
Towards Compact Bandwidth and Efficient
Privacy-Preserving Computation

A dissertation submitted towards the degree of

Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

by
Sihang Pu

Saarbrücken, 2023

©2023 – Sihang Pu
all rights reserved.

Defense Details

Date: Monday, 30 October 2023

Dean of the Faculty: Univ.-Prof. Dr. Jürgen Steimle

Examiniation Board:

• Chair: Prof. Dr. Karl Bringmann

• Reporters:

– Dr. Nico Döttling

– Prof. Dr. Markus Bläser

– Prof. Dr. Antoine Joux

– Dr. Geoffroy Couteau

• Academic Assistant: Dr. Nabil Alkeilani Alkadri

3

Zusammenfassung

Im Gegensatz zu traditionellen kryptografischen Aufgaben, bei denen Kryptografie verwendet wird,
um die Sicherheit und Integrität von Kommunikation oder Speicherung zu gewährleisten und der
Gegner typischerweise ein Außenstehender ist, der versucht, die Kommunikation zwischen Sender
und Empfänger abzuhören, ist die Kryptografie, die in der datenschutzbewahrenden Berechnung
(oder sicheren Berechnung) verwendet wird, darauf ausgelegt, die Privatsphäre der Teilnehmer vor-
einander zu schützen.

Insbesondere ermöglicht die datenschutzbewahrende Berechnung es mehreren Parteien, gemein-
sam eine Funktion zu berechnen, ohne ihre Eingaben zu offenbaren. Sie findet zahlreiche Anwen-
dungen in verschiedenen Bereichen, einschließlich Finanzen, Gesundheitswesen und Datenanalyse.
Sie ermöglicht eine Zusammenarbeit und Datenaustausch, ohne die Privatsphäre sensibler Daten zu
kompromittieren, was in der heutigen digitalen Ära immer wichtiger wird.

Obwohl datenschutzbewahrende Berechnung aufgrund ihrer starken Sicherheit und zahlreichen
potenziellen Anwendungen in jüngster Zeit erhebliche Aufmerksamkeit erregt hat, bleibt ihre Ef-
fizienz ihreAchillesferse. DatenschutzbewahrendeProtokolle erforderndeutlichhöhereRechenkosten
undKommunikationsbandbreite imVergleich zuBaseline-Protokollen (d.h. unsicherenProtokollen).

Daher bleibt es eine spannende Aufgabe, Möglichkeiten zu finden, um den Overhead zu min-
imieren (sei es in Bezug auf Rechen- oder Kommunikationsleistung, asymptotisch oder konkret),
während die Sicherheit auf eine angemessene Weise gewährleistet bleibt.

Diese Arbeit konzentriert sich auf die Verbesserung der Effizienz und Reduzierung der Kosten für
Kommunikation und Berechnung für gängige datenschutzbewahrende Primitiven, einschließlich pri-
vate Schnittmenge, vergesslicher Transfer und Stealth-Signaturen. Unser Hauptaugenmerk liegt auf
der Optimierung der Leistung dieser Primitiven.

Thesis advisor: Dr. Nico Döttling Sihang Pu

Towards Compact Bandwidth and Efficient Privacy-Preserving
Computation

Abstract

In traditional cryptographic applications, cryptographic mechanisms are employed to ensure the
security and integrity of communication or storage. In these scenarios, the primary threat is usually
an external adversary trying to intercept or tamper with the communication between two parties. On
the other hand, in the context of privacy-preserving computation or secure computation, the crypto-
graphic techniques are developed with a different goal in mind: to protect the privacy of the partici-
pants involved in a computation from each other.

Specifically, privacy-preserving computation allows multiple parties to jointly compute a function
without revealing their inputs and it has numerous applications in various fields, including finance,
healthcare, and data analysis. It allows for collaboration and data sharing without compromising the
privacy of sensitive data, which is becoming increasingly important in today’s digital age.

While privacy-preserving computation has gained significant attention in recent times due to its
strong security and numerous potential applications, its efficiency remains its Achilles’ heel. Privacy-
preserving protocols require significantly higher computational overhead and bandwidth when com-
pared to baseline (i.e., insecure) protocols.

Therefore, finding ways to minimize the overhead, whether it be in terms of computation or com-
munication, asymptotically or concretely, while maintaining security in a reasonable manner remains
an exciting problem to work on.

This thesis is centred around enhancing efficiency and reducing the costs of communication and
computation for commonlyusedprivacy-preservingprimitives, includingprivate set intersection, obliv-
ious transfer, and stealth signatures. Our primary focus is on optimizing the performance of these
primitives.

iii

Contents

0 Introduction 1

1 Preliminary 5
1.1 Basic Primitives . 6
1.2 Polynomials . 9
1.3 Lattices . 10
1.4 Hardness Assumptions . 11
1.5 Threshold Public-key Encryption . 15
1.6 Programmable Pseudorandom Functions . 17
1.7 Puncturable Pseudorandom Functions . 18
1.8 Designated-Verifier Non-Interactive Zero-Knowledge 19
1.9 Private Information Retrieval . 20

2 Threshold Private Set Intersection 22
2.1 Overview . 22
2.2 Techniques . 25
2.3 Definitions . 29
2.4 Oblivious Degree Test for Rational Functions 30
2.5 Multi-Party Threshold Private Set Intersection 36

3 Laconic Private Set Intersection 42
3.1 Overview . 43
3.2 Techniques . 46
3.3 Definitions . 54
3.4 Semi-Honest Laconic Private Set Intersection from CDH/LWE 55
3.5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts 62
3.6 Reusable Laconic Private Set Intersection . 74
3.7 Labeled Laconic PSI and Laconic OT . 81
3.8 Self-Detecting Encryption . 84

4 Rate-1 Oblivious Transfer 88
4.1 Overview . 89
4.2 Techniques . 91
4.3 Definitions . 99
4.4 Compression-friendly Subgroup Emulation via Gaussian Rounding 100

iv

4.5 Rate-1 Circuit-Private Linearly Homomorphic Encryption 102
4.6 Co-Private Information Retrieval . 117
4.7 Oblivious Transfer with Overall Rate 1 . 123
4.8 Oblivious Matrix-Vector Product and Oblivious Linear Evaluation 131

5 Privacy Preserving Signatures 138
5.1 Overview . 139
5.2 Techniques . 143
5.3 Definitions . 148
5.4 Generic Transformation of Stealth Signatures 156
5.5 Spirit: Lattice-based (Fuzzy) Stealth Signature 156
5.6 Performance Analysis . 162
5.7 Security Analysis . 164

6 Conclusion 175

Appendix A Additional Constructions 176
A.1 Threshold PSI: Oblivious Linear Algebra . 176
A.2 Stealth Signature: Group-based Construction against Bounded Leakage 181

References 201

v

To my surpportive parents.
To my beloved fiancée.

vi

Acknowledgments

First and foremost, I would like to express my deepest gratitude tomy advisor, NicoDöttling, for
his steadfast mentorship and advice, which guided me in my research and cultivated my professional
growth. His insightful feedback, patience, and intellectual rigor have been instrumental in shaping
this work and my academic career.

I also wish to express my sincere appreciation to Antoine Joux, Markus Bläser, and my exceptional
co-referee, Geoffroy Couteau. Their willingness to review my work despite their own demanding
schedules is something I deeply appreciate. Additionally, I extend my sincere gratitude to Karl Bring-
mann for graciously agreeing to chair my oral defense, particularly considering the limited notice pro-
vided.

Special thanks go tomy collaborators, particularly Pedro Branco, and Sri AravindaKrishmanThya-
garajan, with whom I had the privilege of collaborating on several research projects. Their unique
perspectives, insightful contributions, and dedication to high-quality research have significantly en-
riched my work and personal growth as a researcher. I also wish to acknowledge my colleagues Jesko
Dujmovic, Chuanwei Lin, and Nabil Alkeilani Alkadri, who created an inspiring work environment
and provided much-needed support and motivation throughout this journey. Their camaraderie, in-
tellectual discussions, and shared advice were invaluable in the completion of this thesis.

Lastly, I would like to express my heartfelt gratitude to my family and friends, whose unwavering
belief in my abilities, constant support, and endless encouragement have been the cornerstone of my
resilience during the entirety of this scholarly pursuit. Thank you for beingmy source of strength and
positivity.

vii

0
Introduction

Privacy-preservingcomputation, or secure computation, is an extension of traditional cryptog-
raphy to protect users’ sensitive information and metadata during computation.

In contrast to traditional cryptographic tasks, where cryptography is used to ensure the security
and integrity of communication or storage, and the adversary is typically an outsider attempting to
eavesdrop on the communication between sender and receiver, the cryptography used in the privacy-
preserving computation is designed to also safeguard the privacy of the participants from one another.

Specifically, privacy-preserving computation allows multiple parties to jointly compute a function
without revealing their inputs and it has numerous applications in various fields, including finance,
healthcare, and data analysis. It allows for collaboration and data sharing without compromising the
privacyof sensitive data, which is becoming increasingly important in today’s digital age. For a concrete
example, imagine a medical center that holds a potentially vast database of disease-associated genetic
variants. Apatientwants toundergo aDNAscreening to check for any issues. However, due toprivacy
concerns, the patient is hesitant to provide their DNA in plain form. This is where privacy-preserving
computation comes into play. Both parties (the medical center and the patient) can cooperatively
execute a secure protocol, allowing the patient to learn if they have any genetic markers associated
with diseases without revealing additional confidential information about their DNA.

Motivation

Despite the burgeoning interest and potential applications associated with privacy-preserving compu-
tation, owing to its robust security, the efficiency of such protocols continues to be a challenge. Privacy-
preserving protocols require significantly higher computational overhead and bandwidth when com-
pared to baseline (i.e., insecure) protocols.

As an example, consider the secure computation functionality of the set intersection (i.e., private
set intersection), which is one of the most popular applications of privacy-preserving computation.

1

In this scenario, Alice possesses a large datasetA, while Bob holds a much smaller dataset B such that
|B| � |A|. Alice wants to determine if there is any intersection between their datasets without learn-
ing anything about Bob’s dataset or revealing any information about her own.

The baseline protocol for set intersection involves Bob sending his dataset in plain text, whichAlice
then compares to her own dataset to identify any common elements. Note that this approach entails
O(|B|) communication bandwidth, which is inherent to this method.

In contrast, secure computation protocols usually entailO(|A|+ |B|) communication bandwidth.
While it ensures that the privacy of both parties is protected, and no information is revealed to ei-
ther party beyond what is necessary for the set intersection computation, this approach incurs a pro-
hibitively higher communication cost if |A| is super large. For instance, a DNS server holding a 100
GB set with each entry 4 Bytes is a normal case but 100GB communication bandwidth is highly un-
desired!

It is important to note that the efficiency gap between traditional and secure computation proto-
cols is not just limited to asymptotic measures but is also evident in concrete scenarios. For example,
consider a basic functionality (i.e., oblivious transfer) where a receiver holds a bit b ∈ {0, 1} and a
sender holds two bits x0 and x1. The goal is for the receiver to learn xb while remaining ignorant of
x1−b, and the sender must not know anything about the value of b. Baseline insecure protocols only
require a bandwidth of two bits, while secure protocols often require two ciphertexts, each with a size
of approximately 512 bits if implemented using the most efficient 256-bit elliptic curves.

Therefore, finding ways to minimize the overhead (whether it be in terms of computation or com-
munication, asymptotically or concretely) while maintaining security in a reasonable manner remains
an exciting problem to work on.

This thesis is centred around enhancing efficiency and reducing the costs of communication and
computation for commonlyusedprivacy-preservingprimitives. We tackled several problems inprivacy-
preserving computation, the first of which involvesmultiparty threshold private set intersection (PSI).
For threshold PSI, the parties involved in the protocol learn the output if the size of the intersection
between the input sets of the parties is very large, say larger than n− t, where n is the size of the input
sets and t is some threshold such that t � n; Otherwise, they learn nothing about the intersection.
This is in contrast with standard PSI where the parties always get the intersection, no matter its size.
Themain reason for considering this problem (apart from its numerous applications like ride-sharing,
contact discovery etc.) is that the amount of communication needed ismuch smaller than for standard
PSI: In particular, there are threshold PSI protocols whose communication complexity depends only
on the threshold t and not on the size of the input sets as for standard PSI [GS19a] in two-party setting.
However, non-trivial threshold PSI protocols in the multiparty setting are still an open question to
solve. Because if someone naively extends [GS19a] to amultiparty setting then the bandwidth for each
participant will depend on the number of parties which is prohibitively expensive.

The second problem we investigated is unbalanced PSI, as briefly mentioned at the outset. In this
scenario, two parties aim to compute the intersection of their respective sets, but one set significantly
outnumbers the other in terms of its size. Solving this problem led us to initiate the study of laconic
PSI: Laconic PSI allows a receiver to send a short digest of its large data set, which in turn can be
used by potentially many different senders to compute a PSI second-round message. We require that

2

the total communication complexity as well as the sender’s running time be independent of the re-
ceiver’s input size. Though a non-black-box approach is known via general purpose laconic function
evaluation [QWW18], we are interested in providing a black-box solution for efficiency concern. The
black-box solution refers to the construction without using any explicit circuit-level description of
cryptographic primitives. Particularly, we consider constructions which compute cryptographic prim-
itives inside garbled circuits or express statements in terms ofNP-complete languages as non-black-box
approaches, which are notably demanding, resulting in either substantial computational costs or sig-
nificant communication overheads.

The third problemwe addressed concerns the rate of oblivious transfer (OT). Inmost applications,
one OT is not enough and it is required to perform many OT operations in parallel. We let n denote
the number of parallel executions. Various techniques have been developed to address this task of
batch-OT [IKNP03, BCG+19b, BCG+19a]. For the most part, they involve a preprocessing “offline”
phase where the parties generate randomOT correlations. Given such correlations, executing the OT
protocol in the so-called “online phase” is computationally very simple. This approach is very useful
for purposes of computational efficiency since the offline phase can be carried out even before the ac-
tual inputs of the computation are known. However, in terms of communication complexity, there
is an inherent cost, even just in the online phase, of n receiver bits and 2n sender bits. In contrast, the
insecure implementation only requires n bits to be sent from each party in a two-message protocol:
the receiver sends its input, and the sender returns all of the appropriate xb values. As always in cryp-
tography, we wish to understand what is the “cost of privacy”, namely how closely can we approach
the information-theoretic minimum without losing privacy.

The final problemwe addressed pertains to stealth signatures, whichwe introduced in the following
manner. In this scenario, the receiver generates a master key pair and disseminates the master public
key. Any sender can then locally re-randomize this master public key into a one-time public key. For
any external observer, this one-time public key is unlinkable to themaster public key. However, when
the receiver has access to the master secret key, it can link this one-time public key to its master public
key, and also generate the corresponding one-time secret key locally, on-the-fly. Utilizing this one-time
secret key, the receiver can sign messages without revealing its metadata, meaning that an external ob-
server will not be able to ascertain which public key matches the signature. It’s important to note
in this mechanism, the receiver only needs to broadcast its master public key, and does not need to
distribute a distinct unlinkable one-time public key for each potential sender. Given that the num-
ber of senders could potentially reach hundreds or thousands, this feature offers significant benefits.
This mechanism is extensively employed in privacy-preserving cryptocurrencies such as Monero, and
also has applications in passwordless authentication as defined in the Fast IDentity Online (FIDO)
standard. However, the current known protocols for this mechanism are either insecure in some rea-
sonable adversarial models or inefficient in practical implementation.

At the end of the introduction, this thesis is organized as follows:

3

Contributions and roadmaps

• In Chapter 1, we provide essential preliminaries about basic cryptography primitives, security
definitions or frameworks, well-established assumptions, lattices, polynomials, and some sta-
tistical tools.

• In Chapter 2, we present a protocol of multiparty threshold private set intersection, which
improves communication bandwidth for each party from Õ(Nt2) to Õ(t2) where N is the
number of parties and t the threshold while retaining the same computational overhead and
security level.

• In Chapter 3, we introduce a new primitive, laconic private set intersection, which solves un-
balanced PSI in a non-interactive way while making communication bandwidth as succinct as
possible. Specifically, after the server publishes a short digest of constant size, any client can
non-interactively send its message of size independent of the server’s dataset.

• In Chapter 4, we present a two-message oblivious transfer protocol which has asymptotically
minimum communicational bandwidth, namely, to transfer n bits information, it only re-
quires n(1+ o(1)) bits bandwidth for each user while retaining computational efficiency. We
also show how to efficiently emulate Z2 inside a prime-order group Zp in a function-private
manner.

• In Chapter 5, we present a post-quantum privacy-preserving signature called stealth signature
that saves 70% bandwidth compared to the state of the art while achieving the strongest secu-
rity. Additionally, we present a fuzzy variant which protects users’ metadata and improves the
server’s computational work fromO(N) toO(

√
N)whereN is the number of users.

• In Chapter 6, we summarise the thesis in a coherent and concise way.

4

1
Preliminary

Inthis preliminarychapter,we lay the groundwork for our exploration by introducing essential
concepts, setting the stage for a comprehensive understanding of the subject matter as we delve into
the subsequent chapters.

We denote by λ ∈ N the security parameter, by poly(λ) any function that is bounded by a poly-
nomial in λ, and by negl(λ) any function that is negligible in the security parameter. We abbreviate
the computational indistinguishability of two distributions by ≈c. The set of N elements is always
written as [N]. We also denote asDO a distinguisherD access to an oracleO via classical queries and
A|O⟩ via quantum queries. If S is a finite set, then x ←$ S denotes an element x sampled from S
according to a uniform distribution and |S| denotes the cardinality of S; IfD is a distribution, we use
x ←$ D denote an element x sampled according to the distribution D. For two vectors u, v ∈ Fn
over a finite fieldF, we denote byu�v their component-wisemultiplication. We denote by Supp(u)
the support of u, that is, the set of indices where u is different from 0.1 For S ⊆ [n], uS denotes the
vector (ui)i∈S. Finally, uT denotes the transpose of u and hw(u) denotes the hamming weight of u
(that is, the number of coordinates of u different from 0).

Definition 1.0.1 (Statistical Distance). The statistical distance between two probability distributions
A and B is

SD(A,B) = 1
2
∑
v

∣∣Pr[A = v]− Pr[B = v]
∣∣.

Recall min-entropy of a random variableA is

H∞(A) := − log2(maxa Pr[A = a]),

1If there is only one index different from zero, Supp(u) denotes this index.

5

then we have the following lemma.

Lemma 1.0.1 (Leftover Hash Lemma[ILL89]). Assume a family of functions {Hx : {0, 1}n 7→
{0, 1}m}x∈X is universal: ∀ a 6= b ∈ {0, 1}n, Prx∈X [Hx(a) = Hx(b)] = 2−m. Then, for any
random variable W,

SD((HX(W),X), (Um,X)) ≤ ε,
whenever m ≤ k− 2 log(1ε) + 2 and k = H∞(W).

Lemma 1.0.2 (Rank of the Circulant Matrix[Ing56]). The rank of a circulant matrix C of order m is
m− d, where d is the degree of the greatest common divisors of Xm − 1 and the associated polynomial
of C.

Here, we present the cryptographic primitives and definitions which are meaningful to this thesis,
as well as their security properties.

1.1 Basic Primitives

1.1.1 Digital Signatures

A digital signature schemeDS, formally, has a key generation algorithmKGen(λ) that takes the secu-
rityparameterλ andoutputs the verification/signingkeypair (vk, sk), a signing algorithmSign(sk,m)
inputs a signing key and a message m ∈ {0, 1}∗ and outputs a signature σ, and a verification algo-
rithmVf(vk,m, σ) outputs 1 if σ is a valid signature onm under the verification key vk, and outputs
0 otherwise. We require unforgeability, which guarantees that a PPT adversary cannot forge a fresh
signature on a freshmessage of its choice under a given verification keywhile having access to a signing
oracle (that returns valid signatures on the queried messages). Formally the notion can be captured
in an experiment denoted by EUF-CMA. Strong unforgeability refers to the case where the adversary
is required to forge a fresh signature on not necessarily a fresh message. Formally the notion can be
captured in an experiment denoted by sEUF-CMA.

1.1.2 Key Encapsulation Mechanism

A key encapsulation mechanism KEM, formally, has a key generation algorithm KGen(λ) that takes
the security parameterλ andoutputs a encaps key ek and a decaps keydk. An encapsulation algorithm
Encaps(ek) inputs an encaps key and outputs a ciphertext C and agreed key K. Finally, we have a
decapsulation algorithmDecaps(dk) inputs a decaps key and a ciphertext and outputs an agreed key
K. Apart from IND-CCA security, we additionally require its anonymous property which can be
formally captured in Definition 1.1.5 denoted by ANO-CCA and it means the adversary cannot link
any ciphertext C to its encaps key ek even being able to access a decaps oracle. Concretely, we use
Kyber [SAB+20] with the modification shown in Figure 6 of [GMP22].

6

1.1.3 UC Framework

In this thesis, we use the UC framework by Canetti [Can01] to analyze the security of our protocols.2
Throughout this thesis, we usually consider semi-honest adversaries, unless stated otherwise. Let F
be a functionality, π a protocol that implementsF and E be an environment, an entity that oversees
the execution of the protocol in both the real and the ideal worlds. Let IDEALF ,Sim,E be a random
variable that represents the output of E after the execution of F with adversary Sim. Similarly, let
REALπ,A,E be a random variable that represents the output of E after the execution of π with adver-
saryA.

Definition 1.1.1. A protocol π implements F if for every PPT adversary A there is a PPT simulator
Sim such that for all PPT environments E , the distributions IDEALF ,Sim,E andREALπ,A,E are com-
putationally indistinguishable.

1.1.4 Strong Extractors

Extractors allow the extraction of randomness from sources with a certain min-entropy.

Definition 1.1.2 (Strong Extractor). A (k, ε)-strong extractor Ext : S×X → Y is a deterministic algo-
rithm with domainX , seed space S and range Y with the following property: For every distribution
Xwith supportX and min-entropy at least k,

(s,Ext(s, x)) ≈ε (s, y)

where x←$ X and y←$ Y .

1.1.5 Public-Key Encryption

We recall the classical definition of public-key encryption (PKE).

Definition 1.1.3 (Public-Key Encryption). A Public-Key Encryption (PKE) scheme is defined by the
following algorithms:

• KeyGen(1λ) takes as input a security parameter. It outputs a public key pk and a secret key
sk.

• Enc(pk,m) takes as input a public key pk and a messagem ∈ {0, 1}∗. It outputs a ciphertext
ct.

• Dec(sk, ct) takes as input a secret keys sk and a ciphertext ct. It outputs a messagem or bot
⊥.

We require the usual correctness and IND-CPA properties for a PKE.

2We refer the reader to [Can01] for a detailed explanation of the framework.

7

ANO-CCAAKEM(λ)
(ek0, dk0)← KEM.Gen(λ)
(ek1, dk1)← KEM.Gen(λ)
b←$ {0, 1}
(C∗,K∗)← KEM.Encaps(ekb)

b′ ← ADecapsO(·,·)(ek0, ek1,C∗,K∗)

b0 := (b = b′)
return b0

DecapsO(b′,C′)
K′ := KEM.Decaps(dkb′ ,C′)

return K′

Figure 1.1: Experiment for ANO-CCAA
KEM(λ)

• Correctness: We say that a PKE is correct if

Pr [m← Dec(sk,Enc(pk,m)) : (pk, sk)← KeyGen(1λ)] = 1.

• IND-CPA security: For any PPT adversaryA, we require that

Pr
[
b← A(ct, st) : (pk, sk)← KeyGen(1λ); (m0,m1, st)← A (pk)

b←$ {0, 1}; ct← Enc(pk,mb)

]
≤ negl(λ).

Definition 1.1.4 (Binomial Distribution[SAB+20]). We define the binomial distribution Bη as fol-
lows:

(a1, . . . , aη, b1, . . . , bη)←$ {0, 1}2η,
and then output

∑η
i ai−bi. If wewrite somepolynomial f←$ Bη, then each coefficient of f is sampled

from Bη.
Definition 1.1.5 (AnonymousKEM[GMP22]). AKEM is said tobeanonymous under chosen-ciphertext
attacks if there exists a negligible functionnegl(λ) for allλ ∈ N, and for all adversariesA the following
holds:

Pr [ANO-CCAA(λ) = 1] ≤ 1
2 + negl(λ)

whereANO-CCA is defined in Figure 1.1. Similarly, we also define IK-CPA experiment forPKE in Fig-
ure 1.2, which just removes access to the decryption oracle[BBDP01].

Definition 1.1.6 (Uniformly-Ambiguous Encryption[BLMG21]). Let PKE := (Gen,Enc,Dec) be
a public-key encryption scheme for the message space {0, 1}n. For any λ ∈ N, uniformly sampled
messagem←$ {0, 1}n, we say PKE is UNI-AMB-secure if

AdvUNI-AMB
λ (A) :=

∣∣∣Pr[UNI-AMBAPKE(λ) = 0]−

Pr[UNI-AMBAPKE(λ) = 1]
∣∣∣ ≤ negl(λ),

8

UNI-AMBAPKE(λ)
(pk0, sk0)← PKE.Gen(λ)
(pk1, sk1)← PKE.Gen(λ)
b←$ {0, 1}
m←$ {0, 1}n
c∗ ← PKE.Enc(pkb,m)

b′ ← A(pk0, pk1, sk0, sk1, c∗)

return b ?
= b′

IK-CPAAPKE(λ)
(pk0, sk0)← PKE.Gen(λ)
(pk1, sk1)← PKE.Gen(λ)
(stA,m)← A1(pk0, pk1)

b←$ {0, 1}
c∗ ← PKE.Enc(pkb,m)

b′ ← A2(stA, pk0, pk1, c∗)

return b ?
= b′

Figure 1.2: Experiment for UNI-AMBAPKE(λ) and IK-CPAA
PKE(λ)

where the experiment UNI-AMBAPKE(λ) is defined in Figure 1.2.

1.2 Polynomials

We first introduceminimal polynomials of a sequence and of amatrix. Thenwe present how they can
be used to solve linear algebra-related problems.

Minimal Polynomial of a Matrix

The minimal polynomial of a sequence a is the least degree polynomialm such that 〈m〉 = Ann(a)
where Ann(a) is the annihilator ideal of a (that is, the ideal such that every element f of Ann(a)
satisfies f · a = 0).

Lemma 1.2.1 (Lemma 3 in [KMWF07]). LetA ∈ Fn×n and letmA be the minimal polynomial of ma-
trixA. For u, v←$ Fn, we havemA = ma′ with probability at least 1−2 deg(mA)/|F|, where a′ =
(uTAiv)i∈N. Moreover,ma′ can be calculated using a Boolean circuit of sizeO(nk log n log k log log k)
where k = log |F|

Compute the Rank of a Matrix and Solve a Linear System

Lemma 1.2.2 ([KDS91]). Let A ∈ Fn×n of (unknown) rank r. Let U and Z be randomly chosen unit
upper triangular and lower triangular Toeplitz matrices in Fn×n, and let B = UAZ. Let us denote
the i × i leading principal of B by Bi. The probability that det(Bi) 6= 0 for all 1 ≤ i ≤ r is greater
than 1− n2/|F|.

Lemma 1.2.3 ([KDS91]). Let B ∈ Fn×n with leading invertible principals up to Br where r is the
(unknown) rank ofB. LetX be a randomly chosen diagonal matrix inFn×n. Then, r = deg(mXB)−1
with probability greater than 1− n2/|F|.

9

1.2.1 Polynomials and Interpolation

Wepresent a series of results that will be useful to analyze the correctness and security of the protocols
presented in this thesis.

The following lemma shows howwe canmask a polynomial of degree less than t using a uniformly
random polynomial.

Lemma 1.2.4 ([KS05]). Let Fp be a prime order field, P(x),Q(x) be two polynomials over Fp such that
degP = degQ = d ≤ t and gcd(P,Q) = 1. Let R1,R2 ←$ Fp such that degR1 = degR2 = t.
Then U(x) = P(x)R1(x) +Q(x)R2(x) is a uniformly random polynomial with degU ≤ 2t.

Note that this result also applies to multiple polynomials as long as they don’t share a common
factor (referring to Theorem 2 and Theorem 3 of [KS05] for more details).

We say that f is a rational function if f(x) = P(x)
Q(x) for two polynomials P andQ.

The next two lemmata show that we can recover a rational function via interpolation and that this
function is unique.

Lemma 1.2.5 ([MTZ03]). Let f(x) = P(x)/Q(x) be rational function where degP(x) = m and
degQ(x) = n. Then f(x) can be uniquely recovered (up to constants) via interpolation fromm+n+1
points. In particular, if P(x) and Q(x) are monic, f(x) can be uniquely recovered from m+ n points.

Lemma 1.2.6 ([MTZ03]). Choose V to be a support set3 of cardinality m1 +m2 + 1. Then, there is a
unique rational function f(x) = P(x)/Q(x) that can be interpolated from V, and P(x) has degree at
most m1 and Q(x) has degree at most m2.

1.3 Lattices

We now review some basic notions of lattices and Gaussian distributions.
LetB ∈ Rk×n be amatrix. Wedenote the lattice generatedbyBbyΛ = Λ(B) = {xB : x ∈ Zk}.4

The dual latticeΛ∗ of a latticeΛ is defined byΛ∗ = {x ∈ Rn : ∀y ∈ Λ, x · y ∈ Z}. It holds that
(Λ∗)∗ = Λ. The orthogonal latticeΛ⊥q is defined by {y ∈ Zn

q : AyT = 0 mod q}.
Definition 1.3.1 (Cyclotomic Polynomial). We denote byR the ringZ[X]/(Xn+1) and byRq the ring
Zq[X]/(Xm+1), wherem = 2m′−1 such thatXm+1 is the 2m′-th cyclotomic polynomialΦ2m′(X).
Moreover, we have ∏

d|m
Φd(X) = Xm − 1.

Let ρs(x) be the probability distribution of the Gaussian distribution over Rn with parameter s
and centred in 0. We define the discrete Gaussian distribution DS,s over S and with parameter s by
the probability distribution ρs(x)/ρ(S) for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

3A support set is a set of pairs (x, y).
4The matrix B is called a basis ofΛ(B).

10

For ε > 0, the smoothing parameterηε(Λ) of a latticeΛ is the least realσ > 0 such thatρ1/σ(Λ∗\
{0}) ≤ ε [MR04].

Lemma 1.3.1 ([Ban93]). For all α ∈ R, ‖x‖ ≤ α√n for x←$ Dn
Z,α, except with negligible probability

in n.

We will make use of the following convolution property of discrete Gaussians.

Lemma 1.3.2 ([GMPW20], Corollary 4.8). Let Λ1,Λ2 ⊆ Rn be lattices, let σ1, σ2 > 0 be such that
1/
√
1/σ21 + 1/σ22 > ηε(Λ1 ∩ Λ2) for some ε = negl(λ). Then it holds for all a,b ∈ Rn that

DΛ1+a,σ1 +DΛ2+b,σ2 is statistically close to DΛ1+Λ2+a+b,
√
σ21+σ22

.

We just need the following simple corollary of Lemma 1.3.2, which can be obtained by settingΛ1 =
Λ2 = Z.

Corollary 1.3.3. Let σ1, σ2, σ3 =
√
σ21 + σ22 be such that σ1σ2/σ3 > ηε(Z) for a negligible ε and let

a, b ∈ Z. Then DZ+a,σ1 +DZ+b,σ2 and DZ+a+b,σ3 are statistically close.

Gadgetmatrix. For given parametersn, q ∈ Z, letg be the vector
(1, 2, 22, . . . , 2⌈log q⌉−1) and

G = g⊗ In where In is the identity matrix of size n. The matrixG is usually called the gadget matrix
[MP12].

Moreover, let Ḡn =
∑

iGi ∈ Zn×⌈log q⌉ whereGi is the matrix which is zero everywhere but its
i-th row is g.

The function g−1 : Zq → Zm, wherem = dlog qe, receives a value v ∈ Zq and outputs its binary
decomposition. Note that g · g−1(v) = v mod q. Following [BdMW16], we define g−1rnd to be
the function that, on input v ∈ Zq, outputs x ←$ DΛ⊥

q (g)+g−1(v),r, where r = Õ(1). It holds that
g · g−1rnd(v) = v mod q.

1.4 Hardness Assumptions

We start by introducing some notation. LetPrimes(κ) denote the set of prime numbers of bit-length
κ. Let

RSA(λ) = {N : N = PQ and P,Q ∈ Primes(λ/2) and gcd(P− 1,Q− 1) = 2}

and
RSAe(λ) = {N : e|φ(N)}

for any e ≤ 2λ.

11

1.4.1 Phi-Hiding

Definition 1.4.1 (Phi-Hiding). The phi-hiding assumption, denoted as φ-hiding, states that for all
ε > 0 and 3 < e < 2λ/4−ε and all PPT adversariesA, we have that

|Pr [1← A(N, e) : N←$ RSA(λ)]− Pr [1← A(N, e) : N←$ RSAe(λ)]| ≤ negl(λ).

LetN = PQwhere gcd(P− 1,Q− 1) = 2. Consider the multiplicative groupZ∗Nξ+1 where ξ is
a fixed non-negative integer. Recall thatZ∗Nξ+1 can be written as the product of two subgroupsHN×
NRN where HN = {(1 + N)i : i ∈ [Nξ]} and NRN = {xNξ

: x ∈ Z∗Nξ+1} (the subgroup ofNξ-
residues) which has order φ(N). Given (1 + N)mmod Nξ+1, there is a polynomial-time algorithm
that allows to recoverm [DJ01].

Furthermore, note thatNRN can be decomposed into the product of two subgroups cyclicZ∗P (of
order P− 1) andZ∗Q (of orderQ− 1). Since gcd(P− 1,Q− 1) = 2, then there is a cyclic subgroup
TN ofZ∗P×Z∗Q of orderφ(N)/2. Also, consider the product JN = HN×TN. It is easy to show that
the subset membership problem for (JN,TN) is still hard if the DCR assumption holds.

The following lemma is straightforwardly adapted from [GVW20].

