.5 (Products of patchable quasi-measurable spaces are patchable). If pXi,X
Ω
i q

are patchable quasi-measuruable spaces for i P I and any index set I then also their
product of quasi-measurable spaces is patchable:

ź

iPI

pXi,X
Ω
i q.

Proof. If we consider a measurable disjoint decomposition Ω “ 9
Ť
jPJ Cj with countable

J Ď N and:
αj “ pαji qiPI P

ź

iPI

XΩ
i ,

for j P J , then:
αj |Cj

“ pαji |Cj
qiPI ,
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and thus:
9ď

jPJ

αj|Cj
“

˜
9ď

jPJ

α
j
i |Cj

¸

iPI

.

Since by assumption 9
Ť
jPJ α

j
i |Cj

P XΩ
i , for every i P I we get:

9ď

jPJ

αj|Cj
“

˜
9ď

jPJ

α
j
i |Cj

¸

iPI

P
ź

iPI

XΩ
i .

Remark 4.6. 1. Also (small) limits and equalizers of patchable quasi-measurable
spaces (taken in QMS) are patchable.

2. Note that colimits like coproducts of patchable quasi-measurable spaces might not
be patchable.

Lemma 4.7 (Exponential ideal property). Let pX ,XΩq and pY ,YΩq be two quasi-

measurable spaces, where pY ,YΩq is patchable. Then also
´
YX ,

`
YX

˘Ω¯
is patchable.

Proof. Consider a measurable disjoint union decomposition Ω “ 9
Ť
jPJ Cj with countable

J Ď N and βj P
`
YX

˘Ω for j P J . We then consider:

β :“
9ď

jPJ

βj|Cj
P rΩ Ñ YX s.

Let ϕ P ΩΩ and α P YX . We then have for ω P ϕ´1pCjq:

βpϕpωqqpαpωqq “ βjpϕpωqqpαpωqq.

Note that we get the measurable disjoint union decomposition Ω “ 9
Ť
jPJ ϕ

´1pCjq. Fur-
thermore, we know that βjpϕqpαq P YΩ for all j P J by assumption. Because Y is
patchable we then get that:

βpϕqpαq “
9ď

jPJ

βjpϕqpαq|ϕ´1pCjq P YΩ.

Since this holds for all ϕ and α the above shows that:

9ď

jPJ

βj |Cj
“ β P

`
YX

˘Ω
.

Example 4.8. Let pX ,XΩq be a (not necessarily patchable) quasi-measurable space.
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1. The space of indicator functions p2X , p2X qΩq is always a patchable quasi-measurable
space.

2. The corresponding σ-algebra pBX , pBX qΩq is always a patchable quasi-measurable
space.

Proof. p2, 2Ωq “ p2,FpB2qq is patchable by Example 4.3 and thus p2X , p2X qΩq as well
by Lemma 4.7.
Since pBX , pBX qΩq – p2X , p2X qΩq by Lemma 2.48 also pBX , pBX qΩq is patchable.

4.3 Reflector to Patchable Quasi-Measurable Spaces

In this subsection we construct the reflector L from the category of quasi-measurable
spaces QMS to the category of patchable quasi-measurable spaces PQMS.

Lemma 4.9 (Reflector to patchable quasi-measurable spaces). Let X be a set and H Ď
rΩ Ñ X s any subset of functions, X 1 :“ r1 Ñ X s ˝ rΩ Ñ 1s the set of constant maps to
X . Then define:

LpHq :“
č

GĎrΩÑX s
X1ĎG

G˝ΩΩĎG

GDef. 4.2

G Ď rΩ Ñ X s,

the intersection of all set of functions G Ď rΩ Ñ X s that:

1. contains H,

2. contains the constant maps X 1,

3. is closed under right composition with elements ϕ P ΩΩ,

4. contains every α “ 9
Ť
iPI αi|Ci

if every αi P G and Ω “ 9
Ť
iPI Ci is a countable

measurable disjoint union decomposition, i P I Ď N.

Then LpHq satisfies all these points as well and pX ,LpHqq is a well-define patchable
quasi-measurable space.

Proof. First, the intersection is non-empty as G “ rΩ Ñ X s satisfies all points.
We clearly have X 1 Y H Ď LpHq if X 1 Y H Ď G for all G of consideration.
If α P LpHq and ϕ P ΩΩ then α ˝ ϕ P G for all those G and thus α ˝ ϕ P LpHq.
If αi P LpHq for i P I Ď N then αi P G for i P I. So we get α :“ 9

Ť
iPI αi|Ci

P G for all G
of consideration, which implies α “ 9

Ť
iPI αi|Ci

P LpHq.

Theorem 4.10. The full subcategory PQMS of all patchable quasi-measurable spaces
inside the cartesian closed category QMS of all quasi-measurable spaces is a reflexive
subcategory, an exponential ideal and cartesian closed in itself. In particular, the reflec-
tor L : QMS Ñ PQMS preserves finite products and arbitrary (small) colimits and
coproducts.

64



4 The Category of Patchable Quasi-Measurable Spaces

Furthermore, PQMS has all (small) limits and products: the QMS-products/limits
of diagrams in PQMS are already in PQMS. PQMS has all (small) colimits and
coproducts, which are given by applying the reflector L to the corresponding QMS-
colimits/coproducts:

PQMSž

iPI

pXi,X
Ω
i q “ L

˜
QMSž

iPI

pXi,X
Ω
i q

¸
“

˜
ž

iPI

Xi,L

˜
ž

iPI

XΩ
i

¸¸

Proof. The reflector is given via Lemma 4.9:

L : QMS Ñ PQMS, pX ,XΩq ÞÑ pX ,LpXΩqq, Lpgq “ g.

We have to show that L is left-adjoint to the forgetful functor PQMS ãÑ QMS, i.e.
that for every quasi-measurable pX ,XΩq and every patchable quasi-measurable space
pY ,YΩq we have the natural identification:

QMS
`
pX ,LpXΩqq, pY ,YΩq

˘
“ QMS

`
pX ,XΩq, pY ,YΩq

˘
.

Indeed, if f P QMS
`
pX ,LpXΩqq, pY ,YΩq

˘
then:

f ˝ XΩ Ď f ˝ LpXΩq Ď YΩ,

which implies: f P QMS
`
pX ,XΩq, pY ,YΩq

˘
.

For the reverse inclusion let g P QMS
`
pX ,XΩq, pY ,YΩq

˘
. Then we get:

g ˝ XΩ Ď YΩ,

which is equivalent to:

XΩ Ď g˚YΩ :“
 
α : Ω Ñ X

ˇ̌
g ˝ α P YΩ

(
.

Since g˚YΩ satisfies all 4 points from Lemma 4.9 by Lemma 4.4 we get:

LpXΩq Ď g˚YΩ,

which is equivalent to:
g ˝ LpXΩq Ď YΩ.

This implies: g P QMS
`
pX ,LpXΩqq, pY ,YΩq

˘
.

To show that PQMS is an exponential ideal of QMS we need to show that for every
X P QMS and Y P PQMS also YX P PQMS. This was already shown in Lemma 4.7.
That L preserves finite products follows from the last statement and [Joh02] Prp. A4.3.1.

L

˜
Nź

n“1

pXn,X
Ω
n q

¸
“

Nź

n“1

pXn,LpXΩ
n qq.

Since L is a left-adjoint it automatically preserves all colimits like coproducts.
Since QMS has all small colimits by Theorem 2.45 also PQMS has all small colimits
by applying L afterwards.
Since PQMS inherits all products, see Lemma 4.5, and equalizers, see Lemma 2.37 and
check that equalizers of patchable quasi-measurable spaces are patchable, it then also
inherits all limits from QMS.
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4 The Category of Patchable Quasi-Measurable Spaces

Remark 4.11. 1. For a quasi-measurable space pX ,XΩq we always have:

XΩ Ď LpXΩq Ď FBpXΩq Ď rΩ Ñ X s.

2. SQMS Ď PQMS Ď QMS are reflexive full subcategories.

3. For quasi-universal spaces we even have the full subcategories:

UQUS Ď SQUS Ď PQUS Ď QUS,

where UQUS is the full subcategory of all universal quasi-universal spaces, see
Definition 5.22 and Corollary 5.27 later on, which might not be reflexive inside
QUS.

Lemma 4.12 (Countable coproducts). Let I be a countable set and pXi,Biq measurable
spaces for i P I. Then we have:

L

˜
ž

iPI

pXi,FpBiqq

¸
“ F

˜
ž

iPI

pXi,Biq

¸
,

where on the lhs the reflector L is applied to the QMS-coproduct, which together is the
PQMS-coproduct, of the individual spaces after applying F , and on the rhs we have F

applied to the coproduct in Meas.
In other words, F , when seen as a functor from Meas to PQMS, preserves countable
coproducts.

Proof. Remember that the coproduct σ-algebra is:

Bš
iPIpXi,Biq :“

#
D Ď

ž

iPI

Xi

ˇ̌
ˇ̌
ˇ @i P I. incl´1

i pDq P Bi

+
.

Since the inclusion are measurable:

inclk : pXk,Bkq Ñ
ž

iPI

pXi,Biq,

we get by applying F the quasi-measurable maps:

inclk : pXk,FpBkqq Ñ F

˜
ž

iPI

pXi,Biq

¸
.

By the universal property of the coproduct we then have a quasi-measurable (identity)
map:

id :
ž

iPI

pXi,FpBiqq Ñ F

˜
ž

iPI

pXi,Biq

¸
.
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4 The Category of Patchable Quasi-Measurable Spaces

Since the rhs is a patchable quasi-measurable space we then also get the well-defined
quasi-measurable map:

id : L

˜
ž

iPI

pXi,FpBiqq

¸
Ñ F

˜
ž

iPI

pXi,Biq

¸
.

This shows the inclusion:

L

˜
ž

iPI

FpBiq

¸
Ď F

`
Bš

iPI pXi,Biq

˘
.

To show the reverse inclusion consider:

α P F
`
Bš

iPI pXi,Biq

˘
“ Meas

˜
pΩ,BΩq,

˜
ž

iPI

Xi,B
š

iPI Xi

¸¸
.

Since Xk P Bš
iPI pXi,Biq we get that:

Ck :“ α´1 pXkq P BΩ.

We can then define:

αk : Ω Ñ Xk, αk|Ck
:“ α|Ck

, αk|ΩzCk
:“ xk P Xk.

Since α is measurable and Ck P BΩ then also αk is measurable. So αk P FpBkq for k P I.
By definition of the coproduct in QMS we get for every k P I that:

inclk ˝ αk P
ž

iPI

FpBiq.

Furthermore, we get by definition of L that:

α “
9ď

iPI

pincli ˝ αi|Ci
q P L

˜
ž

iPI

FpBiq

¸
.

This shows that:

F
`
Bš

iPI pXi,Biq

˘
Ď L

˜
ž

iPI

FpBiq

¸
,

and thus the claim.

Remark 4.13. The strongest argument to work inside the category of patchable quasi-
measurable spaces PQMS rather than inside the category of all quasi-measurable spaces
QMS is in fact Lemma 4.12, which asserts that when going from Meas to PQMS via
the functor F one preserves countable coproducts (as well as all products):

PQMSž

nPN

pXn,FpBnqq “ L

˜
QMSž

nPN

pXn,FpBnqq

¸
“ F

˜
Measž

nPN

pXn,Bnq

¸
.

Furthermore, one does not loose anything over QMS as one also has all (small) limits
and colimits in PQMS, which is also cartesian closed. On the downside one needs
to require and check the condition from Definition 4.2 through all constructions and
examples, although that condition does not seem to play any role besides Lemma 4.12,
which also states how to recover from the disalignment by applying the reflector L.
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4 The Category of Patchable Quasi-Measurable Spaces

4.4 Patchable Probability Spaces

In this subsection we study under which conditions our probability monads become
patchable.

Lemma 4.14 (Spaces of probability measures G, Q, K). Let pX ,XΩq be a (not neces-
sarily patchable) quasi-measurable space. Then the following points hold:

1. pGpX q,GpX qΩq is patchable.

2. pQpX q,QpX qΩq is patchable.

If pX ,XΩq is patchable then also the following holds:

3. pKpX q,KpX qΩq is patchable.

Proof. Since GpX qΩ “ FpBGpX qq, where:

BGpX q :“ σ
` 
ev´1

A ppt, 1sq
ˇ̌
A P BX , t P R

(˘
,

it is clear by Example 4.3 that pGpX q,GpX qΩq is patchable.
For QpX q first note that pr0, 1s, r0, 1sΩq “ pr0, 1s,FpBr0,1sqq is patchable by Example 4.3,
and thus by Lemma 4.7 also r0, 1sBX . Since QpX q carries the subspace quasi-measurable
space structure of r0, 1sBX by Lemma 4.4 also pQpX q,QpX qΩq is patchable.
Now assume that pX ,XΩq is patchable.
KpX q carries the quotient quasi-measurable space structure of XΩ ˆ QpΩq along the
push-forward map pf. Since X is patchable so is XΩ by Lemma 4.7. By the point
above QpΩq is patchable as well. By Lemma 4.5 then also their product XΩ ˆ QpΩq
is patchable. As a quotient of the latter by Lemma 4.4 also the space pKpX q,KpX qΩq
becomes patchable.

Lemma 4.15 (The space of probability measures P). Let pX ,XΩq be a patchable quasi-
measurable space and assume that there exists an isomorphism of measurable spaces:

ž

nPN

pΩ,BΩq – pΩ,BΩq.

Further assume that ΩΩ “ FpBΩq. Then the space of push-forward probability measures
pPpX q,PpX qΩq is a patchable quasi-measurable space.

Proof. Consider a measurable disjoint union decomposition Ω “ 9
Ť
jPJ Cj with countable

J Ď N and νj “ αj,˚κj P PpX qΩ with αj P XΩ and κj P QpΩqΩ. By the made assumption
we also have a countable measurable disjoint union decomposition:

Ω “
9ď

nPN

Dn,
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4 The Category of Patchable Quasi-Measurable Spaces

with measurable isomorphisms: Ω – Dn for n P N. Consider those measurable isomor-
phisms composed with the measurable inclusion map:

dn : Ω – Dn ãÑ Ω.

Then we get that dn P FpBΩq “ ΩΩ.
Define the map:

κ :“
9ď

jPJ

dj,˚κj |Cj
: Ω “

9ď

jPJ

Cj Ñ Q

˜
9ď

nPN

Dn

¸
“ QpΩq.

Note that each dj,˚κj is supported on Dj.
To check that κ P QpΩqΩ let ϕ P ΩΩ and E P BΩˆΩ. Then the map:

ϕ´1pCiq Q ω ÞÑ κpϕpωqqpEωq “ di,˚κipϕpωqqpEωq “ κipϕpωqqppidΩ, diq
´1pEqωq,

is seen to be measurable by the assumption that κi P QpΩqΩ, thus κ P QpΩqΩ.
We now pick a fixed point ω0 P Ω and x0 P X and define for i P J :

d´
i : Ω “

9ď

nPN

Dn Ñ Ω, d´
i |Di

:“ d´1
i , d´

i |Dj
:“ ω0, j ‰ i.

For n P NzJ we define the constant maps: d´
n :“ ω0 and αn :“ x0. Then all d´

n are
measurable and thus d´

n P FpBΩq “ ΩΩ. Since all αn P XΩ we get that αn ˝ d´
n P XΩ for

all n P N. With these settings we can then put:

α :“
9ď

nPN

pαn ˝ d´
n q|Dn

: Ω “
9ď

nPN

Dn Ñ X .

It is then α P XΩ since XΩ is patchable. Furthermore, for ω P Ci, i P J , we get:

α˚κpωq “ αi,˚ d
´
i,˚ di,˚ κipωq “ αi,˚κipωq “ νipωq.

So we get that:
9ď

jPJ

νj|Cj
“ α˚κ P PpX qΩ,

with α P XΩ and κ P QpΩqΩ, which shows the claim.

Remark 4.16. It has not yet been investigated under which conditions pRpX q,RpX qΩq
or pSpX q,SpX qΩq become patchable. We will see in Theorem 5.29 however that for the
category of quasi-universal spaces QUS we have:

S “ P “ R “ K,

which then will be covered by the results above.
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5 The Category of Quasi-Universal Spaces

5 The Category of Quasi-Universal Spaces

In this section we specialize to the category of quasi-measurable spaces with the special
choice of a sample space. If the sample space Ω is an uncountable Polish space, like
R or the Hilbert cube r0, 1sN, endowed with the σ-algebra of all universally measurable
subsets then we call the corresponding quasi-measurable spaces quasi-universal spaces
in analogy to quasi-Borel spaces from [HKSY17] and the corresponding category the
category of quasi-universal spaces QUS. We will say more when going through the
subsections.

5.1 Completions of Sigma-Algebras

Since the σ-algebras of quasi-universal spaces will turn out to be intersection of (Lebesgue)
complete σ-algebras we here recap the notion of (Lebesgue) completions of σ-algebras
and show how measurable maps and Markov kernels behave under such completions.

Definition 5.1 (Completions). Let X be a set and E a set of subsets of X , e.g. E a
σ-algebra of subsets of X .

1. We abbreviate the set of all probability measures of pX , σpEqq as:

GpX , Eq :“ GpX , σpEqq :“ tµ : σpEq Ñ r0, 1s probability measureu .

