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Abstract
Objective. To simulate progressive motor neuron loss and collateral reinnervation in motor neuron
diseases (MNDs) by developing a dynamic muscle model based on human single motor unit (MU)
surface-electromyography (EMG) recordings. Approach. Single MU potentials recorded with
high-density surface-EMG from thenar muscles formed the basic building blocks of the model.
From the baseline MU pool innervating a muscle, progressive MU loss was simulated by removal
of MUs, one-by-one. These removed MUs underwent collateral reinnervation with scenarios
varying from 0% to 100%. These scenarios were based on a geometric variable, reflecting the
overlap in MU territories using the spatiotemporal profiles of single MUs and a variable reflecting
the efficacy of the reinnervation process. For validation, we tailored the model to generate
compound muscle action potential (CMAP) scans, which is a promising surface-EMG method for
monitoring MND patients. Selected scenarios for reinnervation that matched observed MU
enlargements were used to validate the model by comparing markers (including the maximum
CMAP and a motor unit number estimate (MUNE)) derived from simulated and recorded CMAP
scans in a cohort of 49 MND patients and 22 age-matched healthy controls.Main results. The
maximum CMAP at baseline was 8.3 mV (5th–95th percentile: 4.6 mV–11.8 mV). Phase
cancellation caused an amplitude drop of 38.9% (5th–95th percentile, 33.0%–45.7%). To match
observations, the geometric variable had to be set at 40% and the efficacy variable at 60%–70%.
The∆maximum CMAP between recorded and simulated CMAP scans as a function of fitted
MUNE was−0.4 mV (5th–95th percentile=−4.0 –+2.4 mV). Significance. The dynamic muscle
model could be used as a platform to train personnel in applying surface-EMG methods prior to
their use in clinical care and trials. Moreover, the model may pave the way to compare biomarkers
more efficiently, without directly posing unnecessary burden on patients.

1. Introduction

Many neuromuscular diseases have in common that
they affect motor units (MUs) [1]. A MU is the
smallest functional element in the peripheral nervous
system to generate voluntary muscle contraction. A
MU consists of a lower motor neuron (LMN) cell
body located in the spinal cord, which transfer action
potentials via long motor nerve fibers (or axons) to

the muscle fibers it innervates. Motor neuron dis-
eases (MNDs), including amyotrophic lateral scler-
osis (ALS), represent a severe category of neuromus-
cular disorders [2, 3]. In ALS, the progressive loss of
LMNs results in ongoing muscle weakness, increas-
ing disability, and ultimately death on average three
years after symptom onset. Sensitive biomarkers are
imperative to reliably assess severity and progression
of ALS for timely evaluation of disease-modifying
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effects of new promising therapies. Motor unit num-
ber estimate (MUNE) methods are promising neuro-
physiological tools that offer the potential to address
this strong medical need [4].

Most MUNE methods apply surface-
electromyography (EMG) where the LMN activity
can be obtained non-invasively by recording MU
potentials (MUPs) over the muscle. MUNE methods
provide clinically relevant insights on two prominent
pathological processes: loss of MUs (i.e. degenera-
tion of LMNs) and enlarged MUs due to collateral
reinnervation. The latter is a compensatory process
where muscle fibers from degenerated MUs can be
reinnervated by still functional MUs, resulting in
increased MU sizes over time. Over the years, vari-
ous MUNE methods have been designed [4, 5] and
further developments are warranted to improve their
performance and/or to ease their utility for clinical
care and trials.

Efficiently evaluating the performance of MUNE
methods, however poses various challenges, as the
exact (changes in) number and size of MUs that
innervate a muscle remains unknown. The inter-
action between these two prominent mechanisms
remains unclear, while it may significantly affect
the sensitivity of surface-EMG based MUNE meth-
ods. This is further complicated by the fact that this
interaction may also vary greatly between patients
throughout their disease course. Computational
models may provide more systematic insights on
the impact of the underlying pathology and serve as
a quantitative reference without the need to imme-
diately impose burden on patients [6–9]. By sys-
tematically studying methodological factors and the
underlying disease pathology which cannot be stud-
ied otherwise, these models may assist in providing
promising avenues for improving MUNE methods
more efficiently.

Towards achieving this purpose, we have
developed a new dynamic muscle model, where
the novelty lies in integrating high-density surface-
EMG recorded single MUPs as the basic building
blocks of the model, which created the opportun-
ity to simultaneously simulate the two prominent
progressive pathological processes in MND; MU loss
and enlarged MUs due to collateral reinnervation
[10]. As we incorporated collateral reinnervation
in the dynamic muscle model, in the first stage,
we investigated various scenarios for collateral
reinnervation such that it yielded experimentally
observed enlarged MU sizes. Secondly, we then
tailored the model to generate simulated compound
muscle action potential (CMAP) scans, which is
an emerging MUNE method for monitoring dis-
ease progression in MND [8, 11–15]. We compared
these simulated CMAP scans with experimentally
obtained CMAP scans from a well-defined cohort
of patients with MND and age-matched healthy
controls.