Lemma 1.4.1 ([GVW20]). Assume that the φ-hiding assumption holds. Let Ext be a (κ−1, negl(λ))-
strong extractor. For every admissible stateful PPT adversaryA and for all λ,κ such that λ ≥ 5κ, we
have that∣∣∣∣∣∣∣∣Pr

b← A(yb) :
N←$ RSA(λ); s←$ {0, 1}λ
e←$ Primes(κ); g← TN

G← A(N, s, e, g); b←$ {0, 1}
y0 ← Ext(s, gGe−1 mod Nξ+1); y1 ←$ Y

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

where an admissible adversary is one that outputs G such that e does not divide G.

1.4.2 Decisional Composite Residuosity

In this thesis, we also make use of the Decisional Composite Residuosity (DCR) assumption which
we define in the following. We present the DCR assumption as a subgroup indistinguishability as-
sumption [BG10].

Definition 1.4.2 (Decisional Composite Residuosity). Let N = RSA(λ) and let ξ ≥ 0 be a fixed
integer. The decisional composite residuosity (DCR) assumption states that for all PPT adversariesA,∣∣Pr [1← A(N, x) : x←$ Z∗Nξ+1

]
− Pr [1← A(N, x) : x←$ NRN]

∣∣ ≤ negl(λ).

Lemma 1.4.2 ([CS02]). N = RSA(λ) and let ξ ≥ 0 be a fixed integer. Assume that the DCR
assumption holds. Then for all PPT adversaries A,

|Pr [1← A(N, x) : x←$ JN]− Pr [1← A(N, x) : x←$ TN]| ≤ negl(λ).

12

Proof (sketch). The proof follows from the following observation: The map x → x2(−1)b where
b ←$ {0, 1} sends the uniform distribution on NRN to the uniform distribution on TN, and the
uniform distribution onHN × NRN to the uniform distribution onHN × TN.

Corollary 1.4.3. Assume that the DCR assumption holds. Then for all PPT adversaries A,∣∣∣∣∣∣
Pr [1← A(N, x) : x←$ TN]−

Pr
[
1← A(N, x) : x′ ←$ TN

x = x′(1+N) mod Nξ+1

] ∣∣∣∣∣∣ ≤ negl(λ).

Proof (sketch). In the first experiment, we replace x with a uniform value over JN using the DCR
assumption. In the second experiment, we replace x′ with a uniform value over JN (again using the
DCR assumption). We obtain two experiments where x is sampled uniformly over JN and thus they
are indistinguishable.

1.4.3 Subgroup Decision

We also use Boneh-Goh-Nissim (BGN) cryptosystem [BGN05] in our range proofs. Thus, its under-
lying Subgroup Decision (SD) assumption is rephrased as follows for completeness.

Let G be an algorithm that takes a security parameter as input and outputs val :=(p, q,G,G1, e)
such thatp, q are primes,n = pq andG,G1 are descriptions of groups of ordern and e : G×G→ G1
is a bilinear map. Let qG be the subgroup ofG of order q.

Definition 1.4.3 (Subgroup Decision [GOS06]). Let G be an algorithm that takes a security param-
eter as input and outputs val :=(p, q,G,G1, e) such that p, q are primes, n = pq and G,G1 are
descriptions of groups of order n and e : G × G → G1 is a bilinear map. Let qG be the subgroup
ofG of order q. The subgroup decision (SD) assumption holds for generator G states that for all PPT
adversariesA,∣∣∣∣∣∣∣∣

Pr
[
1← A(n,G,G1, e,G,H) :

val← G(1k), n = pq
G,H← Ggen

]
−

Pr
[
1← A(n,G,G1, e,G,H) :

val← G(1k), n = pq
G← Ggen, H← qG \ {1}

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

1.4.4 Computational Diffie-Hellman

Definition 1.4.4 (Computational Diffie-Hellman). Let G(λ) be an algorithm that outputs (G, p, g)
where G is a group of prime order p and g is a generator of the group. The Computational Diffie-
Hellman (CDH) assumption holds for generator G if for all PPT adversariesA

Pr
[
ga1a2 ← A(G, p, g, ga1 , ga2) : (G, p, g)← G(λ)

a1, a2 ←$ Zp

]
≤ negl(λ).

13

1.4.5 Learning with Errors

Definition 1.4.5 (Learning with Errors). Let q, k ∈ Nwhere k ∈ poly(λ),A ∈ Zk×n
q and β ∈ R. For

anyn = poly(k log q), the Learningwith Errors (LWE) assumption holds if for every PPT algorithm
Awe have

|Pr [1← A(A, sA+ e)]− Pr [1← A(A, y)]| ≤ negl(λ)
for s←$ {0, 1}k, e←$ DZn,β and y←$ {0, 1}n, whereDZn,β is some error distribution.

Definition 1.4.6 (Learning with Errors (LWE)[Reg05]). For a vector s ∈ Zn
q called the secret, the

LWE distributionAs,χ overZn
q ×Zq is sampled by choosing a ∈ Zn

q uniformly at random, choosing
e←$ χ, and outputting (a, b = 〈a, s〉+ e mod q). Moreover, decisional-LWEn,m,q,χ is

AdvLWE
n,m,q,χ(A) =

∣∣Pr[b = 1|A←$ Zm×n
q , t←$ Zm

q ;

b← A(A, t)]
−Pr[b = 1|A← Zm×n

q ,s←$ Zn
q , e←$ χm;

b← A(A,As+ e)]
∣∣.

Definition 1.4.7 (ModuleLearningWithErrorsMLWE [BGV12]). For integersm, k, and aprobability
distribution D : Rq → [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWEm,k,D problem over the ring Rq is

AdvMLWE
m,k,D (A) =

∣∣Pr[b = 1|A← Rm×k
q , t← Rm

q ;

b← A(A, t)]
−Pr[b = 1|A← Rm×k

q ,s1 ← Dk, s2 ← Dm;

b← A(A,As1 + s2)]
∣∣

Definition 1.4.8 (Module Short Integer SolutionMSIS[Ajt98]).

AdvMSIS
m,k,γ(A) =Pr

[
0 < ‖y‖∞ < γ ∧ [I |A] · y = 0

∣∣
A← Rm×k

q ; y← A(A)
]

Definition 1.4.9 (The SelfTargetMSIS Problem in [LDK+20]). Suppose that H : {0, 1}∗ → Bτ is
a cryptographic hash function. To an algorithmAwe associate the advantage function

AdvSelfTargetMSIS
H,m,k,γ (A) =

Pr

0 < ‖y‖∞ < γ
∧H(μ ‖ [I|A] · y) = c

∣∣∣∣∣∣∣
A← Rm×k

q ;

(y :=

[r
c
]
,μ)← A|H(·)⟩(A)

14

1.4.6 Learning Parity with Noise

The Learning Parity with Noise (LPN) assumption is closely related to the problem of decoding a
random linear code. Informally, it states that it is hard to find a solution for a noisy system of linear
equations overZ2.

Definition 1.4.10 (Learning Parity with Noise). Let n,m, t ∈ N such that n ∈ poly(λ) and let χm,t
be a uniform distribution over the set of error vectors of sizem and hamming weight t. The Learning
Parity with Noise (LPN) assumption LPN(n,m,ρ) holds if for any PPT adversaryAwe have that∣∣∣∣∣∣Pr
1← A(A, sA+ e) :

A←$ {0, 1}n×m
s←$ {0, 1}n
e←$ χm,t

− Pr
[
1← A(A, y) : A←$ {0, 1}n×m

y←$ {0, 1}m
]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

In this thesis, we assume that the noise rateρ ism1−ε for any constant ε > 0. TheLPNassumption
is believed to be hard for that noise rate (see e.g. [BCG+19a] and references therein).

LPN over larger fields. Following [BCG+19a, JLS21], we define the LPN assumption over
larger fieldsZqwhere q > 2 is a primenumber. In the following, letχm,t,q be the uniformdistribution
over {v ∈ Zm

q : hw(v) = t}. In otherwords,χm,t,q is the uniformdistribution over the set of vectors
in Zq which havem− t null coordinates.
Definition 1.4.11 (LPNover larger fields assumption). Letn,m, t, q ∈ N such thatn ∈ poly(λ) and q
is a prime number, and letχm,t,q be as above. TheLPN over larger fields assumptionLPN(n,m,ρ, q)
holds if for any PPT adversaryAwe have that∣∣∣∣∣∣Pr

1← A(A, sA+ e) :
A←$ Zn×m

q
s←$ Zn

q
e←$ χm,t,q

− Pr
[
1← A(A, y) : A←$ Zn×m

q
y←$ Zm

q

]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t.

1.5 Threshold Public-key Encryption

We present some ideal functionalities regarding threshold public-key encryption (TPKE) schemes. In
the following,N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret key and the corre-
sponding public key. That is, on input (sid,Pi), FGen outputs (pk, ski) to each party party where
(pk, sk1, . . . , skN)← TPKE.Gen(1λ,N).

Moreover, we define the functionality FDecZero, which allows N parties, each of them holding
a secret share ski, to learn if a ciphertext is an encryption of 0 and nothing else. That is, FDecZero

15

receives as input a ciphertext c and the secret shares of each of the parties. It outputs 0, if 0 ←
Dec(sk, . . .Dec(skN, c) . . .), and 1 otherwise. Note that these functionalities can be securely real-
ized on various PKE schemes such as El Gamal PKE or Pailler5PKE [HV17].

We also assume that the underlying TPKE (or plain PKE) is always additively homomorphic unless
stated otherwise.

Definition 1.5.1 (Threshold Public-Key Encryption). A Threshold Public-Key Encryption (TPKE)
scheme is defined by the following algorithms:

• (pk, sk1, . . . , skN)← Gen(1λ,N) takes as input a security parameter. It outputs a public key
pk andN secret keys (sk1, . . . , skN).

• c ← Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗. It outputs a
ciphertext c.

• c′ ← Dec(ski, c) takes as input one of the secret keys ski and a ciphertext. It outputs a share
decryption c′ of c.

Correctness. For anyN ∈ N and any permutation π : [N]→ [N], we have that

Pr
[
m← Dec(skπ(N),Dec(skπ(N−1), . . .Dec(skπ(1),Enc(pk,m)) . . .))

]
= 1

where (pk, sk1, . . . , skN)← Gen(1λ,N).

IND-CPA security. For anyN ∈ N, any permutation π : [N] → [N] and any adversaryA, we
require that

Pr

b← A(c, st) :
(pk, sk1, . . . , skN)← Gen(1λ,N)

(m0,m1, st)← A
(
pk, skπ(1), . . . , skπ(k)

)
b←$ {0, 1}

c← Enc(pk,mb)

 ≤ negl(λ)

for any k < N.

Additive Homomorphism. We also assume that the TPKE (or plain PKE) is homomorphic for
additive operation.6 That is, for all (pk, sk1, . . . , skN) ← Gen(1λ,N), we can define two groups
(M,⊕), (C,⊗) such that, given two ciphertexts c1 ← Enc(pk,m1) and c2 ← Enc(pk,m2), we
require that

c1 ⊗ c2 = Enc(pk,m1 ⊕m2).

5We will assume the message space of Paillier’s cryptosystem as a field as also mentioned in [KMWF07].
6From now on, we always assume that PKE and TPKE used in this thesis fulfill this property, unless stated

otherwise.

16

By abuse of notation, we usually denote the operations ofM and C as+.

1.6 Programmable Pseudorandom Functions

Pseudorandom functions (PRF) are ubiquitous objects in cryptography. We present the definition of
PRF in the following.

Definition 1.6.1 (Pseudorandom Function). A Pseudorandom Function (PRF) is defined by a keyed
function PRF : K ×X → Y such that, for any PPT adversaryA

|Pr [1← A(y, x) : y← PRF(k, x)]− Pr [1← A(y, x) : y← f(x)]| ≤ negl(λ)

for any x ∈ X , where f : X → Y is a uniformly chosen random function and the key k is sampled
uniformly at random fromK.

A programmable PRF allows the simulator to program the output of a PRF on several inputs at
key generation time.

Definition 1.6.2 (Programmable PRF [KMP+17]). A programmable PRF (PPRF) is composed of the
following algorithms:

• k = (k′, hint)← KeyGen(1λ, (x, y)) takes as input a security parameter and a pair of points
(x, y) ∈ X × Y . It outputs a key k′ and a hint hint.

• y← PPRF(k, x) takes as input a key k ∈ K and a value x ∈ X . It outputs y ∈ Y .

Correctness of the PPRF states that y ← PPRF(k, x) for the programmed point (x, y). Security
roughly states that it is hard for the adversary to guess the point xwhich was programmed even given
the hint (see [KMP+17]).

An example. LetPRF : K×X → {0, 1}ℓ andPrimes(ℓ) be the primes of length ℓ. In this thesis,
we use a programmable PRF PPRF : K× (X ×Z)→ Primes(ℓ) in which the key (and the hint) is
of the formK = (k, k′ = (k′1, . . . , k′ξ)) ∈ K × {0, 1}ℓξ and where the output of an element x ∈ X
is computed as i) Start by initializing i = 1. ii) Compute y = PPRF(k, (x, i))⊕ k′i. iii) Output y, if
it is a prime number; else, set i = i+ 1 and return to step ii); repeat until i = ξ. It is easy to see that,
under standard number-theoretic assumptions, the process described above outputs a prime number
after O(log 2ℓ) steps (e.g., [FT14]). If we set ξ ∈ O((log 2ℓ)2), a direct calculation yields that the
probability of not existing any i ∈ [ξ] such that PPRF(k, (x, i))⊕ k′i is not a prime is negligible in ℓ.

In order to program the output ofPPRF at some input x, we first sample a prime number p and an
index i from a suitable distribution.7 Then, we set k′i = p⊕PPRF(k, (x, i)). Finally, we choose k′j, for

7The index i is sampled from the distribution of the number of uniform samples we need to perform in
order to find a prime number. Such a distribution can be easily simulated by just running a prime sampler with
true randomness and output i (the number of trials until success) instead of the prime.

17

all j < i, uniformly at random such thatPPRF(k, (x, j))⊕ k′j is not a prime number. All other k′j, for
j > i are chosen uniformly at random. Such a procedure will succeed with non-negligible probability.

This is a special case of the PPRF designed in [KMP+17] and it is easy to see that, if the PPRF is
programmed on a pair of points (x, y) ∈ X × Primes(ℓ) where y←$ Primes(ℓ), then it is hard for
any PPT adversaryA to guess the programmed point x.

A remark. We slightly overload the notation and denote k as the PPRF key (which is composed
of a PRF key k′ and a hint hint as in Definition 1.6.2). We do this because, in our case, the hint (when
it is a uniformly random value) reveals nothing about the programmed value [KMP+17]. That is, we
will use the notation K← KeyGen(1λ, (x, y))where K = (k, k′ = hint).

1.7 Puncturable Pseudorandom Functions

In this section, we recall another variant of PRF as follows. Puncturable pseudorandom functions
(PPRFs) [BW13, KPTZ13, BGI14] are a special case of PRFs where a punctured key allows one to eval-
uate the PRF at all points except one.

Definition 1.7.1 (Puncturable PRF). Letα = α(λ) andβ = β(λ)be twopolynomials. Apuncturable
PRF (PPRF) scheme PPRFα,β = PPRF is composed by the following algorithms:

• KeyGen(1λ) takes as input a security parameter λ. It outputs a keyK.

• Eval(K, x) takes as input a keyK and x ∈ {0, 1}α. It outputs y ∈ {0, 1}β.

• Punct(K, S) takes as input a keyK and a subset S ⊆ {0, 1}α. It outputs a punctured keyKS.

• EvalPunct(KS, x) takes as input a punctured key KS and x ∈ {0, 1}α. It outputs y ∈
{0, 1}β.

Definition 1.7.2 (Correctness). A PPRF scheme PPRF is said to be correct if for all λ ∈ N, for all
S ⊆ ({0, 1}α)t (for t = poly(λ)), all x /∈ Swe have that

Pr
[
Eval(K, x) = EvalPunct(KS, x) : K← KeyGen(1λ)

KS ← Punct(K, S)
]
= 1.

Definition 1.7.3 (Pseudorandomness). A PPRF scheme PPRF is said to be pseudorandom at punc-
tured points if for all λ ∈ N, all PPT adversariesA = (A1,A2)we have that∣∣∣∣∣∣∣∣

Pr
[
1← A2(KS, S,T, aux) : (S, aux)← A1(1λ); K← KeyGen(1λ)

KS ← Punct(K, S); T← Eval(K, S)
]
−

Pr
[
1← A2(KS, S,T, aux) : (S, aux)← A1(1λ); K← KeyGen(1λ)

KS ← Punct(K, S); T←$ {0, 1}β|S|
]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

18

PPRFs can be built solely based on any length-doubly pseudorandom generators (PRG)8 via (a
variant of) the tree-based construction of [GGM86]. Throughout this thesis, we call the term GGM-
PPRF to this scheme and denote it by PPRFGGM.

1.8 Designated-Verifier Non-Interactive Zero-Knowledge

NIZK is a cryptographic primitive that allows a prover to prove that it holds a witness for a certain
NP statement to a verifier in just one message. In the designated-verifier setting, only a designated
party can verify the validity of proofs. This is in contrast with standard NIZK where the verification
algorithm can be run by any party.

LetZ be the set of statements andW be the set of witnesses. LetL be aNP language with relation
R such that z ∈ L if there is aw ∈ W such thatR(z,w) = 1.

Definition 1.8.1 (DV-NIZK). Let L be a NP language. A Designated-Verifier Non-Interactive Zero-
Knowledge (DV-NIZK) for languageL is composed by the following algorithms:

• GenCRSL(1λ) takes as input a security parameter. It outputs a common reference string crs
together with the corresponding trapdoor td.

• ProveL(crs, x,w) takes as input a common reference string crs, a statement x and a witness
w. It outputs a proof π.

• VerifyL(td, x,π) takes as input a common reference string crs, a trapdoor td, a statement x
and a proof π. It outputs a bit b ∈ {0, 1}.

A DV-NIZK should fulfill the following properties: completeness, soundness and honest-verifier
zero-knowledge.

• Completeness: A DV-NIZK is correct if for all pairs (x,w) such thatR(x,w) = 1,

Pr
[
1← VerifyL(td, x,π) :

(crs, td)← GenCRSL(1λ)
π← ProveL(crs, x,w)

]
= 1.

• Statistical Reusable Soundness: ADV-NIZK is statistical reusable sound if for all computation-
ally unbounded adversariesA and all x /∈ L,

Pr
[
1← VerifyL(td, x,π) :

(crs, td)← GenCRSL(1λ)
π← AVerifyL(td,·,·)(crs, x)

]
≤ negl(λ).

Remark that, in the statistical setting, selective soundness is equivalent to adaptive soundness.

8Which in turn, can be based on LWE, DDH or QR assumptions.

19

• Zero-knowledge: A DV-NIZK is said to be zero-knowledge if for all adversaries A there is an
simulator Sim such that∣∣∣∣∣∣∣∣

Pr
[
1← A(crs, x,π) : (crs, td)← GenCRSL(1λ)

π← ProveL(crs, x,w)
]
−

Pr
[
1← A(crs, x,π) : (crs, td)← GenCRSL(1λ)

π← SimL(td, x)
]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

When A is computationally bounded, we say that zero knowledge holds computationally.
WhenA is computationally unbounded, if its advantage is negligible in the security parameter,
we say that zero-knowledgeholds statisticallywhile if its advantage is zero, then zero-knowledge
holds perfectly.

Range Proof Systems for DJ Ciphertexts. In this thesis, we construct a range-proof system
for DJ ciphertexts. That is, we build a DV-NIZK scheme that allows the prover to prove that a given
DJ ciphertext ct encrypts a messagem ∈ [−B,B] for some public B ∈ Z.

Such a scheme can be constructed in the random oracle model (ROM) using the Fiat-Shamir trans-
form (e.g., [DJ01, BBC+18, BBB+18, TBM+20] just to name a few). However, we focus on efficient
range proofs in the standard model in this thesis.

1.9 Private Information Retrieval

Private Information Retrieval (PIR) schemes[CGKS95] allow a user to retrieve the i-th bit of an n-bit
database, without revealing to the database holder the value of i. Besides, we require an additional
privacy property in our schemes: sender privacy (or data privacy)[DMO00].

Definition 1.9.1 (PIR). Aprivate information retrieval (PIR) schemePIR is composedby the following
algorithms:

• Query(n, i) takes as input an index i ∈ [n]. It outputs a query q and a state sti.

• Send(DB, q) takes as input a databaseDB ∈ {0, 1}n and a message q. It outputs a response
r.

• Retrieve(r, sti) takes as input a response r and a state sti. It retrieves the entryDBi.

Definition 1.9.2 (Correctness). APIR schemePIR is said to be correct if for anyn ∈ N,DB ∈ {0, 1}n
and i ∈ [n], we have that

Pr
[
DBi = Retrieve(sti, r) :

(sti, q)← Query(n, i)
r← Send(DB, q)

]
= 1.

20

Definition 1.9.3 (User privacy). A PIR scheme PIR is said to be user private if for any PPT adversary
A, any n,λ ∈ N,DB ∈ {0, 1}n and i, j ∈ [n], we have that∣∣∣∣ Pr[1← A(1λ,DB, qi) : (sti, qi)← Query(n, i)]−

Pr[1← A(1λ,DB, qj) : (stj, qj)← Query(n, j)]

∣∣∣∣ ≤ negl(λ).

Definition 1.9.4 (Sender privacy). A PIR schemePIR is said to be sender private if for anyλ ∈ N, any
n = poly(λ), any i ∈ [n] and any two databases DBx,DBy ∈ {0, 1}n such that DBxi = DByi we
have that for all PPT adversariesA∣∣∣∣∣∣∣∣

Pr
[
1← A(1λ, i, n, sti, ri) : (sti, qi)← Query(n, i)

ri ← Send(DBx, qi)
]
−

Pr
[
1← A(1λ, i, n, sti, ri) :

(sti, qi)← Query(n, i)
ri ← Send(DBy, qi)

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

Black-box constructions for PIR exist LWE, DDH or QR assumptions [DGI+19].

21

2
Threshold Private Set Intersection

Inthischapter,webeginby addressing the first problem inprivacy-preserving computation, known
as threshold private set intersection (tPSI) in a multiparty setting. Our investigation focuses on the
communication bandwidth of tPSI, and we present improvements to its asymptotic performance.

To recap, threshold private set intersection enables multiple parties to calculate the intersection of
their input sets, provided that the intersection is larger thann−t, wheren represents the size of each set
and t is a predetermined threshold. The primary advantage of this primitive is that, unlike standard
private set intersection (PSI), the established upper bounds on communication complexity depend
solely on the threshold t and not on the input sets’ sizes.

Current tPSI protocols are divided into two components: A cardinality testing phase, where par-
ties determine if the intersection is larger than a certain threshold; And a PSI phase, where the actual
intersection is computed. The primary source of inefficiency in threshold PSI lies in the former com-
ponent.

In this chapter, we introduce a new cardinality testing protocol that enables N parties to verify
whether the intersection of their input sets is larger than n − t. The protocol results in a communi-
cation complexity of Õ(Nt2). Consequently, we obtain a threshold PSI scheme forN parties with a
communication complexity of Õ(Nt2).

2.1 Overview

We first recall the definition of PSI as follows. Suppose Alice holds a set SA and Bob a set SB. Private
set intersection is a cryptographic primitive that allows each party to learn the intersectionSA∩SB and
nothing else. In particular, Alice gets no information aboutSB\SA (and vice-versa). The problemhas
attracted a lot of attention through the years, with an extended line of work proposing solutions in a
variety of different settings (e.g., [Mea86, FNP04, KS05, DMRY09, DKT10, DCW13, PSZ14, PSSZ15,

22

KKRT16, RR17a, HV17, RR17b, PSWW18, GN19, GS19a, PRTY19]). Also, numerous applications
have been proposed for PSI such as contact discovery, advertising, etc (see for example [IKN+17] and
references therein). More recently, PSI has also been proposed as a solution for private contact tracing
(e.g., [BBV+20]).

Threshold PSI. In this chapter, we focus on a special set of PSI called Threshold PSI. Here, the
parties involved in the protocol learn the output if the size of the intersection between the input sets
of the parties is very large, say larger than n − t, where n is the size of the input sets and t is some
threshold such that t � n; Otherwise, they learn nothing about the intersection. This is in contrast
with standard PSI where the parties always get the intersection, no matter its size.

The main reason for considering this problem (apart from its numerous applications which we
discuss next) is that the amount of communication needed is much smaller than for standard PSI: In
particular, there are threshold PSI protocols whose communication complexity depends only on the
threshold t and not on the size of the input sets as for standard PSI [GS19a].

Despite its theoretical and practical appeal, there are just a few works that consider this problem
[HOS17, GN19, GS19a], and just one of them achieves communication complexity independent of n
[GS19a], in the two-party setting.

2.1.1 Applications of Threshold PSI

Awide number of applications have been suggested for threshold PSI in previous works such as appli-
cations for dating apps or biometric authentication mechanisms [GS19a].

One of the most interesting applications for threshold PSI is its use in carpooling (or ridesharing)
apps. Suppose two (or more) parties are using a carpooling app, which allows them to share a vehicle
if their routes have a large intersection. However, due to privacy issues, they do notwant tomake their
itinerary public. Threshold PSI solves this problem in a simple way [HOS17]: The parties can engage
in a threshold PSI protocol, learn the intersection of the routes and, if the intersection is large enough,
share a vehicle. Otherwise, they learn nothing and their privacy is maintained.

PSI using Threshold PSI. As wementioned before, most of the current protocols for threshold
PSI (including ours) are split into two parts: i) A cardinality testing, where parties decide if the inter-
section is larger than n− t; And ii) secure computation of the intersection of the input sets (which we
refer to as the PSI part). The communication complexity of these two parts should depend only on
the threshold t and not on the input sets’ size n.

ThresholdPSI protocols of this form canbeused to efficiently compute the intersection, evenwhen
no threshold on the intersection is known a priori by the parties, by doing an exponential search for
the right threshold. In this case, parties can proceed as follows:

1. Run a cardinality testing for some t (say t = 1).

2. If it succeeds, perform the PSI part. Else, run again the cardinality test for t = 2t.

23

3. Repeat Step 2 until the cardinality testing succeeds for some threshold t and the set intersection
is computed.

By following this blueprint, parties are sure that they overshoot the right threshold by a factor of at
most2. That is if the intersection is larger thann−t′, then the cardinality testingwill succeed for t such
that t ≥ t′ > t/2. Thus, they can compute the intersection incurring only in a factor of 2 overhead
over the best insecure protocol. In other words, PSI protocols can be computed with communication
complexity depending on the size of the intersection, and not on the size of the sets.

This approach can be useful in scenarios where parties suspect that the intersection is large but they
do not know exactly how large it is.

2.1.2 Contributions

In the following discussion,N represents the number of parties participating in amultiparty protocol,
while t refers to the threshold in a threshold PSI protocol. Here, we provide a concise overview of our
results.

Multi-party Cardinality Testing. We develop a new cardinality testing scheme that allows
N parties to check if the intersection of their input sets, each having size n, is larger than n− t for some
threshold t� n. The protocol needs Õ(Nt2) bits of information to be exchanged.

Along the way, we develop new protocols to securely compute linear algebra-related functions
(such as computing the rank of an encrypted matrix, inverting an encrypted matrix or even solving an
encrypted linear system). Our protocols build on ideas of previousworks [NW06,KMWF07], except
that our protocols are specially crafted for themulti-party case. Technically, we rely heavily onThresh-
old Public-Key Encryption schemes which are additively homomorphic (such schemes can be con-
structed from DDH [Elg85], DCR [Pai99], or from several pairings assumptions [BBS04, BGN05])
to perform linear operations.

Multi-partyThresholdPSI. We then showhowour cardinality testing protocol can be used to
build a Threshold PSI protocol in themulti-party setting. Our construction achieves communication
complexity of Õ(Nt2).

Concurrent Work

Recently,Ghosh andSimkin [GS19b]updated their paperwith a generalization to themulti-party case
which is similar to the one presented in this paper in Section 2.5. However, they leave as a major open
problem the design of a new Cardinality Testing that extends nicely to multiple parties, a problem on
which we make relevant advances in this work.

In a concurrent work, Badrinarayanan et al. [BMRR21] also proposed new protocols for threshold
PSI in the multi-party setting. Their results complement ours. In particular, they propose an FHE-
based approach to solve the same problem as we do with a communication complexity of O(Nt),

24

where N is the number of parties and t is the threshold. However, we remark that the goal of our
work was to reduce the assumptions needed for threshold PSI. They also propose a TPKE-based
protocol that solves a slightly different problem: the parties learn the intersection if and only if the
difference between the union and the intersection is small, that is, |

(
∪Ni=1Si

)
\
(
∩Ni=1Si

)
| is small1,

which is denoted as FTPSI-diff in [BMRR21]. This protocol achieves communication complexity of
Õ(Nt). They achieve that result using completely different techniques from the ones used in this
work. Namely, they noticed that computing the determinant of a Hankel matrix can be done in sub-
linear time in the size of the matrix. This implies that the cardinality testing of [GS19a] can actually
be realized in time Õ(Nt).

2.2 Techniques

We now give a high-level overview of the techniques we use to achieve the results discussed above.

Threshold PSI: The Protocol of [GS19a]

Consider two parties Alice and Bob, with their respective input, setsSA andSB of sizen. Suppose that
they want to know the intersection SA ∩ SB iff |SA ∩ SB| ≥ n − t for some threshold t � n. To
compute the intersection, both parties encode their sets into polynomials PA(x) =

∏n
i (x− ai) and

PB(x) =
∏n

i (x− bi) over a large finite field F, where ai ∈ SA and bi ∈ SB. The main observation of
Ghosh and Simkin [GS19a] is that set reconciliation techniques (developed byMinsky et al. [MTZ03])
can be applied in this scenario: if |SA ∩ SB| ≥ n− t, then

PA(x)
PB(x)

=
PA∩B(x)
PA∩B(x)

PA\B(x)
PB\A(x)

=
PA\B(x)
PB\A(x)

and, moreover, degPA\B = degPB\A = t. Hence, Alice and Bob just need to (securely) compute
O(t) evaluation points of the rational function PA(x)/PB(x) = PA\B(x)/PB\A(x) and, after inter-
polating over these points, Bob can recover the denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator PA\B, otherwise, security is compro-
mised. So, [GS19a] used an Oblivious Linear Evaluation (OLE) scheme to mask the numerator with
a random polynomial that hides PA\B from Bob.

This protocol is only secure if Alice and Bob are absolutely sure that |SA∩SB| ≥ n− t. Otherwise,
additional information could be leaked about the respective inputs. Consequently, Alice and Bob
should perform a cardinality testing protocol, which reveals if |SA ∩ SB| ≥ n− t and nothing else.

Limitations of the protocol when extending to the multi-party setting. It turns
out that the main source of inefficiency when extending the Ghosh and Simkin protocol to the multi-

1It is a slightly different problem from the one we solve in this work. Here, we want to disclosure the inter-
section ∩Ni=1Si if | ∩Ni=1 Si| ≥ n− t, which is denoted asFTPSI-int in [BMRR21].

25

party setting is the cardinality testing they use. In [GS19a], Alice and Bob encode their sets into poly-
nomialsQA(X) =

∑n
i xai andQB(X) =

∑n
i xbi , respectively, where ai ∈ SA and bi ∈ SB. Then,

they can check if Q̃(x) = QA(x) − QB(x) is a sparse polynomial. If it is, we conclude that the set
(SA∪SB)\ (SA∩SB) is small. By disposing ofO(t) evaluations of the polynomial Q̃(x) in aHankel
matrix [GJR10] and securely computing its determinant (via a generic secure linear algebra protocol
from [KMWF07]), both parties can determine if |SA ∩ SB| ≥ n − t. The total communication
complexity of this protocol isO(t2).2

However, if we were to naively extend this approach to the multi-party setting, we would haveN
parties computing, say,

Q̃(x) = NQ1(x)−Q2(x)− · · · −QN(x)

which is a sparse polynomial only if N is small. Moreover, if we were to compute the sparsity of
this polynomial using the same approach, we would have a protocol with communication complexity
O((Nt)2).

Our Approach

Given the state of affairs presented in the previous section, it seemsweneed to take a different approach
from the one of [GS19a] if we want to design an efficient threshold PSI protocol for multiple parties.

Interlude: Secure Linear Algebra. Recall that in the setting of secure linear algebra (as in
[NW06] and [KMWF07]), there are two parties, one holding encryption of a matrix Enc(pk,M)
and the other one holding the corresponding secret key sk. Their goal is to compute an encryption
of a (linear algebra-related) function of the matrix M, such as the rank, the determinant of M, or,
most importantly, find a solution x for the linear systemMx = ywhere bothM and y are encrypted.
We can easily extend this problem to the multi-party case: ConsiderN parties, P1, . . . ,PN, each one
holding a share of the secret key of a threshold PKE scheme. Additionally,P1 has an encryptedmatrix.
The goal of all the parties is to compute an encryption of a (linear algebra-related) function of the
encrypted matrix.

We observe that the protocols for secure linear algebra presented in [KMWF07] can be extended to
the multiparty setting by replacing the use of an (additively homomorphic) PKE and garbled circuits
for an (additively homomorphic) threshold PKE3. Hence, our protocols allow N parties to solve a
linear system of the formMx = y under the hood of a threshold PKE scheme.

2Given this, we conclude that the communication complexity of the threshold PSI protocol of [GS19a] is
dominated by this cardinality testing protocol.

3We need a bit-conversion protocol such as [ST06] to convert between binary circuits and algebra opera-
tions.

26

Cardinality Testing via Degree Test of a Rational Function. Consider again the en-
codings PSi(x) =

∏n
j (x− a(i)j)where a(i)j ∈ Si, forN different sets, and the rational function4

PS1 + · · ·+ PSN
PS1

=
PS1\(∩Nj=1Sj) + · · ·+ PSN\(∩Nj=1Sj)

PS1\(∩Nj=1Sj)
.

Note that, if the intersection∩Si is larger thann−t, thendegPS1\(∩Nj=1Sj) = · · · = degPSN\(∩Nj=1Sj) ≤
t.

Therefore, the cardinality testing boils down to the following problem: Given a rational function
f(x) = P̃1(x)/P̃2(x), can we securely decide if deg P̃1 = deg P̃2 ≤ t having access toO(t) evalua-
tion points of f(x)?

Our crucial observation is that, if we interpolate two different rational functions fV and fW on
different two support setsV = {vi, f(vi)} andW = {wi, f(wi)} each one of size 2t, then we have:

1. fV = fW if degP1 = degP2 ≤ t

2. fV 6= fW if degP1 = degP2 > t

except with negligible probability over the uniform choice of vi,wi.
Moreover, interpolating a rational function can be reduced to solving a linear system of equations.

