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Abstract— Hyperthermia treatment consists of elevating the 

temperature of the tumor to increase the effectiveness of 

radiotherapy and chemotherapy. Hyperthermia treatment 

planning (HTP) is an important tool to optimize treatment quality 

using pre-treatment temperature predictions. The accuracy of 

these predictions depends on modeling uncertainties such as tissue 

properties and positioning. In this study, we evaluated if HTP 

accuracy improves when the patient is imaged inside the 

applicator at the start of treatment. Because perfusion is a major 

uncertainty source, the importance of accurate treatment position 

and anatomy was evaluated using different perfusion values. 

Volunteers were scanned using MR imaging without (“planning 

setup”) and with the MR-compatible hyperthermia device 

(“treatment setup”). Temperature-based quality indicators were 

used to assess the differences between the standard, apparent and 

the optimized hyperthermia dose. We conclude that pre-treatment 

imaging can improve HTP predictions accuracy but also, that 

tissue perfusion modelling is crucial if temperature-based 

optimization is applied. 

 
Index Terms— hyperthermia treatment planning, MR imaging, 

thermal modeling, perfusion, optimization approach. 

 

Impact Statement— Changes in anatomy and position 

influence the HTP’s predictive value. SAR-based optimization was 

more robust than temperature-based optimization to variations in 

anatomy, position, and perfusion. 
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I. INTRODUCTION 

yperthermia treatment consists of elevating the tumor's 

temperature to 39-44°C to enhance the effect of 

chemotherapy and radiotherapy without adding toxicity to the 

healthy tissue [1], [2]. The efficacy of hyperthermia depends on 

achieving high temperatures in the tumor region while 

maintaining low temperatures in the healthy tissue. Several  

clinical trials [3], [4] demonstrated a thermal-dose effect 

relationship emphasizing the importance of precise heat 

delivery to improve hyperthermia treatment efficacy. The 

control and adaptation of steering settings to improve the 

quality of treatment are currently based on temperature 

monitoring and complaint-adaptive hyperthermia treatment 

planning (HTP). Although this tool has been used in clinical 

practice, its accuracy and predictive value is highly dependent 

on modeling uncertainties, such as positioning, anatomy, and 

tissue properties.  

In clinical practice, computed tomography (CT) or magnetic 

resonance imaging (MRI) are used to capture the patient's 

anatomy as a basis for a patient-specific treatment plan. These 

images are usually taken at least a week before treatment and 

without the real treatment device present. As a consequence, 

patient position and anatomy are different, resulting in possible 

deviations between planned and actual applied hyperthermia 

dose distributions. Few studies have used the MR-compatible 

device in combination with MRI to suggest that accuracy of 

HTP was optimum if the patient was imaged in the actual 

treatment position [5]–[7]. This framework allowed to create an 

MR-based HTP and show that position and anatomy deviations 

can impact HTP predictive value [6], [8]. Though, these 

analyses were mainly based on SAR-based analysis, and 

consequently, the true benefit of pre-treatment imaging in 

treatment position on the applied temperature is an open 

question. 

One of the main challenges in temperature predictions is 

dealing with perfusion uncertainties. These uncertainties can 

alter the reliability of the predictions, limiting the confidence in 

their use for treatment guidance. Canters et al. [9] indicated that 

uncertainties in thermal parameters (the temperature of 10%, 

50%, and 90% of the HTV, T10, T50, and T90, respectively) 

could lead to 0.2°C-0.4°C decreases in T50 and T90. De Greef 
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et al. [10] showed that perfusion uncertainties could cause 

temperature deviations of 1°C. Hence, perfusion is a well-

established source of uncertainty that can modify temperature 

predictions [11]–[13]. Modeling perfusion is challenging since 

perfusion is a response to thermoregulation and differs between 

tissues and individual patients [14], [15]. As perfusion is 

difficult to model, any temperature prediction accuracy 

assessment should include perfusion uncertainties to 

understand its effects on temperature predictions. 

