In vitro early detection of grapevine virus-induced graft incompatibility in Syrah/R110: the involvement of GRSPaV

S. Tedesco^{1,2,3}, P. Irisarri^{4,5}, M. Teixeira-Santos⁶*, P. Fevereiro^{1,3}, A. Pina^{4,5}, F. Kragler².

I Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Portugal. 2 Department 2, Max Planck Institut für Molekulare Pflanzenphysiologie (MPI-MP), Germany. 3 InnovPlantProtect CoLab (InPP), Portugal. 4 Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Spain. 5 Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Spain. 6 Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Portugal. * margarida.santos@iniav.pt

O INTRODUCTION

In viticulture, grafting is used to propagate European grapevines (Vitis vinifera) susceptible to phylloxera (Daktulosphaira vitifolia Ficth.) using resistant American rootstocks. However, graft incompatibility manifests in short-term graft failure or long-term decline affecting grape yield and the vineyard longevity. In this work, we:

- Assess the suitability of in vitro systems as early detection methods for grapevine incompatibility
- Provide evidences for the involvement of Rupestris Stem Grapevine Pitting associated Virus (GRSPaV) Syrah/Ritcher-110 (110R)graft incompatibility,

using certified homografted (i.e., a graft between the same genotype) and heterografted (i.e., a graft between two genotypes) in vitro grapevine plants, with known compatibility response when grafted onto 110R rootstock (V. berlandieri x V. rupestris)

Classifications:

(i) Translocated incompatibility when associated with starch accumulation and

(ii) Localized incompatibility when characterized by weakness of the graft

(iii) Virus-induced incompatibility when due to viral infections.

Graft Incompatibility

phloem degeneration,

union,

RESULTS AND DISCUSSION

.1 Graft success and histochemistry

- Failing heterografts display a viral phenotype
- Levels of GRSPaV correlate with graft success

Scale bar = 1 cm

Sucessful heterografts display translocated graft incompatibility:

IV. Heterografts display starch accumulation

V. Heterografts are depleted in callose indicating development of new phloem cells

vascular differentiation

III. Heterografts have a

persistent necrotic layer

Micrografts SY470 SY383 SY470/SY470, 110R/110R, SY383/110R, 110-Ritcher V. vinifera cv. Syrah (V. berlandieri and SY470/110R were performed.

02 MATERIALS AND METHODS

(clones 470 and 383) x V. rupestris)

mandatory viruses was confirmed by ELISA. of SY383/SY383,

The absence of the EU certification

2.2 Graft success and histochemistry evaluation

- Grafts were considered successful when scion growth and/or rooting of the rootstock was observed at 49 days after grafting (DAG).
- Histochemical analysis of the graft unions at 28 and 49 DAG with: Calcofluor to stain cellulose; Acridine orange for differentiating xylem; Phloroglucinol-HCl for lignin; Potassium iodine (I₂KI) for starch; Aniline blue for callose.

2.3 GRSPaV dsRNA construction and delivery

One of the most representative GRSPaV transcript variants found in SY470 served as a template to produce a dsRNA construct targeting the viral coat protein and was delivered in SY470 homoand heterografts just before grafting. At 49DAG, graft success and GRSPaV levels were assessed by qRT-PCR.

A. Predicted structure of the antisense extremity, and B. the tRNA-like structure extremity transcribed GRSPAaV dsRNA

SY470 (light grey) were incubated in GRSPaV dsRNA (treatment) and YFP dsRNA solutions (control) to form treated and control homo- and heterografts with 110R (dark grey).

3.2 Rescue of Syrah/110R incompatibility after GRSPaV silencing

- Graft success was rescued in GRSPaV dsRNA-treated grafts
- More viral transcripts translocated scion-torootstock in GRSPaV silenced heterografts.

49 DAG Graft success	
Homografts control	80%
(YFP dsRNA-treated)	OO /0
Homografts treated	100%
(GRSPaV dsRNA-treated)	100%
Heterografts control	67%
(YFP dsRNA-treated)	0/%
Heterografts treated	1000/
(GRSPaV dsRNA-treated)	100%

Incompatibility seems due to the rootstock hypersensitivity to scion-derived viruses

CONCLUSIONS

the involvement of GRSPaV propose incompatibility and alert that grapevine incompatibility is a virusinduced phenomenon that can arise even in certified plants.

