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Abstract. This paper is concerned with the first-order paraconsistent
logic LPQ⊃,F. A sequent-style natural deduction proof system for this
logic is given and, for this proof system, both a model-theoretic justifica-
tion and a logical justification by means of an embedding into first-order
classical logic is presented. For no logic that is essentially the same as
LPQ⊃,F, a natural deduction proof system is currently available in the
literature. The presented embedding provides both a classical-logic ex-
planation of this logic and a logical justification of its proof system.
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1 Introduction

A set of formulas is contradictory if there exists a formula such that both that
formula and the negation of that formula can be deduced from it. In classical
logic, every formula can be deduced from every contradictory set of formulas. A
paraconsistent logic is a logic in which not every formula can be deduced from
every contradictory set of formulas.

In [10], Priest proposed the paraconsistent propositional logic LP (Logic of
Paradox) and its first-order extension LPQ. The paraconsistent logic considered
in this paper, called LPQ⊃,F, is LPQ enriched with a falsity constant and an im-
plication connective for which the standard deduction theorem holds. A sequent-
style natural deduction proof system for LPQ⊃,F is presented. In addition to the
usual model-theoretic justification of the proof system, a logical justification by
means of an embedding into FOCL (First-Order Classical Logic) is given. Clas-
sical logic is used meta-logically here: the embedding provides a classical-logic
explanation of LPQ⊃,F.

LPQ⊃,F is essentially the same as CLuNs [1], LFI1∗ [4], QLFI1◦ [5], J∗3= [6],
and LP◦ [9]. The proof systems for these logics available in the literature are
Hilbert systems for the first four logics and a Gentzen-style sequent system
for the last one. To fill this gap, a natural deduction proof system is given for
LPQ⊃,F in this paper. An important reason to present a justification of this proof
system by means of an embedding into classical logic is to draw attention to the
viewpoint that, although it may be convenient to use a paraconsistent logic like
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LPQ⊃,F if contradictory formulas have to be dealt with, classical logic is the
ultima ratio of formal reasoning.

The only difference between CLuNs and LPQ⊃,F is that the former has a bi-
implication connective and the latter does not have that connective. However,
bi-implication is definable in LPQ⊃,F. LFI1∗, QLFI1◦, J∗3=, and LP◦ do not
have the falsity constant of LPQ⊃,F and J∗3= and LP◦ also do not have the
implication connective of LPQ⊃,F. Instead, each of LFI1∗, QLFI1◦, J∗3=, and
LP◦ has a connective that is foreign to classical logic. However, the constants
and connectives of LPQ⊃,F are definable in terms of those of each of these logics
and vice versa. That is why it is said that LPQ⊃,F is essentially the same as these
logics. I prefer LPQ⊃,F because it does not have a connective that is foreign to
classical logic.

The structure of this paper is as follows. First, the language of the paracon-
sistent logic LPQ⊃,F is defined (Section 2). Next, a sequent-style natural deduc-
tion proof system for LPQ⊃,F is given (Section 3). After that, a model-theoretic
justification of this proof system is given (Section 4). Then, a justification of
this proof system by means of an embedding into FOCL is given (Section 5).
Following this, selected points related to the preceding sections are discussed
(Section 6). Finally, some concluding remarks are made (Section 7).

2 The Language of LPQ⊃,F

In this section the language of the paraconsistent logic LPQ⊃,F is described.
First, the assumptions which are made about function and predicate symbols are
given and the notion of a signature is introduced. Next, the terms and formulas
of LPQ⊃,F are defined for a fixed but arbitrary signature. Thereafter, notational
conventions and abbreviations are presented and some remarks about free vari-
ables and substitution are made. In coming sections, the proof system of LPQ⊃,F

and the interpretation of the terms and formulas of LPQ⊃,F are defined for a
fixed but arbitrary signature.

2.1 Signatures

It is assumed that the following has been given: (a) a countably infinite set V of
variable symbols, (b) a countably infinite set C of constant symbols, (c) for each
n ∈ N1, a countably infinite set Fn of function symbols of arity n, and, (d) for
each n ∈ N1, a countably infinite set Pn of predicate symbols of arity n. It is also
assumed that all these sets and {=} are mutually disjoint.

We write Sym for V ∪ C ∪
⋃
{Fn | n ∈ N1} ∪

⋃
{Pn | n ∈ N1}. The notation

w ≡ w′, where w,w′ ∈ Sym , is used to indicate that w and w′ are identical.
A signature Σ is a subset of C ∪

⋃
{Fn | n ∈ N1} ∪

⋃
{Pn | n ∈ N1}.