Hence, by using the Secure Linear Algebra tools developed before, we can perform the degree test
revealing nothing else than the output. In other words, we can decide if the size of the intersection is
smaller than n− twhile revealing no additional information about the parties’ input sets.

Security of the protocol. We prove the security of our cardinality testing in the UC frame-
work [Can01]. However, there is a subtle issue with our security proof. Namely, our secure linear al-
gebra protocols cannot be proven UC-secure since the inputs are encrypted under a public key which,
in the UC setting, needs to come from somewhere.

We solve this problem by using the Externalized UC framework [CDPW07]. In this framework,
the secure linear algebra ideal functionalities all share a common setup which, in our case, is the pub-
lic key (and the corresponding secret key shares). We prove the security of our secure linear algebra
protocols in this setting.

Since the secure linear algebra protocols are secure if they all share the same public key, then, on the
cardinality testing, we just need to create this public key and share it over these functionalities. Thus,
we prove the standard UC-security of our cardinality testing.

4We actually need to randomize the polynomials in the numerator to guarantee correctness, that is, we need
to multiply each term in the numerator by a uniformly chosen element. This is in contrast with the two-party
setting where correctness holds even without randomizing the numerator. However, we omit this step for sim-
plicity.

27

Badrinarayanan et al. [BMRR21] also encounter the same problem as we did and they opted to
not prove the security of each subprotocol individually, but rather prove security only for their main
protocol (where the public key is created and shared among these smaller protocols).

Multi-party PSI. Having developed cardinality testing, we can now focus on securely computing
the intersection. In fact, our protocol for computing the intersection can be seen as a generalization of
Gosh and Simkin protocol [GS19a]. Again, by encoding the sets as above (that is, PSi(x) =

∏n
j (x−

a(i)j) where a(i)j ∈ Sj and Sj is the set of party Pj) and knowing that the intersection is larger than
n − t, parties can securely compute the rational function5(PS1 + · · · + PSN)/PS1 . By interpolating
the rational function on any O(t) points, party P1 can recover the denominator and compute the
intersection.

The main difference between our protocol and the one in [GS19a] is that we replace the OLE calls
used in [GS19a] with a threshold additively homomorphic PKE scheme (which can be seen as the
multi-party replacement of OLE).

2.2.1 Other Related Work

Oblivious Linear Algebra. Cramer and Damgård [CD01] introduced a constant-round pro-
tocol to securely solve linear systems of unknown rank over a finite field. Although their main focus
was on round optimality, their proposal’s communication cost is Ω(t3) for an input size of O(t2).
Bouman et al. [BdV18] recently developed a secure linear algebra protocol for multiple parties, with
their focus being on computational complexity.

Other secure linear algebra schemes in the two-party setting have been presented by Nissim and
Weinreb in [NW06] and Kiltz et al. in [KMWF07]. In the following, we consider (square) matri-
ces of size t over a field F. These two works employ different approaches: [NW06] addresses linear
algebra-related problems obliviously via Gaussian elimination, resulting in anO(t2) communication
complexity for a square matrix of size t. However, their approach has an error probability that de-
creases polynomially with t, meaning that the error probability is only sufficiently small when applied
to a linear system with large matrices. On the other hand, [KMWF07] has an error probability that
decreases polynomially with |F|, making it negligible when F is of exponential size.6

5Again, we omit the randomization of the polynomials. Actually, without randomization, these methods
(including [GS19a]) are exactly the same as the technique for the set reconciliation problem in [MTZ03].

6This is important to us since, in the threshold PSI setting, t� nwhere t is the threshold andn is the set size.
Kiltz et al. solve linear algebra problems via minimal polynomials, and use adaptors between garbled circuits
and additive homomorphic encryption to reduce round complexity. In this work, we extend Kiltz’s protocol to
the multiparty case without using garbled circuits (otherwise the circuit size would depend on the number of
parties) while preserving the same communication complexity for each party (O(t2)).

28

2.3 Definitions

Multi-Party Threshold Private Set Intersection. This ideal functionality implements
the multi-party version of the functionality above. Here, each of theN parties inputs a set and they
learn the intersection if and only if the intersection is large enough.

FMTPSI functionality

Parameters: sid,N, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from partyPi,FMTPSI stores Si and ignores
future messages from Pi with the same sid.

• Once FMTPSI has stored all inputs Si, for i ∈ [n], it does the following:
If |S1 \

(
∩Ni=2Si

)
| ≤ t,FMTPSI outputs S∩ = ∩Ni=1Si. Else, it outputs

⊥.

Externalized UC Protocol with Global Setup

We introduce a notion of protocol emulation from [CDPW07], called externalized UC emulation
(EUC), which is a simplified version of UC with a global setup (GUC).

Definition 2.3.1 (EUC-Emulation [CDPW07]). We say that π EUC-realizesF with respect to shared
functionality Ḡ (or, in shorthand, that π Ḡ-EUC-emulates φ) if for any PPT adversaryA there exists
a PPT adversary Sim such that for any shared functionality Ḡ, we have:

IDEALḠF ,Sim,Z ≈ EXECḠπ,A,Z

Notice that the formalism implies that the shared functionality Ḡ exists both in the model for exe-
cuting π and also in the model for executing the ideal protocol forF , IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to protocols that use
several different shared functionalities (instead of only one).

Throughout this work,φwill denote the Euler’s totient function.
LetΦZ,β be the distribution that outputs a uniformly chosen value in Z from the interval [−β, β].

We call shifted rectangle to this distribution [AIK11]. The following lemma states that we can drown
(i.e., statistically hide) a value using a sample from a much widerΦZ,β distribution.

Lemma 2.3.1 (Drowning [AIK11]). Let B0 ∈ N and β ∈ Z and let e0 ∈ [−B0,B0]. Let e1 ←$ ΦZ,β.
If B0/β = negl(λ) then e1 ≈negl(λ) e0 + e1.

29

2.4 Oblivious Degree Test for Rational Functions

Suppose we have a rational function f(x) = P(x)/Q(x) where P(x) andQ(x) are two polynomials
with the same degree. In this section, we present a protocol that allows several parties to check if
degP(x) = degQ(x) ≤ t for some threshold t ∈ Z. To this end, and inspired by the works of
[NW06, KMWF07], we present a multi-party protocol to obliviously solve a linear systemMx = y
over a finite field F with communication complexityO(t2kλN), whereM ∈ Ft×t, log |F| = k and
N is the number of parties involved in the protocol.

2.4.1 Oblivious Linear Algebra

In this section, we state the Secure Linear Algebra protocols that we need to build our degree test
protocol. For the sake of briefness, the protocols are presented in Appendix A.1. These protocols all
have the following form: There is a public key of a TPKE that encrypts a matrixM and every party
involved in the protocol has a share of the secret key.

Note that if we let parties Pi input their encrypted matrix Enc(M), then the ideal functionalityF
has to know the secret key (by receiving secret key shares fromall parties), otherwiseF cannot compute
the corresponding function correctly. However, this will cause an unexpected problem in security
proof asmentioned in our introduction and [BMRR21]: The environmentZ will learn the secret key
as well since it can choose inputs for all parties. We fix this by relying on a global UC frameworkwhere
exists a shared functionality Ḡ in charge of distributing key pairs (FGen from Section 1.5).

Oblivious matrix multiplication

We begin by presenting the ideal functionality for a multi-party protocol to jointly compute the prod-
uct of two matrices, under a TPKE. The protocol is presented in Appendix A.1.1.

Ideal functionality. The ideal functionality for oblivious matrix multiplication is presented
below.

FOMM functionality

Parameters: sid,N, q, t ∈ N and F, where F is a field of order q, known to
theN parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski distributed
to each party Pi viaFGen.

• Upon receiving (sid,P1,Enc(pk,Ml),Enc(pk,Mr)) from party P1
(whereMl,Mr ∈ Ft×t), FOMM outputs Enc(pk,Ml ·Mr) to P1 and
(Enc(pk,Ml),Enc(pk,Mr),Enc(pk,Ml ·Mr)) to all other parties Pi,
for i = 2, . . . ,N.

30

Securely Compute the Rank of a Matrix

We present the ideal functionality to obliviously compute the rank of an encrypted matrix. The pro-
tocol is presented in Appendix A.1.2.

Ideal Functionality. The ideal functionality of oblivious rank computation is defined below.

FORank functionality

Parameters: sid,N, q, t ∈ N and F, where F is a field of order q, known to
theN parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski distributed
to each party Pi viaFGen.

• Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where
M ∈ Ft×t), FORank outputs Enc(pk, rank(M)) to P1 and
(Enc(pk,M),Enc(pk, rank(M)) to all other parties Pi, for
i = 2, . . . ,N.

Oblivious Linear System Solver

Wenow showhowN parties can securely solve a linear systemusing themultiplication protocol above.
We follow the ideas from [KMWF07] to reduce the problem to minimal polynomials, and the only
difference is we focus on multiparty settings.

The protocol is presented in Appendix A.1.5. Informally, we evaluate an arithmetic circuit follow-
ing the ideas of [CDN01], and for the unary representation, a binary-conversion protocol [ST06] is
required. All of the above protocols can be based on the Paillier cryptosystem.

Ideal Functionality. We give an ideal functionality of oblivious linear system solver for multi-
party as follows.

31

FOLS functionality

Parameters: sid,N, q, t ∈ N and F, where F is a field of order q , known to
theN parties involved in the protocol. pk public-key of a threshold PKE scheme.

Global Setup: pk public-key of a threshold PKE scheme and ski distributed
to each party Pi viaFGen.

• Upon receiving (sid,P1,Enc(pk,M),Enc(pk, y)) from party P1 (as-
suming there is a solution x for Mx = y), FOLS outputs Enc(pk, x)
such thatMx = y.

2.4.2 Oblivious Degree Test

We now present the main protocol of this section and the one that will be used in the construction of
threshold PSI. Given a rational function P(x)/Q(x) (for two polynomials P(x) and Q(x) with the
same degree) and two support sets V1,V2, the protocol allows us to test if the degree of the polyno-
mials is less than some threshold t. Of course, we can do this using generic approaches like garbled
circuits. However, we are interested in solutions with communication complexity depending on t
(even when the degree of P(x) orQ(x) is much larger than t).

Ideal functionality. The ideal functionality for the degree test of rational functions is pre-
sented below.

FSDT functionality

Parameters: sid,N, q, n, t ∈ N, F is a field of order q and t is a pre-defined
threshold, known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme. α1, . . . ,α4t+2 ←$ F known to theN parties.

Global Setup: pk public-key of a threshold PKE scheme and ski distributed
to each party Pi viaFGen.

• Upon receiving (sid,P1,Enc(pk, f1), . . . ,Enc(pk, f4t+2)) from party
P1 (where fi = P1(αi)/P2(αi), and P1,P2 are two co-prime polyno-
mials with same degree t′ (additionally, P2 is monic), FSDT outputs 0 if
t′ ≤ t; otherwise it outputs 1.

Protocol. We present the Protocol 1 for secure degree test which we denote by secDT. Themain
idea of the protocol is to interpolate the rational function on two different support sets and check if
the result is the same in both experiments.

32

Recall that interpolating a rational function boils down to solving a linear equation. We can thus
use the secure linear algebra tools developed to allow the parties to securely solve a linear equation.

Also recall that two rational functionsC(1)
v /C(2)

v = C(1)
w /C(2)

w are equivalent ifC(1)
v C(2)

w −C(1)
w C(2)

v =

0. Thus, in the end, parties just need to securely check if C(1)
v C(2)

w − C(1)
w C(2)

v is equal to 0.

Comments. Suppose that, for an interpolation point αi, the rational function f(x) = P(x)/Q(x)
is well-defined butQ(αi) = P(αi) = 0 such that we cannot compute f(αi) by division. In this case
8 , the parties evaluate P̃(x) = P(x)/(x − αi) and Q̃(x) = Q(x)/(x − αi) on αi and set f(αi) =
P̃(αi)/Q̃(αi). These points are called tagged values and this strategy is used in [MTZ03]. In more
details, insteadofusingEnc(pk, fi) forαi, wewill use a taggedpair

(
Enc

(
pk, s(1)i

)
,Enc

(
pk, s(2)i

))
where s(1)i = P1(αi)

x−αi and s(2)i = P2(αi)
x−αi . Correspondingly, replace each row of Enc(pk,Mr) and

Enc(pk, yr)with

Enc
(
pk,
[
s(2)i rti . . . s(2)i −s(1)i rt−1i . . . −s(1)i

])
and Enc

(
pk,
[
s(1)i rti

])
, respectively.

Also, note that theprotocol easily generalizes to rational functions f(x) = P(x)/Q(x)withdegP 6=
degQ (which is actuallywhatweuse in the following sections). Wepresent the versionwheredegP =
degQ for simplicity. In fact, the case where degP 6= degQ can be reduced to the presented case
by multiplying the least degree polynomial by a uniformly chosen R(x) of degreemax{degP(x)−
degQ(X),degQ(x)− degP(x)}.

Moreover, if t′ > t, the linear system for rational interpolation might be unsolvable. In this case,
there is no solution which means we cannot interpolate an appropriate rational function on certain
support set. Therefore, the parties just return 0.

Analysis We analyze correctness, security and communication complexity of the protocol. We
begin the analysis with the following auxiliary lemma.

Lemma 2.4.1. Let F be a field with |F| = ω(2logλ). Let V = {(vi, f(vi))|∀i ∈ [1, 2t + 1]} and
W = {(wi, f(wi))|∀i ∈ [1, 2t+ 1]} be two support sets each of them with 2t+ 1 elements over a field
F, with wi ←$ F, and f(x) := P(x)

Q(x) is some unknown reduced rational function (i.e., P(x),Q(x) are
co-prime), where deg(P) = deg(Q) = t′ and t < t′ where t, t′ ∈ poly(λ). We also require Q(x)
to be monic (to fit in our application). Additionally, assume that Q(vi) 6= 0 and Q(wi) 6= 0 for every
i ∈ [2t+ 1].

7Note that this is the linear system thatweneed to solve inorder toperformrational interpolation [MTZ03].
8In the case that onlyQ(αi) = 0, use a different tagged pair (Enc(pk, s(1)i),Enc(pk, 0)), and this can be

noticed by the party who owns polynomialQ(x). In our PSI setting, it is party P1.

33

Algorithm 1 Secure Degree Test secDT
Require: Each party has a secret key share ski for a public key pk of a TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOLS,
FOMM andFDecZero. The values {α1, . . . ,α4t+2} ←$ F4t+2 are public, from which also
sampling a random point α′ ←$ {α1, . . . ,α4t+2}.

Ensure: PartyP1 inputs {(α1,Enc(pk, f1)), . . . , (α4t+2,Enc(pk, f4t+2))}, where fi = P1(αi)
P2(αi) ,

where P1(x),P2(x) are two polynomials with degree deg(P1) = deg(P2) = t′ =
poly(log |F|) and such that P2(αi) 6= 0 for all i ∈ [2t].

1: P1 sets {(αj,Enc(pk, fj))}j∈[2t+1] = {(vj,Enc(pk, fv,j))}j∈[2t+1], and
{(αj,Enc(pk, fj))}j∈{2t+2,...,4t+2} = {(wj,Enc(fw,j))}j∈[2t+1]. It homomorphically
generates an encrypted linear system consisting of

Enc(pk,Mr) = Enc

pk,

 rt1 . . . 1 −fr,1 · rt−11 . . . −fr,1
...

...
...

...
rt2t+1 . . . 1 −fr,2t+1 · rt−12t+1 . . . −fr,2t+1

and

Enc(pk, yr) = Enc

pk,

 fr,1 · rt1
...

fr,2t+1 · rt2t+1

for r = {v,w}.7HereMr is a square matrix with dimension 2t+ 1 and yr a 2t+ 1-sized
vector.

2: All parties jointly compute Enc(pk, rank(Mr) − rank ([Mr||y]) for r ∈ {v,w}
through two invocations of FORank and mutually decrypt the ciphertext via FDecZero.
If the result is different from 0, they abort the protocol.

3: All parties mutually solve the two linear systems above usingFOLS such that each party

getsEnc
(
pk,
(
c(1)v ||c(2)v

))
andEnc

(
pk,
(
c(1)w ||c(2)w

))
, whereMr

[
c(1)r
c(2)r

]
= yr, for r ∈

{v,w}. Besides, c(1)r and c(2)r are t+ 1- and t-sized vectors, respectively.
4: All parties compute the polynomials C(1)

r (x) =
∑t

j=0 c(1)r,j xt−j, and C(2)
r (x) = xt +∑t

j=1 c(2)r,j−1xt−j, for r ∈ {v,w}, then compute

Enc(pk, z) = Enc(pk,C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

by invokingFOMM.
Here C(b)

r (x) are evaluated on a random selected point α′ ←$ {α1, . . . ,α4t+2}.
5: All parties jointly useFDecZero to check if z = 0. If it is, output 1. Otherwise, output 0.

34

If we recover two rational function fV(x), fW(x) by interpolation on V,W, respectively, then

Pr [fV(x) = fW(x)] ≤ negl(λ)

over the choice of vi,wi.

Proof. Let fV(x) = A(x)/B(x) the rational function recovered by rational interpolation over the
support set V. and let f(x) = P(x)/Q(x) be the rational function interpolated over any 2t′ + 1
interpolation points. We have that fV(vi) = f(vi) for all i ∈ [2t+ 1] and hence

A(vi)
B(vi)

=
P(vi)
Q(vi)

⇔ A(vi)Q(vi) = P(vi)B(vi).

Since gcd(P(x),Q(x)) = 1, then the polynomial P̃(x) = A(x)Q(x)− P(x)B(x) is different from
the null polynomial (as deg(P) = t′ > t = deg(A)). Moreover, vi is a root of P̃(x), for all
i ∈ [2t+ 1], and deg P̃(x) ≤ t+ t′ (which means that P̃(x) has at most t+ t′ roots).

Analogously, let fW = C(x)/D(x) be the rational function resulting from interpolating over the
support setW and let Q̃(x) = C(x)Q(x)−D(x)P(x). We have that Q̃(wi) = 0 for all i ∈ [2t+ 1].
Hence, if fV(x) = fW(x), then we have that the pointswi are also roots of P̃(x).

But, since the pointswi are chosen uniformly at random fromF (which is of exponential size when
compared to t, t′), then there is a negligible probability that allwi’s are roots of P̃(x).

Concretely,

Pr [fV = fW] ≤ Pr
[
P̃(wi) = 0∀i[2t+ 1]

]
=

2t+1∏
i
Pr
[
P̃(wi) = 0

]
≤

(
deg P̃
|F|

)2t+1

which is negligible for |F| ∈ ω(2logλ).

Theorem 2.4.2 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support sets. Then, it checks if
the two interpolated polynomials are the same by computing

C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

which should be equal to 0 if C(1)
v (x)/C(2)

v (x) = C(1)
w (x)/C(2)

w (x).
If t′ ≤ t, then by Lemma 1.2.6, there is a unique rational function that can be recovered thus the

final output of the algorithm should be 1. On the other hand, if t′ > t, the linear system can be either
unsolvable or solvable but yield two different solutions with overwhelming probability by Lemma
2.4.1. In this case, the protocol outputs 0.

35

Theorem 2.4.3. The protocol secDT EUC-securely realizesFSDT with shared ideal functionalityFGen

in the (FORank,FOMM, FOLS,FDecZero)-hybrid model against semi-honest adversaries corrupting at
most N− 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator sends the corrupted parties’ input to the ideal functionality and obtains
theoutput (either0or1). Then, it simulates the ideal functionalities (FORank,FOMM,FOLS,FDecZero)
so that the output in the real-world execution is the same as in the ideal-world execution. In particu-
lar, the simulator is able to recover the secret key shares viaFORank,FOMM,FOLS and, thus, simulate
FDecZero in the right way.

Indistinguishability of executions holds given thatTPKE is IND-CPA.

Communication complexity. When we instantiateFOLS with the protocol from the previous
section, the communication complexity of secDT isO(Nt2).

2.5 Multi-Party Threshold Private Set Intersection

We present our protocol for Threshold PSI in the multi-party setting. Our protocol to privately com-
pute the intersection can be seen as a generalization of Ghosh and Simkin protocol [GS19a] where we
replace theOLEwith a TPKE (which fits nicer in amulti-party setting). Themain difference between
our protocol and theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute cardinality testing betweenN sets. Then,
we plug everything together in a PSI protocol.

2.5.1 Secure Cardinality Testing

Ideal functionality. The ideal functionality for Secure Cardinality Testing receives the sets
from all the parties and outputs 1 if and only if the intersection between these sets is larger than some
threshold. Else, no information is disclosed. The ideal functionality formulti-party cardinality testing
is given as follows.

FMPCT functionality

Parameters: sid,N, n, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from party Pi,FMPCT stores Si and ignores
future messages from Pi with the same sid;

• Once FMPCT has stored all inputs Si, for i ∈ [N], it does the following:
If |S∩| ≥ n − t, FMPCT outputs 1 to all parties, where |S∩| = ∩Ni=1Si.
Else, it returns 0.

36

Protocol. We introduce ourmultiparty Protocol 2 (based on degree test protocol). In the follow-
ing, FGen be the ideal functionality defined in Section 1.5 and FSDT be the functionality defined in
Section 2.4.2.

Algorithm 2 Private Cardinality Test for Multi-partyMPCT

Require: Values α1, . . . ,α4t+2 ←$ F, threshold t ∈ N andN parties. Functionalities FGen

andFSDT, and a IND-CPA TPKETPKE = (Gen,Enc,Dec).
Ensure: Each party Pi inputs a set Si = {a(1)i , . . . , a(n)i } ∈ Fn.

1: Each partyPi sends request (sid, requesti) toFGen and receives a secret key share ski and
a public key pk, which is known to every party involved in the protocol.

2: Each partyPi encodes its set as a polynomial Pi(x) =
∏n

j=1(x− a
(j)
i) and evaluates it on

4t + 2 points. That is, it computes Pi(α1), . . . ,Pi(α4t+2). It encrypts the points, that
is, c(j)i ← Enc(pk, ri · Pi(αj)) for a uniformly chosen ri ←$ F. Finally, it broadcasts
{c(j)i }j∈[4t+2].

3: Party P1 computes d(j) = (
∑N

i=1 c
(j)
i)/P1(αj) for each j ∈ [4t + 2]. Then, sends

{αi, d(j)}j for every j, and sk1 to the ideal functionality FSDT. Each party Pi, for i =
2, . . . ,N, send ski toFSDT to check if the degree of the numerator (and the denomina-
tor) is at most t.

4: Upon receiving b ∈ {0, 1} from the ideal functionalityFSDT, every party outputs b.

Analysis. We now proceed to the analysis of the protocol described above. Note that FSDT has
shared functionalityFGen.

Lemma2.5.1. Given n characteristic polynomials with same degree fromF[x], denoted asP1(x), . . . ,Pn(x),
we argue that, for any j, P′(x) =

∑n
i=1 ri · Pi(x) and Pj(x) are relatively prime with probability

1 − negl(log |F|) if P1(x), . . . ,Pn(x) are mutually relatively prime, where ri ←$ F is a uniformly
random element.

Proof. Supposing there is a common divisor of two polynomials P′(x) and Pj(x), since Pj(x) is a
characteristic polynomial, we denote (x − s) the common divisor. Therefore, we have P′(s) = 0
which can be represented as

∑n
i=1 ri · Pi(s) = 0. However, from the mutually relative primality

of P1(x), . . . ,Pn(x), we know that Pi(s) cannot be zero simultaneously which means there exists at
least one i∗ to make Pi∗(s) 6= 0. Moreover, ri are all sampled uniformly from F, the weighted sum
of ri will not be zero with all but negligible probability. This is a contradiction. Therefore, P′(x) and
Pj(x)will share a common divisor only with negligible probability.

Theorem 2.5.2 (Correctness). The protocol MPCT described above is correct.

37

Proof. Note that the encryption d(j) computed by party P1 are equal to

d(j) = Enc

(
pk,

(N∑
i=1

ri · Pi(αj)
)
/P1(αj)

)
.

Also, observe that ∑N
i=1 ri · Pi(αj)
P1(αj)

=
P∩iSi(αj) ·

∑N
i ri · PSi\(∩k ̸=iSk)(αj)

P∩iSi(αj) · PS1\(∩k ̸=1Sk)

=

∑N
i ri · PSi\(∩k ̸=iSk)(αj)
PS1\(∩k ̸=1Sk)(αj)

,

in this way, we make the numerator and denominator relatively prime except with negligible proba-
bility by Lemma 2.5.1.

Observe that deg∑N
i ri · PSi\(∩k ̸=iSk)(x) ≤ t and degPS1\(∩k ̸=1Sk)(x) ≤ t if and only if S∩ ≥

n− t. Hence, by the correctness ofFSDT, the protocol outputs 1 if S∩ ≥ n− t, and 0 otherwise.

Theorem 2.5.3. The protocol MPCT securely realizes functionality FMPCT in the (FGen,FSDT)-
hybrid model against any semi-honest adversaries corrupting up to N− 1 parties, given that TPKE is
IND-CPA.
Proof. Assume that the adversary is corruptingN− k parties in the protocol, for k = 1, . . . ,N− 1.
The simulator creates the secret keys and the public key of a threshold PKE in the setup phase while
simulating FGen and distributes the secret keys between every party. The simulator Sim takes the
inputs (which are sets of size n, say Si1 , . . . , SiN−k) of the corrupted parties and send them to the ideal
functionality FMPCT. It receives the output b from the ideal functionality. If b = 0, the simulator
chooses k uniformly chosen sets such that | ∩Ni=1 Si| < n − t and proceed the simulation as the
honest parties would do. If b = 1, , the simulator chooses k uniformly chosen random sets such that
|∩Ni=1Si| ≥ n−t and proceed the simulation as the honest parties would do. Note that it can simulate
the ideal functionalityFSDT since it knows all the secret keys of the threshold PKE.

Indistinguishability of executions follows immediately from the IND-CPA property of the under-
lying threshold PKE scheme.

Communication Complexity. When we instantiate theFSDT with the protocol from the pre-
vious section, each party broadcasts Õ(t2). Hence, the total communication complexity is Õ(Nt2),
assuming a broadcast channel.

2.5.2 Multi-party Threshold Private Set Intersection Protocol

In this section, we extendGhosh and Simkin protocol [GS19a] to themulti-party setting using TPKE.
We make use of the cardinality testing designed above to get the Protocol 3.

38

Algorithm 3 Multi-Party Threshold PSIMTPSI

Require: Given public parameters as follows: Values α1, . . . ,α3t+1 ←$ F, threshold t ∈
N and N parties. Functionalities FGen and FMPCT, and a threshold additively PKE
TPKE = (Gen,Enc,Dec).

Ensure: Each party Pi inputs a set Si = {a(1)i , . . . , a(n)i } ∈ Fn.
1: Each partyPi sends its setSi toFMPCT. If the functionalityFMPCT outputs 0, then every

party Pi outputs⊥ and terminates the protocol.
2: Each partyPi sends request (sid, requesti) toFGen and receives a secret key share ski and

a public key pk, which is known to every party involved in the protocol.
3: for all Party Pi do
4: It encodes its set as a polynomial Pi(x) =

∏n
j=1(x − a(j)i) and evaluates it on 3t + 1

points. That is, it computes Pi(α1), . . . ,Pi(α3t+1).
5: It samples Ri(x)←$ F[x] such that degRi(x) = t.
6: It encrypts these points using pk, that is, it computes c(j)i = Enc(pk,Ri(αj) · Pi(αj))

for every j ∈ [3t+ 1].
7: It broadcasts {c(j)i }j∈[3t+1].
8: end for
9: Party P1 adds the ciphertexts to get d(j) = ∑N

i c
(j)
i for each j ∈ [3t + 1]. It broadcasts

{d(j)}j∈[3t+1].
10: They mutually decrypt {d(j)}j∈[3t+1] to learnV(j) ← Dec(sk, d(j)N) for j ∈ [3t+ 1].
11: P1 computes the points Ṽ(j) = V(j)/P1(αj) for j ∈ [3t+ 1].
12: P1 interpolates a rational function using the pairs of points (αj, Ṽ(j)).
13: P1 recovers the polynomial PS1\(∩iSi)(x) in the denominator.
14: P1 evaluates PS1\∩iSi(x) on every point of its set {a(1)1 , . . . , a(n)1 } to compute∩iSi. That

is, whenever PS1\∩iSi(aj1) 6= 0, then aj1 ∈ ∩iSi.
15: It broadcasts the output ∩iSi.

39

Analysis. We now proceed to the analysis of the protocol described above. We start by analyzing
the correctness of the protocol and then its security.

Theorem 2.5.4 (Correctness). The protocol MTPSI is correct.

Proof. Assume that |S1 \
(
∩Ni=2Si

)
| ≤ t (note that this condition is guaranteed after resorting to the

functionality FMPCT in the first step of the protocol). After the execution of the protocol, party P1
obtains the pointsV(j) =

∑N
i Pi(αj) · Ri(αj). Then,

Ṽ(j) =
V(j)

P1(αj)
=

∑N
i Pi(αj) · Ri(αj)

P1(αj)

=
P∩iSi(αj) ·

∑N
i PSi\(∩k ̸=iSk)(αj) · Ri(αj)

P∩iSi(αj) · PS1\(∩k ̸=1Sk)(αj)

=

∑N
i PSi\(∩k ̸=iSk)(αj) · Ri(αj)

PS1\(∩k ̸=1Sk)(αj)
.

SinceP1 has 3t+1 evaluated points of the rational function above, then it can interpolate a rational
function to recover the polynomial PS1\(∩k ̸=1Sk). This is possible because of Lemma 1.2.5 and the fact
that

deg
(N∑

i
PSi\(∩k ̸=iSk)(αj) · Ri(αj)

)
≤ 2t and deg

(
PS1\(∩k ̸=1Sk)(αj)

)
≤ t.

Having computed the polynomialPS1\(∩k ̸=1Sk), partyP1 can compute the intersection because the
roots of this polynomial are exactly the elements in S1 \

(
∩k ̸=1Sk

)
.

Theorem 2.5.5. The protocol MTPSI securely realizes functionality FMTPSI in the (FGen,FMPCT)-
hybrid model against any semi-honest adversary corrupting up to N− 1 parties.

Proof. LetA be an adversary corrupting up to k parties involved in the protocol, for any k ∈ [N− 1].
Let Pi1 , . . . ,Pik be the corrupted parties. The simulator Simworks as follows:

1. It sends the inputs of the corrupted parties, Si1 , . . . , Sik , to the ideal functionality FMTPSI.
Sim either receives⊥ or ∩iSi from the ideal functionalityFMTPSI.

2. Simwaits forA to send the corrupted parties’ inputs to the ideal functionalityFMPCT. If Sim
has received⊥ fromFMPCT, then Sim leaks 0 toA (andZ) and terminates the protocol. Else,
Sim leaks 1 and continues.

3. Sim waits for A to send a request (sid, requestij) for each of the corrupted parties (that is,
for j ∈ [k]) to FGen. Upon receiving such requests, Sim generates (pk, sk1, . . . , skN) ←
Gen(1λ,N) and returns (pk, skij) for each of the requests.

40

4. For each party Pℓ such that ℓ 6= ij (where j ∈ [k]), Sim picks a random polynomialUℓ(x) of
degree n− |∩i Si|+ t and sends Enc(pk,Rℓ(αj) ·P∩iSi(αj) ·Uℓ(αj)), whereRℓ(x) is chosen
uniformly at random such that degRℓ(x) = t. From now on, Sim simulates the dummy
parties as in the protocol.

We now argue that both the simulation and the real-world scheme are indistinguishable from the
point-of-view of any environmentZ . In the real-world scheme, party P1 obtains the polynomial

V(x) = P∩iSi(x) ·
N∑
i
PSi\(∩k ̸=iSk)(x) · Ri(x)

evaluated in 3t+ 1 points. Assume thatP1 is corrupted byA. Even in this case, there is an index ℓ for
whichA does not know the polynomial Rℓ(x). More precisely, we have that

V(x) = P∩iSi(x) ·
∑

i ̸=ℓ

PSi\(∩k ̸=iSk)(x) · Ri(x)
+ PSℓ\(∩k ̸=ℓSk)(x) · Rℓ(x)

 .

First, note that

deg
∑

i ̸=ℓ

PSi\(∩k ̸=iSk)(x) · Ri(x)
 = degPSℓ\(∩k ̸=ℓSk)(x) · Rℓ(x)

= n− | ∩i Si|+ t ≤ 2t.

Moreover,wehave for any i ∈ [N] thatdegPSi\(∩k ̸=iSk) ≤ t,degRi(x) = t andgcd
(
PSi\(∩k ̸=iSk),PSj\(∩k ̸=jSk)

)
=

1 for any j 6= i. Hence, by Lemma 1.2.4, we can build a sequence of hybrids where we replaceV(x) by
the polynomialV′(x) = P∩iSi(x) ·U(x), where degU(x) = n− | ∩i Si|+ t, as in the ideal-world
execution. Indistinguishability of executions follows.

Communication complexity. When we instantiate the ideal functionality FMPCT with the
protocol from the previous section the scheme has communication complexity Õ(Nt2).

41

3
Laconic Private Set Intersection

In this chapter, we move on to discuss the second PSI-related problem in privacy-preserving com-
putation, concentrating on communication bandwidth in an unbalanced setting. We provide a brief
overview of this problem below.

Consider a server with a large set S of strings {x1, x2 . . . , xN} that would like to publish a small
hash h of its set S such that any client with a string y can send the server a short message allowing it to
learn y if y ∈ S and nothing otherwise. In this chapter, we study this problem of two-round private
set intersectionwith low (asymptotically optimal) communication cost, or whatwe call laconic private
set intersection (ℓPSI) and its extensions. This problem is inspired by the recent general frameworks
for laconic cryptography [CDG+17, QWW18].

We start by showing the first feasibility result for realizing ℓPSI based on the CDH assumption,
or LWE with polynomial noise-to-modulus ratio1. However, these feasibility results use expensive
non-black-box cryptographic techniques leading to significant inefficiency. Next, with the goal of
avoiding these inefficient techniques, we give a construction of ℓPSI schemes making only black-box
use of cryptographic functions. Our construction is secure against semi-honest receivers, and mali-
cious senders and reusable in the sense that the receiver’s message can be reused across any number of
executions of the protocol. The scheme is secure under theφ-hiding, decisional composite residuosity
and subgroup decision assumptions.

