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Abstract

Error detection and recovery are important issues in swarm
robotics research, as they are a means by which fault toler-
ance can be achieved. Our previous work has looked at error
detection for single failures in a swarm robotics scenario with
the Receptor Density Algorithm. Three modes of failure to
the wheels of individual robots was investigated and compa-
rable performance to other statistical methods was achieved.
In this paper, we investigate the potential of extending this
approach to a robot swarm with multiple faulty robots. Two
experiements have been conducted: a swarm of ten robots
with 1 to 8 faulty robots, and a swarm of 10 to 20 robots with
varying number of faulty robots. Results from the experi-
ments showed that the proposed approach is able to detect
errors in multiple faulty robots. The results also suggest the
need to further investigate other aspects of the robot swarm
that can potentially affect the performance of detection such
as the communication range.

Introduction
A robot swarm is robust to failure of individuals has al-
ways been a dominant view in swarm robotics research (e.g.
(Bayindir and Şahin, 2007; Şahin et al., 2008)). It is ex-
pected that when an individual robot fails, the task left be-
hind by the failed robot will be taken over by other robots
in the swarm, and thus the swarm is robust. This view of a
robust swarm has two underlying assumptions: the number
of fault-free robots is significantly greater than the number
of faulty robots, and that the failed robots do not interfere
with other robots with respect to the operation of the swarm.

However, studies have demonstrated that the assumption
that failed robots do not interfere does not hold for all modes
of failure (Winfield and Nembrini, 2006). For a partly failed
robot in which only some components are faulty whilst other
components are still operational, the failed robot can and
will interfere with the operation of the swarm. For example,
in a swarm taxis scenario (swarm moving toward a beacon)
investigated in Winfield and Nembrini (2006), a fault to the
wheels while other components (e.g. wireless communica-
tion) are still operational causes physical anchoring of the
robot swarm. Therefore, for such cases, there is a need to

handle these failures explicitly. One approach that is ap-
plicable for such cases is with explicit error detection and
recovery. This approach consists of three stages: error de-
tection, fault diagnosis, and recovery.

Error detection is a crucial first step as the activation of
subsequent stages only occur when an error is detected.
Previous studies on error detection in swarm robotics have
looked at this problem for the case of a single faulty robot
in the swarm. However, there is little work that directly ad-
dresses error detection when there are multiple (simultane-
ous) faulty robots in a swarm. In Christensen et al. (2009),
the detection of faulty robots occur at the system-level for
sensor faults that can be visibly detected by other robots.
In Li and Parker (2009), fault detection is investigated for
tightly-coupled multi-robot teams. In this paper, we inves-
tigate multiple faulty robots in the context of a foraging
swarm robotic system in which the ability to forage for each
robot can be affected by faults as well as the conditions in
the operational environment.

Results from earlier work (Lau et al., 2011b,a) for a sin-
gle faulty robot have demonstrated the potential of adap-
tive error detection with the collective self-detection (CoDe)
scheme. In the CoDe scheme, a robot determines whether
itself is faulty by cross-reference its behaviour with other
robots within a logically defined neighbourhood. Each robot
communicates (broadcast) its data to other robots in the
same neighbourhood. The neighbourhood is defined by the
communication range. If there are multiple failures in the
same neighbourhood, the detection of faulty robots is harder
and the CoDe scheme might work less effectively. This is
because if there are more faulty robots in a neighbourhood,
the CoDe scheme (which is analogous to a majority voting
scheme) might (mis-)detect the fault-free robots as faulty,
and vice versa. This is unwanted as the likelihood of mul-
tiple failures in a large swarm can be high (Carlson et al.,
2004). Luckily, since the robots are mobile, the likelihood
of a faulty robot in a neighbourhood of more faulty robots
can be low. Besides, if the errors can be detected and re-
covered early, it can also reduces the likelihood of having
multiple faulty robots in a neighbourhood.
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The main contributions of this paper, therefore, are (1) an
extended investigation on an immune-inspied CoDe scheme
for multiple faulty robots in a swarm, (2) presentation on the
calculation of the performance of detection for the case of
multiple faulty robots, (3) an investigation on the correlation
between the number of faulty robots and the required swarm
size for effective error detection, and (4) the identification of
the robot’s communication range as a potential influencing
factor on the performance of detection.