We write Sig for the set of all signatures. We write C(Σ), Fn(Σ), and Pn(Σ),
where Σ ∈ Sig and n ∈ N1, for Σ ∩ C, Σ ∩ Fn, and Σ ∩ Pn, respectively.

The language of LPQ⊃,F will be defined for a fixed but arbitrary signature Σ.
This language will be called the language of LPQ⊃,F over Σ or shortly the lan-
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guage of LPQ⊃,F(Σ). The corresponding proof system and interpretation will be
called the proof system of LPQ⊃,F(Σ) and the interpretation of LPQ⊃,F(Σ).

2.2 Terms and formulas

The language of LPQ⊃,F(Σ) contains terms and formulas. They are constructed
according to the formation rules given below.

The set of all terms of LPQ⊃,F(Σ), written TLPQ⊃,F(Σ), is inductively defined
by the following formation rules:

– if x ∈ V , then x ∈ TLPQ⊃,F(Σ);
– if c ∈ C(Σ), then c ∈ TLPQ⊃,F(Σ);
– if f ∈ Fn(Σ) and t1, . . . , tn ∈ TLPQ⊃,F(Σ), then f(t1, . . . , tn) ∈ TLPQ⊃,F(Σ).

The set of all formulas of LPQ⊃,F(Σ), written FLPQ⊃,F(Σ), is inductively defined
by the following formation rules:

– F ∈ FLPQ⊃,F(Σ);
– if t1, t2 ∈ TLPQ⊃,F(Σ), then t1 = t2 ∈ FLPQ⊃,F(Σ);
– if P ∈ Pn(Σ) and t1, . . . , tn ∈ TLPQ⊃,F(Σ), then P (t1, . . . , tn) ∈ FLPQ⊃,F(Σ);
– if A ∈ FLPQ⊃,F(Σ), then ¬A ∈ FLPQ⊃,F(Σ);
– if A1, A2 ∈ FLPQ⊃,F(Σ), then A1 ∧ A2, A1 ∨ A2, A1 ⊃A2 ∈ FLPQ⊃,F(Σ);
– if x ∈ V and A ∈ FLPQ⊃,F(Σ), then ∀x • A, ∃x • A ∈ FLPQ⊃,F(Σ).

For the connectives ¬, ∧, ∨, and ⊃ and the quantifiers ∀ and ∃, the classical
truth-conditions and falsehood-conditions are retained. Except for implications,
a formula is classified as both-true-and-false exactly when it cannot be classified
as true or false by these conditions.

2.3 Notational conventions and abbreviations

In the sequel, some notational conventions and abbreviations will be used.
The following will sometimes be used without mentioning (with or without

subscripts): x as a syntactic variable ranging over all variable symbols from V ,
t as a syntactic variable ranging over all terms from TLPQ⊃,F(Σ), A as a syntactic
variable ranging over all formulas from FLPQ⊃,F(Σ), and Γ as a syntactic variable
ranging over all finite sets of formulas from FLPQ⊃,F(Σ).

The string representation of terms and formulas suggested by the formation
rules given above can lead to syntactic ambiguities. Parentheses are used to
avoid such ambiguities. The need to use parentheses is reduced by ranking the
precedence of the logical connectives ¬, ∧, ∨, ⊃. The enumeration presents this
order from the highest precedence to the lowest precedence. Moreover, the scope
of the quantifiers extends as far as possible to the right and ∀x1 • · · · ∀xn • A is
usually written as ∀x1, . . . , xn • A.

Non-equality, truth, and bi-implication are defined as abbreviations: t1 6= t2
stands for ¬(t1 = t2), T stands for ¬F, A1≡A2 stands for (A1⊃A2)∧ (A2⊃A1).
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2.4 Free variables and substitution

Free variables of a term or formula and substitution for variables in a term or
formula are defined in the usual way.

We write free(e), where e is a term from TLPQ⊃,F(Σ) or a formula from
FLPQ⊃,F(Σ), for the set of free variables of e. We write free(Γ ), where Γ is a
finite set of formulas from FLPQ⊃,F(Σ), for

⋃
{free(A) | A ∈ Γ}.

Let x be a variable symbol from V , t be a term from TLPQ⊃,F(Σ), and e be a
term from TLPQ⊃,F(Σ) or a formula from FLPQ⊃,F(Σ). Then [x := t]e is the result
of replacing the free occurrences of the variable symbol x in e by the term t,
avoiding — by means of renaming of bound variables — free variables becoming
bound in t.

3 Proof System of LPQ⊃,F(Σ)

The proof system of LPQ⊃,F(Σ) is formulated as a sequent-style natural deduc-
tion proof system. This means that the inference rules have sequents as premises
and conclusions. First, the notion of a sequent is introduced. Next, the inference
rules of the proof system of LPQ⊃,F(Σ) are presented. Then, the notion of a
derivation of a sequent from a set of sequents and the notion of a proof of a
sequent are introduced. An extension of the proof system of LPQ⊃,F(Σ) which
can serve as a proof system for FOCL(Σ) is also described.