During HTP, the steering settings of the hyperthermia device 

are optimized to maximize the predicted heat delivery in the 

tumor without overheating healthy tissues. Precise steering to 

avoid hotspots is of great importance since increasing tumor 

temperature to the therapeutic level is only possible if the 

patient’s tolerance is not exceeded [6], [16], [17]. Optimization 

of the device settings can be based on temperature or SAR 

distribution. A clinical study comparing SAR-based and 

temperature-based steering has not been possible yet due to the 

immense challenge of obtaining sufficient and accurate 

temperature information on tumor and healthy tissues in 

patients. Hence, the optimal choice between these two options 

has not yet been established and is still an open debate. Canters 

et al. [9] have shown that SAR-based optimization is equally 

effective in optimizing thermal dose as temperature 

optimization. At the same time, de Greef et al. [10], [12] found 

that temperature-based optimization is superior under variation 

of perfusion values. In the recent ESHO benchmarks [18], it is 

suggested to perform both optimizations when investigating 

and comparing HTP predictions to improve treatment delivery.  

In this modeling study, we assessed how changes in anatomy 

and position can affect the accuracy of temperature predictions. 

Additionally, we investigated the potential benefits of 

incorporating precise treatment anatomy and position data to 

improve treatment delivery. These evaluations were conducted 

for both SAR and temperature- based optimization approaches, 

and for different perfusion schemes. 

  

II. MATERIALS AND METHODS  

A. MRI acquisition and protocol 

In this study, we collected data from 14 healthy female 

volunteers. The institutional review board approved this study 

using the protocol (MEC-2014-096). All volunteers were 

positioned inside the BSD-2000-3D MR compatible system 

(Pyrexar Medical Cop., Salt Lake City, UT, USA) [19], [20], 

which is integrated into a 1.5T GE Optima 450W scanner 

(General Electric Healthcare, Waukesha, WI, USA).  

As shown in Fig. 1, we took MR images of the volunteers in 

the planning and treatment setup. The planning setup intends to 

mimic the imaging setup used for the current HTP, and the 

treatment setup reproduces the hyperthermia treatment. 

Regarding the MR imaging protocol, we used the 3D spoiled 

gradient recalled echo (SPGR) pulse sequence to visualize 

gastrointestinal air and the PROPELLER sequence to obtain 

high-resolution anatomic images. The details about the 

experiment and the MR protocol can be found in our previous 

work [21]. 

 

B. Hyperthermia treatment planning  

1) Patient model generation 

The MR images were segmented into bone, muscle, 

gastrointestinal air, and fat. The tissue segmentation was based 

on thresholding combined with manual segmentation on the 

MR images shown in Fig. 1. The software used for this process 

was MIM Maestro (MIM Software Inc. USA). Furthermore, a 

gross target volume (GTV) and a hyperthermia target volume 

(HTV) were added. Fig. 2 summarizes the main steps to 

generate the 3D model. The standard modeling denotes the 

clinical procedure where the modeling is based on imaging 

without the hyperthermia device. The volunteer positioning was 

done using the clinical standard approach that consists in 

verifying the distances between the hyperthermia device and 

patient. The MR-adapted modeling is based on accurate 

treatment anatomy and position since the volunteer was 

scanned inside the hyperthermia device including filled water 

bolus. This modeling intends to replicate the procedure where 

the modeling is adapted to the MR images taken at start of the 

treatment.  

 

 

 
Fig. 1.  Volunteer experiment setup: schematic representation of the volunteer 
in the planning and treatment setup, and the MR images taken at each setup. 

The column of the MR imaging represents the 3D SPGR images, and the 

second column denotes the images acquired using PROPELLER. 
  