2. Methods

2.1. Development and validation cohorts
To develop the dynamic muscle model, we collected
single MUPs that were already recorded from thenar
muscles in previously published patient (n= 59) and
healthy control (n = 14) cohorts [16, 17] (table 1,
development cohort). In this development cohort,
the patient cohort consisting of patients with MND
(n= 34) and other neuromuscular disorders (n= 25)
had a similar age (p = 0.37) and slightly less women
(p= 0.02) compared to the healthy control cohort.

To subsequently evaluate the performance of the
muscle model tailored to generate simulated CMAP
scans, we included a validation cohort (table 1)
of patients with MND (n = 49) and healthy con-
trols (n = 22). The validation cohort underwent
CMAP scan recordings also obtained from the thenar
muscles. The patients with MND in the validation
cohort had a similar age (p = 0.27) and gender
(p= 0.75) distribution compared to the patients with
MND in the development cohort. In the validation
cohort, we also used the Medical Research Council
(MRC) scale, which is a commonly applied scale in
neurology and rehabilitation practice to assessmuscle
strength [18]. It is graded from 5 (normal strength),
4 (active movement against gravity and resistance),
3 (active movement against gravity), 2 (active move-
ment with gravity eliminated), 1 (some traces of con-
traction) to 0 (no contraction visible). The patients
with MND in the validation cohort covered a broad
spectrum from yet unaffected to severely affected
thenar muscles expressed by the MRC scores (2
(n = 1), 3 (n = 2), 4 (n = 21), 5 (n = 25)). All sub-
jects gave informed consent for the experiments. The
study was in accordance with the principles of the
Declaration ofHelsinki and approved by the local eth-
ical committee.

2.2. Recorded single MUPs as the basic building
block of the model
Instead of simulating single MU amplitudes as in
previous modeling studies [6, 7, 9, 19], we derived
them from the full surface-EMG waveform using
the single MUPs from the development cohort as
the basic building blocks of the model. The single
MUPs were recorded with a high-density surface-
EMG using a 9 × 14 electrode array [16, 17]. These
single MUPs were recorded after low-intensity elec-
trical nerve stimulation along the median nerve [16]
and after their spontaneous activity [17]. SingleMUP
analysis was performed using previously described
decomposition software based on Ward’s clustering
for the electrically recruited MUPs and hierarchical
superparamagnetic clustering for the spontaneous
recorded MUPs [20, 21]. Occasionally, a few chan-
nels had been poorly attached to the skin [20, 22], res-
ulting in noisy signals, which were turned-off at that
time. These noisy or turned-off channels were linearly
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Table 1. Characteristics of the patients with MND, neuromuscular disorders and healthy controls as part of the development and
validation cohort.

Development cohort Validation cohort

Characteristics MND Neuromuscular Controls MND Controls

N 34 25 14 49 22
Age, years 64 (32–78) 52 (20–83) 65 (41–74) 65 (47–81) 66 (48–79)
Sex, male 22 16 4 30 11
Bulbar onset, (%) 10 (29%) 0 (0%) — 12 (24%) —
Duration, months 12.2 (2.8–43.4) 36.5 (0.5–450.5) — 10.3 (1.4–65.1) —

interpolated using surface-EMG signals of the adja-
cent channels [23] that surround the noisy channels.
This interpolation process ensures that the full spati-
otemporal profile of single MUPs are correctly pre-
served, so that when adding single MUPs together,
they result in adequately simulated CMAP responses.
Potential duplicates of single MUs within subjects
were visualized and superimposed when they had a
high correlation coefficient (>0.9). The overlaying
MUs were visually judged and removed by the oper-
ator where their spatiotemporal profiles greatly facil-
itated this step [20], along with assessing whether the
remaining residual amplitude differences resembled
baseline noise levels. Baseline was corrected by fit-
ting a linear regression between the average amp-
litude of the first and last five samples per chan-
nel. To obtain a representative MUP population, we
excluded themost outlyingMUP sizes (outlying 0.5%
percentile). This was based on the channel with the
largest surface-EMG signal for each MUP and a vir-
tual large electrode by applying a rectangle (3 × 3
subgrid) [24] over the high-density grid centered at
the channel with the largest summed surface-EMG
signal. We eventually obtained 1035 MUPs from all
subjects. Given this large number of single MUPs
obtained from different subjects, we assumed these
could be interpreted as representing MUP size distri-
bution within one muscle [25].

2.3. Stimulation and recording settings to tailor the
muscle model to generate CMAP scans
While the maximum CMAP amplitude, a routinely
utilized clinical electrodiagnostic measure reflecting
the summed activation of all MUs within a muscle,
can be maintained by compensatory reinnervation,
the distribution and properties of the MUs within
the pool will change due to neurodegeneration. The
CMAP scan reflects the consecutive electrical recruit-
ment of all functional MUs innervating the muscle
by making use of the principle that every single MU
has a slightly different activation threshold [6, 19].
The CMAP scan gives relevant clinical information
on the number of MUs, the sizes of these MUs and
their threshold characteristics [6, 11]. In doing so,
the CMAP scan partly overcomes the limitations of
routine clinical electrodiagnostic endpoints.