This paper is structured as follows. Section present the
state-of-the-art on error detection in swarm robotics and the
motivation of this paper. Section presents details on the
set of experiments, and the experimental setup to investigate
error detection for the case of multiple simultaneous faulty
robots. Results from the experiments are presented in Sec-
tion whilst Section concludes with the findings from the
experiments in this paper.

Background
There are many approaches for detecting errorss in faulty
robots. Generally, they can be grouped into model-driven
and data-driven approaches. In model-driven approaches,
analytical models of how a robot should behave are build
and the actual behaviour is then compared to the predicted
behaviour of the models. A problem with model-driven ap-
proaches is that the development of accurate models is of-
ten difficult, if not impossible, especially if the operational
environment is not static or controlled (Christensen et al.,
2007a). Due to the interactions between robots and the en-
vironment, as well as other natural factors, the state of the
environment can change and this in turn can affect the be-
haviour of the robots.

Alternatively, a data-driven approach uses data produced
during normal operation as the basis to infer the presence of
a fault. This eliminates the need for precise analytical mod-
els of the robot’s behaviour. In addition, it is possible to de-
ploy the same robot swarm in many different environments.
Therefore, data-driven approaches are genereally more pre-
ferred.

Previous studies on data-driven error detection in swarm
robotics have investigated scenarios of a single faulty robot
in the swarm (e.g. (Canham et al., 2003; Christensen et al.,
2007a,b; Lau et al., 2011b; Mokhtar et al., 2009)). However,
having only one faulty robot in a robot swarm is a best-case
scenario because the likelihood of multiple robots failing is
high due to a variety of circumstances.

From Single to Multiple Faulty Robots
The reason for the previous focus on a single faulty robot
was that the proposed solution should scale to failure on
multiple robots, as the detection is only based on data from
one robot (e.g. (Canham et al., 2003; Christensen et al.,
2007a; Mokhtar et al., 2009)). In other words, it is assumed
that the changes in the behaviour of the robots are only

caused by faulty components. The environment in which
the robot swarm operates has no impact on the behaviour of
the robots. In this case, even with multiple faulty robots in
the swarm, the detection of errors on each individual robot
remained the same and unaffected by the number of faulty
robots.

However, for many scenarios especially when the robot
swarms are deployed in real-world environment, the opera-
tional environment does affect the behaviour of the robots.
An example would be a robot foraging scenario in which
the performance of foraging of each robot can not only be
affected by the presence of faults but also by the amount of
objects in the arena or the condition of the terrain. Therefore,
instead of using data from a single robot, the CoDe scheme
(Lau et al., 2011b,a) utilises data from a collective. The col-
lective is defined over a logical neighbourhood based on the
communication radius of an observer robot. In the CoDe
scheme, the presence of a error is determined by cross-
referencing a robot’s behaviour with other robots within a
neighbourhood. Results from the studies show that with the
CoDe scheme, an adaptive error detection in the presence of
time-varying environmental changes can be achieved.

As mentioned earlier, previous studies have only looked
at error detection for a single faulty robot in the swarm. In
practise, the probability of having multiple faulty robots in
a swarm can be high. A survey on mobile robot failures in
Carlson et al. (2004) found that the mean time between fail-
ures across all robot types surveyed is twenty four hours and
the availability was fifty four percent. Indeed, the frequency
of failure is very high.

To detect multiple faulty robots in a swarm is a challeng-
ing problem, in particular for scenarios in which the be-
haviour of the robots is affected by the operational envi-
ronment as well as the presence of faults. First, detection
approaches that operate on the basis of a single robot may
not be applicable as changes in the environment that affect
the behaviour may be detected as errors. This may lead to
false positives. In Canham et al. (2003); Christensen et al.
(2007a); Mokhtar et al. (2009), the robots are trained with
a set of behaviour that is considered fault-free and thus the
learning is static. During operation, changes in the environ-
ment that can affect the behaviour of the robots are not an-
ticipated, and thus likely to cause the environmental changes
to be detected as faults. Second, the assumption that there
are more fault-free robots compared to faulty robots as em-
ployed in the CoDe scheme, might not be true for all scenar-
ios. This is particularly in scenarios in which there are more
faulty robots compared to fault-free robots in the neighbour-
hood. This leads to false negatives.