2. For any non-empty subset P Ď GpX ,BX q with E Ď BX we define the P-completion
of E as:

pEqP :“
č

µPP

pσpEqqµ|σpEq
,

i.e. the intersection of all Lebesgue completions of the σ-algebra σpEq generated by
E w.r.t. the restrictions of every probability measure µ in P to σpEq.

3. For P “ H we put:
pEqH :“ tA Ď X u ,

the power-set of X .

4. The universal completion of E is defined as:

pEqG :“ pEqGpX ,Eq :“
č

µPGpX ,σpEqq

pσpEqqµ ,

i.e. pEqG “ pEqP with the special choice P :“ GpX , Eq.

5. We say that E or pX , Eq, resp., is P-complete if E “ pEqP .

6. We say that E or pX , Eq, resp., is universally complete if E “ pEqG.
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5 The Category of Quasi-Universal Spaces

Lemma 5.2. Let f : pX ,BX q Ñ pY ,BYq be a measurable map and

f˚ : GpX ,BX q Ñ GpY ,BYq, µ ÞÑ f˚µ,

the (measurable) induced map. Let Q Ď GpY ,BYq and P Ď pf˚q´1pQq subsets. Then f

is also pBX qP-pBYqQ-measurable. In particular, this holds for:

f : pX , pBX qpf˚q´1pQqq Ñ pY , pBYqQq, f : pX , pBX qPq Ñ pY , pBYqf˚pPqq.

Proof. First remember that for every µ P GpX ,BX q we have that f is pBX qµ-pBYqf˚µ-
measurable. Then for µ P P we have by assumption that f˚µ P Q. So for B P pBYqQ Ď
pBYqf˚µ we get that f´1pBq P pBX qµ for all µ P P, thus f´1pBq P pBX qP .

Proposition 5.3 (See [For21] Thm. B.42 and [Res77] Thm. 4). Let pX ,BX q be a mea-
surable space and GpX ,BX q the space of all probability measures on pX ,BX q endowed
with the smallest σ-algebra BGpX ,BX q such that all evaluation maps:

evA : GpX ,BX q Ñ r0, 1s, µ ÞÑ µpAq,

are measurable for all A P BX . Let P Ď GpX ,BX q be a fixed non-empty subset of
probability measures endowed with a σ-algebra BP that contains the subspace σ-algebra
BGpX ,BX q|P (e.g. BP “ BGpX ,BX q|P).4 Consider the map:

Mι : GpP,BPq
ι˚ÝÑ G

`
GpX ,BX q,BGpX ,BX q

˘ M
ÝÑ GpX ,BX q, MιpπqpAq :“

ż

P

evApµq πpdµq,

and let M Ď M´1
ι pPq Ď GpP,BPq be a subset5.

Then for every B P pBX qP the evaluation map:

evB : P Ñ r0, 1s, µ ÞÑ µpBq,

is π-measurable for every π P M. In short:

evB : pP, pBPqMq Ñ
`
r0, 1s,Br0,1sq

˘
, µ ÞÑ µpBq,

is measurable for every B P pBX qP . Or, even shorter, the inclusion map

pP, pBPqMq ãÑ GpX , pBX qPq

is well-defined and measurable.
In particular, the map:

evB :
`
GpX ,BX q, pBGpX ,BX qqG

˘
Ñ

`
r0, 1s,Br0,1sq

˘
, µ ÞÑ µpBq,

is (universally) measurable for all B P pBX qG.

4So the inclusion map ι : pP ,BPq
ι

ãÝÑ
`
GpX ,BX q,BGpX ,BX q

˘
is measurable.

5We can allow for M “ H if we define pBPqH :“ tD Ď Pu to be the power-set of P in the following.
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Proof. Let α P R and π P M. We need to show that ev´1
B ppα, 1sq P pBPqπ. Now let

ν :“ Mιpπq P P, which for A P BX is given by:

νpAq “ MιpπqpAq :“

ż

P

evApµq πpdµq.

Note that the map P
ι

ãÝÑ GpX ,BX q
evAÝÝÑ r0, 1s is measurable for A P BX and the above

integral is well-defined.
Since B P pBX qP Ď pBX qν there exist A1, A2 P BX such that:

A1 Ď B Ď A2, νpA2zA1q “ 0.

The last condition shows that:

0 “ νpA2zA1q “

ż

P

evA2zA1
pµq πpdµq.

Since evA2zA1
pµq ě 0 and evA2zA1

: P Ñ r0, 1s is measurable we have that:

C :“ ev´1
A2zA1

pp0, 1sq “
 
µ P P

ˇ̌
evA2zA1

pµq ą 0
(

P BP , and πpCq “ 0.

We now have the inclusions:

ev´1
A1

ppα, 1sq Ď ev´1
B ppα, 1sq Ď ev´1

A2
ppα, 1sq,

with ev´1
Ai

ppα, 1sq P BP , i “ 1, 2, and:

ev´1
A2

ppα, 1sqzev´1
A1

ppα, 1sq Ď ev´1
A2zA1

pp0, 1sq “ C.

Since πpCq “ 0 we also have that:

π
`
ev´1

A2
ppα, 1sqzev´1

A1
ppα, 1sq

˘
“ 0.

This shows that ev´1
B ppα, 1sq P pBPqπ. Since this holds for all π P M we get that:

ev´1
B ppα, 1sq P pBPqM.

This shows that the map:

evB : pP, pBPqMq Ñ
`
r0, 1s,Br0,1sq

˘
,

is measurable for all B P pBX qP with M Ď M´1
ι pPq.

Theorem 5.4 (Markov kernels under completions). Let κ : pZ,BZq Ñ GpX ,BX q be
a (measurable) Markov kernel and P Ď GpX ,BX q a subset of probability measures such
that:

κpZq :“ tκpzq | z P Zu Ď P.
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Then the following induced Markov kernel is well-defined and measurable:

κ : pZ, pBZqpκ˝q´1pPqq Ñ GpX , pBX qPq,

where we endow the spaces of probability measures with the smallest σ-algebras such
that all evaluation maps evA are measurable where A is running through the indicated
σ-algebras, and where κ˝ is the following induced (measurable) “bind” map:

κ˝ : GpZ,BZq
κ˚ÝÑ G

`
GpX ,BX q,BGpX ,BX q

˘ M
ÝÑ GpX ,BX q, κ˝pνqpAq “

ż
κpzqpAq νpdzq.

In particular, we have the corner cases for P “ κpZq and for P “ GpX ,BX q:

κ : pZ, pBZqpκ˝q´1pκpZqqq Ñ GpX , pBX qκpZqq, κ : pZ, pBZqGq Ñ GpX , pBX qGq.

Proof. We use Lemma 5.2 and Proposition 5.3 with the choices:

BP :“ BGpX ,BX q|P , M :“ M´1
ι pPq Ď GpP,BPq.

Since κpZq Ď P the map κ factorizes into the following measurable maps:

κ : pZ,BZq
κ
ÝÑ pP,BPq

ι
ãÝÑ

`
GpX ,BX q,BGpX ,BX q

˘
.

This induces the following measurable factorization of κ˝:

κ˝ : GpZ,BZq
κ˚ÝÑ GpP,BPq

ι˚ÝÑ G
`
GpX ,BX q,BGpX ,BX q

˘ M
ÝÑ GpX ,BX q,

showing that: Q :“ pκ˝q´1pPq “ pκ˚q´1pMq.
Then we get a commutative diagram of measurable maps:

pZ, pBZqQq
� _

idZ
��

κ // pP, pBPqMq
� _

idP
��

� � incl // GpX , pBX qPq

res

��
pZ,BZq κ

// pP,BPq �
�

ι
// GpX ,BX q.

Indeed, the upper left map is well-defined and measurable by Lemma 5.2 using κ˚pQq Ď
M and and the upper right map by Proposition 5.3 using M Ď M´1

ι pPq. Since the
composition of the upper maps is our induced Markov kernel, the claim is shown.

5.2 Quasi-Universal Spaces

5.2.1 The Sample Space for Quasi-Universal Spaces

The category of quasi-universal spaces QUS is per definition the category of quasi-
measurable spaces QMS with the following special choice of a sample space:

pΩ,BΩ,Ω
Ωq “

˜
RN,

˜
â
nPN

BR

¸

G

,FpBΩq

¸
,

73
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where BΩ is the σ-algebra of all universally measurable subsets of Ω and:

ΩΩ “ FpBΩq “ Meas ppΩ,BΩq, pΩ,BΩqq .

Since there exists a (Borel) isomorphism RN – R we can equally well use:

pΩ,BΩ,Ω
Ωq “ pR, pBRqG ,FpBΩqq,

or any other uncountable Polish space, e.g. the Hilbert cube, endowed with the σ-algebra
of all universally measurable subsets. The reason we chose RN is that it is rather elemen-
tary to see that ΩˆΩ – Ω (in Meas) without the use of complicated Borel isomorphisms.
It is also easy to model countably many random experiments with this sample space,
which could capture all stochasticity in reality.

The isomorphism ΩˆΩ – Ω shows that the probability monads pQ, δ,Mq, pK, δ,Mq ,
pP, δ,Mq, pR, δ,Mq, pS, δ,Mq are all strong on the cartesian closed category pQUS,ˆ, 1q
by Theorems 3.16 and 3.25. In Theorem 5.29 we will ses that we can actually identify
on pQUS,ˆ, 1q:

pS, δ,Mq “ pP, δ,Mq “ pR, δ,Mq “ pK, δ,Mq.

So only the strong probability monads pP, δ,Mq and pQ, δ,Mq remain of interest on
pQUS,ˆ, 1q.

The only difference to the sample space pR,BR,FpBRqq of the category of quasi-Borel
spaces QBS from [HKSY17] is then the use of the universal completion pBRqG of the
Borel σ-algebra BR. The advantage of using universally complete sample spaces is that
the σ-algebras on the spaces pX ,XΩq, which come as the push-forward of BΩ, can more
explicitely be described as intersections of complete σ-algebras, see Lemma 5.5:

BpXΩq “ XΩ
˚ BΩ “

č

αPXΩ

µPQpΩq

α˚pBRqµ.

This relation will be even more accentuated when one looks at countably separated
quasi-universal spaces, see Theorem 5.16. Note that the push-forward α˚BR would push
the σ-algebra BR onto the image αpΩq and then extend everything by null-sets outside
the image. So it is natural to require that the σ-algebra also contains all null-sets inside
the image αpΩq. So working with complete σ-algebras pBRqµ and their push-forward
σ-algebras α˚pBRqµ, which are then also complete, harmonizes things.

Another difference between QBS and QUS is that for quasi-universal spaces we do not
require the spaces to be patchable, see Definition 4.2, in contrast to quasi-Borel spaces,
which by definition in [HKSY17] are always patchable. The only reason, for our purposes
here, that one would require patchable spaces is to preserve countable coproducts during
the transition from measurable spaces to quasi-universal spaces, see Lemma 4.12. For
all other purposes it seems more general and simple to proceed without that property.
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5.2.2 The Sigma-Algebras of Quasi-Universal Spaces

In this subsection we will give a description of the induced σ-algebras of quasi-universal
spaces in terms of intersections of complete σ-algebras.

Lemma 5.5 (The σ-algebras of quasi-universal spaces). Let pX ,XΩq be a quasi-universal
space. Then BpXΩq is universally complete and complete w.r.t. the set of push-forward
probability measures:

PpX ,XΩq :“
 
α˚µ : BpXΩq Ñ r0, 1s

ˇ̌
α P XΩ, µ P GpΩ,BΩq6

(
,

i.e. we have:

BpXΩq “ BpXΩqG “ BpXΩqPpX ,XΩq “
č

µPGpΩ,BΩq
αPXΩ

α˚pBΩqµ.

Note that each α˚pBΩqµ is a complete σ-algebra on X w.r.t. the push-forward probability
measure α˚µ.

Proof. Since the set of all probability measures contains all push-forward probability
measures:

GpX ,BpXΩqq “: GpX ,XΩq Ě PpX ,XΩq,

we have the chain of inclusions:

BpXΩqPpX ,XΩq Ě BpXΩqG Ě BpXΩq

“
č

αPXΩ

α˚BΩ

“
č

αPXΩ

α˚pBΩqG

“
č

αPXΩ

α˚

č

µPGpΩ,BΩq

pBΩqµ

“
č

αPXΩ

č

µPGpΩ,BΩq

α˚pBΩqµ

Ě
č

αPXΩ

č

µPGpΩ,BΩq

pBpXΩqqα˚µ

“
č

νPPpX ,XΩq

pBpXΩqqν

“ BpXΩqPpX ,XΩq.

This shows equality and thus the claim.

Remark 5.6. If we take Ω “ R and BR Ď BΩ the Borel σ-algebra, we get:

BpXΩq “
č

αPXΩ

č

µPGpR,BRq

α˚pBRqµ.

6We will see in Lemma 5.28 that GpΩ,BΩq “ QpΩ,ΩΩq as sets and quasi-universal spaces and the
ambiguity in the notation for PpX ,XΩq will disappear.
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5.3 Countably Separated Quasi-Universal Spaces

In this subsection we study countably separated quasi-universal spaces. The reason is
that those spaces have a very convenient descriptions for their σ-algebra. It turns out
that such countably separated quasi-unviersal spaces pX ,XΩq will satsify:

BpXΩq “ pEq
PpX ,XΩq ,

for every countable subset E Ď BpXΩq that separates the points of X . Surprisingly, that
means that those σ-algebras are then automatically countably generated up to some
form of completion. Many things will simplify for those spaces.

5.3.1 Countably Separated Spaces

Here will go through the definition of countably separated spaces and variants thereof.

Definition 5.7. Let X be a set and E a set of subsets of X .

1. pX , Eq, or just E , is called separated if E separates the points of X . This means
that for every x1, x2 P X with x1 ‰ x2 there exists an A P E such that x1 P A and
x2 R A, or, x1 R A and x2 P A.

2. pX , Eq, or just E , is called a countably separated if there exists a countable E 1 Ď E

that separates the points of X .

3. pX , Eq, or just E , is called a universally countably separated if pX , pEqGq is count-
ably separated.

4. A quasi-measurable space pX ,XΩq is called (countably) separated if pX ,BpXΩqq
is in the above definition.

5. A quasi-measurable space pX ,XΩq is called quasi-separated if:

∆X :“ tpx, xq P X ˆ X |x P X u P BXˆX :“ BpXΩ ˆ XΩq.

Remark 5.8. 1. Every countably separated (quasi-)measurable space is separated and
universally countably separated.

2. Every countably separated quasi-measurable space is also quasi-separated.

3. The countable product of countably separated (quasi-)measurable spaces is countably
separated.

Proof. The first claim is clear.
For the second claim note that by [Bog07] Thm. 6.5.7 for countably separated spaces we
have:

∆X P BX b BX Ď BXˆX .

For the third claim take E :“ tpr´1
n pAnq |n P N, An P Enu on the product if En is countable

and separates the points of Xn, n P N.
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Definition 5.9 (Separated quotient of a (quasi-)measurable space). Let pX ,BX q, pX ,XΩq,
resp., be a (quasi-)measurable space. Then the quotient:

t : X ։ X̃ :“ X {„,

together with the quotient σ-algebra BX̃ :“ t˚BX , the quotient functions X̃Ω :“ t ˝
XΩ, resp., will be called the separated quotient of pX ,BX q, pX ,XΩq, resp. Here the
equivalence relation is given by:

x1 „ x2 : ðñ @A P BX . tx1, x2u Ď A _ tx1, x2u Ď Ac.

Also note for the quasi-measurable space pX ,XΩq that we take BX :“ BpXΩq and that:

t˚BX “ t˚BpXΩq “ Bpt ˝ XΩq “ BpX̃Ωq “ BX̃ .

Remark 5.10. Let pX ,BX q, pX ,XΩq, resp., be a (quasi-)measurable space. Then the
quotient map of the separated quotient:

t : X ։ X̃ :“ X {„,

induces a bijection:
t˚ : BX̃ Ñ BX , Ã ÞÑ t´1pÃq.

Furthermore, every section s of t, which exists by the axiom of choice:

s : X̃ Ñ X , tpspx̃qq “ x̃,

is measurable.

The following Lemmata might be of interest to understand the role of countably
separated quasi-universal spaces better:

Lemma 5.11. Let pY ,YΩq be a quasi-universal space. Then the following statements
are equivalent:

1. pY ,YΩq is countably separated.

2. There exists an injective measurable map:

ι : pY ,BpYΩqq ãÑ pR,BRq.

3. There exists an injective measurable map:

ι : pY ,BpYΩqq ãÑ pΩ,BΩq.

4. There exists an injective quasi-measurable map:

ι : pY ,YΩq ãÑ pΩ,ΩΩq.
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5. There exists a mono-morphism pY ,YΩq ãÑ pΩ,ΩΩq in QUS.

Proof. 4. ðñ 5.: These are the same statements.
1. ðñ 2. ðñ 3.: This follows from [Bog07] Thm. 6.5.7 and the fact that BpYΩq is
universally complete by Lemma 5.5.
3. ùñ 4.: Apply functor F and use YΩ Ď FBpYΩq.
4. ùñ 3.: Apply functor B.

Lemma 5.12. Let pY ,YΩq be a quasi-universal space. Then the following statements
are equivalent:

1. There exists a countably generated σ-algebra EY that separates the points of Y such
that FpEYq “ YΩ.

2. There exists a universally countably generated and separated σ-algebra EY on Y

such that FpEYq “ YΩ.