 
Fig. 2.  Schematic illustration of the process of creating the modeling in the 
HTP process. The MR images taken in planning setup were used to generate 

the standard modeling, whereas the MR images at the treatment setup were 

used to create the MR-adapted modeling.  
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2) Electromagnetic and temperature calculations 

The electromagnetic (EM) field for each antenna was 

calculated using the Finite-Difference-Time-Domain (FDTD) 

solver in Sim4life (v6.2 Zurich MedTech AG, Zurich, 

Switzerland). The details about the EM simulations are given in 

our previous work [21]. Furthermore, we computed the 3D 

steady-state temperature distributions using the Pennes' Bio-

Heat Equation, which formulation is given in (1) [22], in 

Sim4life.  

 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻(𝑘 𝛻𝑇)  +  𝜌𝑄𝑚 +  𝜌𝑆 −  𝜌𝑏𝑐𝑏𝜌𝜔 (𝑇 −  𝑇𝑏) (1) 

where T [°C] is the temperature, t [min] is the time, 𝑐 [J 

kg
-1°C-1] is the specific heat capacity, 𝜌[kg m-3] is the volume 

density of mass, k [W m-1℃-1] is the thermal conductivity, 𝜔 [ 

ml min
-1

kg
-1

] is the volumetric blood perfusion, 𝑄𝑚 [W kg
-1

] is 

the metabolic heat generation, S [W kg
-1

] is the SAR, which 

serves as a source for the thermal simulations, and the subscript 

b denotes blood properties. Note that in steady state ∂T/∂t is 

equal to 0.  Energy losses were modeled using a mix of 

convective boundary conditions at the interfaces of the skin and 

water bolus, where the heat transfer coefficient was equal to 40 

W m-2℃-1 [9]. The initial temperature in tissues was set to 37°C 

and the temperature of the water bolus was set at 20°C 

The dielectric properties at 100 MHz and thermal tissue 

properties are listed in Table I [23]. Perfusion at thermal stress 

conditions was considered for all tissues except bone [23]. 

Since tumor properties at baseline condition were unavailable, 

we calculated the perfusion value at 37°C based on the 

temperature-dependent perfusion relation suggested by Lang et 

al. [11]. For each perfusion value set, a temperature-based 

optimization was performed.  

 

3) Optimization 

We conducted two types of optimizations to remove a 

possible bias in our results. SAR-based optimization was 

implemented by using the clinical software at Erasmus MC 

(VEDO) [24], [25]. The optimization implemented in VEDO 

maximizes tumor-to-hotspot quotient (THQ), which 

formulation is given in (2).  

 

𝑇𝐻𝑄 =
𝑆𝐴𝑅̅̅ ̅̅ ̅̅ 𝐻𝑇𝑉

𝑆𝐴𝑅̅̅ ̅̅ ̅̅ ℎ𝑜𝑡𝑠𝑝𝑜𝑡
 (2) 

 

where SAR [W kg
-1

] is the specific absorption rate,  SAR̅̅ ̅̅ ̅
HTV is 

the average SAR within the HTV and SAR̅̅ ̅̅ ̅
hotspot is the average 

SAR in the hotspots, that is 50 ml of the healthy tissue with the 

highest SAR outside the HTV. The total input power was 

increased until a maximum temperature of 44°C was achieved 

in all tissues [15].  

 The temperature-based optimization [26], [27] consisted of 

minimizing the following goal function (3). 

 

J = ∫ (𝑚𝑎𝑥(𝑇𝑐 − 𝑇(𝑝),0))2 𝑑𝑝
𝑝∈𝐻𝑇𝑉

  (3) 

 

where J is the goal function, 𝑇𝑐  is the minimal desired tumor 

temperature of 43°C, p corresponds to tissues within the HTV. 

The goal function is optimized subject to a general constraint 

that limits the temperature of normal tissue to 44°C.  

 

C. Definition of treatment plan and hyperthermia dose 

Fig. 3 illustrates two plans for reproducing the current clinical 

practice and the desired treatment plan. To create the plan 

conducted in clinical practice, we used the volunteer's MR 

imaging in the planning setup and developed a standard plan. 