However, the fact that the robots are mobile minimises
the frequency of such scenarios. The membership of robots
in a logical neighbourhood is dynamic as the robots moves
about in the arena. In addition, if errors can be detected
early, the likelihood of having a neighbourhood with more
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faulty robots can also be minimised. Therefore, this paper
aims to investigate the following research questions

• Can the CoDe scheme be extended to multiple faulty
robots?

• Is there any correlation between the swarm size and the
number of faulty robots that can be detected with the
CoDe scheme?

To investigate these research questions, the next two sec-
tions will provide details on the CoDe scheme, the evalua-
tion metrics, and the set of experiments conducted.

The Detection Framework
The Detection Scheme The detection of errors in faulty
robots in this paper is based on the CoDe scheme proposed
in Lau et al. (2011b,a). This scheme is analogous to a major-
ity voting scheme (majority wins) which is the basis for so-
cial comparison when objective, non-social means are avail-
able (Festinger, 1954). However, the CoDe scheme is de-
signed and implemented for self-detection of errors. Self-
detection here means that instead of identifying whether
other robots are faulty, it detects whether itself is faulty. This
is inspired by the observed behaviour of self-isolation, to die
alone, in ants. Instead of being actively located and isolated
by healthy members, some species of ants infected by para-
sites tends to isolate themselves to die (Heinze and Walter,
2010). Taking this approach means that, at this stage, the
detection can be more robust as it does not requires the iden-
tification of other robots in the swarm, as well as storing and
keeping record of previous encounters with other robots. If
the identification of faulty robots is required, it can be imple-
mented on top of self-detection as proposed in Christensen
et al. (2009). The pseudocode for the CoDe scheme is pre-
sented in Algorithm 1.

The Classifier The classifier used in this paper is the Re-
ceptor Density Algorithm (RDA) Owens et al. (2009) in-
spired by the T-cell receptor signalling mechanism in the
immune system. By extraction of certain features of the
generalised T -cell receptor, it was then mapped onto kernel
density estimation. The RDA works as follow. The spectrum
of input data is divided into s discretised location and a re-
ceptor xs is placed at each of these locations. The input data
is the variable values from the robots used for the detection.
A receptor has a length � = (

√
2π)−1, a position rp ∈ [0, �],

and a negative feedback barrier β ∈ (0, �). At each con-
trol cycle step t, each receptor takes input xi and performs a
binary classification ct ∈ 0,1 to determine whether that lo-
cation is considered anomalous. In general, the observation
of one anomalous location is sufficiently representative to
indicate the present of an anomaly at t (Owens et al., 2009).

The classification decision is determined by the dynamics
of rp and negative feedback rn ∈ (0, �). During training or

Algorithm 1: Collective Self-Detection Scheme (CoDe)
Input: current data instance v, data instances from

neighbours DN , classifier A
Output: report error
foreach control cycle t do

if CalculateNeighbour(DN ) < 2 then
err = A(v, DN temp);
//DN temp is the data from previous control
cycle having more than 2 neighbours

else
err = A(v, DN );
DN temp=DN ;
//assign current data from neighbours to
DN temp

end
if err then

Report err;
end

end

initialisation, after xi was presented, if the resulting rp ≥ β
then a negative feedback rn is generated which acts to re-
verse the progression of rp. If rp < β, no negative feedback
will be generated, rn = 0.

rp(x) =
n∑

i=1

1

nh
K(

x − xi

h
) (1)

rn(x) =

{
rp(x)− β, if rp(x) ≥ β

0, otherwise
(2)

The receptor position and negative feedback decay over
time. During testing, for a new data instance v if rtp > �,
then the receptor generates an anomaly classification ct=1.

rtp(x) = b× rt−1
p (x) + gb×K(

x − v
h

)− a× rt−1
n (x) (3)

where b ∈ R+ is receptor position’s decay rate,
gb ∈ R+ is current input stimulation rate,
a ∈ R+ is negative feedback’s decay rate.

c(v) =

{
1, if rtp(x) ≥ �

0, otherwise
(4)

For the experiments in this paper, the K(x) in Eq. 1 and
Eq. 3 is Gaussian kernel, the β = 0.01, b = 0.02, gb = 1.1,
and a = 1.7.