At the end of this chapter, we show natural applications of ℓPSI to realize a semantically-secure
encryption scheme that supports the detection of encrypted messages belonging to a set of “illegal”
messages (e.g., an illegal video) circulating online. Over the past few years, significant effort has gone
into realizing laconic cryptographic protocols. Nonetheless, this thesis provides the first black-box
constructions of such protocols for a natural application setting.

1Refer to Chapter 1 for details about these hardness assumptions.

42

3.1 Overview

Laconic cryptography [CDG+17, QWW18, DGI+19, DGGM19] is an emerging paradigm which en-
ables realizing cryptographic tasks with asymptotically-optimal communication in just two messages.
In this setting, the receiver has a potentially large input, and the size of her protocol message only de-
pends on the security parameter and not her input size. The second message, sent by the sender, may
grow with the size of the sender’s input but should be independent of the receiver’s input size.

The pioneering work of [CDG+17] introduced the notion of laconic oblivious transfer (laconic
OT), which allows a receiver with a large inputD ∈ {0, 1}n to send a short hash digest h of her input
D. Next, a sender with an input (i ∈ [n],m0,m1), sends a short message ots to the receiver, enabling
the receiver to learnmD[i], and nothingmore. We require (a) the sizes of h and ots be poly(log(n),λ),
where λ is the security parameter; (b) the sender’s computation time be poly(log(n),λ) and (c) and
receiver’s second-phase computation time be poly(log(n),λ).

The notion of laconic OT, and the techniques built around it, have led to breakthrough results in
the last few years, which, among others, include the first construction of identity-based encryption
from CDH [DG17b, DG17a, BLSV18, DGHM18], and two-round MPC protocols from minimal as-
sumptions [GS17, GS18, BL18].

Laconism beyond OT? Motivated by the developments enabled by laconic OT, it is natural to
ask whether we can push the boundary further, realizing laconism for richer functionalities. Laconic
OT by itself does not seem to be sufficient for this task (at least generically). Specifically, the general
laconic OT+garbled circuit-based approach for a function f(·, ·) results in protocols in which the size
of the sender’s protocol message grows with the receiver’s input size.

The work of Quach, Wee and Wichs [QWW18] shows how to realize laconic cryptography for
general functionalities using LWE. However, two significant issues remain. Firstly, it is not clear
whether we can achieve laconism from other assumptions, for functionalities beyond OT. As men-
tioned above, research in laconic OT has led to several breakthrough feasibility results, motivating the
need for developing techniques that can be realized using wider assumptions and for richer function-
alities. Secondly, existing constructions of laconic primitives are non-black-box, leading to inefficient
constructions. Addressing the above shortcomings, our goals are twofold: (1) Feasibility: Can we re-
alize laconic primitives beyond OT from assumptions other than LWE? and (2) Black-boxes: Can we
make the constructions black-box?

Black-box techniques. We use the notion of “black-box” techniques in the sense that the con-
struction should not use an explicit circuit-level description of cryptographic primitives. In this sense,
we think of constructions which e.g., compute cryptographic primitives inside garbled circuits (as pre-
vious laconic OT constructions) or use general-purpose NIZK proofs (which express statements in
terms of NP-complete languages) as “non-black-box” techniques.

43

Laconic PSI. We make the first progress toward the above two goals with respect to a non-trivial
functionality: Laconic Private Set Intersection (ℓPSI) and its family where the private set intersection
is recalled in Chapter 2.

Laconic PSI allows a receiver to send a short digest of its large data set, which in turn canbeused by a
sender to compute a PSI second-roundmessage. We require that the total communication complexity
as well as the sender’s running time be independent of the receiver’s input size.

3.1.1 Results

As our first result, we give a generic construction of laconic PSI from a primitive called anonymous
hash encryption, which in turn can be realized from CDH/LWE [DG17b, DG17a, BLSV18]. Our
construction builds on the Merkle-tree garbled circuit-based approach of [DG17b, DG17a, BLSV18,
GHMR18,GHM+19,GV20], showinghow touse garbled circuits to performbinary search on a set of
sorted values. Prior to our work there did not exist any construction of a laconic primitive fromCDH
beyondOT.We also obtain anLWE instantiationwith polynomialmodulus to noise ratio, improving
the subexponential ratio of [QWW18].

The above construction is a non-black-box caused by the use of garbled circuits. As our second
contribution, we achieve a black-box construction of laconic PSI from the φ-hiding assumption.

Both constructions above are only semi-honest secure, and can be made malicious (UC) secure by
using Non-Interactive Zero Knowledge (NIZK).2 However, the eventual protocol will be non-black-
box. To enhance applicability, we showhow tomake our second construction secure againstmalicious
senders, and semi-honest receivers in the CRS model, by additionally assuming decisional composite
residuosity (DCR) and subgroup decision assumptions. We term this notion reusable malicious la-
conic PSI, meaning the receiver’s message may be re-used.3

Applications. We show an application of laconic PSI in realizing a primitive that we dub self-
detecting encryption. Self-detecting encryption acts like normal public-key encryption with a key dif-
ference in that it is possible to detect whether the underlying message of a given ciphertext belongs to
a database of special (e.g., “illegal”) messages. This can be determined just by knowing the database
values, as opposed to the system’s secret key. Such encryption systems provide a feature for detecting
the presence of illegal content, without compromising the privacy of legal messages. There has only
been a limited number of proposals for this task so far, and all of them use heavy tools (e.g., FHE) for
this purpose (see [Gre19] for more details). We formally define this notion and show how to realize it
using laconic PSI.

2Note that in the laconic setting, we cannot provemalicious security against a receiver since it is information-
theoretically impossible to extract its input. Thus, since the NIZK will only be computed by the sender, the
protocol will remain laconic.

3We use the word reusability only in conjunction with malicious security since in the semi-honest setting,
reusability is satisfied by default.

44

In self-detecting encryption, an authority (e.g., a government entity or a delegatedNGO)publishes
a small hash value of a (possibly large) database of special messages such that a user can encrypt a
message using the system’s public key and the hash value.

If the message belongs to the database, then the authority can detect it; else, the message remains
hidden from the authority. We require that the size of the hash and the encryption running time be
independent of the database size.

We note that attribute-based encryption does not provide a solution to the above problem, because
either the authority should reveal its database to amaster-key generator, or it should be themaster-key
generator itself – both of which defeat our security purposes.

Additional new results: Labeled laconic PSI andmalicious laconicOT (LOT). We
extendour laconicPSI techniques tobuild a reusable labelled laconicPSI.LabelledPSI [JL10,CHLR18]
is a flavour of PSI, where the sender holds a label ℓi associatedwith each set element xi, and the receiver
will learn the labels corresponding to the intersection elements. Labelled PSI has several practical ap-
plications (e.g., private web service queries [CHLR18]).

Moreover, we show how to use our techniques to realize the first construction of a reusable LOT
secure against malicious senders and semi-honest receivers.

DV-NIZKrangeproofs forDJciphertexts. As a building block for our laconic PSI protocol,
we propose a Designated-Verifier Non-Interactive Zero-Knowledge (DV-NIZK4) scheme for range
proofwithDamgård Jurik (DJ) ciphertexts, whichmaybeof independent interest. OurDV-NIZKhas
statistical simulation soundness and computational zero-knowledge given that the subgroup decision
(subgroup decision) assumption holds [BGN05, GOS06].

Such range proofs can also be constructed in the random oracle model (ROM) via the Fiat-Shamir
transform (e.g., [DJ01, BBC+18, BBB+18, TBM+20]), which might yield the best efficiency. As our
LPSI construction is modular, this can be done independently of the remaining results in the paper.
The goal of our DV-NIZK is to provide an efficient standard model construction which we see as a
reasonable middle ground between feasibility from the weakest assumption (at the cost of unrealistic
efficiency) and practical efficiency (at the cost of relying on strong heuristic assumptions such as the
ROM).

3.1.2 Previous Work

Laconic PSI can be seen as a particular case of unbalanced PSI. Protocols for unbalanced PSI were pre-
sented in [ADT11, RA18, CLR17, CHLR18]. The protocol of [RA18] achieves linear communication
complexity on the receiver’s set size in the pre-processing model. The protocols of [CLR17, CHLR18]
rely on somewhat homomorphic encryption (SWHE) and proceed in two rounds. However, the com-
munication complexity scales with the size of the receiver’s set (and logarithmic with the size of the

4DV-NIZK only allows the designated prover to prove that it holds a witness for a certainNP statement to
a verifier in just one message

45

sender’s set), in contrast with our protocol whose communication complexity scales with the sender’s
set size.

Comparison with [ADT11]. Ateniese et al. in [ADT11] proposed a semi-honest size-hiding PSI
protocol5 inspired by RSA accumulators that achieve communication complexity independent of the
receiver’s set size. However, we emphasize that their scheme does not fit the framework of laconic
cryptography since it requires the sender to know the factorization of a CRSmodulus N. Thus, either
it requires pre-processing (giving a designated secret key to the sender), or it requires three rounds in
the CRS model. In contrast, laconic cryptography requires (a) two rounds and (b) no pre-processing
(i.e., neither party receives a secret key correlated with the CRS). Both (a) and (b) are crucially used
in applications of laconic cryptography. Specifically, these restrictions prevent the use of [ADT11] in
settings with multiple senders, an aspect that has been critical for laconic cryptography applications.
Finally, we remark that the security of [ADT11] relies on random oracles, whereas we prove security
in the standard model and achieve a substantially stronger security notion without resorting to heavy
generic tools.

All of the above constructions are just secure against semi-honest adversaries, except for [CHLR18]
which achieves security against a malicious receiver.

3.1.3 Open Problems

Themain openquestion is to realize laconic cryptography for functionalities richer thanPSI.A second
question is to build laconic PSI in a black-box way from assumptions not involving φ-hiding (e.g.,
pairings alone).

In this chapter, we build DV-NIZK for proving the equality of plaintexts across different encryp-
tion schemes, namely between the DJ [DJ01] and the BGN [BGN05, GOS06] encryption schemes.
This schemeopens the door tonewapplications since it allowsus to extend the capabilities ofGS/GOS
proof systems [GOS06,GS08] to non-pairing-based primitiveswith additional properties (in our case
to the DJ cryptosystem). We believe that these ideas will have applications beyond range proofs, e.g.,
one can think of further uses of structure-preserving cryptography, sowe leave this as an openproblem
for future works.

3.2 Techniques

3.2.1 Semi-Honest PSI from CDH/LWE

Our protocol uses hash encryption and garbled circuits, building on [DG17b, BLSV18, GHMR18],
while introducing new techniques. A hash-encryption scheme allows one to encrypt a messagem to
the output h of a hash function by specifying an index/bit (i, b) (denotedHEnc(h,m, (i, b))), so that
knowledge of a consistent pre-image value z allows for decryption (Hash(z) = h and zi = b) while

5Such schemes were also studied in [IP07, LNO13, HW15].

46

having semantic security against inconsistent pre-image values (i.e., against zwhereHash(z) = h but
zi = b̄).6

In all discussion below we assume the sender’s and receiver’s elements are in {0, 1}λ and that the
output ofHash also has λ bits.

Receiver’s set size is 2. We first assume the receiver has only two elements SR = {id1, id2} and
the sender has a single element id. The receiver sends hrroot := Hash(id1, id2). Consider a circuit
F[id], with id hardwired, which on input (id′, id′′) outputs id if id ∈ {id′, id′′}; else,⊥. The sender
garblesF[id] to get (C̃0, {lbi,b})7and sendspsi2 := (C̃0, {cti,b}), where cti,b := HEnc(hrroot, lbi,b, (i, b))).
The receiver who has the pre-image z := (id1, id2) can retrieve only the labels lbi,zi , and the rest will
be hidden. Thus, by garbled circuit security, the receiver will only learn the output of F[id](id1, id2),
as desired.

Moving beyond |SR| = 2. Suppose the receiver has four elements SR = {id1, id2, id3, id4}
in ascending order. The receiver Merkle-hashes all these values and sends hrroot, the root hash. Let
h1 and h2 be the two hash values at level one (i.e., h1 = Hash(id1, id2)). If the sender knows the
value of, say, h1, he may hash-encrypt {lbi,b} (defined in the previous paragraph) under h1, so that
the receiver can only open the labels that correspond to the bits of z = (id1, id2), revealing the value
of F[id](id1, id2). However, h1 is statistically hidden given hrroot. Thus, we use the idea of deferred
evaluation [DG17b, CDG+17, DG17a, BLSV18], delegating the task of hash-encrypting {lbi,b} to the
receiver herself, via garbled circuits.

In essence, we want the receiver to be able to compute the hash encryption of {lbi,b}wrt either h1
or h2 (depending on whether id ≤ id2 or not), but not both; because obtaining both hash encryp-
tions will allow the receiver to open both labels lbi,0 and lbi,1 for some indices i (because (id1, id2) 6=
(id3, id4)), destroying garbled circuit security. Thus, the sender has to make sure that the receiver will
be able to obtain only either of the above hash encryptions, the one whose sub-tree contains id. To
enable this, we perform a binary search.

Performing binary search. We handle the above difficulty by performing binary search using
ideas developed in the context of registration-based encryption [GHMR18]. The hash of each node
is now computed as the hash of the concatenation of its left child’s hash, right child’s hash, and the
largest identity under its left child. For example, the hash root is hrroot = Hash(h1, h2, id2), where
h1 and h2 are the hash values of the two nodes in the first level, and in turn, h1 = Hash(id1, id2, id1).
Now let id be the sender’s element, and change F[id] to be a circuit that on input (id′, id′′, ∗) out-
puts id if id ∈ {id′, id′′}, else ⊥. Letting (C̃0, {lbi,b}) be the garbling of F[id], consider a circuit
G[id, {lbi,b}] which on input (h, h′, id′) outputs a hash-encryption of lbi,b either under h or under
h′, depending on whether id ≤ id′ or id > id′. Let (C̃′, {lb′}i,b) be the garbling of G[id, {lbi,b}], let

6Enc also takes as input a public parameter p, which we ignore here.
7C̃0 stands for the garbled circuit and {lbi,b}i are the corresponding labels of inputs.

47

{cti,b} be the hash encryption of {lb′i,b} wrt hrroot, and return psi2 := (C̃0, C̃′, {cti,b}). Using the
pre-image z := (h1, h2, id2) of hrroot, the receiver can retrieve the labels {lb′i,z[i]}, allowing to com-
pute G[id, {lbi,b}](h1, h2, id2), which will produce a hash encryption {ct′i,b} of {lbi,b} under either
h1 or h2, depending on whether id ≤ id2, or not. For concreteness, suppose id ≤ id2, meaning that
{ct′i,b} are formed under h1, and so the pre-image z′ = (id1, id2, id1) of h1 will lead to {lbi,z′i}, which
along with C̃0 will reveal the value of F[id](id1, id2, id1). Of course, the receiver a priori does not
know whether {ct′i,b} are encryptions under h1 or h2, so the receiver should try decrypting wrt both,
and see which one succeeds.

Are we done? Unfortunately, when arguing about security, a subtle issue emerges. Suppose a
hash-encryption ciphertext reveals its hash value (e.g., the hash is appended to the ciphertext). Then,
the ciphertexts {ct′i,b} will reveal whether they were encrypted under h1 or h2; equivalently, whether
id ≤ id2 or id > id2. We cannot allow this information to be leaked if id /∈ SR. To fix this issue we
assume the hash-encryption scheme is anonymous, meaning that, roughly, a random ciphertext leaks
no information about the underlying hash value. This propertywas defined in [BLSV18] for achieving
anonymous IBE.Theuse of anonymoushash encryptiondoes not resolve the issue completely yet. For
concreteness, suppose id < id1. This means that {ct′i,b} is encrypted under h1, and so by decrypting
{ct′i,b} using z′ = (id1, id2, id1), the receiver will obtain meaningful labels, evaluating the garbled
circuit C̃0 to⊥ (rightly so, because id /∈ SR). On the other hand, if the receiver tries decrypting {ct′i,b}
using z′′ = (id3, id4, id3)which is not a pre-image of h1, then the resulting labels will be meaningless,
evaluating C̃0 to junk. This leaks which path is the right binary search path, giving information about
id. To fix this issue, we change the circuit F so that if id /∈ SR, then decryption along any path will
result in a random value. Specifically, sample two random values r and r′, let F[id, r, r′](id′, id′′, ∗)
return r if id /∈ {id′, id′′} and r′ otherwise. Wewill also include r in the clear in psi2. Now the receiver
can check decryption along which path (if any) yields r; in which case, the receiver can determine the
intersection identity. To argue security, if we use anonymous garbled circuits [BLSV18], then we can
argue if id /∈ SR, then psi2 is pseudorandom to the receiver. Arguing this formally (especially for the
general case) is non-trivial, requiring a delicate formulation of hybrids.

Receiver’s security? The receiver’s hash hrroot is computed deterministically from SR, so it can-
not be secure. But this is easy to fix: On the leaf level we append the identities with random values
and only then will perform the Merkle hash.

3.2.2 Reusable Laconic PSI

We now outline our techniques for obtaining laconic PSI in a black-box way, for both semi-honest
and malicious cases.

A semi-honestly secure protocol Our starting point is a recent construction of a one-way
function with encryption fromtheφ-hiding assumptiondue toGoyal, Vusirikala andWaters [GVW20],

48

and we remark that similar accumulator-style ideas were used before to construct PSI [ADT11]. Since
the protocol of [GVW20] is “almost” a PSI protocol, we will directly describe the underlying semi-
honestly secure PSI based. Assume for a moment that both the receiver’s input SR and the sender’s
input SS are subsets of a polynomially-sized universe U = {1, . . . , ℓ}. We will later remove this size
restriction on U . We have a common reference string crs which is composed of an RSA modulus
N = PQ, a uniformly random generator g ∈ Z∗N and pairwise distinct primes p1, . . . , pℓ.

For the sake of simplicity, we will assume in this outline that the sender’s input set SS is a singleton
set {w} ⊆ U . The actual protocol will be obtained by running the protocol we will now sketch for
every element in the sender’s input set. The protocol commences as follows: The receiver first hashes
its input set into

h = gr
∏

i∈SR pi mod N,

where r is chosen a uniformly chosen random from [N] (and thus rmod φ(N) is statistically close to
uniform). The receiver then sends h to the sender.

The sender, whose input is SS = {w}, chooses a uniformly random value ρ ←$ [N] and a uni-
formly random seed s for a suitable randomness extractorExt, and computes the values f← gρpw and
R← Ext(s, hρ). It sends s, f and R to the receiver.

The receiver, upon receiving f and R, will check for all elements i ∈ SR whether it holds that
Ri

?
= R, for Ri ← Ext(s, fr·

∏
j∈SR\{i} pj). If it finds such an i, it outputs {i} as the intersection of SR

and SS. Correctness of this protocol follows routinely8. by noting that ifw ∈ SR then

fr·
∏

j∈SR\{w} pj = gρ·r·
∏

j∈SR pj = hρ.

Also, note that this scheme is laconic, as the size of the messages exchanged by the parties is indepen-
dent of the size of the set SR.

Arguing security against a semi-honest sender is also routine, as h is in fact statistically close to a
uniformly random group element inZ∗N. Proving security against a semi-honest receiver is a bit more
involved and proceeds via the following hybrid modifications. Let SS = {w} be the sender’s input
such thatw /∈ SR. In the first hybrid, wewill choose themodulusN such that pw dividesφ(N); under
the φ-hiding assumption, this change will go unnoticed. Now, via a standard lossiness-argument, we
have that f = gρpw loses information about gρ, i.e., gρ has high min-entropy given f. This means
that hρ = gρr·

∏
i∈SR pi has also high min-entropy asw /∈ SR and thus pw does not divide r ·∏i∈SR pi

(w.o.p). Consequently, as hρ has highmin-entropy conditioned on f, in the next hybrid changewe can
replaceR = Ext(s, hρ)with a uniformly random value, incurring only a negligible statistical distance
via the extraction property of Ext. In the next hybrid change, we can switch the modulus N back
to normal mode, i.e., such that pw does not divide φ(N). But now f = gρpw is statistically close to
uniform in Z∗N. Thus, in the last hybrid change, we can replace f with a uniformly random value in
Z∗N and get that the view of the receiver is independent ofw, as required.

8We will not further discuss the small correctness-error of this protocol as our final protocol will not suffer
from this defect

49

For the case that the sender’s input SS contains more than a single element, we mount a hybrid
argument repeating the above modifications for each element of SS, not in the receiver’s set SR.

Large universes The above protocol has the drawback that the size of the common reference
string crs depends linearly on the size of the universe U , which is highly undesirable. There is a stan-
dard way of overcoming this issue: Instead of explicitly listing all the primes pi in crs, we will describe
them implicitly via a pseudorandom function (PRF).9 For this purpose, we need a PRF which maps
into the set of primes of a certain size. This can e.g. be achieved by using rejection sampling: we first
sample y← Fk(x|i) (starting with i = 1) and check if y is a prime number. If it is, we output y; else,
we increment i until a prime is hit. Under standard number-theoretic assumptions, this process finds
a prime after a logarithmic number of steps. One small issue is that, in the above security proof, we
need to replace one of the primes with a prime provided by the φ-hiding experiment. We resolve this
issue by making the PRF programmable in one point, e.g., by setting Fk,k′(x|i) = F′k(x|i) ⊕ ki for a
PRF F′, k′ = (k1, . . . , kξ) and a suitable choice of ξ.

A first attempt at malicious sender security Our protocol thus far, however, offers no
security against a malicious sender. The main issue is that a corrupted sender may choose the values
f and R arbitrarily, and further, there is no mechanism for a simulator against a malicious sender to
extract the senders inputw. Of course, this protocol can be made secure against malicious senders by
letting the sender prove via a general-purpose NIZK proof that it follows the semi-honest protocol
correctly. This however would necessitatemaking a non-black-box use of our semi-honest laconic PSI
protocol, contrary to our goal of achieving a fully black-box protocol.

Re-inspecting the above protocol, we have notmade full use of the fact that the extracted stringR is
uniformly random. Our first idea tomake the sender extractable is tomake better use ofR. Instead of
sendingR in the plain, we will useR as random coins for a public key encryption (PKE) scheme to en-
crypt the sender’s inputw. More concretely, we will modify the above protocol as follows. We include
a public key pk of a PKE scheme in the common reference string crs and, instead of having the sender
include R in the plain in its message to the receiver, it will include a ciphertext ct ← Enc(pk, i;R).
We also need to modify the procedure of the receiver. The receiver will recover Ri as before, but will
now use Ri to re-encrypt the index i, that is, for each i ∈ SR it will compute cti ← Enc(pk, i;Ri).

First notice that, as a side bonus, this modification makes our laconic PSI scheme perfectly correct,
given that the PKE scheme is perfectly correct, as now cti uniquely specifies the element i.

In terms of security, we first observe that this modification does not harm security against a semi-
honest receiver given that the PKE scheme is IND-CPA secure. In the above sketch of a security proof,
we have argued that, ifw is not in the setSR, thenR is uniformly random from the view of the receiver.
This means now that ct is a freshly encrypted ciphertext, using fresh random coins (independent of
ρ). Moreover, we can use IND-CPA security of the PKE to replace ctwith encryption of 0, and then
continue as above to argue security against a semi-honest receiver.

9We remark that we use a PRF, not because we want uniform outputs, but to implicitly define the set of
primes. A similar trick was used in [BGI16].

50

To establish security against a malicious sender, we would like to argue as follows. The simulator
can now generate the public key pk in crs together with a secret key sk. Given a message (s, f, ct) by
a malicious sender, the simulator can recover the set elementw by decrypting the ciphertext ct using
sk. At a first glance, this seems to provide us with security against malicious senders. And indeed, the
simulator will recover all elements for which the receiver would have declared to be in the intersection.
There is a grave issue, however: The simulator has no means of detecting whether the honest receiver
would actually have succeeded in re-encrypting the index i. In other words, the malicious sender can
make the simulator false positives, such that the simulator declares an element i to be in the intersection,
whereas an honest receiver would not have.

Switch groups, extract everything! We briefly recall some facts about the Damgård-Jurik
cryptosystem [DJ01]. The group Z∗Nξ+1 contains a cyclic subgroup NRN of order φ(N)10. Now let
g0 ∈ NRN be a generator of NRN. Then we can generate the entire group Z∗Nξ+1 by g0 and 1 + N,
i.e. we can write every h ∈ Z∗Nξ+1 as h = gt0 · (1 + N)m for some t ∈ Zφ(N) and m ∈ ZNξ .
Furthermore, we can efficiently compute discrete logarithms relative to 1 + N, i.e. if h = (1 + N)m

for anm ∈ ZNξ , then we can efficiently computem from h. Finally, the decisional composite residue
(DCR) assumption inZ∗Nξ+1 states that a randomelement inNRN is indistinguishable from a random
element inZ∗Nξ+1 . It follows that g1 = gt10 and g2 = gt20 · (1+N) (for uniformly random t1, t2 ←$

Zφ(N)) are computationally indistinguishable. Moreover, if h = gt2 for a t < Nξ−1, we can efficiently
compute t from h using φ(N) as a trapdoor by first computing

hφ(N) = gt·φ(N)
2 = gtφ(N)

0︸ ︷︷ ︸
=1

·(1+N)t·φ(N) = (1+N)t·φ(N) mod Nξ+1,

from which we can efficiently compute t · φ(N) (as t · φ(N) < Nξ) and thus t.
Given this, we will now make the following additional modification to our PSI protocol. Instead

of choosing the element g in the common reference string crs to be a random generator of Z∗N, we
choose g to be a random generator ofNRN, whereNRN is the subgroup of orderφ(N) inZ∗Nξ+1 (for
a sufficiently large but constant ξ). Our first observation is that this does not affect the security proof
in the case of a semi-honest receiver, since NRN is still a cyclic group of order φ(N) and the above
argument using the φ-hiding assumption works analogously in this group.

Assume for a moment we had a mechanism which ensures that the group element f in the sender’s
message is of the form f = ga for an a < Nξ−1. We can then argue security against a malicious sender
as follows: First, we make a hybrid change and choose the element g in the common reference string
like g2 above, i.e. we choose g = gt0(1+N); under theDCR assumption, this change goes unnoticed.

10Note that NRN is not a cyclic group and we only assume this here for simplicity. Actually, if we choose
N as a product of two safe primes, then we could find a cyclic subgroup JN which is the group of elements
with Jacobi symbol 1, and its subgroupTN composing ofNξ-th powers of JN has orderφ(N)/2. Namely, just
replace the group pair (Z∗

Nξ+1 ,NRN)with (JN,TN) to fix this issue. Please refer to Section 1.4 and Section 3.6
for details.

51

Now, given that f = ga for an a < Nξ−1 and using φ(N) as a trapdoor, the simulator can efficiently
compute a from f as described above. Since it can also recover the index w from the ciphertext ct as
described above, it can now check if a is of the form a = ρ · pw. If so, it recovers ρ and performs
the same re-encryption test for ct which the real receiver would perform. This makes the simulation
indistinguishable from the real experiment.

3.2.3 DV-NIZK Range Proofs for DJ Ciphertexts

The final component which is missing to make the above argument succeed is a mechanism which
ensures that the group element f is true of the form f = ga for a small a. For the sake of generality,
we will make the following discussion for general DJ-ciphertexts, that is, ciphertexts of the form c =
ht · (1+N)a (where h = gz1 is the public key). If we can show that such a ciphertext encrypts a small
value a, proving that f = ga and c = ht · (1 + N)a for the same a can be efficiently proven via a
standard hash-proof system (HPS) [CS02].

First, we observe that, to show that c = ht · (1+N)a encrypts a value a < 2k for some parameter
k, it suffices to prove that some ciphertexts c0, . . . , ck−1 encrypt bits b1, . . . , bk−1. Assume for now
we had a DV-NIZK protocolΠ to prove that the ciphertexts c0, . . . , ck−1 all just encrypt bits. The
prover can convince the verifier as follows c encrypts a value a < 2k. First the prover encrypts bit bi in
a ciphertext ci and sets c′ =∏k−1

i=0 c2
i
i (it is not hard to see that c′ encrypts a). Now, the prover usesΠ

to convince the verifier that c0, . . . , ck−1 indeed encrypt bits. Furthermore, it can use a standardHPS
to prove that c and c′ indeed encrypt the same value. Zero-knowledge follows routinely. To see that
this protocol is sound, observe that if the ci indeed encrypt bits, then c′must encrypt a value bounded
by 2k.

ADV-NIZKproofsystemforciphertextequalityacrossdifferentencryptionschemes
Alas, we do not know of a black-box DV-NIZK which proves that DJ ciphertexts encrypt bits. How-
ever, for the pairing-based Boneh-Goh-Nissim (BGN) cryptosystem [BGN05], such a proof system
was constructed byGroth, Ostrovsky and Sahai [GOS06]. Consequently, if we could prove in a black
box way that a BGN ciphertext encrypts the same value as a DJ ciphertext we would be done.

Recall that, in the BGN cryptosystem, public keys are of the form (G,H), whereG andH genera-
tors of subgroups of a composite-order pairing groupG. BGNciphertexts are of the formC = GmHr,
wherem is the encrypted message and r are random coins.

Our final contribution is a DV-NIZK proof system which allows us to prove that a DJ ciphertext
and a BGN ciphertext encrypt the same value.

To simplify thedescriptionofourprove system, assumewehaveBGNpublic keys (G,H1), . . . , (G,Hℓ),
i.e. each key sharing the sameG but having fresh and randomHi, and an elementH0. Furthermore, as-
sume that we have DJ public keys h1, . . . , hℓ, and an element h0. We will assume that both sequences
of keys are in a public setup, together with the elementsH0, h0.

Suppose further that we have BGN ciphertextsC1, . . . ,Cℓ, whereCi = GmiHr
i , i.e., all ciphertexts

52

use the same random coins r but encrypt possibly different bitsmi.11 As mentioned above, using the
NIZK scheme from [GOS06], we can prove that the ciphertextsCi = GmiHr

i are indeed well-formed
and that mi ∈ {0, 1}. Moreover, we have C0 = Hr

0, which can be proven well-formed using a
standard hash proof system (HPS) [CS02].

Assume further that we are given DJ ciphertexts c1, . . . , cℓ, where ci = hti · (1 + N)m
′
i , i.e., again

the ciphertexts share the same random coins t.12 Moreover, assume that we have a value hr0 exactly as
above. We want to prove that it holds for all i ∈ [ℓ] thatmi = m′i. Our DV-NIZK proof system for
equality of BGN and DJ ciphertexts now proceeds roughly as follows:

• The verifier starts by sampling a uniformly random binary string σ←$ {0, 1}ℓ and computes
F = HA

0
∏Hσi

i ∈ G and f = hα0
∏ hσii ∈ Z∗Nξ+1 , for uniformly random valuesA,α. It sends

crs = (F, f) to the prover and keeps σ as the designated verifier key.

• The prover is given ciphertexts C1, . . . ,Cℓ and c1, . . . , cℓ with Ci = GmiHr
i and ci = hti(1+

N)mi , and the values C0 = Hr
0 and c0 = ht0. It computes K = FrGτ and k = ft(1 + N)τ

where τ is sampled according to a distribution which is wide enough to drown the mi, but
short enough such that it is bounded byN. The proof π is consists of (K, k).

• The verifier, given the proof π = (K, k), computes the discrete log y (in base (1 + N)) of
k−1cα0

∏ℓ
i=1 cσii and checks ifGy = K−1CA

0
∏ℓ

i=1 Cσi
i .

For completeness, note that

k−1cα0
∏

cσii =
(
hα0
∏

hσii
)−t

(1+N)−τ
(ht0)α∏(hti(1+N)mi

)σi
= (1+N)

∑ σimi−τ,

from which the verifier can recover y =
∑ σimi − τ. Moreover

L = K−1CA
0
∏

Cσi
i =

(
HA
0
∏

Hσi
i
)−r

G−τ (Hr
0)
A∏(Hr

iGmi)σi = G
∑ σimi−τ

and thusGy = L.
The zero-knowledge property can be established by noting that the term τ statistically drowns∑
i σimi.
We argue as follows to prove reusable statistical soundness (or simulation soundness). First note that

σ is statistically hidden, givenF = HA
0
∏Hσi

i and f = hα0
∏ hσii , by the uniform valuesA,α. We need

to show that if there is an index i for whichmi 6= m′i, then the verifier will reject with high probability,
irrespective of the (adversarial) choices of τ, τ′ (which are not necessarily short)13. It follows from the

11Via a standard rerandomization argumentwe can show that reusing the same random coins across different
keys does not harm CPA security.

12Same as above.
13We assume that the verifier rejects if it fails to compute the discrete logarithm of k−1∏ dσii .

53

above description that the verifier accepts proof of the condition∑
σi,jmi − τj mod n =

(∑
σi,jm′i − τ′j mod Nξ

)
mod n

is satisfied, where n is the order of the subgroup ofG generated byG. In the main body we will show
that, given that n > Nξ, this conditionwill be violated with probability≈ 1/2 if there exists an index
i for whichmi 6= m′i. By repeating the protocol λ times, we achieve negligible soundness error.

3.2.4 Labeled Laconic PSI and Laconic OT

Our laconic PSI construction can be easily extended into a labelled laconic PSI, in which the receiver
also learns labels associated with set elements in the intersection. To achieve this, we simply use an
extractor with an output size twice as large: the first half is used as above to perform the re-encryption
step; the other half is used as a one-time pad to encrypt the corresponding label. It is easy to see that
the receiver can only recover the labels for the elements within the intersection since the security proof
follows the same blueprint as before.

We alsobuild aLOTusing the same ideas as above. The receiver commits to a databaseD ∈ {0, 1}Γ

by computing h = gr
∏Γ

i=1 ei,Di
0 mod Nξ+1, where each prime ei,b is the output of a PRF (just as

before). The sender computes fj = gρjeL,j0 , Fj = gρjeL,j1 (1+N)
ρjeL,j for each j ∈ {0, 1}, together with

a range proof. Moreover, he encrypts each message as ctj = kj ⊕mj where kj ← Ext(sj, hρj). Again,
security follows the same reasoning as above. Our LOT protocol is the first one to provide security
against a malicious sender while incurring communication complexity independent of the size ofD.