The standard hyperthermia dose is the temperature prediction 

acquired using the standard plan's steering settings. Our second 

plan, the "MR-adapted plan," represents the optimized plan, as 

it is based on the patient's true treatment anatomy and position 

inside the hyperthermia device. This plan optimizes the steering 

settings on the treatment setup, and the acquired temperature 

predictions are named optimized hyperthermia dose. Finally, to 

understand the accuracy of the standard plan and the need for 

an MR-adapted plan, we simulated the delivery of the 

 
Fig. 3.  Description of the treatment plans and the apparent hyperthermia dose 
during the simulated hyperthermia treatment. The modeling procedure of each 

treatment plan is explained in Fig. 2. Because two different optimizations 

were performed, six temperature distributions were acquired, where three 
correspond to the SAR-based optimization and other three correspond to the 

temperature-based optimization.   

TABLE I  
LITERATURE VALUES OF EM AND THERMAL TISSUE PROPERTIES FOR THERMAL SIMULATIONS. THE PERFUSION VALUES GIVEN IN DIFFERENT COLOR WERE 

USED FOR THE ROBUSTNESS EVALUATION 

Material εr[-] σ [S/m] c [J/kg/℃] K [W/m/℃] Q [W/kg] ρ [kg/m3] 
ω [ml/min/kg]  

St B Bas. St A 

Shell 2.8 0.004 - - - 1180 - - - 

Waterbolus 80.95 0.0026 - - - 1000 - - - 

Bone 15.3 0.0643 1313 0.32 0.15 1908 10 10 10 

Muscle 66.0 0.708 3421 0.45 0.96 1090 188.7 37 300 

Internal air   10040 0.03 - 1 - - - 

Fat 12.7 0.0684 2348 0.21 0.51 911 69.0 33 200 

GTV 70.0 0.75 3950 0.51 - 1050 
94.4 

(0.5×𝜔𝑚𝑢𝑠𝑐𝑙𝑒) 

189 

(5.1×𝜔𝑚𝑢𝑠𝑐𝑙𝑒) 

80 

(0.27×𝜔𝑚𝑢𝑠𝑐𝑙𝑒) 
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treatment. In this scenario, we applied the steering settings from 

the standard plan to the true treatment anatomy and position. 

The calculated temperature distributions are called "apparent 

hyperthermia dose”. 

 

D. Thermal dosimetry evaluation 

We computed the difference in T10, T50, and T90 (ΔTx) 

between the plans and the apparent dose. These parameters 

correspond to the temperature of 10%, 50%, and 90% of the 

HTV [18], [28].  

 

𝛥𝑇𝑥𝑝𝑙𝑎𝑛(°𝐶) = 𝑇𝑥𝑝𝑙𝑎𝑛 − 𝑇𝑥𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 ℎ𝑦𝑝𝑒𝑟𝑡ℎ𝑒𝑟𝑚𝑖𝑎 𝑑𝑜𝑠𝑒 (4) 

 

To assess the differences between HTP predictions and 

administrated treatment, we quantified the absolute difference 

between standard plan and the apparent hyperthermia dose in 

the simulated treatment. Regarding the dosimetric evaluation 

between MR-adapted plan, we assess the improvement when 

the steering settings are optimized according to the treatment 

position and anatomy. Since thermal dose is related to treatment 

outcome [5], [29], we considered a change in temperature 

higher than 0.2°C as clinically relevant. 

 

E. Robustness evaluation 

This study intends to evaluate how robust the conclusions are, 

despite the optimization and perfusion values chosen. Hence, 

we used two perfusion values at thermal stress conditions (St.A 

and St.B)  [18], [30]–[32], and one at baseline conditions (Bas) 