The Experiments
Two experiments are conducted: 1) an investigation of the
potential of detecting errors in a swarm of multiple faulty
robots with the CoDe scheme; 2) an investigation on the
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correlation between the size of the swarm and the ability to
detect errors.

Fixed Swarm Size This experiment investigates the ro-
bustness in detecting errors for multiple faulty robots with
the CoDe scheme. The aim is to find out whether the ap-
proach that has been demonstrated to work well with a single
faulty robot Lau et al. (2011b,a) can also be applied to the
case of multiple faulty robots. More importantly, if the ap-
proach works with multiple failures then how will it degrade
as the the number of failures increases.

In this experiment, faults are injected to robots in the sys-
tem at 2500s (which is at control cycle 10). However, the
fault models, number of faulty robots, and the duration for
each fault are randomly generated. With a random number
of faulty robots and fault durations, the number of faulty
robots in a single simulation run can vary from one control
cycle to another. For this reason, section describes how the
performance is to be evaluated.

Variable Swarm Size This experiment investigates the
possible correlation between the swarm size and the num-
ber of faulty robots that can be detected. This relates to the
reliability of the error detection. The aim is to find a corre-
lation n = ak + c, if exists, such that for k faulty robots
there needs at least n robots in the swarm to ensure that
the errors can be detected reliably with a true positive rate
greater than or equals to x, a false positive rate of less than
or equals to y, or both. For hardware redundancy, the num-
ber of redundant components generally suggested is 2k + 1
(Abd-El-Barr, 2006).

The configuration for the time of faults injection, number
of faulty robots, duration for each fault in this experiment
is the same as previous experiment. However, the swarm
size is increased gradually starting from 10 robots. For ev-
ery successive increment, an additional of two robot will be
added.

The Evaluation Metrics
The performance of detection is evaluated based on the per-
formance is based on the true positive rate, false positive
rate, and the (Latency), as in Lau et al. (2011a). Given:

• True Positive (TP) - an error is correctly classified;
• False Positive (FP) - a normal instance is incorrectly clas-

sified as an error;
• True Negative (TN) - a normal instance is correctly clas-

sified as normal; and
• False Negative (FN) - an error is incorrectly classified as

a normal instance.

The True Positive Rate (TPR) is the proportion of the
number of correctly classified errors over the total number
of errorneous instances (Eq. 5).

TPR =
TP

TP+ FN
(5)

Similarly, the False Positive Rate (FPR) is the proportion
of the number of incorrectly classified errors over the total
number of normal instances (Eq. 6).

FPR =
FP

FP+ TN
(6)

The (Latency) metric evaluates how long the time has
elapsed before an error is positively identified (Eq. 7). Given
that tpd is the fault detection time, and tft is the fault in-
jection time, then

Latency = tpd − tft (7)

We present how TPR and FPR can be calculated for mul-
tiple faulty robots with reference to Figure 1. In the fig-
ure, there are ten robots in the system, labelled R1 to R10.
In Figure 1(a), seven robots are faulty from time t=10 on-
wards. However, the durations of faults between the robots
are different as indicated by the black-coloured bar. For ex-
ample, the fault in R1 lasts for 4 control cycles, from t=10
to t=14. Since the durations faults are different, the number
of faulty robots at each control cycle also differs. From t=10
to t=11, there are seven faulty robots whereas from t=14 to
t=15 there is only one faulty robot. By analysing the simu-
lation data in this way, the TPR and FPR for each number of
faulty robots can be calculated. For the scenario in Figure
1(a), there are instances for seven, six, five, three, and one
faulty robot(s).

(a) fault injection (b) error detection

Figure 1: An illustration to show the calculation of TPR and
FPR given information regarding the fault injection time,
duration of fault, and detected errors.