3.3 Definitions

Laconic Private Set Intersection. An ℓPSI is a two-round protocol that implements a PSI functionality
and has special compactness properties.

Definition 3.3.1. A ℓPSI scheme LPSI = (GenCRS,R1, S,R2) is defined as follows:

• GenCRS(1λ): Takes as input a security parameter 1λ, and outputs a common reference string
crs.

• R1(crs, SR): Takes as input a crs and a set SR. It outputs a first PSI message psi1 and a state st.

• S(crs, SS, psi1): Takes as input a crs, a set SS and a first PSI message psi1. It outputs a second
PSI message psi2.

• R2(crs, st, psi2): Takes as input a crs, a state st and a second message psi2. It outputs a set I .

We require the following properties.

• Correctness: The protocol satisfies PSI correctness in the standard sense.

54

• Efficiency Requirements. There exists a fixed polynomial poly such that the length of psi1 and
the running time of S are at most poly(λ, log |SR|).

Formalicious security, we work in the standardUC-framework [Can01] that allows us to prove the
security of protocols under arbitrary composition with other protocols.

We present the (reusable) PSI ideal functionality.

Reusable PSI functionality. The functionality FrPSI is parametrized by a universe U and
works as follows:

• Setup phase. R sends (sid, SR) to FrPSI where SR ⊆ U . It ignores future messages from R
with the same sid.

• Send phase. S sends (sid, i, SS ⊆ U) to FrPSI. FrPSI sends (sid, i, SR ∩ SS) to R. It ignores
future messages from Swith the same sid and i ∈ N.

3.4 Semi-Honest Laconic Private Set Intersection from CDH/LWE

In this section, we show how to realize semi-honest ℓPSI from CDH/LWE. Our construction is non-
black-box, making use of garbled circuits. This leads to the first feasibility result based on CDH, and
an alternative LWE construction to that of [QWW18].

Our constructionmakesuse ofhash encryption schemes in conjunctionwith garbled circuits, which
we review below.

Definition 3.4.1 (HashEncryption [DG17b,BLSV18]). Ahash encryption schemeHE = (HGen,Hash,HEnc,HDec)
is defined as follows.

• HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and outputs a hash
key p.

• Hash(p, z): Takes as input a hash key p and z ∈ {0, 1}n, and deterministically outputs h ∈
{0, 1}λ.

• HEnc(p, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key p, a hash output h, mes-
sages {mi,b} and randomness {ri,b}, and outputs {cthi,b}i∈[n],b∈{0,1}. We write it shortly as
{cthi,b}. Overloadingnotation, each ciphertext cthi,b is computed as cthi,b = HEnc(p, h,mi,b, (i, b); ri,b).

• HDec(z, {cthi,b}): Takes as input ahash input z and{cthi,b} andoutputsnmessages (m1, . . . ,mn).

We require correctness meaning that for the variables above, (m1, . . . ,mn) = (m1,z[1], . . . ,mn,z[n]).
We define two notions of security.

55

• Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between encryptions of
messagesmade to indices (i, z̄i). For anyPPTA, samplingp←$ HGen(1λ, n), if (z, {mi,b}, {m′i,b})←$

A(p) and ifmi,z[i] = m′i,z[i] for all i ∈ [n], thenA cannotdistinguishbetweenHEnc(p, h, {mi,b})
andHEnc(p, y, {m′i,b}), where h := Hash(p, z).

• Anonymous Semantic Security: For a random {mi,b} with equal rows (i.e., mi,0 = mi,1),
the output of HEnc(p, h, {mi,b}) is pseudorandom even in the presence of the hash input.
Formally, for any z ∈ {0, 1}n, sampling p←$ HGen(1λ, n), h := Hash(p, z), and sampling
{mi,b} uniformly at random with the same rows, then v := (p, z,HEnc(p, h, {mi,b})) is
indistinguishable from another tuple in which we replace the hash-encryption component of
vwith a random string.

We have the following results from [BLSV18, GGH19].

Lemma 3.4.1. Assuming CDH/LWE there exists anonymous hash encryption schemes, where n = 3λ
(i.e., Hash(p, ·) : {0, 1}3λ 7→ {0, 1}λ).14 Moreover, the hash function Hash satisfies robustness in the
following sense: for any input distribution on z which samples at least 2λ bits of z uniformly at random,
(p,Hash(p, z)) and (p, u) are statistically close, where p←$ HGen(1λ, 3λ) and u←$ {0, 1}λ.

We also review the notion of garbled circuits and the anonymous property, as defined in [BLSV18].

Definition 3.4.2 (GarbledCircuits). A garbling scheme for a class of circuits{C : {0, 1}n 7→ {0, 1}m}
consists of (Garb,Eval, Sim) satisfying the following.

• Correctness: for all C ∈ C,msg ∈ {0, 1}n, Pr[Eval(C̃, {lbi,msg[i]}) = C(msg)] = 1, where
(C̃, {lbi,b})←$ Garb(1λ,C).

• SimulationSecurity: For anyC ∈ C andmsg ∈ {0, 1}n: (C̃, {lbi,msg[i]})
c≡ Sim(1λ,C(msg)),

where (C̃, {lbi,b})←$ Garb(1λ,C).
• Anonymous Security [BLSV18]: For any C ∈ C, choosing y ←$ {0, 1}m, the output of
Sim(1λ, y) is pseudorandom.

Lemma 3.4.2 ([BLSV18]). Anonymous garbled circuits can be built from one-way functions (OWFs).

Notation onHash Encryption. Throughout this section we assumeHash(p, ·) : {0, 1}n 7→
{0, 1}λ, where n = 3λ. We use {lbi,b} to define a sequence of pairs of labels, where (throughout this
section) i ∈ [n] and b ∈ {0, 1}. For r := {ri,b} we let HEnc(p, h, {lbi,b}; r) denote the ciphertexts
{cthi,b}, where cthi,b = HEnc(p, h, lbi,b, (i, b); ri,b). We further overload the notation as follows.
Weuse{lbi} to denote a sequence of3λ elements. For r := {ri,b}we letHEnc(p, h, {lbi}; r)denote a
hash encryptionwhere both plaintext rows are {lbi}; namely, the ciphertexts {cthi,b}, where cthi,b =
HEnc(p, h, {mi,b}; ri,b), wheremi,0 = mi,1 = lbi, for all i.

14We note that the CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which only
some part of the ciphertext is pseudorandom. But for ease of presentation we keep the notion as is, and remark
that our ℓPSI construction works also with respect to that weaker notion.

56

Tree Terminology. Throughout this section we work with full binary trees. The depth of a tree
is the length of a root-leaf path. We call the leaf level 0, the level above it level one, and so on. We order
the root-leaf paths from left to right; namely, the path from the root to the leftmost leaf node is the first
root-leaf path, and the path from the root to the rightmost leaf node is the 2dth root-leaf path, where
d is the depth. Each node has an associated hash value, computed based on values associated with
its children. Thus, when representing a root-leaf path, we include both children of each branching
intermediate node.

Sender’s Set Size is One. We assume without loss of generality that the sender holds a single
element. For the general case where the sender may have multiple elements, we reuse the first message
of the receiver for each element in the sender’s set. The overall running time of the sender will only
scale with its own set size, and not with the receiver’s set size.

Construction 3.4.1 (ℓPSIConstruction). We require the following ingredients in our ℓPSI Construction.

1. A hash encryption schemeHE = (HGen,Hash,HEnc,HDec), whereHash(p, ·) : {0, 1}3λ 7→
{0, 1}λ.

2. A garbling scheme GS = (Garb,Eval, Sim).

3. Circuits F and V, as well as procedure DecPath, defined in Table 3.1.

We assume the elements of the receiver and the sender are strings in {0, 1}λ. We refer to each element
as an identity. Build (GenCRS,R1, S,R2) as follows.

GenCRS(1λ): Return crs←$ HGen(1λ, 3λ).

R1(crs, SR): Assume |SR| = 2d. (With small tweaks the same construction works if SR is not a
power of two.)

• Parse crs := p. Let n := 2d, and sort SR := {id1, . . . , idn}, where idi < idi+1 for all i.
Populate the leaf node values as follows. For each idi ∈ SR, sample xi, x′i ←$ {0, 1}λ, and let
h(0)i := Hash(p, idi, xi, x′i). Set H[v(0)i] := h(0)i and ID[v(0)i] := idi.

1. For w ∈ [d], populate the values for the nodes at level w as follows. Informally, the hash
value for each node is the hash of the concatenation of its left child, and right child, and
the largest identity value under its left child. Formally, noting we have 2d−w nodes on
level w, for j ∈ [2d−w], set h(w)j := Hash(p, (h(w−1)2j−1 , h(w−1)2j , id[j,w])), where id[j,w]
denotes the larges leaf identity under the left child of the current node (i.e., id[j,w] = idf,
where f := (2j− 1)2w−1.) Set H[v(w)j] = h(w)j and ID[v(w)j] = id[j,w].

2. Set psi1 := (d, hrroot), where hrroot := h(d)1 (i.e., the root hash value). Set st :=

(SR, {xi}, {x′i}, {v
(w)
j }) for all values of i ∈ [n], w ∈ {0, . . . , d} and j ∈ [2d−w].

57

Circuit F[id, r, r′](id′, x, x′):

• Hardwired: target identity id and ran-
domness values r and r′.

• Operation: Return

y :=

{
r id = id′

r′ else

Circuit V[p, id, {lbi,b}, r](h1, h2, id′):

• Hardwired: Hash public parameter p,
target identity id, labels{lbi,b}, random-
ness r.

• Operation: Return
ct :={
HEnc(p, h1, {lbi,b}; r) id ≤ id′

HEnc(p, h2, {lbi,b}; r) else

ProcedureDecPath(pth, psi2):

• Input: A leaf-root Path pth and ciphertext psi2 := (C̃0, . . . , C̃d, {cth(d)i,b }).

• Operation: Parsepth := ((id, x, x′︸ ︷︷ ︸
z0

), (h0, h′0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h′d−1, idd−1︸ ︷︷ ︸
zd

), hrroot). For

w ∈ {d, . . . , 1}:

1. Let {lb(w)i } := HDec(zw, {cth(w)i,b }).

2. Set {cth(w−1)i,b } := Eval(C̃w, {lb(w)i }).

Let {lb(0)i } := HDec(z0, {cth(0)i,b }). Return Eval(C̃0, {lb(0)i }).

Table 3.1: CircuitsF,V and procedureDecPath

S(crs, id, psi1):

• Parse psi1 := (d, hrroot) and crs := p. Sample r, r′ ←$ {0, 1}λ and let C0 := F[id, r, r′]
(Table 3.1). Garble (C̃0, {lb(0)i,b })←$ Garb(C0). For 1 ≤ w ≤ d

1. Sample rw at random, and let Cw := V[p, id, {lb(w−1)i,b }, rw].

2. Garble (C̃w, {lb(w)i,b })←$ Garb(Cw).

• Let {cthi,b} ←$ HEnc(p, hrroot, {lb
(d)
i,b }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

58

R2(crs, st, psi2):

• Parse st := (SR, {xi}, {x′i}, {v
(w)
j }), psi2 := (C̃0, . . . , C̃d, {cthi,b}, r) and SR := {id1, . . . , idn}.

For i ∈ [n] let pthi := ((idi, xi, x′i), . . . , hrroot) be the i’th leaf-root path in the tree, and let

ri := DecPath(pthi, C̃0, . . . , C̃d, {cthi,b}).

If for a unique index i ∈ [n], ri = r, then output idi. Otherwise, output ⊥.

Theorem 3.4.3. Assuming the hash encryption HE is anonymous and robust (robustness defined in
Lemma 3.4.1), and that the garbling scheme GS is anonymous, the ℓPSI protocol of Construction 3.4.1
provides statistical security for the receiver and semi-honest security for the sender. As a result, such
ℓPSI protocols can be realized from CDH/LWE.

Roadmap for the ProofofTheorem 3.4.3. The fact that the protocol provides statistical secu-
rity for the receiver follows from the robustness ofHE. In particular, robustness implies that the h(0)i
values statistically hide SR. We can continue this to argue that all the first-level hash values (i.e., h(1)i)
also hide SR, and hence, continuing like this, the root hash value hrroot statistically hides SR.

Wenowprove that the protocol provides sender security against semi-honest receivers. Let idbe the
sender’s input message, and SR := {id1, . . . , idn} be the receiver’s set, where idi < idi+1. Assuming
id /∈ SR we will show that the sender’s protocol message is pseudorandom in the receiver’s point of
view. For simplicity suppose id < id1; the general case follows via simple changes, which we will
illustrate in Remark 3.4.2. Let

pth := ((id1, x1, x′1︸ ︷︷ ︸
z0

), (h0, h′0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h′d−1, idd−1︸ ︷︷ ︸
zd

), hrroot) (3.1)

be the leaf-rootpath from leaf id1 to the root. Note thathrroot = Hash(p, zd), andhi = Hash(p, zi)
for all i ∈ {0, . . . , d − 1}. Noting that hrroot is the receiver’s first-round message, we define the fol-
lowing hybrids for the sender’s response message.

Hyb0: The sender’s response message psi2 is formed as in the protocol.

Hyb1: Sample r, r′ ←$ {0, 1}λ. Let (C̃0, {lb
(0)
i } ←$ Sim(F, r′). For 1 ≤ w ≤ d

1. Sample {cth(w−1)i,b } ←$ HEnc(p, hw−1, {lb(w−1)i }).

2. Let (C̃w, {lb(w)i })←$ Sim(V, {cth(w−1)i,b }).

Let {cthi,b} ←$ HEnc(p, hrroot, {lb
(d)
i }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

Lemma 3.4.4. Hybrids Hyb0 and Hyb1 are indistinguishable.

59

Hyb2: Sample psi2 at random.

Lemma 3.4.5. Hybrids Hyb1 and Hyb2 are indistinguishable.

The above two lemmas establish the sender’s security; namely — if id /∈ SR, then the sender’s mes-
sage psi2 is pseudorandom for the receiver. We prove Lemma 3.4.4 in Section 3.4.1 and Lemma 3.4.5
in Section 3.4.2.

3.4.1 Proof of Lemma 3.4.4

In the following, given two hybridsHyb andHyb′, we use the notationHyb c≡ Hyb′ to express
that the hybrids are computationally indistinguishable.

We define d+ 1 hybrids betweenHyb0 andHyb1, and prove their indistinguishability.
For p ∈ {0, . . . , d} we define Hyb′p as follows. Under Hyb′p, we form the first p + 1 garbled

circuits C̃0, . . . , C̃p and their corresponding labels honestly as in the real game, and we simulate the
rest.

Hyb′p: Let pth be as in Equation 3.1, and recall that we are assuming id < id1. Sample r, r′ ←$

{0, 1}λ and letC0 := F[id, r, r′]. Garble (C̃0, {lb
(0)
i,b })←$ Garb(C0). Let {lb(0)i } := {lbi,z0[i]}. Do

the following:

• For 1 ≤ w ≤ p

1. Sample rw at random, and let Cw := V[p, id, {lb(w−1)i,b }, rw].

2. Garble (C̃w, {lb(w)i,b })←$ Garb(Cw).

3. Ifw = p (i.e., last step), let {lb(w)i } := {lb
(w)
i,zw[i]}.

• For p+ 1 ≤ w ≤ d

1. Sample {cth(w−1)i,b } ←$ HEnc(p, hw−1, {lb(w−1)i }).

2. Let (C̃w, {lb(w)i })←$ Sim(V, {cth(w−1)i,b }).

Let {cthi,b} ←$ HEnc(p, hrroot, {lb
(d)
i }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

Lemma 3.4.6. Hyb0
c≡ Hyb′d and Hyb1

c≡ Hyb′0.

60

Proof. We first showHyb1
c≡ Hyb′0. Notice that either hybrid may be simulated just by knowing

the value of r and the pair (C̃0, {lb
(0)
i }). We let (C̃, {lbi}) and (C̃′, {lb′i}) denote the distribution of

this pair inHyb1 andHyb′0, respectively. We have (C̃, {lbi}) ←$ Sim(F, r′). As for the other pair,
letting C0 := F[id, r, r′] for random r, r′

(C̃′, {lbi,b})←$ Garb(C0) (3.2)
{lb′i} = {lbi,z0[i]}, (3.3)

where z0 = (id1, x1, x′1). By simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(F,C0(z0)) (3.4)
c≡ Sim(F, r′). (3.5)

Thus, (r, C̃, {lbi})com(r, C̃′, {lb′i}), provingHyb1
c≡ Hyb′0.

To prove Hyb0
c≡ Hyb′d, their only difference lies in how {cthi,b} is sampled: under Hyb0:

{cthi,b} ←$ HEnc(p, hrroot, {lb(d)i,b }), while underHyb′d: {cthi,b} ←$ HEnc(p, hrroot, {lb(d)i }),
where recall that{lb(d)i } := {lb

(d)
i,zd[i]}. Sincehrroot = Hash(p, zd), by security of the hash encryption

HEnc(p, hrroot, {lb(d)i })
c≡ HEnc(p, hrroot, {lb(d)i,b }) and the proof is now complete.

Lemma 3.4.7. For all p ∈ {0, . . . , d− 1}, Hyb′p
c≡ Hyb′p+1.

Proof. We will show that the distribution of (C̃0, . . . , C̃p+1, {lb
(p+1)
i }) is computationally indistin-

guishable in the twoworlds. This will imply the result because the rest of either hybridmay be formed
based solely on the above tuple. To argue the above tuple is indistinguishable across the two hybrids,
first notice that the distribution of

(C̃0, {lb(0)i,b }, . . . , C̃p, {lb
(p)
i,b })

is formed exactly the same inHyb′p andHyb′p+1. The only difference between these two hybrids lies

in the way in which the pair (C̃p+1, {lb
(p+1)
i }) is sampled. To ease notation, we let (C̃, {lbi}) and

(C̃′, {lb′i}) denote the distribution of this pair inHyb′p andHyb′p+1, respectively. Formally

1. UnderHyb′p: We form

{cth} ←$ HEnc(p, hp, {lb(p)i }) (3.6)

(C̃, {lbi})←$ Sim(V, {cth}). (3.7)

61

2. UnderHyb′p+1: We form

(C̃′, {lbi,b})←$ Garb(Cp+1)

{lb′i} := {lbi,zp+1[i]},

where Cp+1 := V[p, id, {lb(p)i,b }, rp+1] and zp+1 = (hp, h′p, idp).

By simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(V,Cp+1(zp+1)) (3.8)
c≡ Sim(V,HEnc(p, hp, {lb(p)i,b }; rp+1)). (3.9)

Notice that in Equation 3.9 we use the fact id < idp, and so by definition of Cp+1, its hardwired
labels {lb(p)i,b } will be encrypted under hp.15 Now, Equation 3.9 is identical to the right-hand side of

Equation 3.7, and thus (C̃, {lbi})
c≡ (C̃′, {lb′i}). The proof is now complete.

3.4.2 Proof of Lemma 3.4.5

We need to show that psi2 := (C̃0, . . . , C̃d, {cth
(d)
i,b }, r) is pseudorandom, where everything is sam-

pled as in Hyb1. Since (C̃0, {lb
(0)
i }) ←$ Sim(F, r′) by simulation security of the garbled circuit

and Lemma 3.4.2 the distribution of (C̃0, {lb
(0)
i }) is pseudorandom. Recall that for 1 ≤ w ≤ d

we have {cth(w−1)i,b } ←$ HEnc(p, hw, {lb(w−1)i }) and (C̃w, {lb(w)i }) ←$ Sim(V, {cth(w−1)i,b }). By
Lemma 3.4.1 {cth(w−1)i,b } is pseudorandom, and thus by Lemma 3.4.2 (C̃w, {lb(w)i } is also pseudoran-

dom, for all 0 ≤ w ≤ d − 1. Finally, since we have {cth(d)i,b } ←$ HEnc(p, hrroot, {lb(d)i }), by
Lemma 3.4.1, {cth(d)i,b } is pseudorandom. The proof is now complete.

Remark. In the proof of security, we assumed id < id1. For the general case, we just need to change
the active path from that in Equation 3.1 ending in id1 to the path that will end in idj, where j is the
largest index such that id lies between idj and idj+1. In case id > idn, then j = n.

3.5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts

In this section, we construct a DV-NIZK scheme for ranges of DJ ciphertexts. The main idea of our
construction is the following: the prover proves that a BGN ciphertext [BGN05] is within a certain
range (this can be done via the protocol of [GOS06]). Then it proves that theDJ andBGNciphertexts
encrypt the same value.

15This is the place where we use the fact that id is less than all values in SR. In the general case, we should
change the above distributions accordingly.

62

We first recall the required cryptosystems used in this section.

BGN cryptosystem. Recall that the BGN cryptosystem [BGN05] is defined over a group G of
order n = pq for primes p, q. The public key is composed by (G, n,G,H) whereG is a generator of
G andH is an element of order p (let pG be the subgroup of order p). The public key is composed of
(G, n,G,H) and a ciphertext for a messagem ∈ {0, 1} is of the formC = GmHt for t←$ [n].

Damgård-Jurikcryptosystem. TheDamgård-Jurik (DJ) cryptosystem16 [DJ01] is defined over
Z∗Nξ+1 whereN ←$ RSA(λ). The public key is formed by (N, ξ, g, h) where g ←$ TN and h = gx
for x ←$ [N]. A ciphertext has the form (c1, c2) where c1 = gtmod Nξ+1 and c2 = ht(1 + N)m

mod Nξ+1 for t←$ [N] andm ∈ [Nξ].

3.5.1 DV-NIZK Schemes for Linear Languages and for BGN Ciphertexts

We review some basic notions of the hash proof systems framework from [CS02].
Let X,L,Π be finite abelian groups where L is a proper subgroup of X. Let Hom(X,Π) denote

the group of all homomorphisms φ : X → Π and let H be a subgroup of Hom(X,Π). We call
G = (H,X,L,Π) a group system.

Weadditionally assume that distinguishinguniformly chosen elements ofL fromuniformly chosen
elementsX\L is aNP problem (i.e., distinguishing elements ofL andX is an instance of a hard subset
membership problem [CS02]). We denote byw the witness that states that a given element x is in L
andR(x,w) the correspondingNP relation.

A group systemG = (H,X,L,Π) is said to be diverse if for all x ∈ X\L there existsφ ∈ H such
that φ(L) = 0 and φ(x) 6= 0.

Lemma 3.5.1 (Adapted from [CS02], Theorem 2). Let G = (H,X,L,Π) be a diverse group system.
Then, there exists a reusable DV-NIZK

NIZKΔ = (NIZK.GenCRSΔ,NIZK.ProveΔ,NIZK.VerifyΔ)

for the language
L = {x ∈ X : ∃w s.t. R(x,w) = 1}

where R is the NP relation that states that x ∈ L. The scheme fulfills statistical reusable soundness
and perfect zero-knowledge.

It is easy to see that ifX is the product of cyclic groups then, for any proper subgroupL, the group
systemG = (H,X,L,Π) is diverse. Thus, there exists a black-box DV-NIZK for the languageL.17

16Here, we present a slightly different variant of the scheme in [DJ01].
17To establish that G = (H,X,L,Π) is a diverse group system we can combine the arguments used in

Examples 1 and 2 from Sections 7.4.1 and 7.4.2 in [CS02].

63

We now review some specific languages which are of the form described above and for which we
can obtain efficient black-box DV-NIZK schemes.

In the following, letN, n←$ RSA(λ), ξ ∈ N andG be a group of order n (that is, a BGN group).

DV-NIZKforsubgroupmembership. First, consider the following language for subgroupmem-
bership, which is parametrized by (N, ξ, h)

SMΔ =
{h′ ∈ Z∗Nξ+1 : ∃x ∈ [N] s.t. h′ = hx mod Nξ+1 }

where Δ = (N, ξ, h) and h ∈ TN. The language allows proving that h′ is in the same subgroup as h.
In [CS02], a reusable DV-NIZK for discrete log languages with statistical soundness is presented.

We additionally consider the language parametrized by (G, n,H)

SMΔ′ =
{H′ ∈ G : ∃X ∈ [n] s.t. H′ = HX mod Nξ+1 }

whereΔ′ = (G, n,H) andH ∈ pG.

Lemma 3.5.2 ([CS02]). There exist reusable DV-NIZKs

NIZKSMΘ = (NIZK.GenCRSSMΘ ,NIZK.ProveSMΘ ,NIZK.VerifySMΘ)

for the language SMΘ for Θ ∈ {Δ,Δ′} where Δ = (N, ξ, h) and Δ′ = (G, n,H). The scheme
fulfills statistical reusable soundness and perfect zero-knowledge.

DV-NIZK for DJ ciphertexts. First, consider the following language for DJ ciphertexts, which
is parametrized by ({gi, hi}i,N, ξ)

DJ Δ =

{
{c1,i, c2,i}i ∈ {Z∗Nξ+1}2ℓ : ∃(t, {mi}i) ∈ [Nξ]ℓ+1 s.t. c1,i = gti mod Nξ+1

c2,i = hti(1+N)mi mod Nξ+1

}
for i ∈ [ℓ] where Δ = ({gi, hi}i,N, ξ) and gi, hi ∈ TN. The language allows proving that h is in
the same subgroup as g. In [CS02], a reusable DV-NIZK for discrete log languages with statistically
reusable soundness is presented.

Lemma 3.5.3 ([CS02]). There exists a reusable DV-NIZK

NIZKDJ Δ = (NIZK.GenCRSDJ Δ ,NIZK.ProveDJ Δ ,NIZK.VerifyDJ Δ)

for language DJ Δ where Δ = ({gi, hi}i,N, ξ). The scheme fulfills statistical reusable soundness and
perfect zero-knowledge.

64

DV-NIZKforequalityofdiscretelog. Consider also the following language for the equality
of discrete logs.

EDLΔ =

{
(h0, h1) ∈ Z∗Nξ+1 : ∃t ∈ [Nξ] s.t. gt0 = h0 mod Nξ+1

gt1 = h1 mod Nξ+1

}
parametrized by Δ = (g0, g1,N, ξ) where g0, g1 ∈ Z∗Nξ+1 . for the equality of discrete logs. Again,
the framework of [CS02] can be adapted to obtain an efficient reusable DV-NIZK for this language
with statistical reusable soundness.

Lemma 3.5.4 ([CS02]). There exists a reusable DV-NIZK

NIZKEDLΔ = (NIZK.GenCRSEDLΔ ,NIZK.ProveEDLΔ ,NIZK.VerifyEDLΔ)

whereΔ = (g0, g1,N, ξ). The scheme fulfills statistical reusable soundness and perfect zero-knowledge.

DV-NIZK for equality of plaintexts. Consider the language for the equality of plaintexts in
two different DJ ciphertexts

EPDJ Δ =

{ci, di}i ∈ {Z∗Nξ+1}4 : ∃({ti}i,m) ∈ [Nξ]3 s.t.

c1 = gt11 mod Nξ+1

c2 = ht11 (1+N)m mod Nξ+1

d1 = gt22 mod Nξ+1

d2 = ht22 (1+N)m mod Nξ+1

for i = 1, 2, parametrized by Δ = ((g1, h1), (g2, h2),N, ξ) where g1, h1, g2, h2 ∈ TN for the
equality of plaintexts.

Lemma 3.5.5 ([CS02]). There exists a reusable DV-NIZK

NIZKEPDJ Δ = (NIZK.GenCRSEPDJ Δ ,NIZK.ProveEPDJ Δ ,NIZK.VerifyEPDJ Δ)

where Δ = ((g1, h1), (g2, h2),N, ξ). The scheme fulfills statistical reusable soundness and perfect
zero-knowledge.

Range Proofs for BGN Finally, we consider the language of well-formed BGN ciphertexts en-
crypting a bit.

BGNΔ =

{
{Ci}i ∈ Gℓ : ∃(t, {mi}) ∈ [n]ℓ+1 s.t. mi ∈ {0, 1}

Ci = GmiHt
i

}
for i ∈ [ℓ], whereΔ = (G, n,G, {Hi}i∈[ℓ]) andG, {Hi}i∈[ℓ] ∈ G.

This is not a linear language and, thus, it cannot be instantiated using the framework of [CS02].
Fortunately, the work of [GOS06] presents an efficient scheme for this language.

65

Lemma 3.5.6 ([GOS06]). There exists a reusable DV-NIZK scheme18

NIZKBGNΔ = (NIZK.GenCRSBGNΔ ,NIZK.ProveBGNΔ ,NIZK.VerifyBGNΔ)

for the language BGN . The protocol has perfect reusable soundness and computational zero-knowledge
under the subgroup decision assumption.

3.5.2 Equality of Plaintexts in DJ and BGN ciphertexts.

We now show how to prove that a BGN and a DJ ciphertexts encrypt the same value. Consider the
following language

EQΔ =

D0, h0, {Di, c1,i, c2,i}i∈[ℓ] : ∃(r, t, {mi}) s.t.

mi ∈ {0, 1}
D0 = Hr

0 ∈ G
Di = GmiHr

i ∈ G
c0 = ht0 ∈ Z∗Nξ+1
c1 = gt ∈ Z∗Nξ+1

c2,i = hti(1+N)mi ∈ Z∗Nξ+1

where Δ = (G, n,G,H0, {Hi}i∈[ℓ],N, ξ, g, h0, {hi}i∈[ℓ]), such that G,H0, {Hi}i∈[ℓ] ∈ G and
g, h0, {hi}i∈[ℓ] ∈ TN.

Construction 3.5.1. Let ℓ ∈ Z. Let Δ = (G, n,G,H0, {Hi}i∈[ℓ],N, ξ, g, h0, {hi}i∈[ℓ]) be as above,
such that n > Nξ+1. Let β ∈ N such that λ/β = negl(λ), andNξ/2 > ℓβ. We require the following
ingredients:

1. The scheme of Lemma 3.5.6,NIZKBGNΔ1
= (NIZK.GenCRSBGNΔ1

,NIZK.ProveBGNΔ1
,NIZK.VerifyBGNΔ1

)

for some Δ1 = (G, n,G, {Hi}i∈[ℓ]).

2. The scheme of Lemma 3.5.3,NIZKDJ Δ2
= (NIZK.GenCRSDJ Δ2

,NIZK.ProveDJ Δ2
,NIZK.VerifyDJ Δ2

)

for some Δ2 = ({g, hi}i,N, ξ).

3. The scheme of Lemma 3.5.3,

NIZKSMΘ = (NIZK.GenCRSSMΘ ,NIZK.ProveSMΘ ,NIZK.VerifySMΘ)

for language SMΘ for Θ ∈ {Δ3,Δ′3} where Δ3 = (N, ξ, h) and Δ′3 = (G, n,H).

We present the scheme in full detail.
18The scheme presented in [GOS06] is a NIZK scheme and not aDV-NIZK.However, we can view aNIZK

as a DV-NIZK where td =⊥.

66

GenCRSEQΔ(1λ) :
• Compute (crs1, td1)← NIZK.GenCRSBGNΔ1

(1λ) where Δ1 = (G, {G,Hi}i∈[ℓ]).

• Compute (crs2, td2)← NIZK.GenCRSDJ Δ2
(1λ) where Δ2 = ({g, hi}i∈[ℓ],N, ξ).

• Compute (crs3, td3), (crs′3, td
′
3) ← NIZK.GenCRSSMΘ(1λ) where Θ ∈ {Δ,Δ′} where

Δ = (N, ξ, h) and Δ′ = (G, n,H).

• For all j ∈ [λ], do the following:

– Sample αj ←$ [N/4] and Aj ←$ [n]. For all i ∈ [ℓ], sample σi,j ←$ {0, 1}. Compute
fj = hαj0

∏ℓ
i=1 h

σi,j
i mod Nξ+1 and Fj = HAj

0
∏ℓ

i=1H
σi,j
i

• Output crs =
(
{Fj, fj}j∈[λ], crs1, crs2, crs3

)
and td =

(
{αj,Aj, {σi,j}i∈[ℓ]}j∈[λ], td1, td2, td3

)
ProveEQΔ(crs, x = (D0, h0{Di, c1,i, c2,i}i∈[ℓ]),w = (r, t, {mi∈[ℓ]})) :

• Parse crs as
(
{Fj, fj}j∈[λ], crs1, crs2, crs3

)
.

• Computeπ1 ← NIZK.ProveBGNΔ1
(crs1, x1,w1)where x1 = {Di}i∈[ℓ] andw1 = (r, {mi}i∈[ℓ]).

• Compute π2 ← NIZK.ProveDJ Δ2
(crs2, x2,w2) where x2 = {c1,i, c2,i}i∈[ℓ] and w2 =

(t, {mi}i∈[ℓ]).

• Compute π3 ← NIZK.ProveSMΔ3
(crs3, x3,w3), where x3 = c0 and w3 = t, and π′3 ←

NIZK.ProveSMΔ′3
(crs3, x′3,w′3) where x3 = D0 and w′3 = r.

• For all j ∈ [λ], do the following: Sample τj ←$ ΦZ,β and compute aj = fjt(1+N)τjmod Nξ+1.
Compute Kj = GτjFrj .

• Output π =
(
{aj,Kj}j∈[λ],π1,π2,π3

)
.

VerifyEQΔ(td, x,π) :
• Parse π as

(
{aj,Kj}j∈[λ],π1,π2,π3

)
and td as

(
{αj,Aj, {σi,j}i∈[ℓ]}j∈[λ], td1, td2, td3

)
• If 0← NIZK.VerifyBGNΔ1

(td1, x1,π1) where x1 = {Di}i∈[ℓ], output 0.

• If 0← NIZK.VerifyDJ Δ2
(td2, x2,π2) where x2 = {c1,i, c2.i}i∈[ℓ], output 0.

• If 0← NIZK.VerifySMΔ3
(td3, x3,π3)where x3 = c0 or if 0← NIZK.VerifySMΔ′3

(
td3, x′3,π′3

)
where x3 = D0, output 0.

• For all j ∈ [λ], do the following:

67

– For all i ∈ [ℓ], compute zj = a−1j cαj0
∏ℓ

i=1 c
σi,j
2,imod Nξ+1. If there is a zj which is not

of the form (1+N)yj , output 0. Else, recover yj.

– Compute Lj = K−1j DAj
0
∏

iD
σi,j
i in G.

• If there is a j ∈ [λ] such that Gyj 6= Lj in G, output 0. Else, output 1.

Lemma 3.5.7. The scheme presented in Construction 3.5.1 is complete.