[23]. The perfusion schemes at thermal stress conditions were 

based on the most used values in literature and because these 

include perfusion tissue contrast. Hence, thermal simulations 

were conducted for each perfusion scheme and new 

optimization was performed. Table I presents the different 

perfusion values and the ratio between the perfusion of GTV 

and muscle. We conducted a Kruskal-Wallis analysis to 

evaluate if there were significant alterations in absolute error 

and benefit when using different perfusion values. The 

calculated absolute error and benefit for each perfusion set was 

inserted to the statistical test and the p-value for each 

comparison was calculated 

III. RESULTS  

A. Comparison between standard hyperthermia dose and 

apparent hyperthermia dose 

We first quantified the difference between the standard and 

apparent hyperthermia doses. The standard hyperthermia dose 

is optimized on the pre-treatment anatomy and the position. The 

apparent hyperthermia dose is when the standard plan settings 

are applied on the patient's true treatment anatomy and position 

inside the device. The absolute error consists of the difference 

between the standard and apparent hyperthermia doses. 

Fig.4 shows the absolute error between standard and apparent 

hyperthermia dose when using perfusion values at thermal 

stress B (St. B). For |ΔT10|, |ΔT50| and |ΔT90|, the mean and 

standard deviation of the absolute error was 0.4±0.3°C when 

including both optimization approaches. For temperature-based 

optimization, the absolute errors were substantially higher than 

for SAR-based optimization. The large absolute errors indicate 

that changes in anatomy and position decrease the predictive 

value of temperature predictions. The temperature parameters 

acquire used to calculate the absolute errors are illustrated in 

Fig. 5. These scatter plots (Fig. 5) show the temperature-based 

 

 
Fig. 5.  Scatter plots of the temperature values (T10, T50 and T90) for each optimization and setup. The first set of scatter plots shows the temperature parameters 
of the standard hyperthermia dose (standard plan) and apparent hyperthermia dose where the volunteer was in the planning setup and treatment setup, respectively.  

In the second set of scatter plots, temperature parameters were calculated for the optimized hyperthermia dose and apparent hyperthermia dose where in both 

scenarios the volunteer was in the treatment setup. 

 
Fig. 4. Boxplot of the absolute error between the standard hyperthermia dose 
and the apparent hyperthermia dose using SAR- or T-based optimization. The 

inter-quartile range represents the middle 50% of the dataset where the top line 

represents 75% of the data below the upper quartile and the bottom line 
consists of 25% of the data below the lower quartile. The middle line 

represents the median, the colored circle represents the average of the data set 

and the diamond shaped markers represent the outliers. The red dotted line 

denotes the clinically relevant temperature difference (0.2°C).  
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quality parameters for the standard, optimal and apparent 

hyperthermia dose using different optimizations. These 

parameters are based on temperature distributions acquired 

using perfusion values at thermal stress conditions B (St. B). 

 

B. Evaluation of the benefit of including true treatment 

anatomy and position in HTP 

To evaluate the potential of including the treatment anatomy 

and position in HTP, we created a new HTP that was adapted 

to the imaging of the volunteer in the hyperthermia device. 

Since MRI enables to acquire the accurate treatment anatomy 

and position, this represents the optimized dose, hence, we 

named this HTP based on MR-adapted plan, optimized 

hyperthermia dose. The benefit of the MR-adapted plan is 

defined as the difference between the optimized hyperthermia 

dose and the apparent hyperthermia dose. Fig. 6 shows the 

benefit of using the MR-adapted plan when using perfusion 

values at St. B. For SAR-based optimization, the improvement 

in T90, T50, and T10 was not clinically relevant (<0.2°C). In 

contrast, the benefit of including the treatment anatomy and 

position for temperature-based optimization leads to 

improvements higher than 0.5°C in all temperature metrics. 

Note that the temperature parameters acquire used to calculate 

the benefit are illustrated in Fig. 5. 