In Figure 1(b), the circles represent the instances of error
being detected. It can be seen that there are many instances
of false positive (detection of error even when no fault was
injected), e.g.with robots R2, R3, and R10. To calculate the
TPR and the FPR, starts at t=11. At t=11, there are seven
faulty robots. Therefore, the TPR for the case of seven faulty
robots is 2/7. Similarly, the FPR is 0/3. At t=12, the TPR
for six faulty robots is 2/6 whilst the FPR is 3/4, and so on.

Artificial Immune Systems - ICARIS

849 ECAL 2013

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/ecal2013/25/846/1901607/978-0-262-31709-2-ch124.pdf by ABER
YSTW

YTH
 U

N
IVER

SITY user on 07 N
ovem

ber 2023



Experimental Setup
The experiments in this paper were carried out in
simulation. The context of the work is a robot
swarm in a foraging scenario. The source code for
the foraging swarm robotic system, data, and scripts
used to produce results for this paper are available at
http://sites.google.com/site/huikenglau/shared.

Simulation Settings
The software used to implement the foraging robot swarm
is the Stage plug-in (Gerkey et al., 2003). The robot swarm
is placed in an arena to continuously locate, transport, and
deposit objects until the end of simulation. At any time, a
random number of robots can fail.

Arena The arena is an octagonal-shaped area of 12m ×
12m with a circular base of 3m in diameter in the centre. Ob-
jects are placed at random1 locations but outside of the base
at a default object-replenishing-rate (OPR) of 0.10. This
means that the probability of adding an object at every sec-
ond is 0.10.

Robot The physical robot from which the simulation
model was based is the Linuxbot from Bristol Robotics Lab-
oratory 2. Each robot is equipped with an array of sensors
and components needed for foraging. The default moving
speed of the robots is 0.15 m.s−1 with a communication
range of 2m.

Fault Each robot in the swarm is subject to a particu-
lar fault in the wheels whilst other components are still
functioning, as examined in Winfield and Nembrini (2006).
Three models of faulty wheels were simulated: complete
PCP, partial PPT, and gradual PGR. The PCP causes the wheels
of a robot to stop responding completely and thus the robot is
unable to proceed with foraging. With PPT, the robot moves
with a reduced speed and thus resulting in less objects be-
ing collected when compared to a fault-free condition. With
PGR, the robot moves with a gradually reducing speed until
eventually it comes to a complete stop. In simulation, PCP is
simulated by setting the left wheel to left turn by 10◦ caus-
ing the robot to move in circle. For PPT, the robots move
with a reduced speed of 0.45 ×10−1ms−1 whilst for the PGR
the speed of the robot is reduced by 0.10 ×10−3ms−2. The
mode of the fault is transient; the fault lasts for a random
period of time and then the robot recovers and continue with
normal operation.

Environment Two different scenarios in which the robot
swarm operates: constant OPR (CST), varying OPR (VOPR).
In a CST scenario, the OPR is fixed at 0.10. On the other

1The random number generator used is from GSL-GNU Scien-
tific Library.

2http://www.ias.uwe.ac.uk/Robots/linuxbot.htm

hand, in a VOPR scenario, the OPR alternates between 0.10 to
0.01 at different intervals.

A Simulation Run A simulation starts with 100 initial ob-
jects placed randomly in the arena. A maximum number of
objects in the arena at any one time is capped at 400 units
to avoid overcrowding. Each object is a small red coloured
square box which can be sensed by the camera on each robot
and picked up by the grippers on the robot. Robots depart
from the base and the heading for each robot Ri is based
on the formula Ri = i×2π

n , n is the number of robots in the
swarm. The robots will continuously carry out foraging un-
til the end of the simulation. In this paper, each simula-
tion lasts for 10,000s. Periodically (i.e. every control cycle,
250s), data on the number of objects collected obj, energy
used eng, and distance travelled dist for each robot are
extracted and output as csv files. For each variable, an in-
stance of the CoDe scheme is executed separately and an
error is considered detected if it is reported in at least one of
the variables. The h in Eq. 1 for obj = 1.0, eng = 12.0, and
dist = 2.5

Experimental Results
Fixed Swarm Size
Figure 2 is the result for the TPR and FPR in detecting er-
rors for different number of faulty robots in a CST scenario.
Each point in the graphs represent the TPR or FPR calcu-
lated over 100 repeated runs. Note that since the number
of faulty robots and the duration of each fault are random,
the number of instances for each group of faulty robots also
differs. For example, out of the 100 runs, there are 1208 in-
stances of eight faulty robots, 777 instances for seven faulty
robots, 948 instances of six faulty robots and so on.
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Figure 2: The TPR and the FPR for detecting multiple faulty
robots in a CST scenario with the CoDe scheme.