To tailor the newmusclemodel to generateCMAP
scans, we implemented three key variables: the num-
ber of MUs, the size of these MUs and their threshold
characteristics, in agreement with previous studies
[7, 19, 26]. First, with respect to setting the num-
ber of MUs, we used averaged high-density surface-
EMG recorded MUNE values in thenar muscles of
healthy subjects, which varied from 256 to 343 [20,
24, 27]. Tomatch these experimental observations, we
set the baselineMU pool to 300MUs (SD± 75MUs),
randomly drawn from the MU population. Then,
regarding the second variable, the MU sizes were not
simulated, but directly calculated (baseline-to-peak
amplitude derived from their full surface-EMGwave-
forms). Having the full surface-EMG waveform also
allowed us to estimate the impact of phase cancella-
tion (i.e. overlap in positive and negative phases can-
cel out resulting in decrease of surface-EMG amp-
litude). The last variable involves two threshold char-
acteristics; the activation threshold and threshold
variability of every MU. The activation threshold
corresponds to the stimulation current where MUs
have a 50% probability of being activated during
transcutaneous nerve stimulation. In the absence of
a strong relationship between MU size and activa-
tion threshold [28], allMUPswere randomly assigned
normally distributed activation thresholds based on
generated CMAP scans with a stimulus duration of
0.1 ms [26]. Similar to previous CMAP scan studies
[7, 26], the threshold variability was quantified by
a cumulative Gaussian probability function [29],
which includes the mean (µ, activation threshold)
and standard deviation (σ, threshold variability) of
the activation threshold. The ratio of σ by µ, defined
as the relative spread, effectively summarizing the
range of threshold variability. This physiologically
well-defined property was set to 1.65% (SD ± 0.4%)
and randomly assigned to eachMUP [26, 29]. Similar
to a previous study to simulate distal CMAPs [30], we
introduced varying motor neuron conduction velo-
cities (SD ± 5 m s−1) with an average of 60 m s−1

over 7 cm.
To mimic routine single-channel CMAP scan

recordings, we applied a virtual rectangle (3 × 3
subgrid [24]) with the middle electrode produ-
cing the largest amplitude as if the operator optim-
ally positioned the recording electrode (figure 1(a)).
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Figure 1. (a) Spatiotemporal muscle response of a simulated maximum compound muscle action potential (CMAP) by summing
300 individual motor unit potentials (MUPs) recorded with a 9× 14 high-density surface-EMG electrode array. The gray box
illustrates the 3× 3 subgrid that surrounds the middle electrode with the largest surface-EMG response. (b) The generated
single-channel maximum CMAP amplitude (8.1 mV) is based on the averaged nine signals in (a).

Single-channel CMAP amplitudes were obtained by
averaging these nine signals (figure 1(b)). Finally, to
match routine CMAP scan protocols, we simulated
500 exponentially decaying stimuli over a stimulus
current range from subthreshold (lowest simulated
activation threshold minus 1 mA) to supramaximal
level (highest simulated activation threshold plus
1mA). Adding 1mA to both sides of the stimulus cur-
rent range ensured sufficient subthreshold and supra-
maximal stimuli, similar to clinical practice where
the stimulus current range is not known prior to the
recordings.

2.4. Simultaneously simulating motor neuron
degeneration and collateral reinnervation
In order to simulate the disease course from early to
end stage in muscles affected by MNDs, we had to
develop a new algorithm that incorporated the two
prominent pathophysiological mechanisms, i.e. pro-
gressive motor neuron degeneration and collateral
reinnervation. We started with a baseline MU popu-
lation of 300MUs resembling theMU pool of healthy
subjects. Motor neuron degeneration was then sim-
ulated by randomly removing one MUP at every
step, similar to a previous model study designed at a
moremicroscopicmuscle fiber level [31]. However, in
order to integrate collateral reinnervation with ongo-
ing motor neuron degeneration, we had to introduce
and set two new variables; a geometric variable and
a variable reflecting the efficacy of collateral rein-
nervation. The geometric variable reflects the prin-
ciple that collateral reinnervation can only take place
when there is an overlap in territories of still function-
ing MUs and denervated muscles fibers from degen-
erated MUs. It has been suggested that reinnerva-
tion of muscle fibers by still functioning nerve ter-
minals is restricted to the same fascicle [31–33]. The
overlap in MU territories depends on various factors,
such as the location, depth, number of muscle fibers,

and how intermingled the muscle fibers of MUs are.
Given the macroscopic character of the model, these
microscopic traits remain ambiguous. Owing to the
fact that we used high-density surface-EMG recor-
ded single MUPs, we could, however, conveniently
use the unique topographical information of every
MUP, which could serve as a surrogatemarker reflect-
ing the net effect of these microscopic traits. To cap-
ture this geometric variable, we determined the root-
mean-square (RMS) map of every MU [22] using

MUPrms,e =

√∑
i

(MUP e (i))
2 (1)

where e denotes the electrode (varying from 1 to 126)
and i denotes the time sample point. The RMS map
of every single MUP was then weighted

w(MUPrms,e) =
MUPrms, e∑
eMUPrms,e

(2)

to normalize for the difference in MUP sizes as we
are primarily interested in the spatial distribution
of every MUP (

∑
e w(MUPrms,e) = 1). The overlap

of the spatial distribution between two single MUPs
was subsequently calculated by the overlap coefficient
(OVL) [34]

OVL=
∑
e

min(w(MUPArms,e) ,w(MUPBrms,e)) .