 

C. Temperature distributions from one volunteer 

Furthermore, Fig. 7 illustrates the 2D temperature distributions 

of a volunteer. The same steering settings were used in the 

standard and apparent hyperthermia doses. For SAR-based 

optimization, the temperature pattern is similar for standard and 

apparent hyperthermia doses. On the contrary, for temperature-

based optimization, the location of hotspots and target coverage 

vary significantly between these two doses. Hence, these 

substantial deviations suggest that temperature-based 

optimization is more sensitive to changes in anatomy and 

position. Furthermore, we observed that the temperature in the 

tumor is more homogenous resulting in higher target coverage 

when using temperature-based optimization. Although SAR-

based optimization led to lower temperatures in the target 

region, inferior temperatures were observed in the healthy 

tissue. The homogeneity (3) and spearing the healthy tissues (2) 

is strongly related with the optimization function used 

contributing to how robust the approach is to changes in 

modelling.  

 

D. Robustness of the results considering different perfusion 

values 

Table II shows that the observations found in the previous 

sections are robust to different perfusion values: Baseline (Bas), 

thermal stress A (St. A), and St. B. For both optimization 

approaches, the absolute error between standard hyperthermia 

dose and apparent hyperthermia dose were substantial. The 

benefit of using an MR-adapted plan was clinically relevant 

when using temperature-based optimization. We found that 

SAR-based optimization was more robust than temperature-

based optimization to changes in anatomy and position since 

lower variations were observed in benefit and absolute error.  

 The results suggest that perfusion affects the achieved tumor 

temperatures. For both optimizations and treatment plans, using 

 
Fig. 6.  Boxplot demonstrating the benefit of MR-adapted treatment plan 

compared to apparent hyperthermia dose using SAR- or T-based 

optimization. Hence, the difference between the optimized and apparent 

hyperthermia is demonstrated. The inter-quartile range represents the middle 

50% of the dataset where the top line represents 75% of the data below the 

upper quartile and the bottom line consists of 25% of the data below the lower 
quartile. The middle line represents the median, the colored circle represents 

the average of the data set and the diamond shaped markers represent the 

outliers. The red dotted line denotes the clinically relevant temperature 

difference (0.2°C).  

 
Fig. 7.  2D temperature distributions of a volunteer together with the calculated target coverage (T50). Temperature distributions were acquired using perfusion at 

thermal stress B. The cross-section represents the same region of the volunteer planning and treatment setup. Between the planning and treatment position, we found 

a displacement of (0.2cm, 4.3cm, 3.4cm) in (x,y,z). Hence, in the axial cross-section of the standard dose (planning setup), the region denotes the middle slice 
(z=0cm) while in the apparent and optimized hyperthermia dose, the region is 3cm above (z=+3cm). The target region in apparent and optimized hyperthermia dose 

presents a different shape because the volunteer as moved in the z-direction. The dotted line indicates the target region. 
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the perfusion set St. B led to higher tumor temperatures than the 

other perfusion sets (Bas. and St. A). The achieved target 

coverage when using perfusion St. B was 0.10°C (ΔT10), 

0.84°C (ΔT50) and 0.88°C (ΔT90) higher compared to the 

temperatures acquired using perfusion St. A. Perfusion St. B led 

to 0.94°C (ΔT10), 0.68°C (ΔT50), and 0.58°C (ΔT90) higher 

temperatures compared to the perfusion at Baseline condition 

(Bas).  

The results in Fig. 8 show that SAR-based optimization is 

more robust to changes in perfusion than temperature-based 

optimization since the absolute error and benefit in T50 did not 

vary substantially. For temperature-based optimization, in both 

absolute error and benefit, perfusion value St. A led to 

significant differences (p-values<0.01).  

IV. DISCUSSION  

Our temperature assessment showed that it is essential to 

consider the accurate patient anatomy and position when using 

HTP predictions to guide the treatment. These results highlight 

the potential of using MR imaging to create a treatment plan 

that considers the accurate treatment situation. Based on the 

large absolute errors illustrated in Table II, capturing the 

accurate treatment position and anatomy seems more important 

when the optimization approach is based on temperature. 

Compared to other studies, we found similar or higher errors 

when using temperature-based optimization. Gellermann et al. 