Proof. Assume x ∈ EQΔ. Fix a j ∈ [λ]. Then,

zj = a−1j cαj0
ℓ∏

i=1
cσj2,i mod Nξ+1

=

(
hαj0

ℓ∏
i=1

hσi,ji

)−t
(1+N)−τjhtαj0

ℓ∏
i=1

htσi,ji (1+N)miσi,j mod Nξ+1

= (1+N)
∑ℓ

i=1 miσi,j−τj mod Nξ+1

from which the verifier can recover yj =
∑ℓ

i=1miσi,j − τj. Moreover, |yj| < ℓβ < Nξ/2 < n/2.
That is, yj does not wrap around moduloNξ nor modulo n.

In addition, we have

Lj = K−1j DAj
0

ℓ∏
i=1

Dσi,j
i

=
(
HAj
0
∏

Hσi,i
i
)−r

G−τHrA0
0

ℓ∏
i=1

(Hr
iGmi)σi,j

= G
∑ℓ

i=1 miσi,j−τj = Gyj

inG. Thus, the proof is accepted as valid because yj mod Nξ = yj mod n.

Lemma 3.5.8. The scheme presented in Construction 3.5.1 has zero knowledge under the subgroup deci-
sion assumption.

Proof. To prove zero knowledge, we construct a simulator SimZK that creates transcripts which are
indistinguishable from the ones outputted by the protocol.

Let Sim1, Sim2, Sim3 and Sim′3 be the zero-knowledge simulators of the schemes NIZKBGNΔ1
,

NIZKDJ Δ2
,NIZKSMΔ3

andNIZKSMΔ′3
,respectively (which exist by Lemma 3.5.6, Lemma 3.5.3 and

Lemma 3.5.2) The simulator SimZK works as follows:

68

• CRSgeneration. It creates a crs exactly as in the real protocol andkeeps td =
(
{σi,j}i∈[ℓ],j∈[λ], td1, td2, td3, td′3

)
to itself.

• Upon receiving an instance (D0, h0{Di, c1,i, c2,i}i∈[ℓ]),SimZK first simulatesπ1 ← Sim1(td1, x1),
π2 ← Sim2(td2, x2), π3 ← Sim3(td3, x3) and π′3 ← Sim3(td3, x′3). Then, it repeats the
following for every j ∈ [λ]: It samples τj ←$ ΦZ,β and computes aj = (1 + N)τjcαj0

∏ cσi,j2,i
mod Nξ+1 and Kj = GτjHAj

0
∏Dσi,j

i .

• It outputs π = ({aj,Kj}j∈[λ],π1,π2,π3).

We now argue that the distributions of the proofs outputted by ProveEQΔ and SimZK are indistin-
guishable. By the zero-knowledge property ofNIZKBGNΔ1

,NIZKDJ Δ2
,NIZKSMΔ3

andNIZKSMΔ′3
the proofs π1, π2, π3 and π′3 are indistinguishable from the real ones (π1 is computationally indis-
tinguishable given that the subgroup decision assumption holds). So, we just need to analyze the
distributions of aj and Kj.

We start by analyzing the distribution of aj. First note that,

a−1j cαj0
ℓ∏

i=1
cσi,j2,i = c−αj0

ℓ∏
i=1

c−σi,j2,i (1+N)−τjcαj0
ℓ∏

i=1
cσi,j2,i mod Nξ+1

= (1+N)−τj mod Nξ+1

To see that aj is indistinguishable from one created in the real-world, note that by Lemma 2.3.1, we
have that

∑ℓ
i=1miσi,j − τj ≈negl(λ) τj, for τj ←$ ΦZ,β andmi, σi,j ∈ {0, 1}, since λ/β = negl(λ).

Hence,
(1+N)

∑ℓ
i=1 miσi,j−τj ≈negl(λ) (1+N)τj

and therefore

cαj0
ℓ∏

i=1
cσi,j2,i (1+N)τj ≈negl(λ) ftj(1+N)

∑ℓ
i=1 miσi,j−τj .

An identical argument can be used to show thatKj is indistinguishable from the one created in the
real protocol.

Lemma 3.5.9. The scheme presented in Construction 3.5.1 has statistical reusable soundness.

Proof. We first show how the simulator SimSnd simulates the VerifyEQΔ(td, ·, ·) oracle to the adver-
sary. Sincewe are proving statistical reusable soundness, our simulator is allowed to run in exponential
time.

SimSnd works as follows:

• CRS generation. It generates crs by sampling fj ←$ TN and Fj ←$ pG.

69

• Upon receiving aquery to theoracleVerify consistingof a statementx = (D0, h0, {Di, c1,i, c2,i}i∈[ℓ])
together with a proof π from the adversary, it does the following:

1. It brute-forces the statement (D0, {Di}i∈[ℓ]) to recover the witness (r, {mi}i∈[ℓ]), and
(c0, {c1,i, c2,i}i∈[ℓ]) to recover (t, {m′i}i∈[ℓ]).

2. It parses π as ({aj,Kj}j∈[λ],π1,π2,π3). It brute-forces aj to recover {̄tj, τ′j}, andKj to
recover (r̄j, τj).

3. If there is an index i such that (c1,i, c2,i) are not of the form c1,i = gtimod Nξ+1 and
c2,i = hti(1 + N)m

′
imod Nξ+1 or Di is not of the form Di = GmiHr

i in G where
mi ∈ {0, 1}, it outputs 0.

4. If there is an index i such that ai is not of the form fti(1 + N))τ
′
imod Nξ+1 (meaning

that t̄i 6= t), it outputs 0. Moreover, if K is not of the form GτjFrj in G (meaning that
r̄j 6= r), output 0.

5. If c0 is not of the form htmod Nξ+1 or ifD0 is not of the formHr
0, it outputs 0.

6. If there is i ∈ [ℓ] or j ∈ [λ] such thatmi 6= m′i or τ′j 6= τj, it outputs 0. Else, it outputs
1

• Upon receiving the challenge proof (x∗,π∗), it performs the same checks as in steps 3, 4 and 5.
If the tests pass, it samples σi,j ←$ {0, 1} and checks if

G
∑ℓ

i=1 σi,jm′
i−τ′j mod Nξ

= G
∑ℓ

i=1 σi,jmi−τj

for every j ∈ [λ]. It outputs 0 if the test fails, 1 otherwise.

Hyb0: This is the real reusable soundness game.

Hyb1: This game is identical to the previous one except that SimSnd brute-forces the pairs state-
ment/proof (x,π), to recover the witness (r, {mi}i∈[ℓ]), (t, {m′i}i∈[ℓ]), and the values (τj, r̄j) and
{̄tj, τ′j} from the proof. Finally, it performs the checks in steps 3 and 4.

Claim 3.5.1. Hybrids Hyb0 and Hyb1 are indistinguishable.

The statistical reusable soundness of the schemesNIZKBGNΔ1
,NIZKDJ Δ2

,NIZKSMΔ3
andNIZKSMΔ′3

guarantees thatD0, c0,Di and (c1,i, c2,i) are of the prescribed form, except with negligible probability.
Now fix j ∈ [λ] and assume that aj = ft̄jj (1+N)τj . Then, since a−1j

∏ℓ
i=1 c

σi,j
2,i must be of the form

(1+N)yj , we must have

−t̄j
(
αj +

ℓ∑
i=1

wiσi,j
)

+ t
(
αj +

ℓ∑
i=1

wiσi,j
)

= 0 mod φ(N)/4

70

where h0 = hwi
i . Thus t̄j = t.

An identical reasoning can be applied to argue that Kj must be of the formGτjFrj .

Hyb2. This hybrid is identical to the previous one, except that SimSnd performs the checks in step
6.

Claim 3.5.2. Hybrids Hyb1 and Hyb2 are indistinguishable.

The adversaryA is able to distinguish both hybrids if there is a proof which is accepted in hybrid
Hyb1 but rejectedHyb2 (or vice-versa). That is, suppose thatA outputs ({mi,m′i}, {τj, τ′j}). Fix j.
Then the proof is accepted inHyb1 if

ℓ∑
i=1

σi,jmi − τj mod n =

(
ℓ∑

i=1
σi,jm′i − τ′j mod Nξ+1

)
mod n. (3.10)

Let ej =
∑ℓ

i=1 σi,jmi and dj =
∑ℓ

i=1 σi,j(m′i −mi). Then, equation 3.10 can be rewritten as

ej mod n = (ej + dj − τ′j mod Nξ+1)− τj mod n.

Consider the function Γj(z) defined as Γj(z) = (z−τ′jmod Nξ+1)−τjmod n. it is easy to see that
Γj(z) is injective in ZNξ+1 . Let z1, z2 be such that

Γj(z1) = Γj(z2)
(z1 − τ′j mod Nξ+1)− τj mod n = (z2 − τ′j mod Nξ+1)− τj mod n

(z1 − τ′j mod Nξ+1) = (z2 − τ′j mod Nξ+1)

z1 mod Nξ+1 = z2 − τ′ mod Nξ+1

where the second equivalence holds because n > Nξ+1.
Since Γj is injective, then we must have

ej mod Nξ+1 = ej + dj mod Nξ+1

ℓ∑
i=1

σi,jmi mod Nξ+1 =
ℓ∑

i=1
σi,jmi + σi,j(m′i −mi) mod Nξ+1

ℓ∑
i=1

σi,jmi mod Nξ+1 =
ℓ∑

i=1
σi,jm′i mod Nξ+1

Assume that there is an index i such thatmi 6= m′i. Then the test will fail with atmost 1/2 probability,
for a fixed j. Repeating the process for j ∈ [λ], we get thatmi = m′i, except with negligible probability.

71

Thus τ′j = τj.

HybridHyb3. This hybrid is identical to the previous one, except that fi is chosen uniformly from
TN andH is chosen uniformly from pG.

Claim 3.5.3. Hybrids Hyb2 and Hyb3 are indistinguishable.

Since αj ←$ ZN, we can build a hybrid where αj is sampled from Z∗N, incurring a difference only
in the statistical distance. Moreover, sinceH0 is a generator of pG,HAj

0 is uniform in pG. The claim
follows.

Claim 3.5.4. Let A be any adversary. For hybrid Hyb3, A has a negligible advantage.

Assume that A outputs (x∗,π∗) where x∗ /∈ EQΔ. Since σi,j ←$ {0, 1}, then the proof gets
accepted if equation 3.10 is fulfilled. As we have seen before, this happens only with negligible proba-
bility.

3.5.3 DV-NIZK forRange Proofs ofDJCiphertextswithEqualDiscrete Log

LetN← RSA(λ) and ξ ≥ 0 be a fixed integer. Consider the following language of ranges:

REDJ Δ =

{
c1 ∈ {Z∗Nξ+1}2 : ∃t ∈ {d−Nξ/2, . . . ,Nξ/2e} s.t. t ∈ [−B,B]

c1 = gt mod Nξ+1

}
which is parametrized byΔ = (g,B,N, ξ)where g ∈ TN, B ∈ Z,N and ξ.

In the following, we present a DV-NIZK scheme for the language above. The main idea is quite
simple: The prover outputs BGN ciphertextsDi encrypting bitsmi andDJ ciphertexts (c1,i, c2,i) that
encrypt the same values asDi (we can prove this using the scheme from the previous section). Then,
the prover proves that (c1, c2) encrypts the same value as

(∏ℓ
i=0 c2

i
1,i,
∏ℓ

i=0 c2
i
2,i
)
. Since DJ is linearly-

homomorphic, we conclude that (c1, c2) encryptsm =
∑ℓ

i=0 2imi ≤ 2ℓ−1.

Construction 3.5.2. Let ℓ ∈ N and B = 2ℓ−1 Let

• NIZKEQΔ1
= (NIZK.GenCRSEQΔ1

,NIZK.ProveEQΔ1
,NIZK.VerifyEQΔ1

) be the scheme in
Construction 3.5.1, for some Δ1 = (G, n,G,H0, {Hi}i∈[ℓ],N, ξ, g, h0, {hi}i);

• NIZKEPDJ Δ2
= (NIZK.GenCRSEPDJ Δ2

,NIZK.ProveEPDJ Δ2
,NIZK.VerifyEPDJ Δ2

) be
the scheme of Lemma 3.5.5, for some Δ2 = ((g1, h1), (g2, h2),N, ξ);

• NIZKEDLΔ3 = (NIZK.GenCRSEDLΔ3 ,NIZK.ProveEDLΔ3 ,NIZK.VerifyEDLΔ3
) be the scheme

of Lemma 3.5.4, for some Δ3 = (g, h,N, ξ).

We now present the scheme in full detail.

72

GenCRSREDJ Δ(1λ) :

• Compute (crs1, td1)← NIZK.GenCRSEQΔ1
(1λ)whereΔ1 = (G, n,G,H0, {Hi}i∈[ℓ],N, ξ, g, h0, {hi}i∈[ℓ]).

• Compute (crs2,i, td2,i) ← NIZK.GenCRSEPDJ Δ2
(1λ) where Δ2,i = ((g, h), (g, hi),N, ξ)

for all i ∈ [ℓ].

• Compute (crs2,0, td2,0)← NIZK.GenCRSEPDJ Δ2
(1λ) where Δ2,0 = ((g, h), (g, h),N, ξ).

• Compute (crs3, td3)← NIZK.GenCRSEDLΔ3 (1
λ) where Δ3 = (g, h(1+N),N, ξ).

• Output crs = (crs1, crs2,0, crs3, {crs2,i}i∈[ℓ]) and td = (td1, td2,0, td3, {td2,i}i∈[ℓ]).

ProveREDJ Δ(crs, x = c1,w = t) :

• Parse crs as (crs1, crs2,0, crs3, {crs2,i}i∈[ℓ]). Sample r ←$ ZN and s ←$ ZN. Compute the
ciphertexts Di = GtiHr

i , D0 = Hr
0, d0 = hs0mod Nξ+1 and (d1,i, d2,i) where d1,i = gs

mod Nξ+1 and d2,i = hsi (1 + N)timod Nξ+1. Additionally, compute c2 = ht(1 + N)t.
Compute the proofπ1 ← NIZK.ProveEQΔ1

(crs1, x1,w1)where x1 = (D0, d0, {Di, d1,i, d2,i}i∈[ℓ])
and w1 = (r, s, {ti}i∈[ℓ]).

• For i ∈ [ℓ], sample si ←$ ZN. Compute the ciphertexts (c1,i, c2,i) where c1,i = gsimod Nξ+1

and c2,i = hsi(1+N)timod Nξ+1. Compute the proofsπ2,i ← ProveEPDJ Δ2,i
(crs2,i, x2,i,w2,i)

for i ∈ [ℓ] where x2,i = (c1,i, c2,i, d1,i, d2,i) and w2,i = (si, r, ti).

• Compute new ciphertexts (c̄1, c̄2) and (c1, c′2)where c̄1 =
∏ℓ

i=1(c1,i)2
i−1 , c̄2 =

∏ℓ
i=1(c2,i)2

i−1

and c′2 = c2(1+N)B/2. Compute the proof π2,0 ← NIZK.ProveEPDJ Δ2,0
(crs2,0, x2,0,w2,0)

where x2,0 = ((c1, c′2), (c̄1, c̄2)) and w2,0 = (t, s̄, t+ B/2) with s̄ =∑ℓ
j=1 sj2j−1.

• Compute the proof π3 ← NIZK.ProveEDLΔ3 (crs3, x3,w3) where x3 = (c1, c2) and w3 = t.

• Output π = (D0, d0, c2, {Di, d1,i, d2,i, c1,i, c2,i,π2,i}i∈[ℓ],π1,π2,0,π3).

VerifyREDJ Δ(td, x,π) :

• Parseπas (D0, d0, c2, {Di, d1,i, d2,i, c1,i, c2,i,π2,i}i∈[ℓ],π1,π2,0,π3) and tdas (td1, td2,0, td3, {td2,i}i∈[ℓ])

• Compute c̄1 =
∏ℓ

i=1(c1,i)2
i−1 , c̄2 =

∏ℓ
i=1(c2,i)2

i−1 and c′2 = c2(1+N)B/2.

• If 0← NIZK.VerifyEQΔ1
(td1, x1,π1) where x1 = (D0, d0, {Di, c1,i, c2,i}i∈[ℓ]), output 0.

• If 0← NIZK.VerifyEPDJ Δ2,i

(
td2,i, x2,i,π2,i

)
, for all i ∈ {0, . . . , ℓ}, output 0.

• If 0← NIZK.VerifyEDLΔ1
(td3, x3,π3) where x3 = (c1, c2), output 0. Else, output 1.

73

Lemma 3.5.10. The scheme presented in Construction 3.5.2 is complete.

Proof. Let c1 ∈ REDJ Δ. Then, by the completeness ofNIZKEDLΔ3 , the proofπ3 is accepted. Now,
the ciphertexts (c1,i, c2,i) encrypt bits ti by the completeness of NIZKEQΔ1

. This means that the ci-
phertext (c̄1, c̄2) encrypts t̄ =

∑ℓ
i=1 2i−1ti. Hence, t̄ ∈ [0,B]. By the completeness ofNIZKEPDJ Δ2

,
(c1, c′2) encrypts t̄ ∈ [0,B] and, thus, (c1, c2 = c′2(1+N)−B/2) encrypts t ∈ [−B/2,B/2]. We con-
clude that the proof is accepted as valid.

Lemma 3.5.11. The scheme presented in Construction 3.5.2 has zero knowledge under the subgroup de-
cision assumption.

Proof. The proof follows from the fact that the schemesNIZKEQΔ1
,NIZKEPDJ Δ2

andNIZKEDLΔ3
are zero-knowledge (hereNIZKEQΔ1

has computational zero-knowledge under the subgroup decision
assumption).

Lemma 3.5.12. The scheme presented in Construction 3.5.2 is statistically simulation sound.

Proof. Theproof follows readily fromthe fact that the schemesNIZKEQΔ1
,NIZKEPDJ Δ2

andNIZKEDLΔ3
are statistically simulation sound and that the DJ scheme is linear homomorphic. That is, if (c1,i, c2,i)
all encrypt bits, then (c̄1, c̄2)where c̄1 =

∏ℓ
i=1(c1,i)2

i−1 and c̄2 =
∏ℓ

i=1(c2,i)2
i−1 is an encryption of

a value smaller than 2ℓ−1.

3.6 Reusable Laconic Private Set Intersection

In this section, we present a protocol that implements ℓPSI in a black-box fashion. We then prove
that the protocol guarantees security against a semi-honest receiver and against amalicious sender. The
input sets are subsets of a universe U of exponential size.

Protocol. We now present the construction for reusable PSI.

Construction 3.6.1. Let U be a universe which contains the input sets of the parties. Let κ ∈ Z such
that 5κ ≤ λ and ξ ∈ N.

We require the following ingredients in this construction:

1. A PPRF PPRF : K × U → Primes(κ) which outputs a prime number.19

2. A DV-NIZKNIZKREDJ Δ = (NIZK.GenCRSREDJ Δ ,NIZK.ProveREDJ Δ ,NIZKVerifyREDJ Δ)
for the languageREDJ Δ which is defined in Section 3.5, for some Δ = (g0,B,N, ξ).

19We remark that we use a PPRF, not because we want uniform outputs, but to implicitly define the set of
primes. A similar trick was used in [BGI16].

74

3. An IND-CPA PKE scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)

4. A (κ− 1, negl(λ))-strong extractor Ext : S × ZNξ+1 → {0, 1}λ.

We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The
protocol is composed by the following algorithms:

GenCRS(1λ) :

• Sample N ←$ RSA(λ), that is, N = PQ where P,Q are safe prime numbers. Choose B such
that Nξ−1/2 ≥ B > N2κ.

• Sample a pair of public and secret keys (pk, sk) ← PKE.KeyGen(1λ). Additionally, sample
a PPRF key k←$ K. Set Δ = (g0,B,N, ξ) where g0 ←$ TN.

• Output crs = (N, pk, g0,B, k,Δ).

R1(crs, SR) :

• Parse crs := (N, pk, g0,B, k,Δ), and SR := {idi}i∈[M] ⊆ U

• Compute the prime numbers pi ← PPRF(k, idi), for all i ∈ [M].

• Sample r←$ [N/4] and compute h = gr
∏

i∈[M] pi
0 mod Nξ+1.

• Run (crs1, td1)← NIZK.GenCRSREDJ Δ(1λ).

• Output st = (r, td1) and psi1 = (h, crs1).

S(crs, SS, psi1) :

• Parse crs := (N, pk, g0,B, k,Δ), psi1 := (h, crs1) and SS := {id′i}i∈[m] ⊆ U .

• For i ∈ [m] do the following:

– Sample ρi ←$ [N/4]. Compute the prime numbers pi ← PPRF(k, id′i).
– Sample an extractor seed si ←$ S and compute Ri ← Ext(si, hρimod Nξ+1)

– Compute fi = gρipi0 mod Nξ+1 and cti ← PKE.Enc(pk, id′i;Ri).
– Compute πi ← NIZK.ProveREDJ Δ (crs1, xi,wi) where xi = fi and wi = ρipi.

• Output psi2 = {fi, cti, si,πi}i∈[m].

75

R2(crs, st, psi2) :

• Parse st := (r, td1) and psi2 := {fi, cti, si,πi}i∈[m]. Set I = ∅

• For all j ∈ [m] do the following:

– If 0← NIZK.VerifyREDJ Δ(td1, xj,πj) where xj = fj, abort the protocol.
– If there is a i ∈ [M] such that

ctj = PKE.Enc(pk, idi;R′i)

where R′i ← Ext(sj, frij mod Nξ+1) and ri = r
M∏

ℓ=1,ℓ ̸=i
pℓ, then add the element idi to

I .

• Output I .

Communicationcost. Here, we analyze the communication cost of the protocol as a function of
the input set sizes |SS| = m and |SR| = M and we omit polynomial factors in the security parameter
λ. The first message outputted by R1 has size O(1). The second message outputted by S has size
O(m). The overall communication cost isO(m), that is, it is independent ofM.

Analysis. We now analyze the correctness and security of the protocol.

Theorem 3.6.1. The protocol presented in Construction 3.6.1 is correct given that NIZKREDJ Δ is com-
plete and PKE is correct.

Proof. Let (h, crs1) be the message sent by R1 created using the set SR as input.
Fix an index j such that bj ∈ SS ∩ SR. Upon receiving (fj, ctj, sj,πREDJj) from SS (i.e., the part

of psi2 with respect to bj).
Since |ρjpj| < 2κN < B, then 1 ← NIZK.VerifyREDJ Δ(td1, xj,πj) where xj = fj except with

negligible probability by the completeness ofNIZKREDJ Δ .
Additionally, let r̃ = r∏i:qi ̸=pj qi where qi ← PPRF(k, idi) for idi ∈ SR and pj ← PPRF(k, bj).

Then

fr̃j mod Nξ+1 = g
ρjpjr

∏
i:qi ̸=pj qi

0 mod Nξ+1

= gρjr
∏

i qi
0 mod Nξ+1

= hρj mod Nξ+1.

Hence, R′j = Rj and thus, ctj = PKE.Enc(pk, bj;R′j). Therefore, bj is added to I .

76

Theorem 3.6.2. The protocol presented in Construction 3.6.1 securely UC-realizes functionality FrPSI

in the GCRS-hybrid model against:

• a semi-honest receiver given that theφ-hiding assumption hold andNIZKREDJ Δ is zero-knowledge;

• a malicious sender, given that the DCR assumption holds and NIZKREDJ Δ is reusable sound.

Proof. We start by proving that the protocol is secure against semi-honest adversaries corrupting the
receiver.

Lemma 3.6.3. The protocol is secure against a semi-honest receiver.

We first showhow the simulatorSimR works. In the following, letSimNIZK be the zero-knowledge
simulator from Lemma 3.5.11 for theNIZKREDJ Δ scheme.

1. SimR takes the input SR of R and sends it to the ideal functionalityFrPSI.

2. CRS generation. To generate the CRS, Sim behaves as the honest algorithm would do.

3. The simulator creates the semi-honest receiver’s view exactly as in the real protocol and keeps
st = (r, td1) to itself.

4. Upon receiving a message psi1 = (h, crs1) from R and a message I (of sizem′, that is, |I| =
m′) from the ideal functionalityFrPSI, the simulator does the following:

• Sample a subsetX of sizem−m′ from the universe U and sets SS = I ∪ X .

• For all i ∈ I , SimR computes (fi, cti, si,πi) as in the real protocol.

• For all i ∈ SS \ I , SimR simulates proofs πi ← SimNIZK(td1, x) for x = fi where
fi ←$ TN. Then, it encrypts cti ← PKE.Enc(pk, 0;Ri)where Ri ← {0, 1}λ.

To prove indistinguishability between the real protocol and the simulated one, we consider the
following sequence of hybrids:

Hyb0: The is the real protocol.

Hyb1: This hybrid is identical to the previous one, except that, for i ∈ SS \ I , SimR simulates the
proofs πi ← SimNIZK(td1, x) for xi = fi.
Claim 3.6.1. Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

The claim above follows directly from the statistical zero-knowledge of the schemeNIZKREDJ Δ .

77

Hyb2,ℓ: This hybrid is identical to the previous one, except that the simulator samples fuℓ ←$ TN
and computes

Ruℓ ← Ext

(
s, frq

−1
uℓ

∏M
j pj

uℓ mod Nξ+1
)

where quℓ ← PPRF(k, xuℓ) for all uℓ ∈ {i : xi ∈ SS \ I} and pj ← PPRF(k, yj) for all yj ∈ SR.
The hybrid is defined for ℓ = 1, . . . ,m−m′.
Claim 3.6.2. Hybrids Hyb1 and Hyb2,m−m′ are indistinguishable.

We prove that hybridsHyb2,ℓ−1 andHyb2,ℓ are indistinguishable for ℓ = 1, . . . ,m − m′ and
whereHyb2,0 = Hyb1.

First, remark that the distribution of ρuℓ is the uniform distribution over [N/4]. Hence, we can
build a statistically indistinguishable sequence of hybridsHyb′2 where we sample ρuℓ ←$ [φ(N)/4]
incurring difference only in the statistical distance.

Now, since g0 and gpuℓ0 are generators of TN, then the distribution of gρuℓpuℓ0 is identical to f̃i ←$

TN, for ρuℓ ←$ [φ(N)/4].
For pi sampled using PPRF (for a uniform input xuℓ ←$ U), we know that puℓ does not divide

φ(N) and ρuℓ ∈ [φ(N)/4] if ρuℓ ←$ [N/4], except with negligible probability. We conclude that

f̃uℓ mod Nξ+1 ≈negl(λ) g
ρuℓpuℓ
0 mod Nξ+1

where f̃uℓ ←$ TN, g0 ←$ TN, ρuℓ ←$ [φ(N)/4] and puℓ ←$ Primes(κ).
Using a similar argument, we have that for anyG(
fuℓ mod Nξ+1, fuℓGp

−1
uℓ mod Nξ+1

)
≈negl(λ)

(
gρuℓpuℓ0 mod Nξ+1, g0ρuℓG mod Nξ+1

)
.

Hyb3,ℓ: This hybrid is identical to the previous one except that SimR computes Ruℓ ←$ {0, 1}λ
for all uℓ ∈ {i : xi ∈ SS \ I}. The hybrid is defined for ℓ = 1, . . . ,m−m′.
Claim 3.6.3. Assume that Ext is a (κ−1, negl(λ))-strong extractor and that the φ-hiding assumption
holds. Then hybrids Hyb2,m−m′ and Hyb3,m−m′ are indistinguishable.

We prove that hybrids Hyb3,ℓ−1 and Hyb3,ℓ are indistinguishable by constructing a reduction
that contradicts Lemma 1.4.1, for ℓ = 1, . . . ,m−m′ and whereHyb2,m−m′ = Hyb3,0.

Suppose that there is an adversaryA that distinguishes hybridsHyb3,ℓ−1 andHyb3,ℓ. We build
an adversary B that breaks Lemma 1.4.1.
B receives as input (N, s, q, g̃). It behaves as the simulator in HybridHyb3,ℓ−1 except that it sets

themodulus in the crs to beN. Additionally, it programs the PPRF such that q← PPRF(k, xuℓ) (this
step is done while creating the PPRF key). Upon receiving a message fromA (together with its view),
it computes G = r∏M

i pi where pi ← PPRF(k, xi) for xi ∈ SR. It sends G to the challenger and
receives z̃. This value z̃ is either equal to Ext(s, g̃G/qmod Nξ+1), if γ = 0, or it is uniformly chosen,

78

if γ = 1, where γ is the challenge bit. Now B sets fuℓ = g̃, ct ← Enc(pk, xuℓ ;Ruℓ) and sends psi2
as in HybridH3,ℓ−1 except that the uℓ-th coordinate is (fuℓ , ctuℓ , suℓ ,πuℓ). The adversary outputs a
bit b andB sets b as its guess. It is easy to see that if γ = 0, thenB’s message is indistinguishable from
the message of hybridHyb3,ℓ−1 and if γ = 1, then it is indistinguishable from the message sent in
hybridHyb3,ℓ.

Hyb4,ℓ: This hybrid is identical to theprevious one except thatSimR encrypts ctuℓ ← PKE.Enc(pk, 0;Ruℓ)
for all for alluℓ ∈ {i : xi ∈ SS\I}. Thehybrid is defined for ℓ = 1, . . . ,m−m′. HybridHyb4,m−m′

is identical to the simulation.

Claim 3.6.4. Assume that PKE is an IND-CPA PKE. Then hybrids Hyb3,m−m′ and Hyb4,m−m′

are indistinguishable.

The claim follows directly from the IND-CPA property of the underlying PKE. That is, given an
adversaryA that distinguishes both hybrids, we can easily build an adversaryB against the IND-CPA
property of PKE. This adversary B simply chooses as messagesm0 = xuℓ (where xuℓ ∈ SS \ I) and
m1 = 0. It outputs whateverA outputs.

Lemma 3.6.4. The protocol is secure against malicious senders.

We first show how the simulator SimS extracts the sender’s input:

1. CRS generation. SimS generates the crs following the algorithm GenCRS, except that it sets
g0 = g′0(1+N) forg′0 ←$ TN. It keepsφ(N) to itself (which canbe computedusing the prime
numbers P,Q) and the secret key sk corresponding to pk. It outputs crs = (pk, g0,B, k,Δ)

2. SimS samples h ←$ TN and computes (crs1, td1) ← NIZK.GenCRSREDJ Δ(1λ). It sends
psi1 = (h, crs1) to the malicious sender.

3. Whenever SimS receives a message psi2 = {fi, ct, si,πi}i∈[m] from the sender, the simulator
initially sets SS and does the following for all i ∈ [m]:

• It checks if 1← NIZK.VerifyREDJ Δ(td1, xj,πj)where xj = fj, and aborts otherwise.

• It computes id′i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′i). Additionally, it extracts
ζi by recovering ζ′i from (1 + N)ζ

′
i = fφ(N)

i and computing ζ = ζ′/φ(N) over the
integers. It computes ρ′i = ζi/pi over the integers. If cti = PKE.Enc(pk, id′i;Ri)
where Ri = Ext(si, hρ′imod Nξ+1), then it adds id′i to SS.

4. It sends SS toFPSI and halts.

We now show that the simulation is indistinguishable from the real protocol via the following se-
quence of hybrids.

Hyb0: This hybrid is the real protocol.

79

Hyb1: This hybrid is identical to the previous one except that the simulator computes the first
message (sent by the receiver) as h←$ TN.

Claim 3.6.5. Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

Since g0 is a generator ofTN, the distributions of gx and h←$ TN are identical. It follows that the
hybrids are indistinguishable.

Hyb2: This hybrid is identical to the previous one, except that g0 = g′0(1 + N) for g′0 ←$ TN
(instead of choosing g0 ←$ TN). Additionally, SimS keeps (φ(N), sk)while creating crs.

Claim 3.6.6. Assume that the DCR assumption holds. Then hybrids Hyb1 and Hyb2 are indistin-
guishable.

The claim follows directly from Corollary 1.4.3.

Hyb3: This hybrid is identical to the previous one except that the simulator, instead of checking if
there is an index i for which

ctj = PKE.Enc(pk, idi;R′i)

where R′i = Ext(sj, frij) and ri = r
M∏

ℓ=1,ℓ ̸=i
pℓ (as in the real protocol), it does the checks as in the

simulation. That is, it computes id′i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′i). Additionally,
it extracts ζi by recovering ζ′i from (1 + N)ζ

′
i = fφ(N)

i and computing ζ = ζ′/φ(N). It computes
ρ′i = ζi/pi over the integers. Then, it checks if cti = PKE.Enc(pk, id′i;Ri)whereRi = Ext(si, hρ′i).
Claim3.6.7. HybridsHyb2 andHyb3 are indistinguishable given thatPKE is correct andNIZKREDJ Δ
is simulation sound.

By the simulation soundness of NIZKREDJ Δ , ζi < Nξ−1/2. Hence, ζ′i < Nξ/2 and thus ζ′i
mod Nξ is equal to ζ′i as an integer. Computing ζ = ζ′i/φ(N) yields ρipi over Z. Thus ρi = ζi/pi
over Z.

Thus, performing the checks in this hybrid has the same outcome as in the real protocol.

Setting the parameters. The value B is such thatNξ−1/2 ≥ B > N2κ for 5κ ≤ λ. Then, it
is enough to set ξ = 3, so that we can find a B that fulfills the condition.

80

Achieving statistical securityagainstthe sender. The protocol presented inConstruc-
tion 3.6.1 achieves computational security against a malicious sender given that the DCR assumption
holds (recall thatNIZKREDJ Δ achieves statistical reusable soundness).

The only place where we use the DCR assumption in the proof of security against a malicious
sender is whenwe replace g0 ←$ TN by g0 = g′0(1+N). Hence, consider the followingmodification
of the protocol presented in Construction 3.6.1: In GenCRS, the element g0 is chosen as g′0(1 + N)
for g′0. This simple modification of the protocol yields a new one which is statistically secure against a
malicious sender. On the other hand, security against a semi-honest receiver now relies on the hardness
of φ-hiding (as before) and the DCR assumption.

3.7 Labeled Laconic PSI and Laconic OT

In this section, we show howwe can extend the techniques developed in Section 3.6 to construct LPSI
to obtain new constructions of labelled LPSI and LOT. Both constructions are reusable and secure
against malicious senders.