3. There exists an injective quasi-measurable map:

ι : pY ,YΩq ãÑ pΩ,ΩΩq,

such that: YΩ “ i˚ΩΩ.

4. There exists an embedding pY ,YΩq ãÑ pΩ,ΩΩq in QUS.

Proof. 3. ðñ 4.: The first is the definition of the latter.
Now let BR Ď BΩ be the Borel σ-algebra of R.
2. ðñ 3.: Since BΩ is universally complete we have: FpEYq “ FppEYqGq.
1. ùñ 3.: EY induces an injective measurable map:

ι : pY , EYq ãÑ pR,BRq,

such that EY “ ι˚BR, see [Bog07] Thm. 6.5.8. Applying the functor F gives us an
injective quasi-measurable map:

ι : pY ,YΩq “ pY ,FpEYqq ãÑ pR,FpBRqq “ pΩ,ΩΩq.

So we have the inclusion YΩ Ď ι˚ΩΩ. For the reverse inclusion let: β P ι˚ΩΩ. Then
β P rΩ Ñ Ys with:

ι ˝ β P ΩΩ “ FpBRq “ Meas ppΩ,BΩq, pR,BRqq .

But this means that β is BΩ-ι˚BR-measurable. Since EY “ ι˚BR we have that β P FpEYq.
So we get ι˚ΩΩ Ď FpEYq “ YΩ.
3. ùñ 1.: We assume that we have an injective quasi-measurable map:

ι : pY ,YΩq ãÑ pΩ,ΩΩq,
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such that: YΩ “ i˚ΩΩ. Applying the functor B to it gives an injective measurable map:

ι : pY ,BpYΩqq ãÑ pΩ,BΩq.

We put:
EY :“ ι˚BR Ď ι˚BΩ Ď BpYΩq.

Then clearly EY separates the points of Y . Furthermore, we have:

YΩ Ď FBpYΩq Ď FpEYq “ FppEYqGq.

For the reverse inclusion let β P FpEYq “ FppEYqGq. Since ι is EY-BR-measurable it is
also pEYqG-BΩ-measurable. So the composition ι ˝ β is BΩ-BΩ-measurable. So ι ˝ β P ΩΩ

and thus β P ι˚ΩΩ. This shows: FpEYq Ď ι˚ΩΩ “ YΩ.

5.3.2 The Sigma-Algebra of Countably Separated Quasi-Universal Spaces

In this subsection we will highlight the structure of the induced σ-algebra for countably
separated quasi-universal spaces.

Lemma 5.13. Let pZ,BZ , µq be a perfect probability space and pX ,BX q be a countably
separated measurable space and f : Z Ñ X a measurable map. Then we have:

f˚pBZqµ “ pBX qf˚µ,

where the index refers to the (Lebesgue) completion w.r.t. the corresponding probability
measure.

Proof. By the measurability of f we always have the inclusion:

f˚pBZqµ Ě pBX qf˚µ.

Since pX ,BX q is countably separated by [Bog07] Thm. 6.5.7 there exists an injective
BX -BR-measurable map:

j : X Ñ R.

So we have the chain of inclusions:

j˚f˚pBZqµ Ě j˚pBX qf˚µ Ě pBRqj˚f˚µ.

Since µ is perfect we have the equality:

j˚f˚pBZqµ “ pBRqj˚f˚µ,

which then implies the equality:

j˚f˚pBZqµ “ j˚pBX qf˚µ.

Since j is injective we get:

f˚pBZqµ “ j˚j˚f˚pBZqµ “ j˚j˚pBX qf˚µ “ pBX qf˚µ.
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This shows the claim.
We quickly check that for an injective map j : X Ñ Y we always have:

j˚j˚B “ B.

First, let C P j˚j˚B. Then there exists B P j˚B such that C “ j´1pBq. By definition of
j˚B we have that:

C “ j´1pBq P B.

This shows:
j˚j˚B Ď B.

Now let A Ď B then by the injectivity of j:

j´1pjpAqq “ A P B.

So by definition of j˚B we get that jpAq P j˚B and thus:

A “ j´1pjpAqq P j˚j˚B.

This shows:
B Ď j˚j˚B.

and thus the claim.

Lemma 5.14. Let pΩ,BΩq be a measurable space and P be a set of probability measures
on pΩ,BΩq such that:

BΩ Ě pBΩq
P
:“

č

µPP

pBΩqµ .

Let pX ,BX q be a measurable space and F Ď Meas ppΩ,BΩq, pX ,BX qq be any subset of
measurable maps. Let Q be any set of probability measures on pX ,BX q that contains the
push-forward probability measures:

Q Ě PpFq :“ tα˚µ : BX Ñ r0, 1s |α P F , µ P Pu .

Then we have the inclusion:
pBX q

Q
Ď BpFq.
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Proof. We have the following chain of inclusions:

BpFq :“
 
A Ď X

ˇ̌
@α P F . α´1pAq P BΩ

(

“
č

αPF

α˚BΩ

Ě
č

αPF

α˚

č

µPP

pBΩqµ

“
č

αPF

č

µPP

α˚ pBΩqµ

Ě
č

αPF

č

µPP

pBX qα˚µ

“
č

νPPpFq

pBX qν

Ě
č

νPQ

pBX qν

“: pBX q
Q
.

Proposition 5.15. Let pΩ,BΩq be a measurable space and P be a set of perfect probabil-
ity measures on pΩ,BΩq. Let pX ,BX q be a countably separated measurable space and E Ď
BX be any countable subset that separates the points of X . Let F Ď Meas ppΩ,BΩq, pX ,BX qq
be any subsets of measurable maps. We abbreviate the set of push-forward measures:

PpFq :“ tα˚µ : BX Ñ r0, 1s |α P F , µ P Pu .

Then we have the equalities:

pEq
PpFq “ pBX q

PpFq “ BpFqPpFq,

where the index PpFq refers to the intersections of all (Lebesgue) completions w.r.t.
ν P PpFq.
If, furthermore, we have that BΩ is complete w.r.t. P, i.e. that:

BΩ “ pBΩq
P
:“

č

µPP

pBΩqµ ,

then we also get the equality:
BpFq “ pEq

PpFq .
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Proof. We clearly have the chain of inclusions and equalities:

E Ď BX Ď BpFq :“
 
A Ď X

ˇ̌
@α P F . α´1pAq P BΩ

(

“
č

αPF

α˚BΩ

Ď
č

αPF

α˚pBΩqP

“
č

αPF

α˚

č

µPP

pBΩqµ

“
č

αPF

č

µPP

α˚ pBΩqµ

“
č

αPF

č

µPP

pEqα˚µ

“
č

νPPpFq

pEqν

“ pEq
PpFq ,

where the equality: α˚ pBΩqµ “ pEqα˚µ
comes from Lemma 5.13 and the fact that E is

countably separated and that every α P F is a BΩ-σpEq-measurable map and that every
µ P P is perfect. Together we get the inclusions:

E Ď BX Ď BpFq Ď pEq
PpFq ,

where the latter is an equality if BΩ “ pBΩq
P
. Taking the completions w.r.t. PpFq we

get:
pEq

PpFq Ď pBX q
PpFq Ď BpFqPpFq Ď pEq

PpFq ,

which imply the equalities:

pEq
PpFq “ pBX q

PpFq “ BpFqPpFq.

This shows the claim.

Theorem 5.16. Let pX ,XΩq be a countably separated quasi-universal space. Then we
have:

BpXΩq “ pEq
PpX ,XΩq ,

for every countable subset E Ď BpXΩq that separates the points of X , where:

PpX ,XΩq :“
 
α˚ν : BpXΩq Ñ r0, 1s

ˇ̌
α P XΩ, ν P GpΩ,BΩq6

(
.

Proof. This follows directly from Proposition 5.15 together with the fact that every
probability measure on pΩ,BΩq is perfect and pΩ,BΩq is universally complete.
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Corollary 5.17. Let pX ,XΩq be a countably separated quasi-universal space. Then the
quasi-universal space of probability measures:

PpX ,XΩq

is countably separated as well.

Proof. By Theorem 5.16 we have that BpXΩq “ pEq
PpX ,XΩq for a countable algebra

E Ď BpXΩq. Then we have that:

EP :“
 
ev´1

A ppt, 1sq
ˇ̌
A P E , t P Q

(
Ď B

`
PpX ,XΩqΩ

˘

is countable and separates the points of PpX ,XΩq. Indeed, two measures µ1, µ2 agree on
σpEq if they agree on the generating π-system E . Since µ1, µ2 P PpX ,XΩq they uniquely
extend to BpXΩq “ pEq

PpX ,XΩq and thus are then equal there as well.
Note that the above set EP really lies inside the σ-algebra B

`
PpX ,XΩqΩ

˘
as the evalu-

ation maps evA are measurable.

5.4 Universal (Quasi-)Measurable Spaces

In this section we will gather properties of universal measurable spaces and universal
quasi-universal spaces. The former were studied in [For21]. They will be the most well-
behaved quasi-universal spaces and play a similar role in the category of quasi-universal
spaces QUS as standard Borel measurable spaces play inside the category of measurable
spaces Meas or quasi-Borel spaces QBS. They also allow us to translate (some) results
from Meas to QUS. We will see that this mainly entails checking which properties of
standard Borel measurable spaces are preserved under universal completion.

5.4.1 Universal Measurable Spaces

Here we quickly review universal measurable spaces, see [For21] Appendix B, which are
measurable spaces that are isomorphic to a universally measurable subset of R, thus
generalizing standard Borel measurable spaces and analytic measurable spaces. One
design choice one has to make is if one explicitely wants their σ-algebra, per definition,
to be universally complete or if one implicitely builds this into the definition. Since
we do not want to study more (co)reflexive subcategories of Meas, here given by the
universal completion, and we want to be able to say: “Standard and analytic measur-
able spaces are universal.” and “Countable products of universal measurable spaces are
universal.” (without changing the product-σ-algebra), etc., we allow for non-universally
complete universal measurable spaces, which then get their convenient properties only
after universal completion.

Definition/Lemma 5.18 (Universal measurable spaces, see [For21] Appendix B). Let
BR be the Borel σ-algebra on R and pΩ,BΩq “ pR, pBRqGq its universal completion. A
measurable space pX ,BX q is called universal measurable space if it satisfies any of the
following equivalent statements:
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1. There exist Z P BΩ and an isomorphism of measurable spaces:

pX , pBX qGq – pZ,BΩ|Zq.

2. pX ,BX q is universally countably generated, (universally countably) separated and
perfect (i.e. every probability measure µ P GpX ,BX q is perfect).

3. There exists a countable subset E Ď pBX qG that separates the points of X such that
pEqG “ pBX qG and every probability measure µ P GpX , Eq is perfect.

4. pX , pBX qGq is a retract of pΩ,BΩq in Meas, i.e. there are measurable maps i :

pX , pBX qGq Ñ pΩ,BΩq and r : pΩ,BΩq Ñ pX , pBX qGq such that r ˝ i “ idX .

Proof. 2. ðñ 3.: This is just an explicit reformulation. Note that if pEqG “ pBX qG
then we have the equality of sets:

GpX , Eq “ GpX , pEqGq “ GpX , pBX qGq “ GpX ,BX q.

Also note that a probability measure is perfect if and only if its completion is perfect.
1. ùñ 4.: Let i be the composition of the measurable isomorphism and the measurable
inclusion map:

i : pX , pBX qGq – pZ,BΩ|Zq ãÑ pΩ,BΩq.

Define the map r via:

r : pΩ,BΩq Ñ pX , pBX qGq, r|Z :“ i´1, r|ΩzZ :“ x0 P X .

Since Z P BΩ the map r is measurable. It is clear that r ˝ i “ idX . This shows that
pX , pBX qGq is a retract of pΩ,BΩq.
4. ùñ 3.: Put E :“ i˚BR Ď pBX qG . Then E is countably generated and separates
the points of X since i is injective. So pBX qG is universally countably separated. Let
µ P GpX , Eq. Furthermore, i is then E-BR-measurable and thus pEqG-BΩ-measurable.
Note that r is BΩ-pBX qG-measurable. Together we get for A P pBX qG that r´1pAq P BΩ

and thus:
A “ id´1

X pAq “ i´1pr´1pAqq P pEqG .

This shows the inclusions:
pBX qG Ď pEqG Ď pBX qG ,

and thus equality. This shows that pX ,BX q is universally countably generated. Let
µ P GpX , pBX qGq. Then i˚µ P GpΩ,BΩq. Since all probability measures on pΩ,BΩq are
perfect so is i˚µ. Since also push-forwards of perfect probability measures are perfect
also:

µ “ idX ,˚µ “ r˚pi˚µq,

is perfect. This shows that all probability measures on pX ,BX q are perfect.
3. ùñ 1.: Let E Ď pBX qG be a countably generated σ-algebra that separates the points
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of X such that pEqG “ pBX qG and pX , Eq is perfect. E then induces an injective E-BR-
measurable map i : X Ñ Ω such that E “ i˚BR (see [Bog07] Thm. 6.5.8.). If we put
Z :“ ipX q then i induces an isomorphism of measurable spaces:

pX , Eq – pZ,BR|Zq.

Since pX , Eq and thus pZ,BR|Zq is perfect we get that Z :“ ipX q P BΩ (see [Bog07] Thm.
7.5.7 or [Dar71, Saz62] Lem. 3). With Z P BΩ we get that pBR|ZqG “ BΩ|Z and thus an
measurable isomorphism:

pX , pEqGq – pZ, pBR|ZqGq “ pZ,BΩ|Zq,

with Z P BΩ.
This shows all claims.

Remark 5.19 (See [For21] Appendix B). 1. The countable product of universal mea-
surable spaces is a universal measurable space (with the product σ-algebra, i.e. in
Meas).

2. The countable coproduct (in Meas) of universal measurable spaces is a universal
measurable space.

3. Every universally measurable subset of a universal measurable space is a universal
measurable space.

4. pΩ,BΩq “ pR, pBRqGq is a universal measurable space.

5. Every standard (Borel) measurable space and every analytic measurable space is a
universal measurable space.

6. Every countable discrete measurable space is a universal measurable space.

7. Every Radon Hausdorff space that has a countable network of universally measur-
able subsets is a universal measurable space together with (the universal completion
of) its Borel σ-algebra.

8. Every Polish space is a universal measurable space together with (the universal
completion of) its Borel σ-algebra.

Notation 5.20 (The category of universally complete universal measurable spaces). We
abbreviate the full subcategory of all universally complete universal measurable spaces
inside Meas as UMeas.

Lemma 5.21. Let pX ,BX q be a universal measurable space then we get that:

pX ,BFpBX qq “ pX , pBX qGq

is the universal completion of pX ,BX q. Furthermore, we have the equality of sets:

GpX ,BX q “ GpX ,XΩq “ PpX ,XΩq :“
 
α˚ν : BpXΩq Ñ r0, 1s

ˇ̌
α P XΩ, ν P GpΩ,BΩq6

(
,

where we put: XΩ :“ FpBX q.
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Proof. By Definition/Lemma 5.18 there are measurable maps:

idX : pX , pBX qGq
i

ÝÑ pΩ,BΩq
r

ÝÑ pX , pBX qGq,

which show the inclusions and thus equalities:

pBX qG Ě i˚BΩ Ě i˚r˚pBX qG “ id˚
X pBX qG “ pBX qG .

Applying the functor BF to the above gives the measurable maps:

idX : pX ,BFpBX qq
i

ÝÑ pΩ,BΩq
r

ÝÑ pX ,BFpBX qq.

For the latter note that since BΩ is universally complete we have FpBX q “ FppBX qGq,
and also: BFpBΩq “ BFBpΩΩq “ BpΩΩq “ BΩ.
So we get the inclusions and thus equalities:

BFpBX q Ě i˚BΩ Ě i˚r˚BFpBX q “ id˚
XBFpBX q “ BFpBX q.

Together we then get:
pBX qG “ i˚BΩ “ BFpBX q.

This shows the first claim.
Now let XΩ :“ FpBX q and µ P GpX ,XΩq. Then we get:

µ “ r˚pi˚µq P PpX ,XΩq Ď GpX ,XΩq,

since r P FpBX q “ XΩ and i˚µ P GpΩ,BΩq. This shows:

GpX ,XΩq “ PpX ,XΩq.

This shows the second claim.

5.4.2 Universal Quasi-Universal Spaces

Here we now give a definition for universal quasi-universal spaces, which are now objects
in the category of quasi-universal spaces QUS. We then show how they correspond to
universal measurable spaces. This then allows us to translate properties of standard
Borel measurable spaces to universal measurable spaces to universal quasi-universal
spaces.

Definition/Lemma 5.22. A quasi-universal space pX ,XΩq will be called universal
quasi-universal space if it satisfies any of the following equivalent conditions:

1. pX ,BpXΩqq is a (universally complete) universal measurable space, see Defini-
tion/Lemma 5.18, and FBpXΩq “ XΩ.

2. There exists a σ-algebra BX on X such that pX ,BX q is a universal measurable
space, see Definition/Lemma 5.18, and XΩ “ FpBX q.
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3. pX ,XΩq is a retract of pΩ,ΩΩq in QUS, i.e. there exist quasi-measurable maps
i : pX ,XΩq Ñ pΩ,ΩΩq and r : pΩ,ΩΩq Ñ pX ,XΩq such that r ˝ i “ idX .