(3)
This metric ranged from 0 (0%, no overlap

between MUP A and B) to 1 (100%, complete over-
lap between MUP A and B). Prior to removal of the
randomly selected single MUP, theOVL’s were calcu-
lated with the other remainingMUPs.With a baseline
MUpool of 300MUs, this resulted in 299OVL values.
Then, a cut-off value for OVL had to be set to define
which of these 299 single MUPs can be assigned as
neighboringMUPs. Importantly, this cut-off forOVL

4



J. Neural Eng. 20 (2023) 056039 B T HM Sleutjes et al

represents the geometric variable. Of the 299 single
MUPs that crossed the geometric variable (i.e. cut-off
for OVL), a maximum of 8 single MUPs were ran-
domly assigned as neighboring MUPs; to these, the
surface-EMG signal of the removedMUPwas added,

[MUPe (i)]k+1 = wx ∗MUPdege (i) ∗
efficacy(%)

100
+ [MUPe (i)]k. (4a)

For the other single MUPs equation (4a) simpli-
fies to,

[MUP e (i)]k+1 = [MUP e (i)]k (4b)

where k varies from 1 to 299, which represents the
299 degeneration and collateral reinnervation steps.
MUPdeg represents the randomly removed MUP to
simulate MUP degeneration. [. .]k+1 and [. .]k denote
the surface-EMG signals of the MUPs in the fol-
lowing and current step, respectively. This resul-
ted in increased amplitudes for neighboring MUPs
(equation (4a)) and unchanged amplitudes for the
other MUPs (equation (4b)). wx is a weighted sum
(w1 = 0.35, w2 = 0.1, w3 = 0.03 and w4 = 0.02
with each weight present twice;

∑
w = 1). The eight

MUPs are ranked from largest to smallest MUP to
which the largest to smallest weights were assigned.
This allowed all eight neighboring MUPs to increase
in amplitude, i.e. to undergo collateral reinnervation.
It could be that less than eight MUPs or even none of
theMUPs (most likely at severe levels ofMU loss) can
be assigned as neighboring MUPs (i.e. do not cross
the geometric variable). In these cases, collateral rein-
nervation cannot take place (equation (4a) reduces to
equation (4b)).

Additionally, despite sufficient overlap inMU ter-
ritories, the denervated muscles fibers of degenerated
MUs may not always become successfully reinnerv-
ated by still functioning MUs. Success is reflected in
the model as the second main variable: the efficacy
of collateral reinnervation. This term is described in
equation (4a) by the efficacy (%). We assumed that
summing a percentage of the surface-EMG signal of
the removed single MUP to neighboring MUPs is
an indication of the percentage of total number of
muscle fibers that are reinnervated. E.g. when only
50%of themuscle fibers within a degeneratedMUare
reinnervated, then the removed single MUP is multi-
plied by 0.5 before being added to surviving MUPs.
This percentage refers to the efficacy and varied from
0% (no reinnervation, i.e. degenerated MUP was not
added to other surviving MUPs) to 100% (complete
reinnervation, i.e. degeneratedMUPwas added com-
pletely to other survivingMUPs). This procedure was
repeated for every step k until only one MU was left.
The dynamic changes in the MUP population (MU
loss and increase in MU sizes) were the output of the
muscle model, which were used to generate patholo-
gical CMAP scans.

Of further note, in this stage of model develop-
ment, we kept the geometric and efficacy variables
constant for all steps in the model. Importantly, a pri-
ori information on these properties is not available. In
a preliminary stage, we will therefore systematically
investigate a spectrum of scenarios and narrow down
their range to optimally set the efficacy and geometric
variable such that it yields experimentally observed
MU enlargements.

2.5. Model evaluation
Quantification of the CMAP scan is essential to
objectively stratify results from patients and con-
trols, patient subgroups and formonitoring purposes.
These quantitative markers have been shown to be
of clinical relevance and can be related to MU num-
ber, MU size and threshold characteristics [15]. Over
the years, various electrophysiological markers have
been used and developed that can be derived from the
CMAP scan [7, 11, 14, 15, 19, 35, 36]. Advantageously,
by tailoring the dynamic muscle model to gener-
ate CMAP scans, we have created the possibility to
directly compare these electrophysiological markers
from both simulated and recorded CMAP scans. A
detailed description of these markers can be found
elsewhere [15]. Briefly, these markers include the
maximum CMAP, D50 (i.e. the number of the largest
discontinuities required to elicit 50% of the max-
imum CMAP), the stimulus currents required to eli-
cit 5% (S5), 50% (S50) and 95% (S95) of the max-
imum CMAP, and the relative range (RR) defined
as 100∗(S95–S5)/S50. We also calculated a MUNE
from the CMAP scans using published equations
[7]. In a preliminary phase, we first investigated the
effect of various scenarios for collateral reinnerva-
tion (i.e. efficacy and geometric variable). In this
phase, we then selected the scenarios that produced
the most realistic MUPs in terms of their enlarged
sizes and frequency, by comparing them with avail-
able experimental observations from literature. For
validation, we subsequently compared the electro-
physiological markers derived from simulated CMAP
scans and recorded CMAP scans from a prospect-
ive cohort of patients with MND and age-matched
healthy controls.