3.1 Sequents

In LPQ⊃,F(Σ), a sequent is an expression of the form Γ ⊢ A, where Γ is a finite
set of formulas from FLPQ⊃,F(Σ) and A is a formula from FLPQ⊃,F(Σ). We write
⊢ A instead of ∅ ⊢ A. Moreover, we write Γ, Γ ′ for Γ ∪Γ ′ and A for {A} on the
left-hand side of a sequent.

The intended meaning of the sequent Γ ⊢ A is that the formula A is a logical
consequence of the formulas Γ . There are several sensible notions of logical
consequence in the case where formulas can be classified as both-true-and-false.
The notion underlying LPQ⊃,F is precisely defined in Section 4. It corresponds to
the intuitive idea that one can draw conclusions that are not false from premises
that are not false. Sequents are proved by (natural deduction) proofs obtained
by using the rules of inference given below.

3.2 Rules of inference

The sequent-style natural deduction proof system of LPQ⊃,F(Σ) consists of the
inference rules given in Table 1. In this table, x is a syntactic variable ranging
over all variable symbols from V , t1, t2, and t are syntactic variables ranging
over all terms from TLPQ⊃,F(Σ), and A1, A2, A3, and A are syntactic variables
ranging over all formulas from FLPQ⊃,F(Σ). Double lines indicate a two-way
inference rule.
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Table 1. Natural deduction proof system of LPQ⊃,F(Σ)

I
Γ,A ⊢ A

T-I
Γ ⊢ ¬F

∧-I
Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 ∧A2

∨-I
Γ ⊢ Ai

Γ ⊢ A1 ∨A2

for i = 1, 2

⊃-I
Γ,A1 ⊢ A2

Γ ⊢ A1 ⊃ A2

∀-I
Γ ⊢ A

Γ ⊢ ∀x • A
†

∃-I
Γ ⊢ [x := t]A

Γ ⊢ ∃x • A

=-I
Γ ⊢ t = t

¬-M
Γ ⊢ ¬¬A

Γ ⊢ A

∨-M
Γ ⊢ ¬(A1 ∨A2)

Γ ⊢ ¬A1 ∧ ¬A2

∀-M
Γ ⊢ ¬∀x • A

Γ ⊢ ∃x • ¬A

EM
Γ ⊢ A ∨ ¬A

F-E
Γ ⊢ F

Γ ⊢ A

∧-E
Γ ⊢ A1 ∧A2

Γ ⊢ Ai

for i = 1, 2

∨-E
Γ ⊢ A1 ∨A2 Γ,A1 ⊢ A3 Γ,A2 ⊢ A3

Γ ⊢ A3

⊃-E
Γ ⊢ A1 ⊃A2 Γ ⊢ A1

Γ ⊢ A2

∀-E
Γ ⊢ ∀x • A

Γ ⊢ [x := t]A

∃-E
Γ ⊢ ∃x • A1 Γ,A1 ⊢ A2

Γ ⊢ A2

‡

=-E
Γ ⊢ t1 = t2 Γ ⊢ [x := t1]A

Γ ⊢ [x := t2]A

∧-M
Γ ⊢ ¬(A1 ∧ A2)

Γ ⊢ ¬A1 ∨ ¬A2

⊃-M
Γ ⊢ ¬(A1 ⊃ A2)

Γ ⊢ A1 ∧ ¬A2

∃-M
Γ ⊢ ¬∃x • A

Γ ⊢ ∀x • ¬A

† restriction on rule ∀-I: x /∈ free(Γ );
‡ restriction on rule ∃-E: x /∈ free(Γ ∪ {A2}).

3.3 Derivations and proofs

In LPQ⊃,F(Σ), a derivation of a sequent Γ ⊢ A from a finite set of sequents H
is a finite sequence 〈s1, . . . , sn〉 of sequents such that sn equals Γ ⊢ A and, for
each i ∈ {1, . . . , n}, one of the f ollowing conditions holds:

– si ∈ H;
– si is the conclusion of an instance of some inference rule from the proof

system of LPQ⊃,F(Σ) whose premises are among s1, . . . , si−1.

A proof of a sequent Γ ⊢ A is a derivation of Γ ⊢ A from the empty set of
sequents. A sequent Γ ⊢ A is said to be provable if there exists a proof of
Γ ⊢ A.