Proof. 3. ùñ 1.: Consider the composition of quasi-measurable maps:

idX : pX ,XΩq
i

ÝÑ pΩ,ΩΩq
r

ÝÑ pX ,XΩq.

This gives us the inclusions and thus equalities:

XΩ “ idX ˝ XΩ “ r ˝ i ˝ XΩ Ď r ˝ ΩΩ Ď XΩ.

Applying the functor B to the above gives the composition of measurable maps:

idX : pX ,BpXΩqq
i

ÝÑ pΩ,BΩq
r

ÝÑ pX ,BpXΩqq.

So pX ,BpXΩqq is a retract of pΩ,BΩq in Meas and universally complete by Lemma 5.5,
showing that pX ,BpXΩqq is a (universally complete) universal measurable space. Again,
applying the functor F to the above gives the composition of quasi-measurable maps:

idX : pX ,FBpXΩqq
i

ÝÑ pΩ,ΩΩq
r

ÝÑ pX ,FBpXΩqq.

This gives us the inclusions and thus equalities:

FBpXΩq “ idX ˝ FBpXΩq “ r ˝ i ˝ FBpXΩq Ď r ˝ ΩΩ Ď FBpXΩq.

Together we get:
XΩ “ r ˝ ΩΩ “ FBpXΩq.

1. ùñ 2.: Pick BX :“ BpXΩq.
2. ùñ 1.: If pX ,BX q is a universal measurable space with XΩ “ FpBX q then by Lemma
5.21 we have that pX ,BpXΩqq “ pX ,BFpBX qq is a (universally complete) universal
measurable space and pBX qG “ BFpBX q. Applying F to the latter we get:

XΩ “ FpBX q “ FppBX qGq “ FBFpBX q “ FBpXΩq.

1. ùñ 3.: Since pX ,BpXΩqq is a (univerally complete) universal measurable space we
by Definition/Lemma 5.18 have a composition of measurable spaces:

idX : pX ,BpXΩqq
i

ÝÑ pΩ,BΩq
r

ÝÑ pX ,BpXΩqq.

Applying the functor F to it and expoiting XΩ “ FBpXΩq gives a composition of
quasi-measurable maps:

idX : pX ,XΩq “ pX ,FBpXΩqq
i

ÝÑ pΩ,ΩΩq
r

ÝÑ pX ,FBpXΩqq “ pX ,XΩq.

This shows that pX ,XΩq is a retract of pΩ,ΩΩq in QUS.
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Lemma 5.23. Let pX ,XΩq be a universal quasi-universal space. Then we have the
equality of sets:

GpX ,XΩq “ PpX ,XΩq :“
 
α˚ν : BpXΩq Ñ r0, 1s

ˇ̌
α P XΩ, ν P GpΩ,BΩq6

(
.

Proof. This follows from Definition/Lemma 5.22 and Lemma 5.21.

Lemma 5.24. Let J be a countable set (e.g. J “ N). Then there is an isomorphism of
quasi-universal spaces (in QUS):

pΩ,ΩΩq –
ź

jPJ

pΩ,ΩΩq.

Proof. Since J is countable by [Fre15] 424C there exists an isomorphism of measurable
spaces (in Meas):

pR,BRq –
ź

jPJ

pR,BRq “

˜
ź

jPJ

R,
â
jPJ

BR

¸
.

We now apply the functor F and exploit that F as a right-adjoint preserves products,
see Lemma 2.27:

pR,FpBRqq –

˜
ź

jPJ

R,F

˜
â
jPJ

BR

¸¸
“

˜
ź

jPJ

R,
ź

jPJ

FpBRq

¸
.

Since pΩ,BΩq “ pR, pBRqGq is universally complete we have:

FpBRq “ FppBRqGq “ FpBΩq “ ΩΩ.

This gives us the desired isomorphism of quasi-universal spaces:

pΩ,ΩΩq “ pR,FpBRqq –

˜
ź

jPJ

R,
ź

jPJ

FpBRq

¸
“

˜
ź

jPJ

Ω,
ź

jPJ

ΩΩ

¸
“
ź

jPJ

pΩ,ΩΩq.

This shows the claim.

Lemma 5.25 (Countable products of universal quasi-universal spaces). Let pXj ,X
Ω
j q be

universal quasi-universal spaces for j P J for a countable index set J . Then the product
of quasi-universal spaces (in QUS):

ź

jPJ

pXj,X
Ω
j q “

˜
ź

jPJ

Xj ,
ź

jPJ

XΩ
j

¸

is again a universal quasi-universal space.
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Proof. By Definition/Lemma 5.22 we have compositions of quasi-measurable maps for
j P J :

idXj
: pXj,X

Ω
j q

ij
ÝÑ pΩ,ΩΩq

rj
ÝÑ pXj ,X

Ω
j q.

Taking the product of all those maps for j P J gives the composition of quasi-measurable
maps:

idś
jPJ Xj

:
ź

jPJ

pXj ,X
Ω
j q

pijqjPJ
ÝÝÝÝÑ

ź

jPJ

pΩ,ΩΩq
prjqjPJ
ÝÝÝÝÑ

ź

jPJ

pXj ,X
Ω
j q.

Since J is countable by Lemma 5.24 we now have an isomorphism of quasi-universal
spaces: ź

jPJ

pΩ,ΩΩq – pΩ,ΩΩq,

showing together with the above that
ś

jPJpXj ,X
Ω
j q is a retract of pΩ,ΩΩq in QUS.

This shows the claim that
ś

jPJpXj ,X
Ω
j q is also a universal quasi-universal space.

Remark 5.26 (Countable coproducts of universal quasi-universal spaces). The count-
able coproduct of universal measurable spaces is a universal measurable space. The func-
tor F only preserves countable coproducts if one reflects back to the category of patchable
quasi-universal spaces PQUS, see Lemma 4.12. So we get that if pXi,X

Ω
i q is a countable

family of universal quasi-universal spaces then

pX ,XΩq :“
PQUSž

iPI

pXi,X
Ω
i q “ L

˜
QUSž

iPI

pXi,X
Ω
i q

¸
“

˜
ž

iPI

Xi,L

˜
ž

iPI

XΩ
i

¸¸

is also a universal quasi-universal space. In other words, the countable PQUS-coproduct
of universal quasi-universal spaces is a universal quasi-universal space.

Corollary 5.27. The functors F and B from Theorem 2.16 establish an equivalence
between the full subcategory of universally complete universal measurable spaces UMeas

inside Meas and the full subcategory of universal quasi-universal spaces UQUS inside
QUS.

Proof. This immediately follows from Theorem 2.16 and Lemmata 5.18, 5.21, and 5.22.
Note that BF and FB do not change the maps. Furthermore, BF “ idUMeas, since by
Lemma 5.21:

BFpBX q “ pBX qG “ BX ,

if pX ,BX q is a universally complete universal measurable space. We also have that
FB “ idUQUS, since:

FBpXΩq “ XΩ,

by Definition/Lemma 5.22 of universal quasi-universal spaces.
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5.5 Spaces of Probability Measures for Quasi-Universal Spaces

This subsection builds on the general Subsection 3.3 of the probability monads of push-
forward probability measures. We will show here that the studied (strong) probability
monads K, P, R, S will all agree on the category of quasi-universal spaces QUS, see
Theorem 5.29. We then go on to show in Theorem 5.30 that for universal quasi-universal
spaces all defined probability spaces even agree with G and Q, as sets and as quasi-
measurable spaces, which allows us to translate properties of standard Borel measurable
spaces to universal quasi-universal spaces.

Lemma 5.28. Let pX ,XΩq be a universal quasi-universal space (e.g. pX ,XΩq “ pΩ,ΩΩq)
then we have the equality of quasi-universal spaces:

GpX ,XΩq “ QpX ,XΩq.

Proof. The inclusion QpX ,XΩq Ď GpX ,XΩq is quasi-measurable by Remark 3.5. Now
let µ P GpX ,XΩq and κ P GpX ,XΩqΩ. For D P BΩˆX and ϕ P ΩΩ we need to show that
the maps:

Ω Ñ r0, 1s, ω ÞÑ µpDωq; ω ÞÑ κpϕpωqqpDωq,

are BΩ-Br0,1s-measurable. Since the former can be viewed as a special case of the latter
we only focus on the κ case. The latter map can then be factorized as:

h : Ω
ϕˆκ
ÝÝÑ Ω ˆ GpX ,BX q

δˆpidX q˚
ÝÝÝÝÝÑ GpΩ ˆ X ,BΩ b BX q

evDÝÝÑ r0, 1s,

ω ÞÑ pδω b κpϕpωqqqpDq “ κpϕpωqqpDωq.

The left map is measurable. The middle map is measurable as the strength of the Giry
monad, see [Gir82] or also [For21] Lem. B.39. The type of measurability of the evaluation
map evD on the right depends on the kind of the subset D, see Proposition 5.3. We
need to analyse this further.
Since countable products of universal measurable spaces are universal measurable spaces
(see Remark 5.19 and Lemma 5.25) we get from Lemma 5.21:

D P BΩˆX “ BpΩΩ ˆ XΩq “ BpFpBΩq ˆ FpBX qq “ BFpBΩ b BX q “ pBΩ b BX q
G
.

Proposition 5.3 shows that evD and thus h is universall measurable, i.e. pBΩqG-Br0,1s-
measurable. Since pBΩqG “ BΩ it is even BΩ-Br0,1s-measurable. This shows that κ P
QpX ,XΩqΩ. Similarly, µ P QpX ,XΩq. This shows the wanted equality of quasi-
measurable spaces:

GpX ,XΩq “ QpX ,XΩq,

and thus the claim.

Theorem 5.29. Let pX ,XΩq be a quasi-universal space. Then we have the equality of
quasi-universal spaces:

SpX ,XΩq “ PpX ,XΩq “ RpX ,XΩq “ KpX ,XΩq.
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If, furthermore, ν “ Ur0, 1s is the uniform distribution on Ω – r0, 1s then we can
represent:

PpX ,XΩq “
 
α˚ν

ˇ̌
α P XΩ

(
, PpX ,XΩqΩ “

!
α˚φ˚ν

ˇ̌
ˇα P XΩ, φ P

`
ΩΩ

˘Ω) 7.

In particular, the following map is a well-defined (surjective) quotient map of quasi-
universal spaces:

XΩ
։ PpX ,XΩq, α ÞÑ α˚ν.

Proof. First, it is important to note that by Lemma 5.28 we have that ν P GpΩq “ QpΩq.
Next we apply Lemma 3.19: By Lemma 5.24 we have an isomorphism of quasi-universal
spaces:

Ω – Ω ˆ Ω.

By Lemma 3.19 we get the inclusions and equalities:

SpX qΩ “ RpX qΩ Ď PpX qΩ “ KpX qΩ.

Next we will argue that the following push-forward map is surjective:

pf :
`
ΩΩ

˘Ω
ˆ tνu ãÑ

`
ΩΩ

˘Ω
ˆ QpΩq Ñ QpΩqΩ.

Let κ P QpΩqΩ and φ P
`
ΩΩ

˘Ω its conditional quantile function (using the fixed isomor-
phism Ω – r0, 1s). Then it is a well known fact that κ “ φ˚ν, see e.g. [For21] Appendix
G or [Č82,Kal21]. So the map from above is surjective.
By Lemma 3.19 we then get the inclusions and equalities:

SpX qΩ “ PpX qΩ Ď RpX qΩ “ KpX qΩ.

This already shows the equalities of quasi-universal spaces:

SpX q “ PpX q “ RpX q “ KpX q.

To show that the mentioned map is a quotient map just note that:

α˚κ “ α˚φ˚ν “ pα ˝ φq˚ν,

for α P XΩ, κ P QpΩqΩ, φ P
`
ΩΩ

˘Ω and α ˝ φ P
`
XΩ

˘Ω given by:

pα ˝ φqpω1qpω2q “ α pφpω1qpω2qq .

This shows all the claims.

7We could here also directly absorb φ into α and write α P
`
XΩ

˘Ω
. We could also require α P XΩ and

restrict φ further to be a conditional quantile function, see proof.
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Theorem 5.30. Let pX ,XΩq be a universal quasi-universal space (e.g. pX ,XΩq “
pΩ,ΩΩq) then we have the equality of quasi-universal spaces:

GpX ,XΩq “ QpX ,XΩq “ PpX ,XΩq “ KpX ,XΩq “ RpX ,XΩq “ SpX ,XΩq.

Furthermore, GpX ,XΩq is also a universal quasi-universal space.

Proof. By Lemma 5.28 we have the equality of quasi-universal spaces:

GpX ,XΩq “ QpX ,XΩq.

Then by Lemma 5.23 and Lemma 3.18 we have the equality and the inclusion of sets:

PpX ,XΩq “ GpX ,XΩq, PpX ,XΩqΩ Ď GpX ,XΩqΩ.

By Theorem 5.29 we already have the equalities of quasi-universal spaces:

SpX ,XΩq “ PpX ,XΩq “ RpX ,XΩq “ KpX ,XΩq.

To show the reverse inclusion GpX ,XΩqΩ Ď PpX ,XΩqΩ let κ P GpX ,XΩqΩ. We can then
consider, similar to Lemma 5.21, an inclusion i : X ãÑ Ω with BX “ BΩ|X and:

α : Ω Ñ X , α|X :“ idX , α|ΩzX :“ x0 P X .

Since X ,ΩzX P BΩ we have that α P FpBX q “ XΩ and α ˝ i “ idX . Then i˚κ P
GpΩ,ΩΩqΩ “ QpΩ,ΩΩqΩ and:

κ “ α˚pi˚κq P PpX ,XΩqΩ.

This then shows the first claim.
For the claim that GpX ,XΩq is also a universal quasi-universal space first note that
GpX ,XΩqΩ “ F

`
BGpX ,BX q

˘
, where the σ-algebra is the smallest σ-algebra that makes all

evaluation maps measurable. It was shown in [For21] Cor. B.49 that pGpX ,BX q,BGpX ,BX qq
is a universal measurable spaces if pX ,BX q is one. Then Definition/Lemma 5.22 shows
that: `

GpX ,XΩq,GpX ,XΩqΩ
˘

“
`
GpX ,BX q,F

`
BGpX ,BX q

˘˘

is a universal quasi-universal space.

Corollary 5.31. Let pX ,XΩq and pZ,ZΩq universal quasi-universal spaces. Then we
have a commutative diagram of quasi-measurable maps:

`
XZ

˘Ω

swap

p_q˚ν // // PpXZq

��`
XΩ

˘Z
rp_q˚νsZ

// PpX qZ ,

92



5 The Category of Quasi-Universal Spaces

where the horizontal maps are induced by ψ ÞÑ ψ˚ν, where ν is the uniform distribution
on Ω – r0, 1s, and where the right vertical map is:

ψ˚ν ÞÑ pz ÞÑ ψ˚pzqνq.

Furthermore, if either pX ,XΩq or pZ,ZΩq is a universal quasi-universal space then all
maps are (surjective) quotient maps of quasi-universal spaces.

Proof. It is clear that all maps are well-defined and quasi-measurable, the diagram com-
mutes and that the top horizontal map is a quotient map, see Theorem 5.29. It is left
to show that the bottom horizontal map is a quotient map, i.e. that it is surjective for
both Z and Ω ˆ Z in the exponent.
1.) Assume that X is a univeral quasi-universal space. By Theorem 5.30 we then have
that: pPpX q,PpX qΩq “ pGpX q,FpBGpX qqq. By Definition/Lemma 5.22 We also have
quasi-measurable maps X

ι
ÝÑ Ω

r
ÝÑ X with r ˝ ι “ idX . Now let ρ be given by the

adjuction, Theorem 2.16:

ρ P PpX qZ “ QUSpZ,PpX qq “ MeaspZ,GpX qq.

Let β : Z ˆ Ω Ñ Ω be the conditional quantile function of the Markov kernel ι˚ρ,
which is measurable, thus β P

`
ΩΩ

˘Z . We have that β˚ν “ ι˚ρ, see e.g. [Č82, Kal21]
or [For21] Appendix G. Then pr ˝ βq˚ν “ r˚ι˚ρ “ ρ and pr ˝ βq P

`
XΩ

˘Z . This shows
the surjectivity of

`
XΩ

˘Z
Ñ PpX qZ . By replacing Z with Ω ˆ Z we can use the same

arguments to see that this is actually a quotient map.
This shows the claim if pX ,XΩq is a universal quasi-universal space.
2.) Now assume that pZ,ZΩq is a universal quasi-universal space and ρ P PpX qZ . By
Definition/Lemma 5.22 we get quasi-measurable maps Z

ι
ÝÑ Ω

r
ÝÑ Z with r ˝ ι “ idZ .

Then we have:
ρ ˝ r P PpZqΩ “

!
α˚ν

ˇ̌
ˇα P

`
XΩ

˘Ω)
.

So ρ ˝ r “ α˚ν and we get by composing with ι:

ρ “ ρ ˝ r ˝ ι “ pα ˝ ιq˚ν,

with now α ˝ ι P
`
XΩ

˘Z . This shows the surjectivity of
`
XΩ

˘Z
Ñ PpX qZ . By replacing

Z with ΩˆZ we can use the same arguments to see that this is actually a quotient map.
For this note that by Lemma 5.25 the product ΩˆZ is again a universal quasi-universal
space. This shows the claim.