3. Results

3.1. Validation of dynamic muscle model based on
baseline electrophysiological markers
Single MUPs with their full surface-EMG waveforms
provide the opportunity to simulate the underling
CMAP waveforms from which the simulated CMAP
scans originate. Figure 2 illustrates a representat-
ive example of simulated CMAP waveforms and a
CMAP scan at baseline based on 300 MUs. The stim-
ulus currents required to elicit a target CMAP of
5%, 50%, and 95% of the maximum CMAP were
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Figure 2. (a) The simulated CMAP waveforms for the 500 responses from supramaximal to subthreshold levels. (b) The resulting
CMAP scan after taking the maximum CMAPs from (a).

Figure 3. The MUP size distribution (as % of the maximum CMAP response) of the baseline MU pool consisting of 300 MUs
applied to generate the CMAP scan in figure 2.

14.7 mA, 17.3 mA, and 19.7 mA, respectively, res-
ulting in a RR of 28.5% (figure 2(b)). The simulated
maximum CMAP amplitude was 7.5 mV and the
number of largest discontinuities expressed by D50
was 46 (9.2% normalized to the number of stim-
uli), which falls within experimentally observed val-
ues in healthy subjects [19, 35]. Over all runs, the
maximum CMAP amplitude at baseline was 8.3 mV
(5th–95th percentile: 4.6 mV–11.8 mV, N = 500
simulations). Figure 3 shows the underlying MU size
distribution of the 300 MUPs that were used to gen-
erate the simulated CMAP scan of figure 2. The MUP
pool shows a right-skewed frequency distribution
and follows that of a single muscle in healthy subjects
[37, 38]. Of the baseline MU pool, 18% (5th–95th

percentile, 14%–22%; N = 500 simulations) of the
MUPs were <10 µV and 50% (5th–95th percent-
ile, 46%–55%; N = 500 simulations) were <25 µV,
corresponding well with a previous simulation
study [25].

3.2. Identifying extent of phase cancellation for the
baseline maximumCMAP amplitude
An important methodological factor associated with
surface-EMG involves phase cancellation [39, 40],
where the negative and positive phases of singleMUPs
cancel out when multiple MUPs are active. As a res-
ult, phase cancellation affects all CMAP responses in
the CMAP scan. Owing to the fact that we derived
the MU sizes from the full surface-EMG waveforms,
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the dynamic muscle model allowed us to determ-
ine the impact of phase cancellation. Although it is
critical to gain basic insights of this phenomenon
when using surface-EMG for MUNE recordings, it
however remains challenging to determine during
recordings. With the muscle model, we compared
the summed sizes of the rectified surface-EMG wave-
forms of single MUPs with the maximum CMAP
amplitudes based on the regular surface-EMG wave-
forms of single MUPs. This difference reflects the
extent of phase cancellation. This showed that phase
cancellation resulted in a drop of 5.3 mV (5th–95th
percentile, 2.9 mV–7.7 mV; N = 500 simulations),
meaning that the maximum CMAP amplitude was
5.3 mV lower than the summed size of the rectified
single MUPs. In percentages, phase cancellation was
38.9% (5th–95th percentile, 33.0%–45.7%), which is
in agreement with previous experimental and sim-
ulation studies [39, 41]. This illustrates that phase
cancellation significantly attenuates the maximum
CMAP amplitudes and, in turn, alsoMUNEmethods
that are based on using the maximum CMAP amp-
litude in their MU number estimates [4].

3.3. Preliminary investigations to simulate
collateral reinnervation duringMU loss
The development of the new dynamic muscle model
also involved the introduction of an efficacy and geo-
metric variable to simulate collateral reinnervation
during MU loss. Given that no a priori informa-
tion is available on the values for these two vari-
ables, in this preliminary stage, we systematically
run various different scenarios for collateral rein-
nervation during progressive MU loss to determine
which of these scenarios yields realistic increases in
MU size. Figure 4 illustrates different scenarios of
reinnervation during progressive MU loss with the
drop in the maximum CMAP (as % of baseline) and
the increase in MU sizes (as % of baseline and in
µV). The theoretical boundaries of these scenarios
are defined by completely unsuccessful reinnerva-
tion (efficacy = 0%; geometric = 0%) and com-
pletely successful reinnervation (efficacy = 100%;
geometric = 100%). Completely unsuccessful rein-
nervation results in the unlikely scenario where a
linear relationship emerges between the maximum
CMAP and the number of MUs (figure 4(a)) without
any change in MU size (figures 4(a) and (c)). In
the other extreme scenario, the maximum CMAP
remains constant (figure 4(a)) with the emergence
of non-physiologically giant MUPs when only a few
MUPs are left (figures 4(b) and (c)). In reality, there-
fore, the efficacy and geometric variable should to be
set between 0% and 100%.