In Figure 2, the results show that as the number of faulty
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robots increases, the performance of detection decreases.
Note that in this experiment, no recovery is included. There-
fore, a TPR of 1.00 with one faulty robot means that the er-
rors in that faulty robot can always be detected. Similarly,
a TPR of 0.55 with eight faulty robots means that there is
55% chance that the errors in all eight faulty robots will be
detected. This is possible because there are still two fault-
free robots for the faulty robots to cross-referencing their
data. In addition, because of the dynamic neighbourhood of
the robots from one control cycle to another, a faulty robot
might also be cross-referencing its data against others from
the previous control cycle (refer line 5 in Algorithm 1).

The results show that with every increase of one faulty
robot, the TPR decreases at an approximately constant rate
of 0.10. This means the probability of detecting errors in
all faulty robots decreases as the number of fault-free robots
decreases. This is expected because the likelihood of more
than one faulty robot in the logical neighbourhood is in-
creased, and thus resulting in more false negatives. Sim-
ilarly, the increase of the number of faulty robots also in-
creases the FPR. The increase in the FPR is also approxi-
mately 0.10 for each addition of one faulty robot. Due to
the same reason for the TPR, each addition of faulty robot
increases the likelihood of fault-free robots to classify itself
as faulty (false positives).

The result for the Latency in detecting the errors
is shown in Figure 3. From the 100 runs, the median
Latency is 1 control cycle. This means that the errors are
detected in the next control cycle after faults were injected.
This is a positive result because if recovery measures were
implemented, the number of multiple simultaneous faulty
robots can be reduced.

(a) CST (b) VOPR

Figure 3: The Latency in detecting the models of fault of
the wheels in a CST and a VOPR scenario. The ’+’ points on
the boxplots are the outliers.

The graphs in Figure 4 compares the performance be-
tween a CST and a VOPR scenario. Overall, there is no sig-
nificant difference between the performance in the TPR and
the FPR. The drop in the TPR and the the increase in the
FPR as the number of fault robots increases are similar to
the results for a CST scenario. In fact, some of the results
for the VOPR scenario are better than the CST scenario. This

is because even with a fixed OPR, the presence of multi-
ple faulty robots can significantly affect the ability to pos-
itively identify errors. Nevertheless, this result shows that
CoDe scheme works well in a non-dynamic as well as a dy-
namic environment even with multiple faulty robots in the
swarm. This is encouraging as it further supports that the
CoDe scheme can be adaptive to dynamic environments.

(a) TPR (b) FPR

Figure 4: The TPR and FPR in detecting errors for a robot
swarm with multiple faulty robots in a CST and a VOPR sce-
nario.

Variable Swarm Size
Figure 5 show the TPR and FPR for multiple faulty robots
with different swarm sizes. A general observation is that
as the swarm size increases, the performance of detection
also improves. For example, on the x-axis with two faulty
robots in Figure 5(a), as the swarm size is increased from
10 robots to 18 robots, the TPR also increases (from about
0.85 to slightly above 0.90). Similarly in Figure 5(b) with
two faulty robots, as the swarm size increases from 10 to 18
robots the FPR decreases from about 0.20 to less than 0.10.

However, note that the increase in the TPR does not oc-
cur in all cases. In some cases, rather counter-intuitive. For
example with eight faulty robots in Figure 5(a), the TPR de-
creases from slightly below 0.60 to only above 0.50 when
the swarm size increases. This observation is interesting and
worth further investigation. One particular factor comes to
mind is the communication range of each robot. This param-
eter influences the size of the logical neighbourhood. Here,
it is set to 2m radius. From the results, it appears that an
increase in the swarm size does not guarantee an increase
in the neighbourhood size (i.e. the number of robots in the
neighbourhood) at each control cycle. Therefore, this aspect
will be investigated in the near future.