Remark 5.32. To understand the difference between the objects PpXZq and PpX qZ

from Corollary 5.31 let Z “ t0, 1, 2u. Then an element P pXq P PpXZq corresponds to
encoding the joint distribution:

P pX0, X1, X2q.

This is in contrast to an element P pX|Zq P PpX qZ , which would correspond to encoding
the tuple of marginal distributions:

pP pX0q, P pX1q, P pX2qq .
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The quasi-measurable map: PpXZq ։ PpX qZ then corresponds to mapping the joint
distribution to the tuple of marginal distributions:

P pX0, X1, X2q ÞÑ pP pX0q, P pX1q, P pX2qq .

5.6 Fubini Theorem for Probability Monad P on Quasi-Universal
Spaces

We show that integration w.r.t. product probability measures on products of quasi-
universal spaces commute. Such results are known as Fubini theorems.

Theorem 5.33 (Fubini Theorem for Markov kernels). Let pX ,XΩq, pY ,YΩq, pU ,UΩq,
pZ,ZΩq be quasi-universal spaces then the following diagram is commutative:

PpX qU ˆ PpYqZ

swap
PpXqU ,PpYqZ

��

b // PpX ˆ YqUˆZ

swappX ,Yq,˚

��
PpYqZ ˆ PpX qU

b
// PpY ˆ X qZˆU

swap˚
U,Z

// PpY ˆ X qUˆZ .

More concretely, for µ P PpX qU , ν P PpYqZ , u P U , z P Z and f P r0,8sXˆY we have:

ż ż
fpx, yqµpuqpdxq νpzqpdyq “

ż ż
fpx, yq8 νpzqpdyqµpuqpdxq.

Proof. It was already shown that all maps are quasi-measurable, see Theorem 3.24 and
Lemma 3.20. We only need to check the commutativity on elements and fix u P U and
z P Z. So we can w.l.o.g. ignore U and Z.
Let µ “ α˚κ P PpX q with α P XΩ2, κ P QpΩ2q and ν “ β˚ρ P PpYq with β P YΩ1,
ρ P QpΩ1q and D P BYˆX , where Ω2, Ω1 are copies of Ω “ R, with an index for
readability. Then we use the superscript p_qs to indicate swaps:

Ds :“ tpx, yq P X ˆ Y | py, xq P Du .

We need to show:
pν b µqpDq “ pµ b νqpDsq.

We first show the analogon for κ and ρ. For this note that by Lemma 5.21:

BΩ1ˆΩ2
“ pBΩ1

b BΩ2
q
G

“ ptB ˆ A |B P BΩ1
, A P BΩ2

uq
G
.

We trivially have the required equality on the elements of the generating π-system:

pρ b κqpB ˆ Aq “ ρpBq ¨ κpAq “ κpAq ¨ ρpBq “ pκb ρqpA ˆ Bq “ pκb ρqppB ˆ Aqsq.

8One would more consistently use f spy, xq :“ fpx, yq here in this place.
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This equality then extends to its universal completion and we get for all E P BΩ1ˆΩ2
:

pρ b κqpEq “ pκb ρqpEsq.

For the case of µ and ν we first note the following:

α´1pDs
βpω1qq “ tω2 P Ω2 | pαpω2q, βpω1qq P Dsu

“
 
ω2 P Ω2

ˇ̌
pω2, ω1q P pα ˆ βq´1pDsq

(

“ pα ˆ βq´1pDsqω1
.

Also note that:

pα ˆ βq´1pDsq “ tpω2, ω1q P Ω2 ˆ Ω1 | pβpω1q, αpω2qq P Du

“ pβ ˆ αq´1pDqs.

Then we get:

pµb νqpDsq

“

ż
µpDs

yq νpdyq

“

ż
pα˚κqpDs

yq pβ˚ρqpdyq

“

ż
κ
`
α´1pDs

βpω1qq
˘
ρpdω1q

“

ż
κ
`
pαˆ βq´1pDsqω1

˘
ρpdω1q

“ pκb ρq
`
pαˆ βq´1pDsq

˘

“ pκb ρq
`
pβ ˆ αq´1pDqs

˘

“ pρb κq
`
pβ ˆ αq´1pDq

˘

“

ż
ρ
`
pβ ˆ αq´1pDqω2

˘
κpdω2q

“

ż
ρ
`
β´1pDαpω2qq

˘
κpdω2q

“

ż
pβ˚ρqpDxq pα˚κqpdxq

“

ż
νpDxqµpdxq

“ pν b µqpDq.

This shows the claim for indicator functions 1Dpy, xq.
The claim for f P r0,8sXˆY follows from [Kle20] Thm. 1.96 giving us the representation:

fpx, yq “
ÿ

nPN

cn ¨ 1Ds
pnq

px, yq,

with Dpnq P BYˆX , n P N. The linearity of the integral implies the claim.
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5.7 Disintegration of Markov Kernels between Quasi-Universal
Spaces

In this subsection we will show under which conditions a Markov kernel on a product
space of quasi-universal spaces can be disintegrated into a marginal part and a conditional
part such that the chain rule holds. For this we use the a bit more suggestive notation
KpX, Y |Zq for Markov kernels to make it easier to indicate the marginalsKpY |Zq, which
usually would need to be written as a push-forward, and the chain rule for conditioning
like KpX, Y |Zq “ KpX|Y, Zq b KpY |Zq, which quickly became unreadable otherwise.
We then discuss the (essential) uniqueness of such factorizations. We first recall the
strongest disintegration theorem for measurable spaces from [For21].

Theorem 5.34 (See [For21] Cor. C.8). Let pX ,BX q, pY ,BYq and pZ,BZq be measurable
spaces, where pX ,BX q is perfect and universally countably generated (e.g. a universal
measurable space) and pY ,BYq universally countably generated (e.g. countably generated).
Let:

KpX, Y |Zq : pZ,BZq Ñ GpX ˆ Y ,BX b BYq,

be measurable. Then there exists a (universally) measurable:

KpX|Y, Zq : pY ˆ Z, pBY b BZqGq Ñ GpX ,BX q,

such that:
KpX, Y |Zq “ KpX|Y, Zq b KpY |Zq,

as Markov kernels:
pZ,BZq Ñ GpX ˆ Y ,BX b BYq,

where KpY |Zq is the marginal Markov kernel.

Theorem 5.35 (Disintegration of Markov kernels between quasi-universal spaces). Let
pX ,XΩq, pY ,YΩq and pZ,ZΩq be quasi-universal spaces. Assume that pY ,YΩq is count-
ably separated. In addition, assume one of the following points:

1. pX ,XΩq is a universal quasi-universal space, or:

2. pZ,ZΩq is a universal quasi-universal space (e.g. Z – 1, N, Ω, etc.).

Then the quasi-measurable map given by the product of Markov kernels:

b : PpX qYˆZ ˆ PpYqZ Ñ PpX ˆ YqZ ,

is a (surjective) quotient map.

Proof. Let KpX, Y |Zq P PpX ˆ YqZ . Then the marginal KpY |Zq P PpYqZ .
1.) Assume that pX ,XΩq is a universal quasi-universal space and pY ,YΩq countably
separated. Then by Theorem 5.30 we have the identification of quasi-universal spaces:

PpX q “ KpX q “ QpX q “ GpX q.

In particular, PpX qΩ “ GpX qΩ consist of all measurable maps Ω Ñ GpX ,BX q.
Also by Lemma 5.5 and Theorem 5.16 there exists a countably generated σ-algebras
EX Ď BX and EY Ď BY such that:
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a.) EX separates the points of X such that pEX qG “ BX , and:

b.) EY separates the points of Y such that pEYqPpY ,YΩq “ BY .

Then consider the composition with the measurable restriction maps:

KpX, Y |Zq : Z Ñ PpX ˆ Yq Ñ GpX ˆ Y ,BXˆYq Ñ GpX ˆ Y ,BX b EYq.

By Theorem 5.34 and the fact that pX ,BX q is a universal measurable space there exists
a measurable:

KpX|Y, Zq : pY ˆ Z, pEY b BZqGq Ñ GpX ,BX q,

such that for all z P Z:

KpX, Y |Z “ zq “ KpX|Y, Z “ zq b KpY |Z “ zq.

as measures on BX b EY . By Lemma 5.5 we get that:

pEY b BZqG Ď pBYˆZqG “ BYˆZ .

Let β P YΩ and γ P ZΩ then the composition:

pΩ,BΩq
βˆγ
ÝÝÑ pY ˆ Z,BYˆZq

idYˆZ
ÝÝÝÝÑ pY ˆ Z, pEY b BZqGq

KpX|Y,Zq
ÝÝÝÝÝÝÑ GpX ,BX q “ PpX q

is measurable and thus an element in PpX qΩ by the remarks above. Since this holds for
all β P YΩ and γ P ZΩ we get that:

KpX|Y, Zq P PpX qYˆZ .

So for every z P Z we have that: KpX, Y |Z “ zq P PpX ˆ Yq and KpX|Y, Z “
zq b KpY |Z “ zq P PpX ˆ Yq and both agree on BX b EY . Since BX and EY are
countably separated also the product BX bEY is. Then again by Lemma 5.5 we get that:

BXˆY “ pBX b EYqPpXˆYq.

This shows that the equality:

KpX, Y |Z “ zq “ KpX|Y, Z “ zq b KpY |Z “ zq

uniquely extends from BX bEY to pBX bEYqPpXˆYq “ BXˆY .9 This shows the surjectivity
of the map under the first assumptions.
Since the same arguments hold also when Z is replaced by Z ˆ Ω the map is even a
quotient map, i.e. surjective on the level of quasi-measurable functions.
2.) Now assume that pZ,ZΩq is a universal quasi-universal space and pY ,YΩq countably

9Even though QpX ˆ Yq is defined on the same σ-algebra BXˆY its probabillity measures might not
come as completions of BX b EY unless they are from PpX ˆ Yq. This is where the arguments for
Q would break.
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separated. Then w.l.o.g. we can assume Z P BΩ and BZ “ BΩ|Z . Let ι : Z ãÑ Ω be the
(quasi-)measurable inclusion map and define the measurable projection map:

γ : Ω ։ Z, γ|Z :“ idZ , γ|ΩzZ :“ z0 P Z.

Then γ P FpBZq “ ZΩ, since Z is a universal quasi-universal space, and: γ ˝ ι “ idZ .
We then consider the composition of quasi-measurable maps:

KpX, Y |W q : Ω
γ
ÝÑ Z

KpX,Y |Zq
ÝÝÝÝÝÝÑ PpX ˆ Yq,

which shows that KpX, Y |W q P PpX ˆ YqΩ. By definition there exist α P XΩ and
β P YΩ and KpU |W q P GpΩqΩ such that:

KpX, Y |Z “ γq “ KpX, Y |W q
!

“ KpαpUq, βpUq|W q :“ pα ˆ βq˚KpU |W q.

Then consider:

KpU, Y |Zq :“ KpU, βpUq|W “ ιpZqq :“ pidΩ ˆ βιq˚KpU |W “ ιpZqq P PpΩ ˆ YqZ .

Note that we have:
pαιˆ idYq˚KpU, Y |Zq “ KpX, Y |Zq.

Then the Y -marginal of KpU, Y |Zq agrees with the Y -marginal of KpX, Y |Zq, because:

KpY |W “ ιpzqq “ KpY |Z “ γpιpzqq “ KpY |Z “ zq.

Since Ω is a universal quasi-universal space by the first point we now have:

KpU, Y |Zq “ KpU |Y, Zq b KpY |Zq P PpΩ ˆ YqΩ,

with KpU |Y, Zq P PpΩqYˆZ and KpY |Zq P PpYqZ . We now put:

KpX|Y, Zq :“ pαιq˚KpU |Y, Zq P PpX qYˆZ .

With this we get

KpX, Y |Zq “ pαιˆidYq˚KpU, Y |Zq “ pαιq˚KpU |Y, ZqbKpY |Zq “ KpX|Y, ZqbKpY |Zq.

This shows the surjectivity for the second case.
To see that these maps are quotient maps again note that we can use the same proof by
replacing Z with Z ˆ Ω. For this note that Z ˆ Ω is again a universal quasi-universal
space if Z is, see Lemma 5.25.

Remark 5.36. 1. Theorem 5.35 would also hold if one replaces universal quasi-
measurable spaces with perfect universally countably generated ones as in Theorem
5.34. For this to work one uses the separated quotient and a section, see Defi-
nition 5.9 Remark 5.10. Note that the separated quotient of a perfect universally
countably generated quasi-universal space is a universal quasi-universal space.
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2. It might even be possible to weaken the assumption in Theorem 5.35 from universal
to countably separated quasi-universal spaces and/or other weaker assumptions.
We have not further investigated this.

Theorem 5.37 (Essential uniqueness of factorizations). Let pX ,XΩq, pY ,YΩq and pZ,ZΩq
be quasi-universal spaces. Let ν P PpYqZ and µ1, µ2 P PpX qYˆZ such that:

µ1 b ν “ µ2 b ν P PpX ˆ YqZ .

For every D P BXˆYˆZ we have that:

ND :“ tpy, zq P Y ˆ Z |µ1py, zqpDy,zq ‰ µ2py, zqpDy,zqu

is a ν-null set in BYˆZ , i.e. νpzqpND,zq “ 0 for all z P Z.
If, furthermore, pX ,XΩq is countably separated then µ1 “ µ2 ν-almost-surely, i.e., more
precisely, that there exists a set N P BYˆZ such that for all z P Z:

νpzqpNzq “ 0,

where Nz :“ ty P Y | py, zq P Nu, and such that for all py, zq R N we have:

µ1py, zq “ µ2py, zq.

Proof. First consider for D P BXˆYˆZ the set:

Ną
D :“ tpy, zq P Y ˆ Z |µ1py, zqpDy,zq ą µ2py, zqpDy,zqu

Then define:
Dą :“ D X pX ˆ Ną

D q P BXˆYˆZ .

With this we then get:

0 “ pµ1 b νqpzqpDą
z q ´ pµ2 b νqpzqpDą

z q

“

ż ż
1Ną

D
py, zq ¨ 1Dpx, y, zq pµ1py, zqpdxq ´ µ2py, zqpdxqq νpzqpdyq

“

ż
1Ną

D
py, zq ¨ pµ1py, zqpDy,zq ´ µ2py, zqpDy,zqql jh n

ą0 for py,zqPNą
D

νpzqpdyq.

It follows from this that νpzqpNą
D,zq “ 0 for all z P Z.

We get by a symmetric argument that νpzqpNă
D,zq “ 0 and thus νpzqpND,zq “ 0 for all

z P Z. This shows the first claim.
If now pX ,XΩq is countably separated then by Lemma 5.5 there exists a countable
algebra E Ď BX that separates the points of X and such that:

BX “ pEqPpX q.
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Then define the (countable) union:

N :“
ď

EPE

NEˆYˆZ P BYˆZ .

Similar to above we then have that νpzqpNzq “ 0 for every z P Z and also that for every
E P E and py, zq R N :

µ1py, zqpEq “ µ2py, zqpEq.

Since E is a π-system, BX “ pEqPpX q and µ1py, zq, µ2py, zq P PpX q the above equality
uniquely extends to all A P BX and py, zq R N :

µ1py, zqpAq “ µ2py, zqpAq.

This shows the second claim.

5.8 Kolmogorov Extension Theorems for Quasi-Universal Spaces

In this subsection we study how sequences of probability distributions and Markov ker-
nels defined on finite products of quasi-universal spaces can be extended to an infinite
product if they are at least consistent with each other. Such results are usually called
Kolmogorov extension theorems.

Theorem 5.38 (Kolmogorov’s extension theorem for Markov kernels, see [Kol33,Fre15]
454D-G, also see [FR20] Ex. 3.6). In the following let pXj ,Bjq, j P J , be a family of
measurable spaces indexed over any set J . For a subset K Ď J we put:

XK :“
ź

kPK

Xk, BK :“
â
kPK

Bk :“ σ pEKq ,

where EK is given by all finite cylinder sets:

EK :“
 
pr´1
L pˆlPLAlq Ď XK

ˇ̌
Al P Bl, L Ď K,#L ă 8

(
,

and with the canonical projection maps:

prL : XK Ñ XL, pxkqkPK ÞÑ pxlqlPL.

Let pZ,BZq be another measurable space. For every finite subset K Ď J consider a
(measurable) Markov kernel:

QLpXK |Zq : pZ,BZq Ñ GpXK ,BKq,

such that for every finite subset L Ď K we have the consistency relation:

prL,˚QKpXK |Zq “ QLpXL|Zq,

and such that for every z P Z and j P J the marginal probability measure QjpXj |Z “ zq
is perfect. Then there exists a unique Markov kernel:

QJpXJ |Zq : pZ,BZq Ñ GpXJ ,BJ q
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such that for all finite subsets L Ď J we have:

prL,˚QJpXJ |Zq “ QLpXL|Zq.

Furthermore, for every z P Z the probability measure QJpXJ |Z “ zq is perfect and
measurable as a map in z.

Proof. For every fixed z P Z we individually apply Kolmogorov’s extension theorem,
see [Kol33,Fre15] 454D-G and we get a unique probability measure: QJpXJ |Z “ zq on
BJ such that for all finite subsets L Ď J we have:

prL,˚QJpXJ |Z “ zq “ QLpXL|Z “ zq.