To investigate various reinnervation scenarios, we
first set the efficacy at 0% and 100% and varied the
geometric variable from 10% to 90% (in steps of
10%). The geometric variable limits reinnervation
most at low MU number, because in this stage, the

availability of muscle fibers from neighboring MUs
has drastically reduced. It therefore becomes more
likely at the most severe levels of MU loss that no
nearby MUs can be found, such that reinnervation
cannot take place, resulting in a drop of themaximum
CMAP, irrespective of the efficacy. Figure 4(a) shows
that values⩾50%have a negligible effect on reinnerv-
ation, while values⩽30% already limit reinnervation
at a high MU number (figure 4(a)). The geometric
variable likely needs to be set at approximately 40%
with a drop in themaximumCMAP only at a lowMU
number.

Given the above findings, we further narrowed
down the scenarios to simulate collateral reinnerva-
tion by fixing the geometric variable at 40% and vary-
ing the efficacy from 10% to 90% (in steps of 10%).
The efficacy affects collateral reinnervation during all
disease stages, which is supported by the simulations
showing a drop in maximum CMAP from high to
low MU number (figure 4(d)). An efficacy of ⩽50%,
approximates a rather linear relationship between the
maximum CMAP and MU number, indicating a too
high failure rate of reinnervation. When half of the
MUs are left, the maximum CMAP dropped to 78%
compared to baseline for an efficacy of 60%, while for
an efficacy of 90% the maximum CMAP remained at
93% (figure 4(d)). Experimental observations indic-
ate that when there is marked MU loss, MUs show
a large spread in their sizes [42–45], ranging from
still normal-sized MUPs up to enlarged MUPs of
>1 mV [15, 42, 46] or even rarely >2 mV [47]. In
light of these observations, an efficacy of 90% res-
ults in the reinnervation process being too success-
ful, because the averageMU size already exceeds 2mV
(figure 4(e)). An efficacy of 80% resulted in a largest
simulated MU of 3.6 mV, with 34% of the largest
MU being>2 mV (N = 100 simulations), which still
indicates a too successful reinnervation process given
the occurrence of unrealistically giant andmany large
MUPs (>2 mV). An efficacy of 70% resulted in a
largest MU of 2.9 mV, with only 2% of the largest
MU being >2 mV (N = 100 simulations), and an
efficacy of 60% in a largest MU of 1.8 mV, with 0%
of the largest MU being >2 mV (N = 100 simula-
tions). Consequently, the scenarios that best match
experimental observations, involved setting the effic-
acy roughly between 60% and 70%.

3.4. Evaluation of muscle model based on
electrophysiological markers duringMU loss
In this final stage, we compared simulated CMAP
scans generated by the dynamic muscle model using
the most realistic scenarios (efficacy= 60% and 70%;
geometric variable = 40%) with recorded CMAP
scans from our validation cohort (table 1, 49 MND
patients and 22 healthy controls). Figure 5 shows
the simulated results (gray circles) together with
the experiments in healthy controls (green circles)
and MND patients (red squares). The ∆ maximum
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Figure 5. Electrophysiological markers derived from simulated (gray diamonds), with a mean moving average (blue dotted line),
and recorded CMAP scans (red squares—MND patients; green circles—healthy controls). The maximum CMAP vs. (a) motor
unit number estimation (MUNE), (b) D50 (as percentage of the number of stimuli), and (c) D50 (as percentage of the number of
stimuli) vs. MUNE.

CMAP between recorded and simulated CMAP scans
(blue dotted line) as a function of fitted MUNE was
−0.4 mV (5th–95th percentile = −4.0 – +2.4 mV).
The∆maximum CMAP between recorded and sim-
ulated CMAP scans (blue dotted line) as a function
of D50 (as percentage of the number of stimuli) was
−1.7 mV (5th–95th percentile = −7.4 – +2.6 mV).
The ∆ D50 (as percentage of the number of stim-
uli) between recorded and simulated CMAP scans
(blue dotted line) as a function of fitted MUNE was
−0.3% (5th–95th percentile = −4.1% – + 3.1%).
The experimentally observed coefficient of variations
(CoV) in the maximum CMAP and MUNE derived
from CMAP scans ([48], CoV 12%–18%), indicates
that, on average, the muscle model generates close to
realistic CMAP scans.