An inference rule that does not belong to the inference rules of some proof
system is called a derived inference rule if there exists a derivation of the conclu-
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sion from the premises, using the inference rules of that proof system, for each
instance of the rule.

The difference between CLuNs and LPQ⊃,F is that bi-implication is a logical
connective in CLuNs and must be defined as an abbreviation in LPQ⊃,F. In [1],
a proof system of CLuNs is presented which is formulated as a Hilbert system.
Removing the axiom schemas A≡1, A≡2, and A≡3 from this proof system and
taking formulas of the form A1 ≡A2 in this proof system as abbreviations yields
a proof system of LPQ⊃,F formulated as a Hilbert system. Henceforth, this proof
system will be referred to as the H proof system of LPQ⊃,F and the proof system
presented in Section 3.2 will be referred to as the ND proof system of LPQ⊃,F.

3.4 FOCL(Σ)

In FOCL, the same assumptions about symbols are made as in LPQ⊃,F and the
notion of a signature is defined as in LPQ⊃,F. The languages of FOCL(Σ) and
LPQ⊃,F(Σ) are the same. A natural deduction proof system of FOCL(Σ) can
be obtained by adding the following inference rule to the ND proof system of
LPQ⊃,F(Σ):

C
Γ ⊢ A1 Γ ⊢ ¬A1

Γ ⊢ A2

.

This proof system is known to be sound and complete. There exist better known
alternatives to it, but this proof system is arguably the most appropriate one in
this paper.

In Section 5, the sequents of LPQ⊃,F(Σ) will be translated to sequents of
FOCL(Σ′) (Σ′ is a particular signature related to Σ). The translation concerned
has the property that what can be derived remains the same after translation.
This implies that the inference rules of the proof system of LPQ⊃,F(Σ) become
derived inference rules of the above-mentioned proof system of FOCL(Σ′) after
translation. Thus, the translation provides a logical justification for the inference
rules of LPQ⊃,F(Σ). A model-theoretic justification is afforded by the interpre-
tation given in Section 4.

4 Interpretation of Terms and Formulas of LPQ⊃,F(Σ)

The proof system of LPQ⊃,F is based on the interpretation of the terms and
formulas of LPQ⊃,F(Σ) presented below: the inference rules preserve validity
under this interpretation. The interpretation is given relative to a structure and
an assignment. First, the notion of a structure and the notion of an assignment
are introduced. Next, the interpretation of the terms and formulas of LPQ⊃,F(Σ)
is presented.

4.1 Structures

The terms from TLPQ⊃,F(Σ) and the formulas from FLPQ⊃,F(Σ) are interpreted
in structures which consist of a non-empty domain of individuals and an in-
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terpretation of every symbol in the signature Σ and the equality symbol. The
domain of truth values consists of three values: t (true), f (false), and b (both
true and false).

A structure A of LPQ⊃,F(Σ) consists of:

– a set UA, the domain of A, such that UA 6= ∅ and UA ∩ {t, f, b} = ∅;
– for each c ∈ C(Σ),

an element cA ∈ UA;

– for each n ∈ N1, for each f ∈ Fn(Σ),

a function fA : UA × · · · × UA

︸ ︷︷ ︸

n times

→ UA;

– for each n ∈ N1, for each P ∈ Pn(Σ),

a function PA : UA × · · · × UA

︸ ︷︷ ︸

n times

→ {t, f, b};

– a function =A: UA × UA → {t, f, b} such that, for each d ∈ UA,

=A (d, d) = t or =A (d, d) = b.

Instead of wA we write w when it is clear from the context that the interpretation
of symbol w in structure A is meant.

4.2 Assignments

An assignment in a structure A of LPQ⊃,F(Σ) assigns elements from UA to the
variable symbols from V . The interpretation of the terms from TLPQ⊃,F(Σ) and
the formulas from FLPQ⊃,F(Σ) in A is given with respect to an assignment α in
A.

Let A be a structure of LPQ⊃,F(Σ). Then an assignment in A is a function
α : V → UA. For every assignment α in A, variable symbol x ∈ V and element
d ∈ UA, we write α(x → d) for the assignment α′ in A such that α′(x) = d and
α′(y) = α(y) if y 6≡ x.

4.3 Interpretation

The interpretation of the terms from TLPQ⊃,F(Σ) is given by a function mapping

term t, structure A and assignment α in A to the element of UA that is the
value of t in A under assignment α. Similarly, the interpretation of the formulas
from FLPQ⊃,F(Σ) is given by a function mapping formula A, structure A and
assignment α in A to the element of {t, f, b} that is the truth value of A in A
under assignment α. We write [[t]]A

α
and [[A]]A

α
for these interpretations.