Furthermore, QJpXJ |Z “ zq is perfect.
We are left to show that the map z ÞÑ QJpXJ |Z “ zq is measurable. For this consider
the set:

D :“
 
D P BJ

ˇ̌
pz ÞÑ QJpXJ P D|Z “ zqq is BZ -Br0,1s-measurable

(
.

Then EJ Ď D. Indeed, for a finite subset L Ď J and AL “ ˆlPLAl with Al P Bl we have
by the consistency relation:

QJpXJ P pr´1
L pALq|Zq “ QLpXL P AL|Zq,

which by assumption on QLpXL|Zq is measurable.
It is also easily seen that D is Dynkin system (aka λ-system), as it is closed under
complements and disjoint unions and contains H. Since EJ is a closed under intersections
(aka a π-system), we get from Dynkin’s π-λ-theorem, see [Kle20] Theorem 1.19, that:

BJ “ σpEJq Ď D.

This shows that QJpXJ |Zq is measurable and thus the claim.

Remark 5.39. The Markov kernel QJpXJ |Zq from Theorem 5.38 can uniquely be ex-
tended from BJ to its universal completion pBJ qG. By Proposition 5.3 we then get that
QJpXJ |Zq still is (universally) pBZqG-BGpXJ ,pBJ qGq-measurable as a map:

QJpXJ |Zq : pZ, pBZqGq Ñ GpXJ , pBJqGq.

Clearly, it also stays perfect and is consistent with its finite marginals.

Theorem 5.40 (Kolmogorov’s extension theorem for Markov kernels for universal quasi-u-
niversal spaces). Let pXn,X

Ω
n q, n P N, be a sequence of universal quasi-universal spaces

and pZ,ZΩq any quasi-universal space. Assume we have QnpX0:n|Zq P PpX0:nqZ for
every n P N such that for every n P N:

pr0:n,˚Qn`1pX0:n`1|Zq “ QnpX0:n|Zq.

Then there exists a unique QpXN|Zq P PpXNqZ such that for every n P N:

pr0:n,˚QpXN|Zq “ QnpX0:n|Zq,

where pXN,X
Ω
N q :“

ś
nPNpXn,X

Ω
n q.
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Proof. By Lemma 5.22 we have that Bn :“ BpXΩ
n q makes pXn,Bnq a universal measurable

spaces with FpBnq “ XΩ
n . Put BZ :“ BpZΩq and note that this is universally complete.

Since countable products of universal measurable spaces are universal, see Lemma 5.25,
we have that:

pB0:nqG “

˜
nâ

k“0

Bk

¸

G

“ B

˜
nź

k“0

XΩ
k

¸
“ BpXΩ

0:nq.

Then we get the compatible measurable Markov kernels:

QnpX0:n|Zq : pZ,BZq Ñ PpX0:nq “ GpX0:n,B0:nq,

where the latter identification comes from by Theorem 5.30. Then note that every prob-
ability measure on a universal measurable space pXn,Bnq is perfect. Then by Theorem
5.38 and Remark 5.39 we get a unique measurable Markov kernel:

QpXN|Zq : pZ,BZq Ñ GpXN, pBNqGq,

where BN :“
Â

nPN Bn, such that for all n P N:

pr0:n,˚QpXN|Zq “ QnpX0:n|Zq.

We are left to show that QpXN|Zq P PpXNqZ . For this let γ P ZΩ Ď FpBZq. Then the
composition:

QpXN|Zq ˝ γ

is measurable. We thus get:

QpXN|Zq ˝ γ P GpXNqΩ “ PpXNqΩ,

since XN is a universal quasi-universal space, again by Theorem 5.30. Since this holds
for all γ P ZΩ we get:

QpXN|Zq P QUSpZ,PpXNqq “ PpXNqZ .

This shows the claim.

Theorem 5.41 (Kolmogorov’s extension theorem for Markov kernels for countably sep-
arated quasi-universal spaces). Let pXn,X

Ω
n q, n P N, be a sequence of countably separated

quasi-universal spaces and pZ,ZΩq a universal quasi-universal space. Assume we have
QnpX0:n|Zq P PpX0:nqZ for every n P N such that for every n P N:

pr0:n,˚Qn`1pX0:n`1|Zq “ QnpX0:n|Zq.

Then there exists a unique QpXN|Zq P PpXNqZ such that for every n P N:

pr0:n,˚QpXN|Zq “ QnpX0:n|Zq,

where pXN,X
Ω
N q :“

ś
nPNpXn,X

Ω
n q.
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Proof. Since pZ,ZΩq is a universal quasi-universal space by Lemma 5.22 there exists
γ P ZΩ and ι P ΩZ such that γ ˝ ι “ idZ .
We then have that:

QnpX0:n|W q :“ QnpX0:n|Zq ˝ γ P PpX0:nqΩ,

which still satify the consistency relations for n P N.
By the disintegration Theorem 5.35 the following map is a surjective quotient map:

b : PpXn`1q
X0:nˆΩ ˆ PpX0:nqΩ ։ PpX0:n`1qΩ.

So there exist Qn`1pXn`1|X0:n,W q P PpXn`1qX0:nˆΩ, such that:

Qn`1pXn`1|X0:n,W q b QnpX0:n|W q “ Qn`1pX0:n`1|W q.

By definition of PpXn`1q and the isomorphism Ωn – Ω we can inductively pick αn`1 P`
X

Ω0:n

n`1

˘Ω
and κn`1pWn`1|W0:n,W q P QpΩn`1qΩ0:nˆΩ such that:

αn`1,˚κn`1pWn`1|W0:n,W q “ Qn`1pXn`1|W0:n,W q

:“ Qn`1pXn`1|X0:n,W q ˝ pα0:n ˆ idΩqpW0:n,W q.

By Kolmogorov’s extension theorem for universal quasi-universal spaces, see Theorem
5.40, there now exists a unique κpWN|W q P QpΩNqΩ – QpΩqΩ such that for all n P N :

pr0:n,˚κpWN|W q “
0â

j“n

κjpWj |W0:j´1,W q.

We then put:

α :“ pαnqnPN P
´
XΩN

N

¯Ω

–
`
XΩ

˘Ω
.

Then:
QpXN|W q :“ α˚κpWN|W q P PpXNqΩ,

and thus:
QpXN|Zq :“ QpXN|W “ ιpZqq :“ QpXN|W q ˝ ι P PpXNqZ .

By construction we then have that for all n P N:

pr0:n,˚QpXN|Zq “ QnpX0:n|Zq.

We are now left to show the uniqueness. Since the spaces Xn are countably sepa-
rated there are countably generated σ-algebras En Ď Bn :“ BpXΩ

n q that separate the
points of Xn. Then EN :“

Â
nPN En is countably generated and separates the points of

XN :“
ś

nPN Xn. Then QpXN|Zq, when restricted to EN, is the unique extension of the
QnpX0:n|Zq, when restricted to

Ân

j“0 Ej . Since by Lemma 5.5 we have:

BpXΩ
N q “ pENq

PpXNq ,

the Markov kernel QpXN|Zq uniquely extends from EN to BpXΩ
N q.

This shows the claim.
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5.9 Deterministic Markov Kernels between Quasi-Universal
Spaces

In this subsection we characterize Markov kernels between quasi-universal spaces that
are in some sense deterministic. We go through a-priori different notions of deterministic
Markov kernels and give a sufficient criterion when they become equivalent.

Definition/Lemma 5.42 (Deterministic Markov kernels, see [RR81,Fri20] Def. 10.1).
Let pY ,YΩq and pZ,ZΩq be a quasi-universal spaces and pZ,ZΩq any quasi-universal
space and KpY |Zq P PpYqZ a Markov kernel. Then each statement for KpY |Zq will
imply the one below:

1. KpY |Zq is function-deterministic, i.e. there exists a quasi-measurable map g P YZ

such that:
KpY |Zq “ δgpY |Zq P PpYqZ .

2. KpY |Zq is copy-deterministic, i.e. we have the relation:

KpY1|Z “ zq b KpY2|Z “ zq “ KpY1, Y2|Z “ zq P PpY ˆ YqZ ,

where Y1, Y2 are copies of Y with an index for readability, i.e. the following diagram
commutes:

Z

KpY |Zq

��

KpY |Zq // PpYq
Pp∆Y q

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

PpYq
∆PpYq

// PpYq ˆ PpYq
b

// PpY ˆ Yq.

3. KpY |Zq is 0-1-deterministic, i.e. for all z P Z and B P BY :

KpY P B|Z “ zq P t0, 1u .

Proof. 1. ùñ 2.: Let D P BYˆY and z P Z. Then:

pδgpY1|Z “ zq b δgpY2|Z “ zqq pDq

“

ż
δgpzqpDy2q δgpzqpdy2q

“

ż
1Dpgpzq, y2q δgpzqpdy2q

“ 1Dpgpzq, gpzqq

“ δgppY1, Y2q P D|Z “ zq.

2. ùñ 3.: We have by assumption for every B P BY :

KpY P B|Z “ zq ¨KpY P B|Z “ zq “ KpY P B, Y P B|Z “ zq “ KpY P B|Z “ zq.
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Solving for KpY P B|Z “ zq shows:

KpY P B|Z “ zq P t0, 1u .

This shows the claims.

Lemma 5.43. Let KpY |Zq : pZ,BZq Ñ GpY ,BYq be a measurable and 0-1-deterministic
Markov kernel.

1. If pY ,BYq is countably generated then there exists a measurable g : pZ,BZq Ñ
pY ,BYq such that: KpY |Zq “ δgpY |Zq.

2. If pY ,BYq is universally countably generated then there exists a universally mea-
surable g : pZ, pBZqGq Ñ pY , pBYqGq such that: KpY |Zq “ δgpY |Zq.

Furthermore, if pY ,BYq is separated then the map g from above is unique.

Proof. 1.) By assumption we have a countable algebra E Ď BY such that σpEq “ BY .
Then for every z P Z we pick an arbitrary point (using the axiom of choice):

gpzq P Cz :“
č

BPE
KpY PB|Z“zq“1.

B P BY .

Note that since E is countable the intersection Cz lies in BY . Furthermore, Cz ‰ H.
Otherwise we would get the contradiction:

1 “ KpY P Cc

z |Z “ zq ď
ÿ

BPE
KpY PB|Z“zq“1.

KpY P Bc|Z “ zq “ 0.

To check that g is measurable we only need to check this for B P E . We then get

g´1pBq “ tz P Z | gpzq P Bu

“ tz P Z |Cz Ď Bu

“ tz P Z |KpY P B|Z “ zq “ 1u

“ KpY P B|Zq´1p1q

P BZ ,

since the Markov kernel is a measurable map for each B. This shows the measurability
of g. Similarly, for B P E we have:

δgpY P B|Z “ zq “ 1Bpgpzqq “ KpY P B|Z “ zq.

Since E is a generating π-system the equality also holds for all B P σpEq “ BY . This
shows the first claim.
2.) When KpY |Zq is extended to pBYqG then it is still pBZqG-measurable by Proposition
5.3. For fixed z P Z and C P pBZqG we can write:

C “ B△N,
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with B P BY and N a KpY |Z “ zq-null set. So KpY P C|Z “ zq P t0, 1u for all
C P pBYqG and z P Z as well.
By assumption there now exists a countably generated σ-algebra E Ď pBYqG such that
pEqG “ pBYqG . By the same arguments as above we get a pBZqG-E-measurable map g

such that:
δgpY |Zq “ KpY |Zq,

when restricted to E . This equality then uniquely extends to pEqG “ pBYqG . Note that
g is also pBZqG-pEqG-measurable, which is the same as being pBZqG-pBYqG-measurable.
This shows the second claim.
For the uniqueness let g1, g2 be two different (universally) measurable maps such that:

δg1pY |Zq “ δg2pY |Zq.

Then there exists a point z P Z such that g1pzq ‰ g2pzq. Since pY ,BYq is separated
there exists B P BY such that g1pzq P B and g2pzq R B, which implies:

δg1pY P B|Z “ zq “ 1 ‰ 0 “ δg2pY P B|Z “ zq,

in contradiction to the assumption. So g1 “ g2.

Theorem 5.44. Let pY ,YΩq and pZ,ZΩq be quasi-universal spaces and KpY |Zq P
PpYqZ . Assume that pY ,YΩq is countably separated with FBpYΩq “ YΩ(e.g. pY ,YΩq a
universal quasi-universal space).10 Then the following statements are equivalent:

1. KpY |Zq is copy-deterministic, i.e.:

KpY1|Zq b KpY2|Zq “ KpY1, Y2|Zq P PpY ˆ YqZ ,

where Y1 and Y2 are copies of Y .

2. KpY |Zq is 0-1-deterministic, i.e. for all B P BY and z P Z:

KpY P B|Z “ zq P t0, 1u .

3. KpY |Zq is function-deterministic, i.e. there exists a (unique) quasi-measurable
map g P YZ such that:

KpY |Zq “ δgpY |Zq P PpYqZ .

Proof. Two directions follow from Lemma 5.42. For the remaining claim let KpY |Zq be
0-1-deterministic. We need to be careful with handling the σ-algebras in the following.
Let BZ :“ BpZΩq and BY :“ BpYΩq. Since pY ,YΩq is countably separated we have
a countably generated σ-algebra EY Ď BY that separates the points of Y such that

10Note that all quasi-universal spaces that have embeddings pY,YΩq ãÑ pΩ,ΩΩq in QUS satisfy these
conditions, see Lemma 5.12. Also all (univerally) countably separated measurable spaces satisfy
these conditions after applying the functor F .
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BY “ pEYqPpYq, see Lemma 5.5. Because of BY “ pEYqPpYq we know that the following
composition of (measurable) inclusion and restriction maps is injective:

res : pPpYq,BpPpYqΩqq
incl
ÝÝÑ pGpYq,BpGpYqΩqq

res
ÝÑ pGpY , EYq,BGpY ,EYqq,

where BGpY ,EYq is the σ-algebra generated by the evaluation maps evB for B P EY ,
which is countably generated (since EY is) and separates the points of GpY , EYq. The σ-
algebra BPpYq :“ res˚BGpY ,EYq Ď BpPpYqΩq is then also countably generated and separates
the points of PpYq, since res is injective. Again by Lemma 5.5 we then have that
BpPpYqΩq “

`
BPpYq

˘
PpPpYqq

. Also note that: pBZqPpZq “ BZ .
We then have the composition of measurable maps:

pZ,BZq
KpY |Zq
ÝÝÝÝÑ pPpYq,BPpYqq

res
ãÝÑ pGpY , EYq,BGpY ,EYqq.

Since KpY |Zq is 0-1-deterministic and EY countably generated by Lemma 5.43 there
exists a (unique) BZ -EY-measurable map g such that for z P Z:

KpY |Z “ zq “ δgpY |Z “ zq P GpY , EYq,

suppressing mentioning res for brevity. So we get the following commutative diagram of
measurable maps:

pZ,BZq

g

��

KpY |Zq // pPpYq,BPpYqq� _

res

��
pY , EYq �

�

δ
// pGpY , EYq,BGpY ,EYqq.

We now want to show that g is even BZ-BY -measurable. Since BY “ pEYqPpYq we want
to complete EY w.r.t. PpYq and show that g stays measurable even after completion. By
Lemma 5.2 and pBZqPpZq “ BZ it is enough to show that g˚pPpZqq Ď PpYq. We start
by noting that the equality KpY |Zq “ δgpY |Zq induces the identity:

δ˚ ˝ g˚ “ res˚ ˝ KpY |Xq˚ : GpZ,BZq Ñ G
`
GpY , EYq,BGpY ,EYq

˘
.

We can apply the monad action:

M : G
`
GpY , EYq,BGpY ,EYq

˘
Ñ GpY , EYq,

and use the monad rule that M˝δ˚ “ id to get the equality (suppressing res˚ for brevity):

g˚ “ M ˝ KpY |Xq˚ : GpZ,BZq Ñ GpY , EYq.

SinceKpY |Zq : pZ,ZΩq Ñ pPpYq,PpYqΩq is quasi-measurable, we get thatKpY |Zq˚ pPpZqq Ď
PpPpYqq. Since pP, δ,Mq is a monad we also get that M : PpPpYqq Ñ PpYq is a well-
defined map, showing that: M pPpPpYqqq Ď PpYq. Note that M for G and M for P
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commute with res, i.e. if π P PpPpYqq and B P EY we get:

MGpres˚πqpBq “

ż

GpY ,EYq

evBpµq pres˚πqpdµq

“

ż

PpYq

evBprespνqq πpdνq

“

ż

PpYq

evBpνq πpdνq

“ MPpπqpBq.

Without making further distinctions between the M’s we then arrive at:

g˚ pPpZqq “ M ˝ KpY |Zq˚ pPpZqq Ď M pPpPpYqqq Ď PpYq.

Since g is BZ -EY-measurable it is then, because of g˚ pPpZqq Ď PpYq, by Lemma 5.2,
also pBZqPpZq-pEYqPpYq-measurable. Since pBZqPpZq “ BZ and pEYqPpYq “ BY we get that
g is BZ -BY-measurable.
Now let γ P ZΩ Ď FpBZq. Then we have g ˝ γ P FpBYq “ YΩ, where the last equality
holds by assumption. This shows that g P YZ and thus: δgpY |Zq P PpYqZ . BothKpY |Zq
and δgpY |Zq are in PpYqZ and we already have the equality: KpY |Zq “ δgpY |Zq on EY .
Since pEYqPpYq “ BY the above equality uniquely extends to BY and we get:

KpY |Zq “ δgpY |Zq P PpYqZ .