In clinical electrodiagnostic examinations, the
maximum CMAP amplitude is a routinely utilized
measure indicative of MU loss. The lower limits of
normal for themaximumCMAP amplitudemay vary
between 3.5 and 5 mV depending the laboratory
and patients’ age [11, 49, 50]. We used these lim-
its for comparison with our simulations. Figure 6(a)

shows simulated CMAP scans across various levels of
MU loss from 0% to 95% obtained in a single run
using pathophysiological realistic scenarios of collat-
eral reinnervation (efficacy = 60%, geometric vari-
able= 40%). In this run, more than 77% of the MUs
were lost until the maximum CMAP dropped below
5 mV. In figure 6(b) four recorded CMAP scans are
shown from four ALS patients also likely reflecting
different stages of MU loss based on the obtained
electrophysiological markers (i.e. maximum CMAP
and D50 (%)). This illustrates that the model is able
to simulate CMAP scan patterns, which are repres-
entative for recorded CMAP scan patterns. Over all
simulations (N = 500, efficacy = 60%–70%; geo-
metric variable = 40%), for the maximum CMAP
amplitude to drop below 5 mV, 76% (95 CI 56%–
89%) of the MUs had to be lost, and for a maximum
CMAP amplitude<3.5 mV, this increased to a loss of
91% (95 CI 82%–97%) of MUs. This emphasizes the
insensitivity of the maximum CMAP for monitoring
disease progression due to collateral reinnervation.
Overall, the simulated CMAP scan patterns showed
a transition from a smooth sigmoidal curve towards
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a more discrete stepwise pattern, which is commonly
observed in patients with MND when the disease
progresses [6, 7].

4. Discussion

In this study, we successfully present a novel surface-
EMGbased dynamicmusclemodel to simultaneously
simulate the two key pathological mechanisms in
patients with MNDs, i.e. progressive motor neuron
degeneration and collateral reinnervation. We used
the unique spatiotemporal profile of single MUPs
obtained fromhigh-density surface-EMG to infer col-
lateral reinnervation. Importantly, the new muscle
model created the possibility to capture and vary
the success of reinnervation of a muscle during the
disease course. This allowed us to obtain a rough
quantitative view on the efficacy of collateral rein-
nervation from a surface-EMG perspective, which
as yet remains largely unexplored in human stud-
ies. The surface-EMG based muscle model further
provides useful insights into the significant impact
of phase cancellation and the sensitivity of biomark-
ers to detect the underlying pathological processes.
We tailored the model to generate CMAP scans and
showed that the CMAP scan pattern and its changes
due to progressive MU loss and collateral reinnerv-
ation matched well with experimental observations.
The muscle model could therefore potentially serve
as a computer-aided tool for training personnel (e.g.
various clinical and pathological scenarios that can
be observed in patients along the disease course).
Such a tool could complement face-to-face training
and support for harmonization of protocols, which
improves the quality of recordings [51] and facilitates
the application of surface-EMG methods in clinical
care and trials.

4.1. Simulating progressive motor neuron
degeneration and collateral reinnervation
In practice, it is often highly challenging and time-
consuming to evaluate the influence of methodolo-
gical, technical and/or pathophysiological factors on
real-world experiments, because these factors always
occur and covary simultaneously. Computational
models provide unique opportunities to systemat-
ically investigate the effect of individual factors on
real-world recordings, in a more isolated and detailed
manner. This has been previously acknowledged by
simulating progressive motor neuron degeneration,
predominantly to study pathology at the muscle
fiber level to provide an understanding of the key
factors underlying fiber type grouping in histo-
chemical examinations [52–55] and/or needle EMG
examinations [31, 32]. In this study, we took a more
macroscopic approach with surface-EMG recorded
single MUPs as the basic building blocks to create a
link with CMAP examinations. The dynamic muscle

model aids in correlating two key pathological pro-
cesses impacting the CMAP scan, which is a sens-
itive neurophysiological tool for monitoring disease
progression in patients with MND [8, 11, 15, 56].
The dynamic muscle model also helped to provide
insights intomonitoring the interaction between pro-
gressive MU loss and collateral reinnervation from
earliest to severest disease stages. Several studies have
suggested and/or simulated either a linear, exponen-
tial or a sigmoidal loss of motor neurons [8, 10, 57],
which could be further incorporated into the model
to study various scenarios to mimic follow-up studies
in patients.

4.2. Sensitivity of electrophysiological biomarkers
to detect (early) MU loss
In patients with MND there is an urgent need
for sensitive outcome measures to evaluate disease-
modifying therapies [58]. Neurophysiological meth-
ods have been suggested to offer promising bio-
markers for utilization in clinical trials [59]. Gaining
insight into the sensitivity of electrophysiological bio-
markers derived from these methods may provide
relevant clues to further improve and design more
sensitive biomarkers. The CMAP scan involves one
of these neurophysiological methods, where the pat-
tern of the CMAP scan has previously been shown
to become rather smooth when the muscle is still
innervated bymore than approximately 80MUs [19].
This is due to the alternating activity of many MUs
at a given stimulus level, which results in a dense
bandwidth of CMAPs, making it difficult to identify
the contribution of single MUs. Any method that
aims to derive electrophysiological markers from the
CMAP scan eventually encounters these ceiling effects
[7, 9, 14]. This study indicates that phase cancella-
tion and the abundance of small MUs at the early
stage, in the context of frequently applied cut-offs
for smallest MU size, are also contributing factors.
Any approach that can mitigate these ceiling effects
will provide crucial avenues for increasing the sens-
itivity of the CMAP scan in early stages. In early
stage motor neuron loss, it is known that the max-
imum CMAP remains fairly well maintained, due
to collateral reinnervation. The simulations support
these findings and provide a quantitative view, show-
ing that a remarkably large motor neuron pool has
to be lost before the maximum CMAP is reduced.
The ongoing development [60–62] of more sensitive
markers is essential, as well as an efficient framework
to evaluate their sensitivity. An adequate biomarker
for monitoring disease progression should eventually
be able to track subtle changes from early to late dis-
ease stage, ideally with small within- and between-
patient variability to detect treatment effects in clin-
ical trials [15, 63]. Given that it is not uncommon
for patients with ALS to present with weakness at
multiple sites prior to trial entry, the use of surface-
EMG methods in multiple muscles in different body
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regions may provide a promising approach to quan-
tifying disease progression in patients with MND.