The interpretation functions for the terms from TLPQ⊃,F(Σ) and the formulas
from FLPQ⊃,F(Σ) are inductively defined in Table 2. In this table, x is a syntactic
variable ranging over all variable symbols from V , c is a syntactic variable ranging
over all constant symbols from C(Σ), f is a syntactic variable ranging over all
function symbols from Fn(Σ) (where n is understood from the context), t1, . . . ,
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Table 2. Interpretation of the language of LPQ⊃,F(Σ)

[[x]]Aα = α(x) ,

[[c]]Aα = cA ,

[[f(t1, . . . , tn)]]
A

α = fA([[t1]]
A

α , . . . , [[tn]]
A

α )

[[F]]Aα = f ,

[[t1 = t2]]
A

α = =A ([[t1]]
A

α , [[t2]]
A

α ) ,

[[P (t1, . . . , tn)]]
A

α = PA([[t1]]
A

α , . . . , [[tn]]
A

α ) ,

[[¬A]]Aα =











t if [[A]]Aα = f

f if [[A]]Aα = t

b otherwise,

[[A1 ∧ A2]]
A

α =











t if [[A1]]
A

α = t and [[A2]]
A

α = t

f if [[A1]]
A

α = f or [[A2]]
A

α = f

b otherwise,

[[A1 ∨ A2]]
A

α =











t if [[A1]]
A

α = t or [[A2]]
A

α = t

f if [[A1]]
A

α = f and [[A2]]
A

α = f

b otherwise,

[[A1 ⊃ A2]]
A

α =











t if [[A1]]
A

α = f or [[A2]]
A

α = t

f if [[A1]]
A

α 6= f and [[A2]]
A

α = f

b otherwise,

[[∀x • A]]Aα =











t if , for all d ∈ UA, [[A]]A
α(x→d) = t

f if , for some d ∈ UA, [[A]]A
α(x→d) = f

b otherwise.

[[∃x • A]]Aα =











t if , for some d ∈ UA, [[A]]A
α(x→d) = t

f if , for all d ∈ UA, [[A]]A
α(x→d) = f

b otherwise.

tn are syntactic variables ranging over all terms from TLPQ⊃,F(Σ), P is a syntactic
variable ranging over all predicate symbols from Pn(Σ) (where n is understood
from the context), and A1, A2, and A are syntactic variables ranging over all
formulas from FLPQ⊃,F(Σ),

The logical consequence relation of LPQ⊃,F(Σ) is based on the idea that a
formula A holds in a structure A under an assignment α in A if [[A]]A

α
∈ {t, b}.

Let Γ be a finite set of formulas from FLPQ⊃,F(Σ) and A be a formula from
FLPQ⊃,F(Σ). Then A is a logical consequence of Γ , written Γ |= A, iff for all

structures A of LPQ⊃,F(Σ), for all assignments α in A, [[A′]]A
α

= f for some
A′ ∈ Γ or [[A]]A

α
∈ {t, b}.

As mentioned before, the difference between CLuNs and LPQ⊃,F is that bi-
implication is a logical connective in CLuNs and must be defined as an abbrevi-
ation in LPQ⊃,F. In [1], an interpretation of the formulas of CLuNs is presented
whose restriction to formulas without occurrences of the bi-implication connec-
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tive is essentially the same as the interpretation of the formulas of LPQ⊃,F given
above. The soundness and completeness properties for the Hilbert proof system
of CLuNs proved in [1] directly carry over to LPQ⊃,F.

Theorem 1. The ND proof system of LPQ⊃,F(Σ) presented in Section 3.2 is

sound and complete, i.e., for each finite set Γ of formulas from FLPQ⊃,F(Σ) and
each formula A from FLPQ⊃,F(Σ), Γ ⊢ A is provable in the ND proof system of

LPQ⊃,F(Σ) iff Γ |= A.

Proof. Because it is known from [1] that these properties hold for the H proof
system of LPQ⊃,F, it is sufficient to prove that, for each finite set Γ of formulas
from FLPQ⊃,F(Σ) and each formula A from FLPQ⊃,F(Σ), Γ ⊢ A is provable in the
H system of LPQ⊃,F(Σ) iff Γ ⊢ A is provable in the ND system of LPQ⊃,F(Σ).

The only if part is straightforwardly proved by induction on the length of
the proof of Γ ⊢ A in the H system, using that (a) for each axiom A′ of the H
system, ⊢ A′ can be proved in the ND system and (b) for each inference rule of
the H system, a corresponding derived inference rule of the ND system can be
found.