3.7.1 Reusable Labeled Laconic PSI Secure Against a Malicious Sender

ReusableLabeledPSI functionality. The functionalityFrLPSI is parametrized by a universe
U and by a universe of labelsL and works as follows:

• Setup phase. R sends (sid, SR) to FrLPSI where SR ⊆ U . It ignores future messages from R
with the same sid.

• Sendphase. S sends (sid, i, SS,lab ⊆ U × L) fromS toFrLPSI. FrLPSI sends (sid, i, SR∩SS,lab)
to R, where SR∩SS,lab = {(y, ℓ) ∈ SS,lab : y ∈ SR}. It ignores future messages from S with
the same sid and i ∈ N.

Protocol. We now present the construction for labeled reusable PSI.

Construction 3.7.1. Let U be a universe which contains the input sets of the parties. Let κ ∈ Z such
that 5κ ≤ λ. Let

• PRF : K × U → Primes(κ) be a PRF which outputs prime numbers

• REDJ Δ be the language defined in Section 3.5 and NIZKREDJ Δ =
(NIZK.GenCRSREDJ Δ ,NIZK.ProveREDJ Δ , NIZKVerifyREDJ Δ) be a DV-NIZK for the
languageREDJ Δ, for some Δ = ((g0, g1),B,N, ξ).

• PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be an IND-CPA PKE scheme

• Ext : S × ZNξ+1 → {0, 1}2λ be a (κ− 1, negl(λ))-strong extractor.

We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The
protocol is composed of the following algorithms:

81

GenCRS : This algorithm is identical to the one described in Construction 3.6.1.

R1(crs, SR) : This algorithm is identical to the one described in Construction 3.6.1.

S(crs, SS, psi1) : This algorithm is identical to the one described in Construction 3.6.1, except that
(Ri||Ti)← Ext(s, hρimod Nξ+1). The string Ri is used to encrypt the set element (as in Construction
3.6.1) Additionally, compute c̄ti = Ti ⊕ labi, where labi is the corresponding label.

R2(crs, st, psi2) : This algorithm is identical to the one described in Construction 3.6.1, except that
whenever ai ∈ I , compute labi = Ti ⊕ c̄ti. Output (I, {labi}i∈I).

Analysis. We state the theorems that guarantee the required properties for our scheme. We omit
the proofs since they are identical to the proofs of Theorems 3.6.1 and 3.6.2

Theorem 3.7.1. The protocol presented in Construction 3.7.1 is correct.
Theorem 3.7.2. The protocol presented in Construction 3.7.1 securely UC-realizes functionality FrLPSI

in the GCRS-hybrid model against:
• a semi-honest receiver given that the φ-hiding and the DCR assumptions hold;

• a malicious sender, where security holds statistically.

3.7.2 Laconic Oblivious Transfer with Malicious Sender Security

In this section, we present a new laconic oblivious transfer (LOT) scheme which is secure against the
malicious sender. Besides, it only needs a small CRS and succinct messages for both rounds (as in
[GVW20]).

Laconic oblivious transfer ideal functionality. Let Γ = Γ(λ) ∈ N. The functionality
FℓOT works as follows: It receives a database D ∈ {0, 1}Γ from R. Upon receiving a message (i ∈
N,m0,m1, L ∈ [Γ]) from the sender S, FℓOT sends (i,mDL) to R and ignores future messages with
the same i from S.

Protocol. We now present the construction for sender-malicious LOT.

Construction 3.7.2. Let Γ = Γ(λ) be a polynomial in λ. Let Let κ ∈ Z such that 5κ ≤ λ. Let
• PRF : K × U → Primes(κ) be a PRF which outputs prime numbers

• REDJ Δ be the language defined in Section 3.5 and NIZKREDJ Δ =
(NIZK.GenCRSREDJ Δ , NIZK.ProveREDJ Δ ,NIZKVerifyREDJ Δ) be a DV-NIZK for the
languageREDJ Δ, for some Δ = ((g0, g1),B,N, ξ).

• Ext : S × ZNξ+1 → {0, 1}2λ be a (κ− 1, negl(λ))-strong extractor.

82

GenCRS(1λ) : This algorithm is identical to the one described in Construction 3.6.1, except that it
does not create a public key pk. It outputs crs = (N, (g0, g1),B, k,Δ) where Δ = ((g0, g1),B,N, ξ).

Hash(crs,D ∈ {0, 1}Γ) : It computes h = gr
∏Γ

i=1 ei,Di
0 mod Nξ+1, where r ←$ [N/4] and

ei,b ← PPRF(k, 2i+b) for i ∈ [Γ] and b ∈ {0, 1}, and computes (crs1, td1)← NIZK.GenCRSERDJ Δ(1λ).
It outputs lot1 = (h, crs1).

Send(crs, lot1,m0,m1, L) : It computes fj = gρjeL,j0 , Fj = gρjeL,j1 (1 + N))
ρjeL,j for j ∈ {0, 1}

where ρj ←$ [N/4] and eL,j ← PPRF(k, 2L+ j), computes ctj = kj ⊕mj, where kj ← Ext(sj, hρj),
computes πj ← NIZK.ProveERDJ Δ(crs, xj,wj) where xj = (fj, Fj) and wj = (ρjeL,j) It outputs
lot2 = ({fj, Fj, ctj,πj, sj}j∈{0,1}, L).

Receive(crs, lot2, st) : It aborts if 0 ← NIZK.VerifyERDJ Δ(td, xj,πj) where xj = (fj, Fj). It
computes kDL ← Ext(sDL , f

r∏i ̸=L ei,Di
DL

mod Nξ+1) , and outputs mDL = ctDL ⊕ kDL .

Analysis. We state the theorems that guarantee the required properties for our scheme.

Theorem 3.7.3. The protocol presented in Construction 3.7.2 is correct.

The proof of correctness essentially follows the same lines as the proof of Theorem 3.6.1.

Theorem 3.7.4. The protocol presented in Construction 3.7.2 securely UC-realizes functionality FℓOT

in the GCRS-hybrid model against:

• a semi-honest receiver given that the φ-hiding and the DCR assumptions hold;

• a malicious sender, where security holds statistically.

Proof. The proof of security against a semi-honest receiver is identical to the proof of Lemma 3.6.3.
We now sketch how to prove security against a malicious sender. The simulator works analogously

to the simulator of Lemma 3.6.4, except that, in this case, the simulator knows the prime eL,i for both
i ∈ {0, 1}. Thus, the re-encryption step is not needed anymore since the simulator can easily extract
ρi, for i ∈ {0, 1} by decrypting (fi, Fi) using φ(N) (which is well-formed and encrypting a value
smaller thanN2 by the soundness ofNIZKERDJ Δ) to recover a value ζ′i. From this value, it can com-
pute ρi = ζ′i/(eL,iφ(N)). After recoreving ρi, it can compute the keys ki and extract the messages
mi.

Indistinguishability between the simulated version and the real protocol follows the sameblueprint
as the proof of Lemma 3.6.4.

83

3.8 Self-Detecting Encryption

In this section, we define self-detecting encryption and show how to build it from laconic PSI.We first
give a semi-honest definition and will present the malicious definition in the full paper [ABD+21b].

Definition 3.8.1. A Self-Detecting Encryption (SDE) scheme is a tuple of (randomized) algorithms
SDE = (Prm,Gen,Hash,Enc,Dec,Detect) such that:

• Prm(1λ): Takes as input a security parameter 1λ, and outputs a public parameter p.

• Gen(p): Takes as input a public parameter p, and outputs a pair of keys (pk, sk).

• Hash(p,DB): Takes as input a public parameter p and a database DB, and outputs a hash
value h and a private state st. We require |h| ≤ poly(λ), for a fixed polynomial poly.

• Enc(pk, h,msg): Takes as input a public key pk, a hash value h, and a messagemsg, and out-
puts a ciphertext ct.

• Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct, and outputs a messagemsg or
⊥.

• Detect(st, ct): Takes as input a private state st and a ciphertext ct, and outputs amessagemsg
or⊥.

We require the following properties:

• Correctness. For anymessagemsg, lettingp←$ Prm(1λ) and (pk, sk)←$ Gen(p): Pr[Dec(sk,Enc(pk,msg)) 6=
msg] ≤ negl(λ).

• Detection. For any p ∈ Prm, any (pk, sk) ∈ Gen(1λ), any database of strings DB, and any
message msg, letting (h, st) ←$ Hash(p,DB) and ct ←$ Enc(pk, h,msg), if msg ∈ DB
thenDetect(st, ct) = msg.

• Efficiency. The size of h and running time of Enc are independent of the database size. There
exists a polynomial poly s.t. for all n := n(λ), anyDB ∈ {0, 1}n, letting h←$ Hash(p,DB)
and p, pk be as above, then |h| ≤ poly(λ) and also the running time of Enc(pk, h,msg) is
upper bounded by poly(|msg|,λ).

• DatabaseHiding. For any twodatabases (DB0,DB1)of equal size, if (h0, ∗)←$ Hash(p,DB0)
and (h1, ∗)←$ Hash(p,DB1) then h0 and h1 are indistinguishable where p←$ Gen(1λ).

• Semantic Security. For anydatabase of stringsDB and any twomessages (msg0,msg1): (pk, h,Enc(pk, h,m0))
c≡

(pk, h,Enc(pk, h,m1)), where all the variables are sampled as above.

84

• Security Against the Authority. For any two messages (msg0,msg1), if msg0 /∈ DB and
msg1 /∈ DB then(

pk, (h, st),Enc(pk, h,m0))
c≡ (pk, (h, st),Enc(pk, h,m1)

)
,

where p←$ Prm(1λ), (pk, sk)←$ Gen(p), and (h, st)←$ Hash(p,DB).

We now show how to realize self-detecting encryption from semi-honest laconic PSI. Informally,
the SDE hash is the receiver’s first-round laconic PSI message, and the encryption of a messagem con-
sists of a PKE encryption ofm as well as a second-round PSI message based onm.

Construction 3.8.1. Let PKE = (KeyGen′,Enc′,Dec′) be a CPA-secure PKE scheme20 and LPSI =
(GenCRS,R1, S,R2) a laconic PSI.

• Prm(1λ): Sample crs←$ LPSI.GenCRS(1λ), and let p := crs.

• Gen(p): Run PKE.Gen′(1λ) to generate a pair of keys (pk, sk).

• Hash(p,DB): Let h be the output of the receiver on DB and p, i.e., h ←$ LPSI.R1(p,DB).
In addition, let st be the private state of the receiver.

• Enc(pk, h,msg): Output (ct1, ct2), where ct1 ←$ PKE.Enc
′(pk,msg) and ct2 ←$ LPSI.S(p, {msg}, h).

• Dec(sk, ct = (ct1, ct2)): Output PKE.Dec′(sk, ct1).

• Detect(st, ct = (ct1, ct2)): Output R2(st, ct2).

Correctness and efficiency follow immediately.

• Statistical database hiding follows from PSI-receiver statistical security.

• Semantic security and security against the authority property of the scheme follows from the
CPA security of PKE scheme Π and the sender’s security. Observe that if msg /∈ DB then
both ct1 and ct2 computationally hide the message even in the presence of the private state
st of PSI. Specifically, one can argue that ct1 computationally hides msg because of the CPA
security of PKE schemeΠ, and ct2 computationally hidesmsg because of the sender’s security
of laconic PSI. The arguments above can be made formal via a routine hybrid argument, and
we omit the details.

20We proceed with an independent PKE scheme for the sake of simplicity.

85

3.8.1 Maliciously Secure Self-Detecting Encryption

Next, we provide a definition of self-detecting encryption in the malicious setting. In this setting,
the algorithmPrm provides a trapdoor which allows a server to ensure that the ciphertexts sent on the
channel can be verifiedwhile ensuring the privacy of users. We remark that the trapdoor is only known
for the server (and is not included in the user’s secret key).21 Clearly, as in the semi-honest setting, the
authority would only be able to detect illegal content by looking at the ciphertexts communicated
through the channel, and no information will be leaked about normal/legal messages.

Specifically, a maliciously secure self-detecting encryption is a tuple of seven (randomized) algo-
rithms SDE = (Prm,Gen,Hash,Enc,Dec,Detect,Verify) such that Prm outputs a trapdoor td
(along with p) such that the verification algorithm Verify checks well-formedness of ciphertext using
td as follows:

• Verify(td, ct): Takes a trapdoor td and a ciphertext ct and it outputs 1 or 0.

The other five algorithms, namely (Gen,Hash,Enc,Dec,Detect), have the same functionality as
in the semi-honest setting. We require that SDE should satisfy all the properties of a semi-honest en-
cryption scheme (correctness, efficiency, database hiding, semantic security, and security against the
authority), alongwith the followingwell-formedness property: for any PPT adversaryA and database
DB, if (p, td)←$ Prm(1λ), (pk, ∗)←$ Gen(p), (h, ∗)←$ Hash(p,DB) then the following holds
for any adversarially generated ciphertext ct ←$ AVerify(td,.)(p, pk, h) with overwhelming probabil-
ity (whereA has oracle access to the verification algorithm):

• If Verify(td, ct) = 1 andDec(sk, ct) ∈ DB thenDec(sk, ct) = Detect(st, ct).

• If Verify(td, ct) = 1 andDec(sk, ct) /∈ DB thenDetect(st, ct) = ⊥.

Given a maliciously secure laconic PSI and a DV-NIZK for a specific language, one can construct a
maliciously secure SDE following the same blueprint that we provided in the semi-honest setting.

Construction 3.8.2. Let PKE = (Gen′,Enc′,Dec′) be a CPA-secure public-key encryption scheme,
and letNIZK = (NIZK.GenCRS,NIZK.Prove,NIZK.Verify) be a DV-NIZK for “message-equality”
language (described below).

• Prm(1λ): Sample (crsN, td) ←$ NIZK.GenCRS(1λ) and crsL ←$ LPSI.GenCRS(1λ),
and let p = (crsN, crsL).

• Gen(p): Sample a pair of keys (pk′, sk′)←$ PKE.Gen
′(1λ). Set pk = (pk′, crsN, crsL) and

sk = sk′.

• Hash(p,DB): Parse p = (crsN, crsL). Output (h, st)←$ LPSI.R1(crsL,DB).
21Notice that in the malicious setting, there are three entities (user, server, and the authority) with their own

secret key/state.

86

• Enc(pk, h,msg): Parse pk = (pk′, crsL, crs). Let ct1 ←$ PKE.Enc′(pk′,msg) and
ct2 ←$ LPSI.S(crsL, {msg}, h).
Compute proof for the statement that the messages underlying ct1 and ct2 are equal. Specifically,
consider the following language L (parameterized by Δ):

LΔ = {(ct1, ct2) : ∃(msg, r, r′) s.t. ct1 = PKE.Enc′(pk′,msg; r′)∧ct2 = LPSI.S(crsL, {msg}, h; r)},

where Δ = (pk′, crsL, h). In addition, r and r′ are the random coins used by PKE.Enc′ and
LPSI.S, respectively. Generate a proof π ←$ NIZK.Verify(crsN, ct1, ct2), and set ct3 := π.
Finally, publish ct = (ct1, ct2, ct3) as the ciphertext.

• Verify(td, ct) : Run NIZK.Verify on td and ct, and output the resulting bit.

• Dec(sk, ct = (ct1, ct2, ct3)): Output PKE.Dec′(sk′, ct1).

• Detect(st, ct = (ct1, ct2, ct3)): Output LPSI.R2(st, ct2).

Correctness, efficiency, database hiding, semantic security, and security against the authority of the
scheme can be argued in a similar fashion to the semi-honest setting. The additional requirement,
namely thewell-formedness property of the scheme essentially follows from the security ofDV-NIZK.
Observe that for a maliciously generated ciphertext ct = (ct1, ct2, ct3), the messages hidden by ct1
and ct2 are not equal, and hence the ciphertext ctwill be rejected by the verification algorithm of DV-
NIZK. We leave a black-box construction of DV-NIZK (for the message-equality language above)
from concrete cryptographic assumptions to future work.

87

4
Rate-1 Oblivious Transfer

In this chapter, we start by addressing the third problem related to privacy-preserving computa-
tion,which involves the communicationbandwidth of a fundamental cryptographic primitive known
as oblivious transfer (OT) which we will recall in Section 4.1.

In particular, we show that it is possible to perform n independent copies of 1-out-of-2 oblivious
transfer in two messages, where the communication complexity of the receiver and sender (each) is
n(1 + o(1)) for sufficiently large n. Note that this matches the information-theoretic lower bound.
Prior to this thesis, thiswas only achievable byusing the heavymachinery of rate-1 fully homomorphic
encryption (Rate-1 FHE[BDGM19]).

To achieve rate-1 both on the receiver’s and sender’s end, we use the LPN assumption, with slightly
sub-constant noise rate 1/mε for any ε > 0 togetherwith either theDDH,QRorLWEassumptions1.
In terms of efficiency, our protocols only rely on linear homomorphism, as opposed to the FHE-based
solution which inherently requires an expensive “bootstrapping” operation. We believe that in terms
of efficiency, we compare favourably to existing batch-OTprotocols while achieving superior commu-
nication complexity. We show similar results for Oblivious Linear Evaluation (OLE).

For our DDH-based solution, we develop a new technique that may be of independent interest.
We show that it is possible to “emulate” the binary group Z2 (or any other small-order group) inside
a prime-order group Zp in a function-private manner. That is, Z2 operations are mapped to Zp op-
erations such that the outcome of the latter does not reveal additional information beyond the Z2
outcome. Our encoding technique uses the discrete Gaussian distribution, which to our knowledge
was not done before in the context of DDH.

1Similar as before, these hardness assumptions are recalled in Chapter 1.

88

4.1 Overview

Oblivious Transfer (OT) [Rab05, EGL82] is one of the most basic cryptographic primitives. In the
simple 1-out-of-2 OT, a receiver holds a bit b ∈ {0, 1} and a sender holds two bits x0, x1. At the
end of the protocol, the receiver should learn xb, but nothing about x1−b, and the sender should learn
nothing about the value of b. In most applications, a single OT is not enough and people need to
perform many OT operations in parallel. We let n denote the number of parallel executions. Various
techniques have been developed to address this task of batch-OT [IKNP03, BCG+19b, BCG+19a].

For the most part, they involve a preprocessing “offline” phase where the parties generate random
OT correlations.2 Given such correlations, executing the OT protocol in the so-called “online phase”
is computationally very simple. This approach is very useful for purposes of computational efficiency
since the offline phase can be carried out even before the actual inputs of the computation are known.
However, in terms of communication complexity, there is an inherent cost, even just in the online
phase, of n receiver bits and 2n sender bits. In contrast, the insecure implementation only requires
n bits to be sent from each party in a two-message protocol: the receiver sends its input, and the
sender returns all of the appropriate xb values. As always in cryptography, we wish to understand
what is the “cost of privacy”, namely can we approach the information-theoretic minimum without
losing privacy. Note that we can only hope to achieve this for a sufficiently large n, due to the security
parameter overhead.3

In prior work, Döttling et al. [DGI+19] showed that if the same receiver bit is used for multiple
OT instances, then the sender’s response can be compressed to n(1 + o(1)), achieving an optimal
amortized rate. This was shown under a variety of computational assumptions: Decisional Diffie-
Hellman (DDH),Quadratic Residuosity (QR), or Learning with Errors (LWE). It was also shown by
Brakerski et al. [BDGM19] and by Gentry and Halevi [GH19] that fully homomorphic encryption
(FHE) can achieve optimal communication complexity, which in particular implies that under the
LWE assumption, optimal rate batch-OT is achievable. However, the FHE-based protocol inherently
requires the use of a computationally exorbitant “bootstrapping”mechanism in order to compress the
receiver’s message.

2That is, a protocol in which the receiver obtains b, xb and the sender obtains x0, x1, where b, x0, x1 are all
(pseudo-)randomly sampled.

3In more detail, since 2-message OT implies a public-key encryption scheme, the messages must have a
length that relates to the security parameter of the underlying computation assumption. This is the case even
for single-bit OT.

89

4.1.1 Our Contribution

We show that optimal-rate4 batch-OT can be achieved from various computational assumptions, and
without giving up on computational efficiency. In particular, we require the LPN assumption with a
small-inverse-polynomial noise5, in addition to one of the assumptions DDH, QR or LWE. In terms
of computational cost, our protocol does not require heavy operations such as bootstrapping and
relies on linear homomorphism only. We believe that in terms of overall cost, it compares favourably
even with random-OT-based methods. All of our results are in the semi-honest (honest-but-curious)
setting.

We further extend our results to the task of Oblivious Linear Evaluation (OLE) [IPS09, CDI+19,
GNN17, BDM22], where the sender holds a linear function over a ring and the receiver holds an input
for the function, and we wish for the receiver to learn the output on its input and nothing more, and
the sender learns nothing as usual. OLE has been shown to be useful in various settings [GMW19,
CDI+19].

Our techniques rely primarily on linear homomorphism, namely on the ability to evaluate linear
functions on encrypted data (see Section 4.2 below). We require a linearly homomorphic scheme
over Z2 (more generally Zq for OLE) where the evaluation is function-private. Namely, the output
ciphertext should not reveal any information about the linear function that was evaluated. This was
not known to be achievable from DDH prior to this thesis, and we introduce a new technique that
we believe may be of independent interest. The reason for this is that DDH works “natively” over
the group Zp where p is a super-polynomially large prime. Furthermore, we only have access to the
Zp elements in the exponent of a group generator g. Indeed, one can encode 0 → g0, 1 → g1, and
linearZ2 homomorphismwill follow in the sense that after applying a linear function in the exponent,
we obtain gx, where x (mod 2) is the desired Z2 output. This creates two obstacles: first, we need
to be able to efficiently map gx → x, which means that xmust come from a polynomially-bounded
domain, and second that recovering x reveals more information than just x (mod 2). We develop
a new method to resolve this issue using discrete Gaussian variables. A technique that was used in
the context of the LWE assumption but to the best of our knowledge not for DDH. We view this as
an additional contribution to this thesis, which may find additional applications. In particular, we
show that it can be used to enhance the key-dependent-message security properties of the well-known
encryption scheme [BHHO08].

For more details on all of our contributions, see the technical overview in Section 4.2.
4Achieving optimal rate (or any rate above 1/2) seems to involve a “phase-transition” and should be viewed

asmore than a “constant factor” improvement. For example, OT beyond this threshold implies the existence of
lossy trapdoor functions (see discussion in [DGI+19], Section 6.3). Therefore one could expect such a protocol
to inherently be heavier on public-key operations.

5This is still a regime where LPN alone is not known to imply public-key encryption.

90

4.1.2 Related Work

The communication complexity of OT has been extensively studied throughout the decades. Here
we present a brief overlook of previous works.

OT from Pseudorandom Correlations. A recent line of research studies the feasibility of
efficiently extending OTs in a silent manner [BCG+19b, BCG+19a]. In these works, a setup phase
is performed to distribute some shares between the parties. These shares can later be expanded into
random OT correlations. In the most efficient scheme [BCG+19a] the setup phase can be performed
in just two rounds assuming just a pseudorandomgenerator and anOT scheme. Using this scheme for
performing the setup together with the standard transformations from random OT to chosen-input
OT, [BCG+19a] shows that n independent instances of OT for s-bit strings can be performed with
communication complexity (2s + 1)n + o(n). For bit OT, this yields a communication complexity
3n+ o(n) bits.

Downloadrate-1OT. We say that anOTprotocol has a download rate-1 if the rate of the sender’s
message is asymptotically close to 1. OT protocols with download rate 1 were presented in [DGI+19,
GHO20, CGH+21].However, these protocols do not achieve an upload rate-1, that is, the rate of the
receiver’s message is far from being 1. Moreover, it is not clear how we can extend these protocols to
achieve upload rate 1.

Usingrate-1 FHE. Asmentionedbefore, optimal-rateOTcanbe achievedusing the recent scheme
for rate-1 fully homomorphic encryption (FHE) of [BDGM19, GH19] together with (semi-honest)
circuit-privacy techniques for FHE (e.g. [BdMW16]). However, this can only be instantiated using
LWE.

LaconicOT. LaconicOT[CDG+17,QWW18,GVW20,ABD+21a] is a flavour of two-roundOT
where the first message sent by the receiver is sublinear (ideally polylogarithmically) in the size of its
input. However, by a simple information-theoretical argument, the sender’s message has a size at least
as large as the size of the sender’s input. Note that, if this is not the case, then we would have an OT
protocol with asymptotically better communication than an insecure OT protocol.

4.2 Techniques

4.2.1 Oblivious Transfer from Homomorphic Encryption

Our starting point is a textbook construction of oblivious transfer from simple homomorphic en-
cryption schemes, such as ElGamal. For a cryptographic group G = 〈g〉 of prime order p, recall
that an ElGamal public key is of the form pk = (g, h = gx) ∈ G2, where x ←$ Zp is the se-
cret key. Ciphertexts are of the form c = (c1, c2) = (gr, hr · gb), where r ←$ Zp is uniformly
random and b ∈ {0, 1} is the encrypted message. Given such a ciphertext c, the public key pk

91

and two bits m0,m1 ∈ {0, 1}, anyone can homomorphically compute a new ciphertext c′ which
is distributed identically to fresh encryption of mb, by homomorphically evaluating the linear func-
tion f(x) = (1− x) ·m0+ x ·m1 = (m1−m0) · x+m0 on the ciphertext c and rerandomizing the
resulting ciphertext. Note that if b ∈ {0, 1} is a bit, then it holds that f(b) = mb. This homomorphic
evaluation can be achieved by computing

c′1 ← gr∗ · cm1−m0
1

c′2 ← hr∗ · cm1−m0
2 · gm0 ,

where r∗ ←$ Zp is chosen uniformly random. Note that it holds that

c′1 = gr∗+r·(m1−m0)

c′2 = hr∗+r·(m1−m0) · g(m1−m0)·b+m0 = hr∗+r·(m1−m0) · gmb .

Since r∗ ←$ Zp is chosen uniformly random, it holds that r′ = r∗+ r · (m1−m0) is distributed uni-
formly random andwe can conclude that c′ = (c′1, c′2) is distributed identical to a fresh encryption of
mb. Since c′ does not reveal more than the function value f(b) = mb, we call the above homomorphic
evaluation procedure to function private.

This immediately implies an OT protocol: An OT-receiver holding a choice-bit b ∈ {0, 1} gen-
erates a pair (pk, sk) of ElGamal public and secret keys, encrypts the bit b under pk and sends the
resulting ciphertext to the OT-sender. The OT-sender, holding messagesm0,m1, homomorphically
computes a ciphertext c′ encryptingmb and sends c′ back to the OT-receiver, who decrypts c′ tomb.
Security against semi-honest senders follows fromthe IND-CPAsecurity of ElGamal, whereas security
against semi-honest receivers follows from the function privacy property established above.

4.2.2 Download-Rate Optimal String OT

While the above OT protocol is simple and efficient, it suffers from a very poor communication rate.
While the receiver’s message encrypts just a single bit, he needs to send 4 group elements, whereas the
sender sends 2 group elements, each of size poly(λ).

Döttling et al. [DGI+19] proposed a compression technique for batched ElGamal ciphertexts based
on the share-conversion technique of [BGI16]. A batched ElGamal ciphertext is of the form c =
(c0, c1, . . . , cℓ) = (gr, hr1 ·gb1 , . . . , hrℓ ·gbℓ), where pk = (g, h1, . . . , hℓ) is the corresponding public
key and sk = (s1, . . . , sℓ) with hi = gsi is the secret key. The compression technique of [DGI+19]
keeps c0 and compresses each of the c1, . . . , cℓ into just a single bit. The idea is instead of sending each
ci ∈ G (for i ≥ 1) in full, to first compute the distance d to the next pseudorandom break-point in
G, and then only send its parity d mod 2. The break points P ⊆ G are the set of all points h ∈ G
satisfying PRFK(h) = 0t, where PRF : G → {0, 1}t is a pseudorandom function with a range of
size 2t = poly(λ). Thus, the distance d = d(ci) of a group element ci to the nearest breakpoint is
the smallest non-negative d such that ci · gd ∈ P . Given that neither ci nor ci · g−1 is a breakpoint,
we can recover the bit bi from c0 = gr, β=d(ci) mod 2 and the secret key component si. It was

92

shown in [BBD+20] that for a given ciphertext c = (c0, c1, . . . , cℓ), thePRF-keyK canbe (efficiently)
chosen such that all ci are good, in the sense that neither ci nor ci ·g−1 is a breakpoint. This ensures that
a receiver can recover the b1, . . . , bℓ from c′ = (K, c0, β1, . . . , βℓ), where βi = d(ci) mod 2. Since
all the βi are bits, such a compressed ciphertext only has additive size-overhead consisting ofK, c0. For
a sufficiently large ℓ, this fixed overhead becomes insignificant and the ciphertext rate approaches 1.

The compressed batched ElGamal we’ve outlined leads to a batch bit-oblivious transfer protocol
with download-rate 1: The receiver generates a key-pair pk, sk for batched ElGamal, and encrypts his
choice-bits b1, . . . , bℓ into

c1 = Encpk(b1, 0, . . . , 0), . . . , cℓ = Encpk(0, . . . , 0, bℓ),

i.e. c(i) encrypts a vector which is bi in index i and 0 everywhere else. The OT-receiver now sends
pk, c1, . . . , cℓ to the OT-sender, whose input are messages (m1,0,m1,1), . . . , (mℓ,0,mℓ,1). Using cir-
cuit privatehomomorphic evaluation, the sender computes ciphertexts c′1, . . . , c′ℓ encrypting (m1,b1 , 0, . . . , 0),
. . . , (0, . . . , 0,mℓ,bℓ). Homomorphically computing the sum of the ciphertexts c′1, . . . , c′ℓ, we ob-
tain a ciphertext c′ encrypting (m1,b1 , . . . ,mℓ,bℓ). Finally, compressing c′ with the compression tech-
nique outlined above we obtain a compressed ciphertext c̄ = (K, c0, β1, . . . , βℓ) which the OT-
sender sends back to the OT-receiver, who can decrypt (m1,b1 , . . . ,mℓ,bℓ).

Note that the size of the sender’s message c̄ in this batch OT-protocol is poly(λ)+ ℓ, whichmeans
that the amortized communication cost per bit-OT approaches 1 bit, and is therefore asymptotically
optimal. Even in terms of concrete complexity, this seems hard to beat, as the only additional infor-
mation sent by the sender are the PRF key K and the ciphertext header c0.

However, in terms of the upload rate, i.e. in terms of the size of the receiver’s message, this proto-
col performs poorly. Specifically, to encrypt ℓ bits b1, . . . , bℓ, the receiver needs to send ciphertexts
c1, . . . , cℓ of total size ℓ2 ·poly(λ), which has a worse dependence on ℓ than just repeating the simple
protocol from the last paragraph ℓ times.

Clearly, we need amechanism to compress the receiver’s message. Applying the same ElGamal com-
pression technique for the sender’s message quickly runs into problems: Once an ElGamal ciphertext
is compressed, the scheme loses its homomorphic capabilities, i.e. we cannot perform any further ho-
momorphic operations on compressed ciphertexts and currently we don’t know if it is possible to
publicly decompress such ciphertexts into “regular” ElGamal ciphertexts.

4.2.3 Our Approach: Recrypting the Receiver’s Message

Instead, our approach will be to encrypt the receiver’s message under a different encryption scheme,
specifically one which achieves a ciphertext rate approaching 1 but at the same time can be decrypted
by the homomorphic capabilities of batched ElGamal. Specifically, the decryption procedure of this
encryption scheme should be a linear function in the secret key. We can get an encryption scheme
which almost fulfills these requirements from theLearning ParitywithNoise (LPN) assumption. The
LPN assumption states that for a randomm×nmatrixA←$ Zm×n

2 , a random vector s←$ Zn
2 and

93

a ρ-Bernoulli distributed 6 e ∈ Zm
2 , it holds that

(A,As+ e) ≈c (A,u),

where u ←$ Zm
2 is chosen uniformly at random. This gives rise to the following simple symmetric-

key encryption scheme with approximate correctness: Assume thatA is a fixed public parameter, the
secret key is a uniformly random s ←$ Zn

2 . To encrypt a messagem ∈ Zm
2 , we compute a ciphertext

d← As+e+m, wheree ∈ Zm
2 is chosen via aρ-Bernoulli distribution. Todecrypt such a ciphertext,

we computem′ ← d−A · s.
Note that this scheme is only approximately correct in the sense that it holds thatm′ = m+ e, i.e.

in most coordinatesm′ is identical tom, but only in few coordinatesm′ andm differ. Furthermore,
the one-time security of this encryption scheme follows from the LPN assumption.

The high-level strategy to use this symmetric key encryption scheme is now as follows: Assume the
matrix A ∈ Zm×n

2 is known to both the sender and the receiver. In the actual protocol this matrix
will be chosen by the receiver, and the communication cost of sendingAwill be amortized by reusing
Amany times.

The OT-receiver chooses a symmetric key s ←$ Zn
2 uniformly at random and encrypts his vector

of choice bits b = (b1, . . . , bℓ) to d = As + e + b (where again, e ∈ Zℓ
2 is ρ-Bernoulli dis-

tributed). Furthermore, the receiver will encrypt the LPN secret under ElGamal, i.e. he encrypts s to
c = Enc(pk, s). For the moment, assume that s is encrypted bit-wise with standard ElGamal rather
than batched ElGamal. The OT-receiver now sends the ElGamal public key pk and the ciphertexts c
and d to the OT-sender.

Now, given these values, the sender can homomorphically decrypt the d into ElGamal, effectively
key-switching from the ciphertext d into an ElGamal ciphertext. Concretely: The sender homomor-
phically evaluates the linear function f(x) = d − Ax on the ElGamal ciphertext c = Enc(pk, s).
This produces an ElGamal encryption c′ encrypting f(s) = d−As = b+ e = b′. In other words,
the OT-sender has now obtained an ElGamal encryption of a vector b′ which agrees with b in most
locations.

The high-level idea is now to let the OT-sender use this ciphertext c′ as the encryption of the re-
ceiver’s choice bits and proceed as in the ElGamal-based OT protocol above. If we were to naively use
c′ in this way, the receiver would obtain the correct outputmi,bi in locations whereb andb′ agree but
would get the wrong output mi,1−bi in locations where b and b′ disagree. While there certainly are
applications in which a small number of faulty locations are tolerable, in general, this leads to insecure
protocols.