From this result of varying swarm size, the required
swarm size for different number of faulty robots can be cal-
culated. For example, in order to not falsely detect errors at
80% of the time in a swarm with four or less faulty robots
(i.e. FPR = 0.80) the swarm needs to have at least 12 robots.
Similarly, with six or less faulty robots, a swarm of at least
16 robots is needed. From this trend, it seems that a swarm
of n = k + 10 is required to achieve a FPR less than 0.20
with k faulty robots.
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(a) TPR

(b) FPR

Figure 5: The TPR and FPR in detecting errors for different
swarm sizes.

Based on the same analysis, to be able to detect four faulty
robots or less at 80% of the time (i.e. TPR = 0.80), the swarm
needs to have more than 20 robots. Unlike the TPR, based on
current results, it is impossible and unrealistic to extrapolate
the required swarm size with more than four faulty robots.

A general observation is that the swarm size required is
greater than 2k + 1. This is comparable to the generally
used hardware redundancy Abd-El-Barr (2006). The reason
is that in swarm robotics the robots are mobile and there is no
guarantee that for k faulty robots, there will be at least 2k +
1 fault-free robots in the same logical neighbourhood. This
observation hints that there are other factors involved and
one particular parameter that came to mind is the communi-
cation range of the robots. For confirmation, this parameter
will be investigated in the near future.

Comparison with Q-test
The performance of error detection with multiple faulty
robots using the CoDe scheme with the RDA is compared

with the Q-test (Gibbons, 1994) (Table 1, Table 2). Dixon’s
Q test (Gibbons, 1994), or simply the Q-test, is a non-
parametric technique that can be used for error detection.
It has been applied for error detection in the case of a sin-
gle faulty robot in Lau et al. (2011a) and shown to produced
the best results when compared to other statistical classifiers
such as T-test, Quartile-based, and Extreme Studentised De-
viate.

In Table 1, the RDA has consistently achieved a higher
TPR when compared to the Q-test from all swarm sizes
(from 10 to 20). However, a similar result is not obtained
for the FPR (Table 2). When the number of faulty robots
increases the FPR for the RDA increases. From the per-
spective of the CoDe scheme (i.e. majority voting), this is
expected, in particular when the number of fault-free robots
is significantly less than the number of faulty robots. Having
said that, a more detailed investigation will be conducted in
the near future.

Table 1: The difference of the TPR of the RDA and the
Q-test (i.e. RDA-Q-test) in detecting errors with multiple
faulty robots. Note that for the TPR, a positive value means
a better result.

No. Faulty 10 12 14 16 18 20
robots

1 0.18 0.13 0.15 0.15 0.09 0.14
2 0.27 0.18 0.26 0.19 0.23 0.15
3 0.28 0.25 0.31 0.26 0.22 0.25
4 0.33 0.30 0.32 0.29 0.27 0.22
5 0.36 0.28 0.34 0.32 0.27 0.28
6 0.33 0.28 0.30 0.26 0.30 0.27
7 0.21 0.28 0.30 0.31 0.21 0.31
8 0.20 0.27 0.30 0.29 0.27 0.30
9 0.22 0.26 0.29 0.27 0.28

10 0.12 0.26 0.27 0.26 0.28
11 0.22 0.22 0.27 0.24
12 0.13 0.21 0.22 0.23
13 0.19 0.19 0.22
14 0.12 0.20 0.20
15 0.12 0.19
16 0.02 0.18
17 0.15
18 0.09

Conclusion
We have presented our initial investigation on error detec-
tion for multiple faulty robots in the swarm. Specifically, we
looked at scenarios in which the behaviour of the robots can
be affected by both faulty components and changes in the en-
vironment. In addition, the way to calculate the performance
metrics, namely the true positive rate, false positive rate, and
latency for the case of multiple faulty robots are also pre-
sented. Revisiting the research questions, results from the
first experiment give evidence that the CoDe scheme, which
work for a single faulty robot, performs well for multiple
faulty robots. In the second experiment, the general results
show that as the swarm size is increased, the performance in
detecting errors with multiple faulty robots also increases.
In particular, the size of the swarm needs to be greater than
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Table 2: The difference of the FPR of the RDA and the Q-
test (e.e RDA-Q-test)in detecting errors with multiple faulty
robots. Note that for the FPR, a negative value means a bet-
ter result.