The if part is straightforwardly proved by induction on length of the proof of
Γ ⊢ A in the ND system, using that (a) the standard deduction theorem holds
for the H system, (b) for each inference rule of the ND system different from I,
⊃-E, ∀-I, and ∃-E, there exists a corresponding axiom of the H system, (c) for
each of the inference rules ⊃-E, ∀-I, and ∃-E, a corresponding derived inference
rule of the H system can be found, and (d) ⊢ A ⊃ A can be proved in the H
system. ⊓⊔

In addition to the notion of logical consequence, the notions of logical equiva-
lence and consistency are semantic notions that are relevant for a paraconsistent
logic. The logical equivalence relation is semantically defined as it is semanti-
cally defined in classical logic. Let A1 and A2 be formulas from FLPQ⊃,F(Σ).
Then A1 is logically equivalent to A2, written A1 ⇔ A2, iff for all structures
A of LPQ⊃,F(Σ), for all assignments α in A, [[A1]]

A
α

= [[A2]]
A
α
. The consistency

property is not semantically definable in classical logic. Let A1 and A2 be formu-
las from FLPQ⊃,F(Σ). Then A is consistent iff for all structures A of LPQ⊃,F(Σ),

for all assignments α in A, [[A1]]
A
α

6= b.
Unlike in classical logic, it does not hold that A1 ⇔ A2 iff ⊢ A1 ≡ A2, but

it holds that A1 ⇔ A2 iff ⊢ (A1 ≡ A2) ∧ (¬A1 ≡ ¬A2). Moreover, it holds that
A is consistent iff ⊢ (A ⊃ F) ∧ (¬A ⊃ F). In other words, the notions of logical
equivalence and consistency can both be internalized in LPQ⊃,F(Σ).

5 Embedding of LPQ⊃,F(Σ) into FOCL(Σ)

To give a classical-logic view of LPQ⊃,F, the terms, formulas and sequents of
LPQ⊃,F(Σ) are translated in this section to terms, formulas and sequents, re-
spectively, of FOCL(Σ). The mappings concerned provide a uniform embed-
ding of LPQ⊃,F(Σ) into FOCL(Σ). What can be proved remains the same after
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translation. Thus, the mappings provide both a classical-logic explanation of
LPQ⊃,F(Σ) and a logical justification of its proof system.

5.1 Translation

In the translation, a canonical mapping from symbols of LPQ⊃,F(Σ) to symbols
of FOCL(Σ) is assumed. For each w ∈ Sym , we write w for the symbol to which
w is mapped and, for each W ⊆ Sym , we write W for the set {w | w ∈ W}.
The mapping concerned is further assumed to be injective and such that:

– each x ∈ V is mapped to an x ∈ V,
– each c ∈ C(Σ) is mapped to a c ∈ C(Σ),
– each f ∈ Fn(Σ) is mapped to an f ∈ Fn(Σ),
– each P ∈ Pn(Σ) is mapped to a P ∈ Pn(Σ).

It is also assumed that U,B ∈ P1, true, false, both ∈ C, X ∈ V , and, for each
i ∈ N1, Xi ∈ V.

For the translation of terms from TLPQ⊃,F(Σ), one translation function is
used:

([ ]) : TLPQ⊃,F(Σ) → TFOCL(Σ)

and for the translation of formulas from FLPQ⊃,F(Σ), three translation functions
are used:

([ ])t : FLPQ⊃,F(Σ) → FFOCL(Σ),

([ ])f : FLPQ⊃,F(Σ) → FFOCL(Σ),

([ ])b : FLPQ⊃,F(Σ) → FFOCL(Σ).

For a formula A from FLPQ⊃,F(Σ), there are three translations of A to FOCL(Σ).
([A])t is a formula of FOCL(Σ) stating that the formula A of LPQ⊃,F(Σ) is true
in LPQ⊃,F(Σ). Likewise, ([A])f is a formula of FOCL(Σ) stating that the formula
A of LPQ⊃,F(Σ) is false in LPQ⊃,F(Σ) and ([A])b is a formula of FOCL(Σ) stating
that the formula A of LPQ⊃,F(Σ) is both true and false in LPQ⊃,F(Σ).

The translation functions for the terms from TLPQ⊃,F(Σ) and the formulas
from FLPQ⊃,F(Σ) are inductively defined in Table 3. In this table, x is a syntactic
variable ranging over all variable symbols from V , c is a syntactic variable ranging
over all constant symbols from C(Σ), f is a syntactic variable ranging over all
function symbols from Fn(Σ) (where n is understood from the context), t1, . . . ,
tn are syntactic variables ranging over all terms from TLPQ⊃,F(Σ), P is a syntactic
variable ranging over all predicate symbols from Pn(Σ) (where n is understood
from the context), and A1, A2, and A are syntactic variables ranging over all
formulas from FLPQ⊃,F(Σ).