This shows that KpY |Zq is function-deterministic.

PpZq

g˚?

��✤
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
� u

incl

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

KpY |Zq˚ // PpPpYqq

M

��

G g

res

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

GpZ,BZq

g˚

��

KpY |Zq˚ // GpPpYq,BPpYqq� _

res˚

��
GpY , EYq

id **❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯

� �

δ˚

// GpGpY , EYq,BGpY ,EYqq

M

��
GpY , EYq

PpYq
id

//
.
�

res

==④④④④④④④④④④④④④④④④④④④④④
PpYq
7 W

res

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

Remark 5.45. One can prove an “almost-sure” version of Theorem 5.44 w.r.t. some
given Markov kernel QpZ|T q P PpZqT under the same conditions. For this one needs to
gather the countably many null-sets NB for each B P EY , which is then again a null-set
w.r.t. QpZ|T q.
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5.10 The Markov Category of Markov Kernels between
Universal Quasi-Universal Spaces

Here we quickly summarize our findings in terms of categorical probability theory with-
out going into the details of these definitions. They can be found in [FR20, Fri20,
FGPR20,FGP21]. As a Corollary we get a conditional de Finetti theorem out.

Theorem 5.46 (The Markov category of Markov kernels between universal quasi-uni-
versal spaces). The category of universal quasi-universal spaces pUQUS,ˆ, 1q is a sym-
metric cartesian (but not closed) monoidal category with countable products and count-
able coproducts. The triple pP, δ,Mq is a strong affine symmetric monoidal/commutative
monad on pUQUS,ˆ, 1q. Its Kleisli category KlpPq on UQUS is an a.s.-compatibly
representable Markov category with conditionals and Kolmogorov powers.

Proof. We apply Prop. 3.1. from [FGPR20].
Strong monad P: See Theorem 3.25. Note also that K “ P “ R “ Q “ G “ S for
universal quasi-universal spaces by Theorem 5.30 and that PpX q stays inside UQUS.
Symmetry/commutativity: See Fubini Theorem 5.33.
Conditionals: See Disintegration Theorem 5.34.
Kolmogorov powers: See Kolmogorov’s Extension Theorem 5.40.
Deterministic morphisms/Markov kernels: See Theorem 5.44.
A.s.-compatible representability: See Remark 5.45 and essential uniqueness of factoriza-
tions Theorem 5.37.
All other aspects are easy to see or follow from general considerations.

Corollary 5.47 (Conditional De Finetti Theorem, see [DF37, Kal06, FGP21]). Let
pX ,XΩq be a universal quasi-universal space and pZ,ZΩq another quasi-universal space.
For a Markov kernel QpXN|Zq P PpX NqZ the following are equivalent:

1. QpXN|Zq is exchangable, i.e. invariant under all finite permutations σ : N
„

ÝÑ N.

2. There exist a quasi-universal space S and QpX|Sq P PpX qS and P pS|Zq P PpSqZ

such that:
QpXN|Zq “ pbnPNQpXn|Sqq ˝ P pS|Zq.

If this is the case one can w.l.o.g. choose S “ PpX q and

QpX|Sq “ idPpX q : S “ PpX q Ñ PpX q, QpX P A|S “ P q :“ P pAq.

Proof. This directly follows from the synthetic version of de Finetti’s Theorem in cate-
gorical probability theory, see [FGP21], together with Theorem 5.46. Note that for our
case we do not need to require that pZ,ZΩq is a universal quasi-universal space as all
required results work without that assumption.
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6 Causal Models

This section is dedicated to the notion of conditional independence and causal mod-
els. More clearly, we will translate the notion of transitional conditional independence
studied in [For21] from Meas to QUS. This allows us to mix random variables with
deterministic non-random variables in conditional independence statements. Further-
more, we will engage in causal graphical models and demonstrate our results on causal
Bayesian networks. Generalizations to other probabilistic graphical models will be ap-
parent. We also re-formulate the notion of strong ignorability using random functions
with values in function spaces of quasi-universal spaces.

6.1 Transitional Conditional Independence

In this subsection we translate all structures related to transitional conditional indepen-
dence defined for measurable spaces in [For21] to quasi-universal spaces. We will also
investigate the (asymmetric) separoid rules.

Notation 6.1 (Transition probability space). In the following we fix two quasi-universal
spaces pT , T Ωq and pW,WΩq. The generic choice is to take pW,WΩq “ pΩ,ΩΩq, but we
allow more general spaces for now. We also fix a Markov kernel KpW |T q P PpWqT . We
will call the tuple pW ˆ T ,KpW |T qq our transition probability space.

Definition 6.2 (Transitional random variable). A transitional random variable is a
Markov kernel from our transition probability space pW ˆ T ,KpW |T qq to any other
quasi-universal space pX ,XΩq:

XpX|W,T q P PpX qWˆT .

Example 6.3 (Special transitional random variables of importance). We denote the:

1. canonical projection onto T as:

T :“ prT : W ˆ T Ñ T , T pw, tq :“ t,

and put:
TpT |W,T q “ δpT |W,T q “ δ ˝ T P PpT qWˆT .

2. constant transitional random variable as:

δ0 : W ˆ T Ñ Pp1q “ 1 “ t0u .

Notation 6.4. For two transitional random variables X P PpX qWˆT and Y P PpYqWˆT

we define their joint Markov kernel as:

KpX, Y |T q :“ pXpX|W,T q b YpY |W,T qq ˝ KpW |T q P PpX ˆ YqT

We then define the relation:

X ÀK Y : ðñ Dϕ P X Y . KpX, Y |T q “ δϕpX|Y q b KpY |T q.

110



6 Causal Models

Definition 6.5 (Transitional conditional independence). For our transition probability
space pW ˆ T ,KpW |T qq and three transitional random variables X P PpX qWˆT and
Y P PpYqWˆT and Z P PpZqWˆT we consider their joint Markov kernel:

KpX, Y, Z|T q :“ pXpX|W,T q b YpY |W,T q b ZpZ|W,T qq ˝ KpW |T q P PpX ˆ Y ˆ ZqT .

We then say that X is independent of Y conditioned on Z w.r.t. K, in symbols:

XKK
K
Y |Z,

if there exists a Markov kernel QpX|Zq P PpX qZ such that:

KpX, Y, Z|T q “ QpX|Zq b KpY, Z|T q P PpX ˆ Y ˆ ZqT .

Lemma 6.6. Consider transitional random variables X P PpX qWˆT and Y P PpYqWˆT

and Z P PpZqWˆT . Assume that:

∆X :“ tpx, xq P X ˆ X | x P X u P BXˆX .
11

Then we have the implication:

X ÀK Z ùñ XKK
K
Y |Z.

Proof. Assume X ÀK Z. Then there exists a ϕ P XZ such that:

KpX,Z|T q “ δϕpX|Zq b KpZ|T q.

Since ∆X P BXˆX we know that:

M :“ tpx, zq P X ˆ Z |x ‰ ϕpzqu “ pidX ˆ ϕq´1p∆c

X q P BXˆZ .

Then M is a KpX,Z|T q-null set. Indeed:

K ppX,Zq P M |T q “

ż
δϕpX P Mz|Z “ zqKpZ P dz|T q

“

ż
1Mz

pϕpzqqKpZ P dz|T q

“

ż
0KpZ P dz|T q

“ 0.

Now consider the Markov kernel KpX1, X2, Z, Y |T q P P pX ˆ X ˆ Z ˆ YqT with X1 :“
X and X2 :“ ϕpZq and the set:

N :“ tpx1, x2, z, yq P X ˆ X ˆ Z ˆ Y | x1 ‰ x2u “ ∆c

X ˆ Z ˆ Y P BXˆXˆZˆY .

11If pX ,XΩq is countably separated then we have: ∆X P BX b BX Ď BXˆX .
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Then we have:

K ppX1, X2, Z, Y q P N |T q “ K ppX,Z, Y q P M ˆ Y |T q “ 0.

So for every D P BXˆXˆZˆY we get:

K ppX1, X2, Z, Y q P D|T q “ K ppX1, X2, Z, Y q P D X N c|T q

“ K ppX2, X1, Z, Y q P D X N c|T q

“ K ppX2, X1, Z, Y q P D|T q .

For D “ X ˆ E with E P BXˆZˆY this gives:

pδϕpX|Zq b KpY, Z|T qq pEq “ K ppX2, Z, Y q P E|T q

“ K ppX1, Z, Y q P E|T q

“ K ppX,Z, Y q P E|T q .

So this implies that we have:

KpX, Y, Z|T q “ δϕpX|Zq b KpY, Z|T q,

for every transitional random variable Y. If we pick QpX|Zq :“ δϕpX|Zq we showed:

XKK
K
Y |Z,

which is the claim.

Theorem 6.7 (Separoid rules for transitional conditional independence). Consider a
transition probability space pW ˆ T ,KpW |T qq and transitional random variables X P
PpX qWˆT and Y P PpYqWˆT and Z P PpZqWˆT and U P PpUqWˆT . Then the ternary
relation KK “ KKKpW |T q satisfies the following rules:

a) Extended Left Redundancy (if ∆X P BXˆX
11):

X ÀK Z ùñ XKKY |Z.

Proof: Lemma 6.6.

b) T-Restricted Right Redundancy (for Z countably separated and either X or T

universal):

XKKδ0 |Z b T always holds.

Proof: Disintegration Theorem 5.35: KpX,Z|T q “ QpX|Z, T q b KpZ|T q.

c) Left Decomposition:

X b UKKY |Z ùñ UKKY |Z.
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Proof: Take the marginal QpU |Zq of QpX,U |Zq.

d) Right Decomposition:

XKKY b U |Z ùñ XKKU |Z.

Proof: Take QpX|Zq again.

e) T-Inverted Right Decomposition:

XKKY |Z ùñ XKKT b Y |Z.

Proof: Take QpX|Zq again.

f) Left Weak Union (for U countably separated and either X or Z universal):

X b UKKY |Z ùñ XKKY |U b Z.

Proof: Disintegration Theorem 5.35: QpX,U |Zq “ QpX|U,Zq b QpU |Zq.

g) Right Weak Union:

XKKY b U |Z ùñ XKKY |U b Z.

Proof: Take QpX|U,Zq :“ QpX|Zq.

h) Left Contraction:

pXKKY |U b Zq ^ pUKKY |Zq ùñ X b UKKY |Z.

Proof: Take Q1pX|U,Zq b Q2pU |Zq.

i) Right Contraction:

pXKKY |U b Zq ^ pXKKU |Zq ùñ XKKY b U |Z.

Proof: Take Q2pX|Zq and use essential uniqueness of factorizations Theorem 5.37.

j) Right Cross Contraction:

pXKKY |U b Zq ^ pUKKX |Zq ùñ XKKY b U |Z.

Proof: Take Q1pX|U,Zq ˝ Q2pU |Zq and use essential uniqueness of factorizations
Theorem 5.37.

k) Flipped Left Cross Contraction:

pXKKY |U b Zq ^ pYKKU |Zq ùñ Y KKX b U |Z.

Proof: Take Q2pY |Zq.
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Proof. The constructions follow the same lines as in [For21] Theorem 3.11 and Ap-
pendix E. Note that for Left Weak Union we need the disintegration QpX,U |Zq “
QpX|U,Zq bQpU |Zq. That is the reason we need to make the extra assumptions on the
underlying spaces, see disintegration Theorem 5.35. Similarly, for T-Restricted Right
Redundancy we need the disintegration KpX,Z|T q “ KpX|Z, T q bKpZ|T q. The corre-
sponding conditions on the underlying spaces could be weakened if one could find weaker
conditions under which disintegrations exist, see again Theorem 5.35.

6.2 Conditional Directed Acyclic Graphs (CDAGs)

In this subsection we will gather all purely graph theoretical structures that are needed
for causal Bayesian networks later on. The main focus is on the definition of conditional
directed acyclic graphs (CDAGs) and on the recap of d-separation in such graphs.

Definition 6.8 (Conditional directed acyclic graphs (CDAGs)). A conditional directed
acyclic graph (CDAG) G “ pJ, V, Eq consists of two (disjoint) sets of vertices/nodes:
the set of input nodes J , the set of output nodes V ; and a set of directed edges:

E Ď tw v |w P J Y V, v P V u ,

such that there are no directed non-trivial cycles. Note that - per definition - there won’t
be any arrow heads pointing to input nodes j P J .

Notation 6.9. For a CDAG we will suggestively write: GpV | dopJqq :“ pJ, V, Eq “ G,
where the sets of edges E are implicit. We will also write: v P G to mean v P J Y V ,
v1 v2 P G to mean v2 v1 P E and v1 v2 P G to mean that either v1 v2 P G

or v1 v2 P G, etc.

Definition 6.10 (Walks). Let G “ GpV | dopJqq be a CDAG and v, w P G.

1. A walk from v to w in G is a finite sequence of nodes and edges

v “ v0 v1 ¨ ¨ ¨ vn´1 vn “ w

in G for some n ě 0, i.e. such that for every k “ 1, . . . , n we have that vk´1

vk P G, and with v0 “ v and vn “ w.

In the definition of walk the appearance of the same nodes several times is allowed.
Also the trivial walk consisting of a single node v0 P G (without any edges) is
allowed as well (if v “ w).

2. A directed walk from v to w in G is of the form:

v “ v0 v1 ¨ ¨ ¨ vn´1 vn “ w,

for some n ě 0, where all arrow heads point in the direction of w and there are no
arrow heads pointing back.
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Definition 6.11. For a CDAG G “ GpV | dopJqq and v P G we define the sets:

1. Parents: PaGpvq :“ tw P G |w v P Gu,

2. Children: ChGpvq :“ tw P G | v w P Gu,

3. Ancestors: AncGpvq :“ tw P G | D directed walk in G : w ¨ ¨ ¨ vu,

4. Descendents: DescGpvq :“ tw P G | D directed walk in G : v ¨ ¨ ¨ wu,

We extend these notions to sets A Ď J Y V by taking the union, e.g. AncGpAq “Ť
vPAAncGpvq.

Remark 6.12 (Acyclicity). The requirement that a CDAG G “ GpV | dopJqq has no
non-trivial cycles in the above terms means that the only directed walk from a node v P G

to itself inside G is trivial.

Definition 6.13 (Topological order). Let G “ GpV | dopJqq be a CDAG. A topological
order of G is a total order ă of J Y V such that for all v, w P G:

v P PaGpwq ùñ v ă w.

A topological order always exists for every CDAG.

Definition 6.14 (Extended CDAG). Let GpV | dopJqq be a CDAG and W Ď V a subset.
Then the extended CDAG w.r.t. W is the CDAG GpV | dopJ 9Y IW qq that arises from
GpV | dopJqq by adding the new nodes Iw for w P W to J and the new edges Iw w to
E.

Here we will review the definition of d-separation in a CDAG, see [Pea09], also see
[Ric03,FM17,FM18,FM20] for extensions and variations of d-separation to other graphs.

Definition 6.15 (d-blocked walks). Let G “ GpV | dopJqq be a CDAG and C Ď J Y V

a subset of nodes and π a walk in GpV | dopJqq: π “ pv0 ¨ ¨ ¨ vnq .

1. We say that the walk π is C-d-blocked or d-blocked by C if either:

a) v0 P C or vn P C or:

b) there are two adjacent edges in π of one of the following forms:

left chain: vk´1 vk vk`1 with vk P C,
right chain: vk´1 vk vk`1 with vk P C,

fork: vk´1 vk vk`1 with vk P C,
collider: vk´1 vk vk`1 with vk R C.

In short, π is C-d-blocked if it either has a collider not in C or a non-collider in C.

2. We say that the walk π is C-d-open if it is not C-d-blocked.

Definition 6.16 (d-separation). Let G “ GpV | dopJqq be a CDAG and A,B,C Ď JYV
(not necessarily disjoint) subset of nodes. We then say that:
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1. A is d-separated from B given C in G, in symbols: A K
GpV | dopJqq

B |C,

if every walk from a node in A to a node in J Y B12 is d-blocked by C.

2. Otherwise we write: A ��K
GpV | dopJqq

B |C.

3. Special case: A K
GpV |dopJqq

B : ðñ A K
GpV |dopJqq

B|H.

6.3 Causal Bayesian Networks and the Global Markov Property

In this subsection we will introduce causal Bayesian networks for quasi-universal spaces.
The main result is the global Markov property for causal Bayesian networks, which relates
d-separation statements in the graph to conditional independence statements between
the variables. Furthermore, we will introduce partially generic causal Bayesian networks
where some of the causal mechanisms are not provided and are filled in with generic,
most general ones. Since this fill-in will lead to a well-defined causal Bayesian network
we also get a global Markov property for partially generic causal Bayesian networks,
now allowing us to relate d-separation statements in the extended graph to conditional
independence statements between variables and causal mechanisms. Note that this is
only possible because in QUS we have exponential objects, transitional conditional
independence still works with all its separoid rules for QUS and the global Markov
property can be shown. It is important to see that this kind of reasoning would break
inside the usual category of measurable spaces Meas.