No. Fauty 10 12 14 16 18 20
Robots

1 -0.04 -0.08 -0.09 -0.10 -0.09 -0.08
2 0.01 -0.01 -0.02 -0.07 -0.08 -0.07
3 0.07 0.04 -0.05 -0.06 -0.07 -0.06
4 0.07 0.05 -0.01 -0.02 -0.07 -0.07
5 0.16 0.07 0.03 0.01 -0.06 -0.06
6 0.19 0.08 0.02 -0.03 -0.04 -0.01
7 0.27 0.09 0.05 0.00 -0.07 -0.03
8 0.30 0.16 0.13 0.04 -0.02 0.02
9 0.17 0.11 0.01 -0.02 0.02

10 0.27 0.14 0.08 0.00 0.01
11 0.24 0.06 0.03 0.03
12 0.26 0.11 0.00 0.04
13 0.19 -0.08 -0.02
14 0.24 0.13 0.08
15 0.25 0.10
16 0.38 0.11
17 0.15
18 0.31

2k + 1 where k is the number of faulty robots. The results
also suggest the need for further investigation on the corre-
lations between swarm size, communication radius, and the
performance of detection.
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Şahin, E., Girgin, S., Bayindir, L., and Turgut, A. (2008). Swarm
robotics. In Blum, C. and Merkle, D., editors, Swarm In-
telligence: Introduction and Applications, pages 87–100.
Springer.

Festinger, L. (1954). A Theory of Social Comparison Processes.
Human Relations, 7(2):117–140.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The
Player/Stage Project: Tools for Multi-Robot and Distributed
Sensor Systems. In Proc. 11th Intl. Conf. Advanced Robotics,
pages 317–323.

Gibbons, R. D. (1994). Statistical Methods for Groundwater Mon-
itoring. John Wiley & Sons, Inc.

Heinze, J. and Walter, B. (2010). Moribund Ants Leave Their Nests
to Die in Social Isolation. Current Biology, 20:249–252.

Lau, H., Bate, I., Cairns, P., and Timmis, J. (2011a). Adaptive Data-
Driven Error Detection in Swarm Robotics with Statistical
Classifiers. Robotics and Autonomous Systems, 59(12):1021–
1035.

Lau, H., Timmis, J., and Bate, I. (2011b). Collective Self-detection
Scheme for Adaptive Error Detection in a Foraging Swarm of
Robots. In Proc. ICARIS 2011, LNCS 6825, pages 254–267.
Springer.

Li, X. and Parker, L. (2009). Distributed sensor analysis for fault
detection in tightly-coupled multi-robot team tasks. In IEEE
Intl. Conf. Robotics and Automation, pages 3103–3110.

Mokhtar, M., Timmis, J., Tyrrell, A., and Bi, R. (2009). A Modi-
fied Dendritic Cell Algorithm for On-Line Error Detection in
Robotic System. In Proc. CEC2009, pages 2055–2062. IEEE
Press.

Owens, N., Greensted, A., Timmis, J., and Tyrell, A. (2009). T
Cell Receptor Signalling Inspired Kernel Density Estimation
and Anomaly Detection. In Proc. ICARIS 2009, LNCS 5666,
pages 122–135. Springer.

Winfield, A. and Nembrini, J. (2006). Safety in Numbers: Fault
Tolerance in Robot Swarms. Intl. J. Modelling Identification
and Control, 1(1):30–37.

Artificial Immune Systems - ICARIS

853 ECAL 2013

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/ecal2013/25/846/1901607/978-0-262-31709-2-ch124.pdf by ABER
YSTW

YTH
 U

N
IVER

SITY user on 07 N
ovem

ber 2023