The translation rules strongly resemble the interpretation rules of LPQ⊃,F(Σ)
that are given in Section 4: the rules for the mapping ([ ])t correspond to the
truth-conditions and the rules for the mapping ([ ])f correspond to the falsehood-
conditions.

A translation for sequents of LPQ⊃,F(Σ) can also be devised:

([Γ ⊢ A]) = Ax(Σ,Γ ∪ {A}) ∪ {([A′])t ∨ ([A′])b | A′ ∈ Γ} ⊢ ([A])t ∨ ([A])b ,
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Table 3. Translation of the language of LPQ⊃,F(Σ)

([x]) = x ,

([c]) = c ,

([f(t1, . . . , tn)]) = f(([t1]), . . . , ([tn])) .

([F])t = F ,

([t1 = t2])
t = eq(([t1]), ([t2])) = true ,

([P (t1, . . . , tn)])
t = P (([t1]), . . . , ([tn])) = true ,

([¬A])t = ([A])f ,

([A1 ∧A2])
t = ([A1])

t ∧ ([A2])
t ,

([A1 ∨A2])
t = ([A1])

t ∨ ([A2])
t ,

([A1 ⊃ A2])
t = ([A1])

f ∨ ([A2])
t ,

([∀x • A])t = ∀x • U(x) ⊃ ([A])t ,

([∃x • A])t = ∃x • U(x) ∧ ([A])t ,

([F])f = T ,

([t1 = t2])
f = eq(([t1]), ([t2])) = false ,

([P (t1, . . . , tn)])
f = P (([t1]), . . . , ([tn])) = false ,

([¬A])f = ([A])t ,

([A1 ∧A2])
f = ([A1])

f ∨ ([A2])
f ,

([A1 ∨A2])
f = ([A1])

f ∧ ([A2])
f ,

([A1 ⊃ A2])
f = ¬([A1])

f ∧ ([A2])
f ,

([∀x • A])f = ∃x • U(x) ∧ ([A])f ,

([∃x • A])f = ∀x • U(x) ⊃ ([A])f ,

([A])b = ¬(([A])t ∨ ([A])f) .

where Ax(Σ,Γ ∪ {A}) consists of the following formulas:

– true 6= false ∧ true 6= both ∧ false 6= both;
– ∀X • B(X) ≡ (X = true ∨X = false ∨X = both);
– ∃X • U(X);
– ∀X • ¬(U(X) ≡ B(X));
– ∀X1, . . . , Xn •U(X1)∧ . . .∧U(Xn) ⊃ U(f(X1, . . . , Xn)) for each f ∈ Fn(Σ),

for each n ∈ N1;
– ∀X1, . . . , Xn •U(X1)∧ . . .∧U(Xn) ⊃ B(P (X1, . . . , Xn)) for each P ∈ Pn(Σ),

for each n ∈ N1;
– ∀X1, X2 • U(X1) ∧ U(X2) ⊃ B(eq(X1, X2));
– ∀X • eq(X,X) = true ∨ eq(X,X) = both;
– U(x) for each x ∈ free(Γ ∪ {A}).

Ax(Σ,Γ ∪ {A}) contains formulas asserting that the domain of truth values
contains exactly three elements, the domain of individuals contains at least one

11



element and is disjoint from the domain of truth values, application of a func-
tion yields an element from the domain of individuals, application of a predicate,
including the equality predicate, yields an element from the domain of truth val-
ues, application of the equality predicate does not yield false if the arguments are
identical, and free variables are always elements from the domain of individuals.

5.2 Embedding

An important property of the translation of sequents of LPQ⊃,F(Σ) to sequents of
FOCL(Σ∪{true, false, both,B,U, eq}) presented above is that what can be proved
remains the same after translation. This means that the translation provides a
uniform embedding of LPQ⊃,F(Σ) into FOCL(Σ ∪ {true, false, both,B,U, eq}).

Theorem 2. For each finite set Γ of formulas from FLPQ⊃,F(Σ) and each for-

mula A from FLPQ⊃,F(Σ), Γ ⊢ A is provable in LPQ⊃,F(Σ) iff ([Γ ⊢ A]) is

provable in FOCL(Σ ∪ {true, false, both,B,U, eq}).

Proof. The only if part is easily proved by induction over the length of a proof of
Γ ⊢ A and case distinction on the last inference rule applied, using that the ND
proof system for FOCL(Σ ∪ {true, false, both,B,U, eq}) described in Section 3.4
contains all inference rules of LPQ⊃,F(Σ).