Definition 6.17 (Causal Bayesian network). A causal Bayesian network (CBN) M

consists of:

1. a (finite) conditional directed acyclic graph (CDAG): G “ GpV | dopJqq,

2. input variables Xj, j P J , and (stochastic) output variables Xv, v P V ,

3. a quasi-universal space Xv for every v P J 9YV ,

4. a Markov kernel for every v P V , suggestively written as:

Pv

´
Xv

ˇ̌
ˇ do

`
XPaGpvq

˘¯
P PpXvq

X
PaGpvq,

where we write for D Ď J 9YV :

XD :“
ź

vPD

Xv, XH :“ 1 “ t0u ,

XD :“ pXvqvPD, XH :“ 0,

xD :“ pxvqvPD, xH :“ 0.

12Note the inclusion of J here. This is done to get similar asymmetric separoid rules to transitional
conditional independence in order to have a more “nice” looking global Markov property later on.
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By abuse of notation, we denote the causal Bayesian network as:

MpV | dopJqq “
´
GpV | dopJqq,

´
Pv

´
Xv

ˇ̌
ˇ do

`
XPaGpvq

˘¯¯
vPV

¯
.

Notation 6.18. Any CBN M “ MpV | dopJqq comes with its joint Markov kernel:

PpXV | dopXJqq P PpXV qXJ ,

given by:

PpXV | dopXJqq :“
ąâ
vPV

Pv

´
Xv

ˇ̌
ˇ do

`
XPaGpvq

˘¯
,

where the product bą is taken in reverse order of a fixed topological order ă, i.e. children
appear only on the left of their parents in the product. Note that the joint Markov
kernels does actually not depend on the actual choice of the topological order, if one
swaps the corresponding arguments and spaces into the right positions accordingly, see
Fubini Theorem 5.33.

Theorem 6.19 (Global Markov property for causal Bayesian networks). Consider a
causal Bayesian network MpV | dopJqq with graph GpV | dopJqq and joint Markov kernel:
PpXV | dopXJqq. Assume that Xv is a universal quasi-universal space for every v P V .
Then for all A,B,C Ď J 9YV (not-necessarily disjoint) we have the implication:

A K
GpV | dopJqq

B |C ùñ XA KK
PpXV | dopXJ qq

XB |XC .

Recall that we have - per definition - an implicit dependence on J , XJ , resp., in the
second argument on each side.

Proof. The proof only uses the (asymmetric) separoid rules for d-separation and tran-
sitional conditional independence from Theorem 6.7, see [For21] Theorem 6.3 and Ap-
pendix J. It is only the rule Left Weak Union that requires the spaces Xv for v P V to
be universal quasi-universal spaces, which is needed for the disintegration Theorem 5.35
to work. Also note that the use of Extended Left Redundancy is not really necessary as
one only needs the statements of the form XA KKXB |XA, which can directly be verified
using QpXA|XAq :“ δpXA|XAq.

Remark 6.20. The global Markov property says that already checking the graphical
criterion A K

GpV |dopJqq
B |C is enough to get the existence of a Markov kernel, suggestively

written as: P pXA|✟✟XB, XCXV , dopXCXJq,✘✘✘✘dopXJqqq , such that:

PpXA, XB, XC | dopXJqq “ P pXA|✟✟XB, XCXV , dopXCXJq,✘✘✘✘dopXJqqqbPpXB, XC | dopXJqq.

Definition 6.21 (The partially generic causal Bayesian network). Let G “ GpV | dopJqq
be a CDAG and Xv for v P J 9YV quasi-universal spaces, W Ď V a subset and Pv P
PpXvq

X
PaGpvq for v P V zW given Markov kernels. Then the partially generic causal

Bayesian network w.r.t. those choices is the causal Bayesian network MpV | dopJ 9Y IW qq

117



6 Causal Models

with the extended CDAG GpV | dopJ 9Y IW qq, see Definition 6.14, the given spaces Xv for
v P J 9Y V and the following spaces for w P W :

XIw :“ PpXwqXPaGpwq ,

and the generic Markov kernels defined by:

Pw

`
Xw P Aw| dopXPaGpwq “ xPaGpwq, XIw “ Qwq

˘
:“ Qw

`
Xw P Aw| dopXPaGpwq “ xPaGpwqq

˘
.

Note that: Pw P PpXwqXPaGpwq
ˆXIw for w P W .

Remark 6.22. 1. Note that the construction of the “generic” Markov kernels Pw

in the Definition 6.21 of partially generic causal Bayesian networks would not
have been possible in the category of measurable spaces Meas as the spaces of
measurable maps or spaces of Markov kernels do not carry well-behaved σ-algebras,
not even for standard (Borel) measurable spaces, see [Aum61]. This was one of the
core motivations for formalizing probabilistic graphical models inside the cartesian
closed category of quasi-universal spaces QUS.

2. The partially generic causal Bayesian network, see Definition 6.21, is again a
causal Bayesian network, see Definition 6.17, and thus follows the global Markov
property w.r.t. the extended graph GpV | dopJ 9Y IW qq, see Theorem 6.19: If Xv is a
universal quasi-universal space for every v P V then for all A,B,C Ď V 9Y IW 9Y J

we have the implication:

A K
GpV |dopJ 9Y IW qq

B |C ùñ XA KK
PpXV | dopXJ ,XIW

qq
XB |XC .

This will allow us to reason about the (conditional) independence of variables Xv

for v P J 9YV , w.r.t. “mechanisms” Qw for w P W .

3. It is easy to extend the global Markov property, Theorem 6.19, to more general
(causal) graphical models like causal Bayesian networks with latent confounders or
even structural causal models that allow for cycles, latent confounders and selection
bias. For this one mainly would need to adjust the graphical part, e.g. use the more
general σ-separation, see [FM17, FM18, FM20, For21]. This was also discussed
in [For21] Remark K.8:

A
σ

K
GpV |S,dopJqq

B |C ùñ XA KK
PpXV ,XS |dopXJ qq

XB |XS, XC .

Example 6.23 (Markov chain). Consider Markov chain from Figure 1. We need to
specify Markov kernels P pXq P PpX q and P pY |Xq P PpYqX and P pZ|Y q P PpZqY . The
joint distribution is then given by:

P pX, Y, Zq “ P pZ|Y q b P pY |Xq b P pXq.
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We then have that:
P pX, Y, Zq “ P pZ|Y q b P pX, Y q,

which shows the transitional conditional independence:

Z KKX |Y.

This means that when the value of Y is provided then the value of X has no additional
information about the state of Z.
Note that the global Markov property Theorem 6.19 would have allowed us to conclude
the same as we also have the corresponding d-separation: Z KX |Y .
Since only the Markov kernel P pZ|Y q determines the state of Z when Y is given we
actually could make the stronger statement that even the distribution P pXq and the
Markov kernel P pY |Xq have no influence on Z when Y is given. Unfortunately, this
cannot directly be seen or read off from Figure 1.
However, such reasoning is possible with the use of the partially generic causal Bayesian
network, see Figure 2. Since the global Markov property, see Theorem 6.19, also applies
here the d-separation Z K pX,QpXq, QpY |Xqq |Y gives us the transitional conditional
independence:

Z KK pX,QpXq, QpY |Xqq |Y.

Note that we use QpXq and QpY |Zq, resp., as a variables and P pXq and P pY |Zq, resp.,
as specific values of those variables. So that transitional conditional independence now
exactly states that when Y is given the value of Z is not determined by the values of X,
QpXq and QpY |Xq, as we expected and wanted, and without computing factorizations of
type P pX, Y, Zq “ P pZ|Y q b P pX, Y q by hand.

6.4 Counterfactual Reasoning

One of the core assumptions for counterfactual reasoning in the potential outcome frame-
work is the assumption of strong ignorability, see [Rub78,RR83]:

X KKpY0, Y1q |Z.

The usual meaning of the variables is the following. Z is usually a random vector of all
observed features of a patient, whom we want to prescribe one of two treatments from
X “ t0, 1u. The variable X is then the measured treatment variable, which can take
the values from X . The variables Y0 and Y1 are the potential outcomes if we forced
the patient to take the corresponding treatment, 0 or 1. The assumption of strong
ignorability can then be interpreted as that besides Z there are no further (unobserved)
confounding variables, or that Z is deconfounding.

If one now wanted to generalize this scenario to more than two possible treatments and
thus potential outcomes, i.e. #X ą 2, or even X “ R, one quickly runs into the problem
of even stating the assumption of strong ignorability measure-theoretically rigorously.
Many authors then put this into the following notation:

X KKpYxqxPX |Z.
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X

Y

Z

E

Figure 3: The causal Bayesian network encoding the strong ignorability assumption
X KKE |Z. The random variable E takes values in the function space YX

and Y “ EpXq. The potential outcomes after intervening on X with values
x P X are then Yx “ Epxq with values in Y .

This notation indicates that pYxqxPX would live on some product space
ś

xPX Y . Those
authors then use those variables in a way that one implicitely needs to assume that the
map:

ev : X ˆ
ź

xPX

Y Ñ Y , px̂, pyxqxPX q ÞÑ yx̂,

is measurable, even when X is an uncountable (standard Borel) measurable space. This
runs into similar problems as discussed in the introduction, see Section 1 and [Aum61].

To overcome this issue it might be beneficial to work in the category of quasi-universal
spaces QUS instead and replace the random variable pYxqxPX , which has values inś

xPX Y , with a random variable E that has values in the function space YX . Note
that its marginal distribution is then an element P pEq P PpYX q13. Then one could
easily state the assumption of strong ignorability as:

X KKE |Z.

This would solve the measure-theoretic problems and we would get: Yx “ Epxq as the
potential outcomes for x P X and Y “ EpXq in the observational scenario.

If strong ignorability holds and we, furthermore, assume that Z is countably separated
then we can apply the disintegration theorem, see Theorem 5.35, to get the factorization
of the joint distribution of all variables:

P pX, Y, E, Zq “ P pY |X,Eq b P pX|Zq b P pE|Zq b P pZq.

This factorization can also be modelled with the use of a causal Bayesian network,
see Figure 3. A similar graphical model, but without the variable E or only after
marginalizing out E, has been proposed before, see [Pea09].

13Carefully distinguish between PpYX q and PpYqX , see Corollary 5.31 and Remark 5.32.
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This example shows how one could, even in more generality, use random functions like
E with values in a function space YX to model potential outcomes and counterfactual
relationships. This could also lead to new graphical representations of counterfactuals
similar to single world intervention graphs, see [RR13a,RR13b,MSR19]. We leave this
for future research.

7 Discussion

7.1 Results

Motivated by the example of Markov chains 6.23, where we wanted to be able to graph-
ically check which variables Xv are (conditionally) independent from certain Markov
kernels QpXv| dopXPaGpvqqq, we investigated how one could allow variables in probabilis-
tic graphical models to take values in the (huge) space of Markov kernels PpXvq

X
PaGpvq.

For this we needed to study the cartesian closed category of quasi-Borel spaces from
[HKSY17]. During that process we generalized that theory to allow for general samples
spaces and we also simplified definitions to be less restrictive. We then called those
categories the categories of quasi-measurable spaces QMS. We showed that those cate-
gories are also cartesian closed, contain all (small) limits and colimits, and products and
coproducts distribute.
We then systematically studied different probability monads on those categories of quasi-
measurable spaces. One corresponds to P, which was introduced in [HKSY17], the oth-
ers, Q, K, R, S, are either noval or slight variation of the first one. It turned out that
those probability monads are either strong without further assumptions, Q, or under
the assumption that the sample space satisfies: Ω ˆΩ – Ω, which holds for (countably)
infinite product spaces like Ω “ ΩN

0 , but also for all uncountable standard Borel measur-
able spaces, like R or the Hilbert cube r0, 1sN, endowed either with their Borel σ-algebra
or the σ-algebra of all universally measurable subsets.
We then went on and specialized to such a sample space RN, or equivalently R, endowed
with the σ-algebra of all universally measurable subsets. We called this the category of
quasi-universal spaces QUS. It turns out that the induced σ-algebras on quasi-universal
spaces are themselves quasi-universal spaces and have simple descriptions in terms of in-
tersections of Lebegue-complete σ-algebras, in contrast to the σ-algebras of quasi-Borel
spaces. This becomes even more pronounced when one studies the σ-algebras of count-
ably separated quasi-universal spaces. A further special role was played by universal
quasi-universal spaces, which come with similar good properties as standard Borel mea-
surable spaces have.
The strong probability monads K, R, P, S all agree on the cartesian closed category
of quasi-universal spaces QUS. They have similar properties and semantics for higher
probability theory like P does for quasi-Borel spaces.
Furthermore, we proved for quasi-universal spaces a Fubini theorem, and, under certain
conditions, a theorem about the disintegration of Markov kernels, Kolmogorov extension
theorems, a conditional de Finetti theorem, etc.
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We then translated many of the properties of universal quasi-universal spaces into prop-
erties of the Kleisli category of their Markov kernels w.r.t. the proposed probability
monad.
Finally, we formalized transitional conditional independence, see [For21], and causal
Bayesian networks inside the category of quasi-universal spaces and proved a global
Markov property for them. This then allowed us to solve the problem of our motivat-
ing example, namely to include the “mechanisms” of a given causal Bayesian network
as variables/nodes on the same standing as other variables. This then allows us to
check and reason about (conditional) independences between variables Xv and mecha-
nisms/Markov kernels QwpXw|XPaGpwqq graphically.

7.2 Different Sample Spaces

After studying the properties of the category of quasi-universal spaces QUS it seems to
the author that taking an uncountable Polish space endowed with its σ-algebra of all
universally measurable subsets as the sample space Ω for a category of quasi-measurable
spaces QMS is an optimal choice. We again highlight the arguments below.

It seems unavoidable to ask for an isomorphisms Ω ˆ Ω – Ω to have well-behaved
probability monads, see Theorem 3.24 and Theorem 3.25. In this case one then has the
choice to either take R or P for the monads of push-forward probability measures, as
the others agree with those, see Lemma 3.19.

If one is interested in Kolmogorov extension theorems, see Theorem 5.38 and [Kol33,
Fre15] 454D-G, or disintegration theorems, see Theorem 5.34 and [Fad85,Pac78,Fre15,
For21] Cor. C.8, one might want or need to restrict to perfect probability measures or
even countably compact ones. Even though the product of perfect probability measures
is perfect again, the arbitrary mixture of perfect measures might not be perfect anymore,
see [Ram79]. To avoid this problem one option would be to use a sample space where all
probability distributions (on the product) are perfect, e.g. R. Alternatively, one could
restrict to the probability monad R instead of P, because when using R one only mixes
probability measures via push-forwards of products of probability measures, see proof
of Theorem 3.24, which would then be perfect again, if one could resolve the ambiguity
between QMS-products and Meas-products for the sample space Ω (as done for QUS

and QBS), see [Fre15] 451J.
To avoid requiring that all probability measures of QpΩq are perfect one could restrict

to the subset VpΩq Ď QpΩq of all perfect probability measures ν on pΩ,BΩq that also lie
in QpΩq:

VpΩq :“
 
ν : BΩ Ñ r0, 1s perfect prob. measure

ˇ̌
@D P BΩˆΩ. pω ÞÑ νpDωqq P r0, 1sΩ

(
.

We can then define, similar to R:

VpX q :“
 
α˚ν

ˇ̌
α P XΩ, ν P VpΩq

(
,

VpX qΩ :“
!
α˚ν

ˇ̌
ˇα P

`
XΩ

˘Ω
, ν P VpΩq

)
.
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Since push-forwards of perfect measures are perfect again, see [Fre15] 451E, there is no
clash in notations here.

One would similar to Lemma 3.26 also have a well-defined quasi-measurable push-
forward map:

pf : YX ˆ VpX q Ñ VpYq, pf, µq ÞÑ f˚µ.

Furthermore, under Ω ˆ Ω – Ω (and if QMS-products of perfect measures on Ω are
perfect again) we would also have the quasi-measurable map, see Theorem 3.24:

b : VpX qYˆZ ˆ VpYqZ Ñ VpX ˆ YqZ , pµ b νqpzqpDq :“

ż
µpy, zqpDyq νpzqpdyq.

Under the same condition pV, δ,Mq would be a strong probability monad by the same
proofs as used for R, see Theorem 3.25.

If one, in addition, wanted to have a similar description of the induced σ-algebras as
in Lemma 5.5 and Theorem 5.16 one then would need to require that BΩ is complete
w.r.t. VpΩq:

BΩ “ pBΩqVpΩq.

Finally, the same arguments would hold if we replaced the word “perfect” with “countably
compact” everywhere, see [Fre15] 451J, 451K, 452R, 454A.

If one wants to make use of the disintegration theorems, see Theorem 5.34, one would
need to require that pΩ,BΩq is universally countably generated and that all probability
measures are perfect. If one also wants BΩ to separate the points of Ω one necessarily
arrives at that pΩ,BΩq is a universal measurable space, see Lemma 5.18. If one also wants
the convenient descriptions of the induced σ-algebras, see Lemma 5.5 and Theorem 5.16,
one needs pΩ,BΩq to be universally complete, i.e. BΩ “ pBΩqG . So we arrive at requiring
that pΩ,BΩq is a universally closed universal measurable space, under which certainly
the universal completions of Polish spaces are the best behaved ones. The isomorphism
Ω ˆ Ω – Ω shows that Ω must be infinite. If one wants to allow for non-discrete
probability measures one even arrives at uncountable Polish spaces pΩ,BΩq endowed
with their σ-algebras of all universally measurable subsets, and thus at the category of
quasi-universal spaces QUS.
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