4.3. Model limitations
The dynamic muscle model seems to sufficiently cap-
ture the underlying MU pathophysiology in MND
andmethodological characteristics related to surface-
EMG recordings needed to generate average experi-
mentally observed CMAP scans. It should be noted
that capturing all factors in a computational model
is simply impossible. Further refinements are, there-
fore, possible, albeit at a cost—involving higher com-
plexity. The dataset of single MUPs obtained from
the thenar muscles [16, 17] can be extended with
single MUP recordings from other muscles, which
broadens the application of the model by including
other disease-conditions. For the purpose of gener-
ating a database of single MUPs recorded with high-
density surface-EMG from other muscles, various
factors should be taken into account, such as the sub-
ject characteristics, the size, type and configuration of
the electrode array, the applied protocols, decompos-
ition algorithms, and gain and filter settings. For sim-
plicity, we kept the number of stimuli fixed, which
can easily be adjusted to match individual scans.
The experimental observations show larger variabil-
ity than the simulated scenarios (figure 5); various
aspects cannot be captured in the model, e.g. the
hand/arm configuration and the positioning of the
electrode array [22, 64–66]. Also, small movement
artifacts, spontaneous and/or voluntary activity, or
tremor may induce extra variability. Given that in
MND, demyelination does not play a prominent role,
we kept the variability of the conduction velocities
fixed. In patients with demyelinating neuropathies,
however, this variable should be taken into account
for which the model could be further extended to
examine the impact of this variable, which we now
considered out of scope for this study. Additionally,
the differences in the distribution of the innerv-
ation zone and variations in subcutaneous tissue
thicknesses across subjects are sources of variability.
Furthermore, due to progressive MU loss, muscles
become wasted, atrophic and thinner, which likely
affects the volume conductive properties, the single
MUP waveform and the resulting CMAP responses.
Theremay be considerable variation between subjects
in the number ofMUs, their sizes and threshold char-
acteristics. At baseline, the number of MUs was var-
ied to partly capture these heterogeneous character-
istics. When simulating progressive MU loss and col-
lateral reinnervation, however, we kept the number
ofMUs fixed for appropriate comparison between the
various scenarios. Progressive MU loss had a sequen-
tial manner; while pathologically, multiple MUs may
undergo degeneration in parallel. AlsoMUswere ran-
domly lost, while there is some experimental evidence

for preferential loss of MUs with certain properties;
this may significantly affect the changes in amplitude
[41]. We decided to keep the loss of MUs random,
since including preferential loss requires additional
model parameters, while their values are yet insuffi-
ciently clear. A dataset with frequent follow-up vis-
its within (subgroup of) patients may allow strati-
fication of potential variations in preferential loss.
Collateral reinnervation was further modeled by a
fixed efficacy and geometric variable. Their fixed val-
ues had to be first set in a preliminary phase, forwhich
we used available literature that described experi-
mentally observed MU enlargements. It should be
noted that the proposed values likely depend on other
design characteristics of the model as well. The effic-
acy and geometric variables may further vary dur-
ing disease course and differ per MU depending on
its properties. We kept them constant, because their
dynamic changes are not yet adequately defined to
set them properly. The model captures in general the
CMAP scan pattern and its changes when compared
to healthy controls and a large cohort of patients
with MND. Comparing the model to longitudinal
observations may allow further refinement and/or
adjustment of themodel towardsmoremuscle and/or
patient-specific patterns.

4.4. Conclusion
With its present implementation, the dynamicmuscle
model contains the prominent downstream patho-
logical factors at the MU level and methodological
factors associated with surface-EMG recordings that
appear necessary to simulate adequately the progress-
ive changes observed in CMAP scans in patients with
MND. The progressive changes in theMUpopulation
are the output of the dynamic muscle model, which
can be adapted in such a way that it could also be
used as input to simulate other surface-EMG based
MUNE methods. In this way, the model may also
form a stepping stone towards efficiently comparing
the performance of various promising surface-EMG
basedMUNEmethods [4]. Themodelmay eventually
lead to an improved understanding of the capacity of
collateral reinnervation within a muscle which other-
wise remains difficult to evaluate in human subjects.
Further model refinements are needed aimed at more
individualizedmonitoring of (subgroups of) patients.
As training instrument, the model may aid the use of
surface-EMG methods in clinical practice and stand-
ardization of protocols in a multicenter clinical trial
setting.
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