The if part is proved making use of Theorem 1. Let A be a structure of
LPQ⊃,F(Σ). Then A can be transformed in a natural way into a structure A∗ of
FOCL(Σ ∪ {true, false, both,B,U, eq}) with the following properties: [[A]]A

α
= t

iff [[([A])t]]A
∗

α
= t, [[A]]A

α
= f iff [[([A])f ]]A

∗

α
= t, and [[A]]A

α
= b iff [[([A])b]]A

∗

α
= t

(for all assignments α in A). Now assume that A is a counter-model for Γ ⊢ A.
Then, for its above-mentioned properties, A∗ is a counter-model for ([Γ ⊢ A]).
From this, by Theorem 1, the if part follows immediately. ⊓⊔

The translation of sequents extends to inference rules in the obvious way.

Corollary 1. The translation of the inference rules of the presented proof sys-

tem of LPQ⊃,F(Σ) are derived inference rules of the proof system of FOCL
(Σ ∪ {true, false, both,B,U, eq}) described in Section 3.4.

6 Discussion

In this section, properties the propositional fragment of LPQ⊃,F and the different
ways in which LPQ⊃,F is close to classical logic are briefly discussed.

6.1 On the propositional fragment of LPQ⊃,F

In [8], the propositional fragment of LPQ⊃,F, called LP⊃,F, is presented. In that
paper, it is among other things shown that LP⊃,F is the only three-valued para-
consistent propositional logic whose logical consequence relation has all prop-
erties proposed as desirable for such logics in the literature and whose logical
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equivalence relation satisfies the identity, annihilation, idempotent, and commu-
tative laws for conjunction and disjunction, the double negation law for negation,
and two laws that uniquely characterize its implication connective.

Because closeness to classical logic is generally considered important, the
above-mentioned properties of the logical equivalence relation concerning con-
junction, disjunction, and negation should arguably also be taken as desirable
for paraconsistent propositional logics. Unlike in classical logic, it does not hold
in three-valued paraconsistent logics that logical equivalence is the same as log-
ical consequence and its inverse. This necessitates taking desirable properties of
the logical equivalence relation explicitly into account. If the above-mentioned
properties concerning conjunction, disjunction, and negation are taken into ac-
count, then the number of ‘ideal’ three-valued paraconsistent propositional logics
reduces from 8192 to 16, among which LP⊃,F (cf. [8]).

In [2], an application of LP⊃,F can be found. The properties of the logical
equivalence relation that are essential for that application, among which most,
but not all, properties considered desirable above, reduces the number of ideal
three-valued paraconsistent propositional logics that are applicable even to 1,
namely LP⊃,F. This strengthens the impression that among the paraconsistent
logics that deserves most attention are LP⊃,F and its first-order extensions. How-
ever, the question arises whether a paraconsistent logic is really needed to deal
with contradictory sets of formulas. The embedding of LPQ⊃,F into FOCL given
in this paper shows that it can be dealt with in classical logic but in a much less
convenient way.

6.2 On ways in which LPQ⊃,F is close to classical logic

LPQ⊃,F is a paraconsistent logic whose logical consequence relation and logical
equivalence relation have all properties proposed as desirable for such logics.
These properties are all related to closeness to classical logic. Moreover, LPQ⊃,F

has no connective that is foreign to classical logic and the inference rules of its
natural deduction proof system are all known from classical logic:

– except for the inference rules concerning the negation connective, the in-
ference rules are the ones found in all natural deduction proof systems for
classical logic;

– the inference rules concerning the negation connective are a rule that corre-
sponds to the law of the excluded middle and rules that correspond to the
de Morgan’s laws for all connectives and quantifiers;

– the rule corresponding to the law of the excluded middle is also found in nat-
ural deduction proof systems for classical logic and the rules corresponding
to the de Morgan’s laws are well-known derived rules of natural deduction
proof systems for classical logic.

This means that natural deduction reasoning in the setting of LPQ⊃,F differs from
classical natural deduction reasoning only by slightly different, but classically
justifiable, reasoning about negations.
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7 Concluding Remarks

The paraconsistent logic LPQ⊃,F has been presented. A sequent-style natural
deduction proof system has been given for this logic. A natural deduction proof
system has not been given before in the literature for one of the logics that are
essentially the same as LPQ⊃,F. In addition to the model-theoretic justification of
the proof system, a logical justification by means of an embedding into classical
logic has been given. Thus, a classical-logic view of LPQ⊃,F has been provided.
It appears that a classical-logic view of a paraconsistent logic has not been given
before.

A classical-logic view of a paracomplete logic has been given before in [7], fol-
lowing the same approach as in the current paper. It is likely that this approach
works for all truth-functional finitely-valued logics. The approach concerned is
reminiscent of the method, described in [3], to reduce the many-valued interpre-
tation of the formulas of a truth-functional finitely-valued logic to a two-valued
interpretation.
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