[8] reported that displacements up to 3cm (as in our study [21]) 

caused temperature deviations up to ±0.5°C in ΔT90 using 

temperature-based optimization. De Greef et al. [33] used 

temperature-based optimization and found that the changes in 

tumor temperatures were between 0.3°C-0.5°C when the 

accuracy of patient positioning was within 1-2cm in the z-

direction (superior-inferior direction). As shown in our 

previous study [21], we mainly found position changes in the y-

direction (posterior-anterior direction), while these were less 

than 1cm in the z-direction. We justify the difference by the fact 

that we included anatomy changes and shifts in the y-direction.  

Regarding the benefit of the MR-adapted plan, we found that 

this plan did not improve the temperatures using SAR-based 

optimization. In contrast, a clear improvement in tumor 

temperatures (0.4°C to 0.7°C in ΔT50) was observed when 

using temperature-based optimization. Although the MR-

adapted plan benefit was not seen for the two optimization 

approaches, we expect that this plan's benefit would be higher 

in patients. In this volunteer study, the time between the 

planning and treatment setup was 17 to 20 minutes. Between 

these two setups, we observed positioning deviations but not 

substantial anatomical changes. Because patients are imaged 

several days to weeks before the treatment delivery for HTP, 

the variations in anatomical configuration of the pelvis region 

are likely higher than those in our study. Hence, daily anatomic 

changes are to be expected to be higher, and consequently, a 

higher benefit when including the accurate anatomy in HTP.  

Uncertainties in tissue perfusion pose a great challenge for 

thermal modelling. Although we observed significant 

deviations in target temperatures (ΔT50: 0.68°C to 0.84°C), due 

to perfusion variation, we found that the importance of accurate 

anatomy and positioning remained consistent regardless of 

these variations. However, application of temperature-based 

optimization was less robust than SAR-based optimization to 

changes in perfusion. To understanding the differences in the 

results, it is important to realize that an optimization approach 

TABLE II  
AVERAGE AND STANDARD DEVIATION (µ±Σ) OF THE ABSOLUTE ERROR BETWEEN STANDARD HYPERTHERMIA DOSE (STANDARD PLAN) AND APPARENT 

HYPERTHERMIA DOSE AND THE BENEFIT OF MR-ADAPTED PLAN, CONSIDERING THE THREE PERFUSION SETS. THE VALUES CORRESPOND TO 126 TREATMENT 

PLANS AND CORRESPONDING HYPERTHERMIA DOSES ADMINISTERED TO 14 VOLUNTEERS ACROSS THREE TUMOR SIZES AND THREE PERFUSION SETS. 

Absolute error between apparent and standard hyperthermia dose  

SAR-based optimization Temperature-based optimization 

|∆T10| |∆T50| |∆T90| |∆T10| |∆T50| |∆T90| 

0.42±0.40 0.40±0.38 0.35±0.33 0.89±0.68 0.67±0.53 0.50±0.40 

Benefit of MR-adapted plan compared to the apparent hyperthermia dose 

SAR-based optimization Temperature-based optimization 

∆T10 ∆T50 ∆T90 ∆T10 ∆T50 ∆T90 

0.20±0.32 0.14±0.25 0.07±0.20 0.95±0.81 0.70±0.61 0.50±0.52 

 

 
Fig. 8.  Boxplot of absolute error and benefit in T50 for each perfusion set 

using SAR-based and temperature-based optimization. The level of 

significance is shown in which ns denotes no significance (p>0.05), * denote 
p-value≤0.05, ** denotes p-value≤0.01. The inter-quartile range represents the 

middle 50% of the dataset where the top line represents 75% of the data below 

the upper quartile and the bottom line consists of 25% of the data below the 

lower quartile. The middle line represents the median, the colored circle 

represents the average of the data set and the diamond shaped markers 

represent the outliers. The red dotted line denotes the clinically relevant 
temperature difference (0.2°C). The dataset of each boxplot includes 42 data 

points (14 volunteers x 3 tumor sizes). 
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is considered effective when the desired temperature in the 

tumor is achieved while avoiding the occurrence of hotspots. 

The temperature-based optimization was performed for each 

perfusion scheme, and consequently, the heating was adjusted 

to the effect of perfusion. Another aspect to consider is that 

hotspots are dominantly caused in tissue interfaces with high 

contrast in tissue properties such as muscle/bone and fat/bone. 

Perfusion set St. A presented the most distinct results because 

the perfusion contrast (Table I) within the tissues was higher 

than the other sets (𝜔𝑚𝑢𝑠𝑐𝑙𝑒 𝜔𝑏𝑜𝑛𝑒⁄ =30, 𝜔𝑚𝑢𝑠𝑐𝑙𝑒 𝜔𝑓𝑎𝑡⁄ =1.5). 

On the contrary, the results suggest that SAR-based 

optimization made the effect of perfusion redundant likely 

because this optimization only used the direct absorption and 

did not consider changes in blood flow [25], making it naturally 

less sensitive to perfusion differences.  

As mentioned before, this study did not intend to clarify if 

SAR or temperature optimization performs best. Nevertheless, 

our results highlight the advantages and drawbacks of each 

approach. The findings suggest that temperature-based 

optimization might be more effective in providing the desired 

temperature (Fig. 5) and can be a more patient-specific solution. 

However, the large uncertainties in perfusion lead to absolute 

errors of ΔT50 up to 2°C. In contrast, SAR-based optimization 

is predicted to be less effective in achieving higher 

temperatures, but the maximum absolute error was below 1°C 

in T50 (Fig. 8 - Interquartile variation <1°C). Furthermore, as 

shown in Fig. 6, volunteer displacements had a great impact on 

the temperature-based optimization since we observed that 

higher differences in the resulting temperature distribution. 

This research showed the value of using MR imaging to 

achieve a more accurate translation of HTP results and create a 

treatment plan adapted to the treatment anatomy and position. 

MR imaging is highly beneficial for MR-compatible devices 

since it offers the framework to create an HTP for every 

treatment. Creating a treatment plan right before the treatment 

requires speeding up HTP (Fig. 3) from approximately 3.5 

hours to less than 10 minutes. Reducing the time of HTP is not 

a trivial task and is still a work in progress, though our research 

showed that precise repositioning would improve substantially 

the predictions. Furthermore, perfusion variability affects 

temperature predictions. In addition, to use MR imaging to 

facilitate accurate position and anatomy representation, MR 

methods should be used to improve the accuracy of perfusion 

modeling [34]. Following this, we believe that using MR 

imaging during MR-guided hyperthermia is the gateway for 

more personalized treatment and facilitates much faster 

progress in understanding the patient's thermal-dose effect 

relations, thermoregulation, and the need to improve patient 

positioning.  

This study has some weaknesses, and the results should be 

seen in the light of these considerations. Although we have 

included perfusion variability, we used static perfusion values 

and these values, and their dependence on time and 

temperature, are uncertain themselves. Hence, we believe that 

future work should focus on improving perfusion modeling for 

different tissues. Another important aspect to reflect is the goal 

function and parameters used in the optimization approach. 

Even though the functions and parameters used in this study are 

the most commonly adopted and suggested for simulation 

studies [18], other options have been proposed in literature [25], 

[35]–[37]. Even though the achieved temperatures might 

change with the goal function, we believe that the observations 

drawn between the standard plan, the simulated treatment and 

the adapted plan will hold for optimization using different goal 

functions.  

 

V. CONCLUSION 

Our modeling study suggests that patient anatomy and position 

during treatment should be taken into account when aiming for 

accurate thermal simulations; we found absolute errors between 

0.40°C and 0.67°C in T50. The benefit of MR-adapted HTP was 

relevant for temperature-based optimization, while for SAR-

based optimization, it was less substantial. Furthermore, the 

findings suggest that SAR-based optimization is more robust to 

variations in perfusion. 
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