There is, however, another issue with this approach. In this paragraph, we have implicitly assumed
thatElGamal is homomorphic for linear functionsmodulo 2. However, since the groupwe implement
ElGamal over is of large prime order p, whenwe evaluate linear functions such as f(x) = d−Ax over
a ciphertext encrypting a s ∈ {0, 1}n, the result of this evaluation is not reduced modulo 2, and the
resulting ciphertext in fact encrypts f(s) as an integer. This does not cause major problems in terms

6i.e. every component of ei of e is independently 0with probability 1− ρ and 1with probability ρ

94

of correctness, as this integer will still be small (at most of the sizem), and hence decryption will still
be efficient.

However, this does cause major problems in terms of sender privacy, as we can only guarantee
sender privacy for receiver messages that are guaranteed to encrypt a bit b ∈ {0, 1}.

For now, we will bypass this problem by relying on a homomorphic encryption scheme which is
in fact homomorphic over Z2 (rather than Zp), offers function privacy for linear functions modulo 2
and is compatible with ciphertext compression. Such encryption can in fact be constructed from the
Quadratic Residuosity assumption [DGI+19].

Another small issue we haven’t addressed here is that the compression mechanisms for the sender
and the receiver are somewhat orthogonal, in the sense that the sender’s message is compressed by
compressing a batched ElGamal ciphertext (which generally does not allow homomorphic evaluation
across different components), whereas the receiver’s compression strategy requires the homomorphic
evaluation of linear functionswithmultiple (i.e. vector-valued) inputs. In themain body (Section 4.7)
wewill showa tradeoffwhich allowsus to reconcile these requirements, leading to a batchOTprotocol
with an overall rate-1.

We will first discuss how to deal with the issue of errors in the key-switched ciphertext and then
return to the issue of implementing our approach with ElGamal instead of QR-based encryption.

4.2.4 Dealing with LPN Errors

To deal with the LPN errors in the key-switched ciphertext c′, we will pursue the following high-level
strategy: The sender will introduce additional masking on the receiver’s output, which can only be
removed in error-free locations. This masking effectively erases the receiver’s output in locations in
which the receiver’s output is corrupted.

To communicate the correct outputs in the locations with errors, the parties will rely on an addi-
tional protocol which is run in parallel. Given that the number of errors is sufficiently small, the com-
munication cost of this additional protocol will be insubstantial and not affect the overall asymptotic
rate.

We will first address the problem of erasing the receiver’s output in corrupted locations. First, ob-
serve that the receiver knows the locations with errors (i.e. the support of the error vector e). Assume
that the LPN error vector e has a fixed hamming weight t ≈ ρm, and note that hardness of fixed-
weight LPN follows routinely from the hardness of Bernoulli LPN7. A t-puncturable pseudorandom
function [BGI14, BCG+19b] is a pseudorandom function [GGM84]which supports punctured keys.
That is, given a PRF key K and t inputs x1, . . . , xt, we can efficiently compute a punctured key K′ of
size t ·poly(λ)which allows evaluating the PRF on all inputs except x1, . . . , xt. Furthermore, the key
K′ does not reveal the function values at x1, . . . , xt, i.e. PRF(K, x1), . . . ,PRF(K, xt) are pseudoran-
dom given the punctured key K′.

The approach to erase the receiver’s outputs in erroneous locations is now as follows. The sender
chooses a PRF key K and masks bothmi,0 andmi,1 with PRF(K, i), i.e. instead of using (mi,0,mi,1)

7See e.g. [Döt15, BCG+19b]

95

as OT-inputs, he usesm′i,0 = mi,0 ⊕ PRF(K, i) andm′i,1 = mi,1 ⊕ PRF(K, i). Assuming that the
sender can somehow communicate a punctured key K′ which is punctured at the locations i1, . . . , it
of the errors (i.e. eij = 1 and e is 0 everywhere else), the receiver will be able to remove themask from
error-free locations by computingmi,bi = m′i,bi ⊕ PRF(K′, i). In the erroneous locations, however,
mi,1−bi will be hidden from the view of the receiver as PRF(K, i) is pseudorandom even given the
punctured key K′.

How canwe communicate the punctured keyK′ to the receiverwith a small communication cost in
such a way that the sender does not learn the error locations i1, . . . , it? This could be achieved gener-
ically by relying on the punctured PRF construction of [BGI14] and transferring keys using a sublin-
ear private information retrieval (PIR) scheme [CGKS95, DGI+19]. However, recently [BCG+19b]
provided a protocol to achieve this task very efficiently via a two-round protocol communicating only
tpoly(λ) bits. In themain body (Section 4.6), wewill refer to this primitive as co-PIR, since effectively
it allows to communicate of a large pseudorandom database to a receiver except in a few locations cho-
sen by the receiver.

Finally, to communicate the correct outputs to the receiver in the locations with errors, we will
in fact rely on a two-message PIR scheme with polylogarithmic communication. Such schemes are
knowne.g. fromLWE[BV11] andwere recently constructed fromawide variety of assumptions [DGI+19],
such asDDHandQR.The idea is as follows: For each error location ij the receiver sends an additional
OT messageOT1(bij) using an off-the-shelf low-rate OT protocol (e.g. the basic ElGamal-based pro-
tocol sketched above), as well as a PIR message PIR1(ij). The sender speculatively completes this OT
protocol for each index i (since the index ij is not known to the sender), collects his OT responses in a
database of size ℓ, runs the PIR sender algorithm on this database, and sends the response back to the
receiver. The receiver will now be able to recover the correctOT2 message via PIR, complete the OT
and recovermij,bij . We remark that for this protocol to be secure against semi-honest senders, we need
a PIR protocol with sender privacy. However, e.g. the protocols provided in [DGI+19] readily have
this feature.

Carefully putting all these components together, we obtain a batch bit-OTprotocol with rate-1, for
both the sender and the receiver.

4.2.5 Emulating Small Subgroups

We now return to the issue that ElGamal does not provide function privacy for linear functions mod-
ulo 2. Recall that the issue essentially boils down to the fact that the plaintext space of ElGamal is
nativelyZp, and when we encode messages in the least significant bits, i.e. encoding a bit b as gb, then
for all practical purposes homomorphic evaluations of linear functions with {0, 1} coefficients are
over Z2, i.e. the resulting ciphertext encodes the result of the function evaluation without reduction
modulo 2.

From an algebraic perspective, this problem is rooted in the fact that since p is prime, Zp has no
non-trivial subgroup, i.e. it just does not support modular reductions with respect to anything else
than p.

96

Toapproach this problem,wewill take inspiration fromthedomainof lattice cryptography [Reg05].
There, messages are typically encoded in the high order bits of group elements, i.e. to encode b in Zp,
we would like to encode it as b · p2 . However, since p is odd, first have to round p

2 to the nearest integer
in order to get a properZp element, i.e. we encode b via b · ⌈ p2⌉. If we could encode bwith respect to
p
2 /∈ Zp, we would get a subgroup of order 2, i.e. for bits b, b′ ∈ {0, 1} it holds that(

b · p2 + b′ · p2
)
mod p = (b+ b′ mod 2) · p2 .

However, oncewe round p
2 to the next integer, we get essentially the sameproblem as before: Ifwe per-

form group operations on b ⌈ p2⌉ and b′ ⌈ p2⌉, then the rounding errors start to accumulate information
about b and b′ which is cannot be obtained from b+ b′ mod 2. Specifically

b
⌈p
2
⌉
+ b′

⌈p
2
⌉

mod p = b
(p
2 +

1
2

)
+ b′

(p
2 +

1
2

)
mod p

= (b+ b′ mod 2)p2 + (b+ b′)12 mod p.

Thus, now the least significant bit of b ⌈ p2⌉+b′ ⌈ p2⌉ mod p e.g. leaks if b = b′ = 1, something which
cannot be learned from b+ b′ mod 2.

Consequently, at first glance the idea of encoding a bit b in the “high-order” bits of a Zp element
seems ineffective. However, the lattice toolkit still has more to offer. In particular, in the context of
sampling discrete Gaussians from lattices, Peikert [Pei10] considered a technique called randomized
rounding. The basic idea is, to give a real number r ∈ R to not always round to the same value e.g. dre,
but to sample an integer z close to r. In [Pei10], this distribution is a discrete gaussianZ onZ centered
at r, i.e. the expectation of Z is r. Such a discrete gaussian is parametrized by a gaussian parameter σ,
which essentially controls the standard deviation of the discrete gaussian. We denote Z by drcσ.

Now, given any two r, r′ ∈ R andσ1, σ2 > ω(
√
log(λ)) (more generally the smoothing parameter

of Z), Peikert [Pei10] shows that

drcσ1 + dr′cσ2 ≈s dr+ r′c√σ21+σ22
.

In other words, while drcσ1 + dr′cσ2 and dr+ r′c√σ21+σ22
are not the same, they are statistically close.

This means that anything that can be learned from drcσ1 + dr′cσ2 could have as well been learned
from dr + r′c√σ21+σ22

! While this comes at the expense of an increase “error” term with parameter√
σ21 + σ22, this additive error is very small (of size approx σ) controlling the growth of this error

term can be handled by standard techniques.
Returning to our goal of emulating small subgroups inZp, our approach follows almost instantly:

Instead of encoding a bit b ∈ Z2 as b · ⌈ p2⌉, we will encode it as
⌈b · p2⌋σ (for a σ > ω(

√
log(λ))).

97

For b, b′ ∈ {0, 1} this ensures that⌈
b · p2

⌋
σ
+
⌈
b′ · p2

⌋
σ

mod p ≈s
⌈
(b+ b′ mod 2) · p2

⌋
√
2σ

mod p.

Thus, we have ensured that
⌈b · p2⌋σ +

⌈b′ · p2⌋σ mod p does not leak more information than b +
b′ mod 2.

Function-Private Evaluation for ElGamal We will now briefly discuss how this idea leads
to a modulo 2 function private homomorphic evaluation procedure for ElGamal. Say we have two
ElGamal ciphertexts c1 = (gr1 , hr1 · gb1) and c2 = (gr2 , hr2 · gb2) for a public key pk = (g, h) and
we want to homomorphically evaluate the function f(x1, x2) = a1x1 + a2x2 mod 2 (for a1, a2 ∈
{0, 1}) on this pair of ciphertexts. In the first step, we randomly encode the function f as

f′(x1, x2) = x1 ·
⌈
a1
p
2
⌋
σ
+ (1− x1) · d0cσ + x2 ·

⌈
a2
p
2
⌋
σ
+ (1− x2) · d0cσ ,

noting that this is still a linear function (chosen from a distribution). Homomorphically evaluating f′
on the ciphertexts c,c2 we obtain a ciphertext c′ encrypting

f′(b1, b1) = b1 ·
⌈
a1
p
2
⌋
σ
+ (1− b1) · d0cσ + b1 ·

⌈
a2
p
2
⌋
σ
+ (1− b1) · d0cσ

=
⌈
b1a1

p
2
⌋
σ
+
⌈
b1a2

p
2
⌋
σ

≈s
⌈
(b1a1 + b1a2 mod 2)p2

⌋
√
2σ
.

Inotherwords, this ciphertext couldhavebeen simulatedknowingonly the function result f(b1, b1) =
b1a1 + b1a2 mod 2, establishing that this homomorphic evaluation procedure is a function private.

One aspect to note is that while the messages b1, b1 are encoded in c1, c2 in the “low-order-bits”
via gb1 and gb2 , the function result f(b1, b2) encrypted in c′ is encoded in the high order bits, i.e. it is
encoded as≈ gf(b1,b2) p2 . Thismakes it necessary to change the decryption procedure: Let c′ = (c′1, c′2)
and s be the secret key. To decrypt c′ we compute f = c′2 · (c′1)−s ≈s g⌈f(s1,s2)·

p
2 ⌋, we test if f is close

to g0 = 1 or g⌈p/2⌉. This recovers f(s1, s2), as the error introduced by the rounding operation is of
size at most poly(λ) via standard gaussian tail bounds.

Finally, we remark this “high-order-bit” encoding is still compatible with ElGamal ciphertext com-
pression, i.e. we can still compress homomorphically evaluatedbatchElGamal ciphertexts downasymp-
totically optimal size, using a slightly different compression mechanism. This mechanism is discussed
in Section 4.5. We expect this technique to have additional applications. As one immediate appli-
cation, it allows to upgrade of the key-dependent message secure encryption scheme of Boneh et
al. [BHHO08] to support arbitrary linear functions modulo 2.

98

4.3 Definitions

In this chapter, we consider the two-message oblivious transfer (OT) with an overall (almost) optimal
rate; where the sender has input (m0,m1) ∈ {0, 1}2 and the receiver a choice bit b ∈ {0, 1}. In the
end, the receiver learns the bitmb and nothing else; the sender learns nothing about b. We define the
OT in the plain model as follows.

Definition 4.3.1 (Two-message OT). A two-message OT protocol between a sender and a receiver
can be defined as a tuple of three PPT algorithms OT = (OTR,OTS,OTD). Let λ be the se-
curity parameter and k = poly(λ). The receiver computes (ot1, st) ← OTR(1λ,b) with his
input b = (b1, . . . , bk) ∈ {0, 1}k and sends ot1 to the sender. The sender computes ot2 ←
OTS(1λ, ot1, (m0,m1)) where (m0,m1) = ((m0,1, . . . ,m0,k)(m1,1, . . . ,m1,k) ∈ ({0, 1}k)2 and
sends to the receiverot2. At the end, the receiver decodes themessage to getmb = (mb1,1, . . . ,mbk,k)←
OTD(ot2, st).

In terms of security, OT should implement the following functionality.

OT functionality. The functionalityFOT is parametrized by a integer k = poly(λ) and works
as follows:

• Receiver phase. R sends b toFOT where b ∈ {0, 1}k.

• Sender phase. S sends (m0,m1) toFOT wherem0,m1 ∈ {0, 1}k. FOT sends {mbi,i}i∈[k] to
R.

4.3.1 Distributed GGM-PPRF Correlation

Let PPRFGGM = (KeyGen,Eval,Puncture,EvalPunct) be the GGM-PPRF scheme based on
[GGM86]. The distributed GGM-PPRF correlation functionality [BCG+19a] considers two par-
ties: A receiver with input α ∈ {0, 1}ℓ and a sender with input β ∈ Fpr and a GGM-PPRF key K.
The functionality outputs a punctured key Kα and a hardwired value β − PPRF.Eval(K,α) to the
receiver. We now present the formal definition of the functionality.

Distributed GGM-PPRF correlation functionality. The functionality FPPRF-GGM is
parametrizedby integers ℓ, p, r ∈ N. Moreover, letPPRFGGM = (KeyGen,Eval,Puncture,EvalPunct)
be the GGM PPRF scheme with input space {0, 1}ℓ and output space Fpr . The functionality works
as follows:

• Receiver phase. R sends α toFPPRF-GGM where α ∈ {0, 1}ℓ.

• Sender phase. S sends (β,K) to FPPRF-GGM where β ∈ Fpr and K ← PPRF.KeyGen(1λ).
FPPRF-GGM sendsKα ← PPRF.Puncture(K,α) and γ← β− PPRF.Eval(K,α) to R.

99

A protocol that implements the functionality FPPRF-GGM is presented in [BCG+19a]. The pro-
tocol uses a pseudorandom generator (PRG) and an oblivious transfer (OT)8 protocol in a black-box
way. Moreover, security is proven against semi-honest adversaries. Finally, the protocol presented
runs in two rounds (assuming that the OT runs in two rounds) and achieves communication com-
plexity of poly(λ, ℓ).

For convenience,wewill denote such aprotocol byPPRF-GGM = (PPRF-GGM.R1,PPRF-GGM.S,PPRF-GGM.R2)
where:

• PPRF-GGM.R1(α) receives as inputα ∈ {0, 1}ℓ. It outputs amessage pprf-ggm1 and a state
st.

• PPRF-GGM.S(β,K, pprf-ggm1) receives as input β ∈ Fpr , a key K ← PPRF.KeyGen(1λ)
and a message pprf-ggm1. It outputs pprf-ggm2.

• PPRF-GGM.R2(st, pprf-ggm2) receives as input a state st and a message pprf-ggm2. It out-
puts a punctured keyKα and a value γ ∈ Fpr .

Using the two-round OT scheme of [PVW08], we can obtain a black-box construction for dis-
tributed GGM-PPRF correlation scheme under the LWE, DDH or QR assumptions.

4.4 Compression-friendly Subgroup Emulation via Gaussian Rounding

We will now provide our new subgroup emulation technique. We first define the gaussian rounding
functionality.

Definition 4.4.1. Let σ > 0. For any x ∈ R, the gaussian rounding dxcσ is a random variable sup-
ported on Z defined by

dxcσ = x+DZ−x,σ.

In other words, dxcσ is a discrete gaussian centred on x ∈ R but supported on Z.
We will use the following convolution lemma which provides a simulation property for gaussian

rounding.

Lemma 4.4.1. Let ε > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥ ηε(Z). Then it
holds for all x, y ∈ R that

dxcσ1 + dycσ2 ≈s dx+ yc√σ21+σ22
.

It immediately follows from Lemma 4.4.1 that it holds for every integer p ≥ 2 that

dxcσ1 + dycσ2 mod p ≈s dx+ yc√σ21+σ22
mod p.

8The OT protocol is not required to have overall rate 1.

100

Proof. The lemma follows routinely from Corollary 1.3.3, by definition of d·cσ it holds that

dxcσ1 + dycσ2 = x+ y+DZ−x,σ1 +DZ−y,σ2
≈s x+ y+DZ−x−y,σ3
= dx+ ycσ3 .

Lemma 4.4.2. Let p > q ≥ 2 be integers with q ≤ 2k, and let σ > ηε(Z) for a negligible ε.
Let f : Zn

q → Zq be given by f(x1, . . . , xn) =
∑n

i=1 aixi + c for a1, . . . , an, c ∈ Zq. Define the
randomized function f̂ : {0, 1}nk → Zn

p via

f̂(x1,1, . . . , xn,k) =
n∑
i=1

k∑
j=1

(
xi,j ·

⌈
2j · pqai

⌋
σ
+ (1− xi,j) d0cσ

)
+

⌈p
qc
⌋
σ
.

Then it holds for all x1,1, . . . , xn,k ∈ {0, 1} that

f̂(x1,1, . . . , xn,k) ≈s

pq · f
 k∑

j=1
x1,j2j, . . . ,

k∑
j=1

xn,j2j

√2nk+1σ

.

Proof. It holds routinely that

f̂(x1,1, . . . , xn,k) =
n∑
i=1

k∑
j=1

(
xi,j ·

⌈
2j · pqai

⌋
σ
+ (1− xi,j) d0cσ

)
+

⌈p
qc
⌋
σ

≈s
n∑
i=1

k∑
j=1

⌈
xi,j2j ·

p
qai
⌋
√
2σ

+

⌈p
qc
⌋
σ

(4.1)

≈s

n∑
i=1

k∑
j=1

xi,j2j ·
p
qai +

p
qc

√2nk+1σ

(4.2)

=

pq ·
 n∑

i=1
ai

 k∑
j=1

xi,j2j
+ c

√2nk+1σ

=

pq · f
 k∑

j=1
x1,j2j, . . . ,

k∑
j=1

xn,j2j

√2nk+1σ

,

where in equations (4.1) and (4.2) we have used Lemma 4.4.1.

101

4.5 Rate-1 Circuit-Private Linearly Homomorphic Encryption

In this section, we define circuit-private LHE and present constructions based on LWE,DDHorQR.
All constructions achieve rate 1.

Definition 4.5.1. A (packed) linearly homomorphic encryption (LHE) scheme LHE over a finite group
G is composed by a tuple of algorithms (Keygen,Enc,Eval, Shrink,DecShrink) such that:

• KeyGen(1λ, k) takes as input a security parameter λ and k ∈ N. It outputs a pair of public
and secret keys (pk, sk).

• Enc(pk,m = (m1, . . . ,mk)) takes as input apublic keypk and amessagem = (m1, . . . ,mk) ∈
Gk. It outputs a ciphertext ct.

• Eval(pk, f, (ct1, . . . , ctℓ)) takes as input a public key pk, a linear function f : (Gk)ℓ → Gk

and ℓ ciphertexts (ct1, . . . , ctℓ). It outputs a new ciphertext c̃t.

• Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a new shrunken
ciphertext ct′.

• DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct. It outputs a
messagem.

For simplicity, we define the algorithmEval&Shrink(pk, f, (ct1 . . . , ctℓ))which outputs a cipher-
text c̃t and is defined as

Eval&Shrink(pk, f, (ct1 . . . , ctℓ)) = Shrink(pk,Eval(pk, f, (ct1, . . . , ctℓ)))

for any linear function f.
We require the following properties from a (circuit-private) packed LHE: Correctness, semantic

security, compactness and circuit privacy.

Definition 4.5.2 (Correctness). A packed LHE scheme LHE is said to be correct if for any ℓ ∈ N, any
messagesm1, . . . ,mℓ and any linear function f : (Gk)ℓ → Gk we have that

Pr
m̃← DecShrink(sk, c̃t) :

(pk, sk)← KeyGen(1λ, k)
cti ← Enc(pk,mi) for i ∈ [ℓ]

c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))

 = 1

where m̃← f(m1, . . . ,mℓ).

102

Definition 4.5.3 (Semantic Security). A packed LHE scheme LHE is said to be semantically secure if
for all λ ∈ N, all k = poly(λ) and all adversariesA = (A0,A1)we have that∣∣∣∣∣∣∣∣Pr

b← A1(st, ct) :

(pk, sk)← KeyGen(1λ, k)
(m0,m1, st)← A0(pk)

b←$ {0, 1}
ct← Enc(pk,mb)

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 4.5.4 (Compactness). We require that a packed LHE scheme LHE has the following com-
pactness properties:

• For (pk, sk)← KeyGen(1λ, k), the size of the public key |pk| is bounded by k · poly(λ).
• For any linear function f : (Gk)ℓ → Gk and any (m1, . . . ,mℓ) ∈ (Gk)ℓ we have that

lim
λ→∞

inf |f(m1, . . . ,mℓ)|
|Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))|

→ 1

for sufficiently large k, where (pk, sk)← KeyGen(1λ, k) and cti ← Enc(pk,mi) for i ∈ [ℓ].
In this case, we say that the scheme has a rate-1.

We also need that the packed LHE scheme fulfills circuit privacy (in the semi-honest case).

Definition 4.5.5 (Circuit Privacy). A packed LHE scheme LHE is said to be circuit-private if for all
messages (m1, . . . ,mℓ) ∈ (Gk)ℓ and all linear functions f : (Gk)ℓ → Gk, there exists a simulator
Sim such that for all adversariesAwe have that∣∣∣∣∣∣∣∣∣∣

Pr
1← A(pk, sk, c̃t) : (pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [ℓ]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))

−
Pr
[
1← A(pk, sk, c̃t) : (pk, sk)← KeyGen(1λ, k)

c̃t← Sim(pk, m̃)

]
∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where m̃← f(m1, . . . ,mℓ).

In other words, since Sim does not use f to compute c̃t, no information about it is leaked from c̃t
(apart from what is trivially leaked by f).

Encryption of matrices. Above, we defined LHE that supports encryption of vectors m ∈
Gk. We can easily extend the definition to support encryption of matricesM ∈ Gk×α for any α =
poly(λ): Given a public key pk, encryption Enc(pk,M) ofM is defined as

Enc(pk,M) =

 | |
Enc

(
pk,m(1)) . . . Enc

(
pk,m(α))

| |

103

wherem(i) is the i-th column ofM.

4.5.1 Construction from LWE

Before sketching the scheme, we present the LWE assumption [Reg05].

Definition 4.5.6 (Learning with Errors). Let n, q ∈ Z. The LWE assumption holds if for any PPT
adversaryA

|Pr [1← A(A, sA+ e)]− Pr [1← A(A,u)]| ≤ negl(λ)
for allm = poly(n), whereA←$ Zn×m

q , s←$ Zn
q , e←$ Dm

Z,σ and u←$ Zm
q .

Whenwe consider σ = ζq ≥ 2√n, the LWEproblem is at least as hard as solving the approximate
shortest independent vector problem to within a factor of Õ(n/ζ) [Reg05].

Shrinking ciphertexts

Theworkof [BDGM19] showshowto shrinkLWE-based ciphertexts of the form (Ar,b1r+dq/2cm1, . . . ,bkr+
dq/2cmk) (whereA ←$ Zn×m, bi are LWE samples and r is a short vector). The resulting shrunken
ciphertext is composed by (Ar, b1, . . . , bk) where b1, . . . , bk ∈ {0, 1} and thus the rate tends to 1
when we consider large k.

Before presenting the result of [BDGM19], we first need to define relaxed correctness for a standard
LHE (as in [BDGM19]). A standard LHE is an LHEwhere the algorithms Shrink andDecShrink are
replaced by a decryption algorithmm← Dec(sk, ct), and it is not required to have rate 1.

Definition 4.5.7 (Relaxed correctness). Let LHE = (KeyGen,Enc,Eval,Dec) be a (standard) LHE.
We say that LHE is correct with B-noise if

Tm+ e← Dec(sk,Eval(pk, f, (Enc(pk,m1), . . . ,Enc(pk,mℓ)))

where T is an encoding matrix and ‖e‖ ≤ B.
Lemma 4.5.1 ([BDGM19]). Let LHE = (KeyGen,Enc,Eval,Dec) be a (standard) LHE that is
correct with B-noise. Additionally, assume that the ciphertexts of the scheme are of the form (c1, c2),
the secret key is of the form S ∈ Zk×n

q and noisy decryption works by computing c2−Sc1. If q > 4kB
then there exist a correct shrinking algorithm (ShrinkLWE,DecShrinkLWE) for the packed LWE-based
LHE scheme.

Circuit-private LHE from LWE.

Wenowpresent the circuit-private LHE fromLWE.The scheme is a hybrid between the packedRegev
PKE [GPV08] and GSW PKE [GSW13], together with the circuit-privacy technique of [BdMW16].

Wepresent a scheme supporting plaintext space {0, 1}k. We later briefly explain howwe can extend
the scheme to any q = poly(λ).

104

Wewill need the following ingredients: Let (ShrinkLWE,DecShrinkLWE) be the pair of algorithms
from Lemma 4.5.1. Let σ,α, β, q,m, n, t, k be polynomials in λ. Let g−1rnd be the (randomized) func-
tion defined in Section 1 that receives v ∈ Zp as input and outputs x ←$ DΛ⊥

q (g)+g−1(v),γ for some

γ = Õ(1). As defined in Section 1, letGi be the matrix with k rows which is zero everywhere except
for the i-th row which is equal to g = (1, 2, 22, . . . , 2t), and let Ḡj be the matrix with j rows and
where every row is equal to g.

KeyGen(1λ, k) :

• SampleA←$ Zn×m
q , S←$ Zk×n

q and E←$ Dk×m
Z,σ . Compute B = SA+ E.

• Output pk = (A,B) and sk = S.

Enc(pk,m = (m1, . . . ,mk) ∈ {0, 1}k) :

• Parse pk as (A,B).
• SampleR←$ Dm×t

Z,α . ComputeC1 = AR andC2 = BR+
∑k

i=1miGi.

• Output ct = (C1,C2).

Eval(pk, f, (ct1, . . . , ctℓ))

• Parse pk as , f as f(x1, . . . , xℓ) =
∑ℓ

i=1 aixi + b, where a = (a1, . . . , aℓ) ∈ Zℓ
2,

b ∈ {0, 1}k and cti as (C1,i,C2,i).

• Compute

c1 =
ℓ∑

j=1
C1,j · g−1rnd

(q
2aj
)T

+
(Ḡn − C1,j

) g−1rnd(0)T +AyTj

and

c2 =
ℓ∑

j=1

(
C2,j · g−1rnd

(q
2aj
)T

+
(Ḡk − C2,j

)
· g−1rnd(0)T + ByTj

)
+
q
2b

where yj ←$ Dm
Z,β.

• Output c̃t = (c1, c2).

Shrink(pk, ct) : Output c̃t← ShrinkLWE(pk, ct).

DecShrink(sk, ct) : Outputm← DecShrinkLWE(sk, ct).

We now analyze the construction presented above. We start by showing that the scheme is correct.

105

Lemma4.5.2 (Correctness). Let q = 2q′ > 4k (2αγt+ β) ℓσm
√
k for some q′ ∈ Z. Then the scheme

presented above is correct.

Proof. Let (pk, sk) ← KeyGen(1λ, k) and cti = (C1,i,C2,i) ← Enc(pk,mi) be well-formed ci-
phertexts for all i ∈ [ℓ]. We have to show that

m̃← DecShrink(sk, Shrink(pk,Eval(pk, f, (ct1, . . . , ctℓ))))

where m̃ =
∑ℓ

j=1 ajmj + b← f(m1, . . . ,mℓ).
Let (c1, c2)← Eval(pk, f, (ct1, . . . , ctℓ)). A routine calculation shows that

c1 = A
 ℓ∑

j=1
Rj
(
g−1rnd

(q
2aj
)
− g−1rnd(0)

)T
+ yTj

and

c2 = B
 ℓ∑

j=1
Rj
(
g−1rnd

(q
2aj
)
− g−1rnd(0)

)T
+ yTj

+
q
2

 ℓ∑
j=1

ajmj + b

where the last equality holds because 2|q.
We first show that the schememeets the conditions of Lemma 4.5.1. After computing c2− Sc1 we

obtain
q
2

 ℓ∑
j=1

ajmj + b
+ E

 ℓ∑
j=1

Rj
(
g−1rnd

(q
2aj
)
− g−1rnd(0)

)T
+ yTj

 .

Let e′ = E
(∑ℓ

j=1Rj
(
g−1rnd

(q
2aj
)
− g−1rnd(0)

)T
+ yTj

)
. By Lemma 1.3.1, each row of Rj has

norm at most α√t, the vectors g−1rnd

(q
2aj
)
, g−1rnd(0) have norm at most γ√t, yj has norm at most

β√m and each row of E has norm at most σ√m. Hence∥∥e′∥∥ ≤ (2αγt+ β) ℓσm
√
k.

Since q > 4k (2αγt+ β) ℓσm
√
k thenwe are in the conditions ofLemma4.5.1. Thus,we conclude

that
m̃← DecShrink(sk, Shrink(pk, (c1, c2)))

where m̃ =
∑ℓ

j=1 ajmj + b← f(m1, . . . ,mℓ) and the scheme is correct.

Semantic security can be established by relying on the smoothing lemma together with the LWE
assumption [Reg05, MR04].

Lemma 4.5.3 (Semantic security). Assume that the LWE assumption holds for σ = ζq ≥ 2√n
for some ζ ∈ R and m = poly((n+ k) log q). Also, let α ≥ ω(

√
logm). Then the scheme is

106

semantically secure.

Proof (Sketch). In the first hybrid, we replace the public key (A,B) by (A,U) for a uniformly chosen
U and this change goes unnoticed by the LWE assumption. Next, we can use the smoothing lemma
[Reg05,MR04,GPV08] to replace (A,U,AR,UR)by (A,U,V1,V2)whereV1,V2 are uniformly
chosen. Finally, we can conclude that the encrypted message is statistically hidden and the result fol-
lows.

Before presenting the proof that the scheme is circuit private, we present a lemma that wewill need.

Lemma4.5.4 ([BdMW16,AR16]). For any a ∈ Zq and any matrixE ∈ Zk×m, let r = Θ̃(maxi‖ei‖
√
λ)

(where ei are the rows of E). Then

E · g−1rnd(a)T + yT ≈s fT

where y←$ Dk
Z,r f←$ Dk

Z,r′ and r′ = r
√
1+maxi‖ei‖2.

Lemma 4.5.5 (Circuit-privacy). Let β = Θ̃(α
√
2λt). Then the scheme presented above is circuit

private.

Proof. To prove circuit-private, we show how we can simulate evaluated ciphertexts. We first present
the simulator Sim(pk, m̃):

Sim(pk, m̃) :

• Sample r̄←$ Dm
Z,μ. Compute c1 = Ar̄T and c2 = Br̄T+ q

2m̃whereμ = β
√
ℓ
(
1+ (α√t)2)

and m̃ = f(m1, . . . ,mt).

• Output c̃t← ShrinkLWE(pk, (c1, c2)).

We now prove that the simulated ciphertext is indistinguishable from a evaluated ciphertext.
First, note that evaluated ciphertexts are of the form

c1 =
ℓ∑

j=1
C1,j · g−1rnd

(q
2aj
)T
−
(Ḡn − C1,j

)
· g−1rnd(0)T +AyTj

and

c2 =
ℓ∑

j=1

(
C2,j · g−1rnd

(q
2aj
)T

+
(Ḡk − C2,j

)
· g−1rnd(0)T + ByTj

)
+
q
2b.

107

Writing in matrix form, each term of the sum is of the form(C1,j
C2,j

)
g−1rnd

(q
2aj
)T

+

((Ḡn
Ḡk

)
−
(C1,j
C2,j

))
g−1rnd(0)T +

(A
B
)
yTj

=

(ARj
BRj +

∑k
i=1mj,iGi

)
g−1rnd

(q
2a
)T

+

((Ḡn
Ḡk

)
−
(ARj
BRj +

∑k
i=1mj,iGi

))
g−1rnd(0)T +

(A
B
)
yTj

=

(A
B
)(

Rj · g−1rnd

(q
2a
)T
− Rj · g−1rnd(0)T + yTj

)
+

(0
aj ·mj

)
wheremj = (mj,1, . . . ,mj,t).

It follows that(A
B
)(

Rj · g−1rnd

(q
2a
)T
− Rj · g−1rnd(0)T + yTj

)
≈s

(A
B
)((

Rj · g−1rnd

(q
2a
)T

+ yTj,1
)
+
(
−Rj · g−1rnd(0)T + yTj,2

))
≈s

(A
B
)(

r′1,j + r′2,j
)

≈s

(A
B
)
r′Tj

for yj,b ←$ DZ,β/
√
2, r′j,1, r′j,2 ←$ Dm

Z,r′/
√
2 and r′j ←$ Dm

Z,r′ where r′ = β
√
1+ (α√t)2. The first

and the last steps follow from the fact that the sumof two independent discrete gaussians is statistically
close to a discrete gaussian (that is, yj ≈s yj,1 + yj,2 and r′j ≈s r′j,1 + r′j,2). The second step follows
from Lemma 4.5.4.

Hence,(A
B
)(

Rj · g−1rnd

(q
2a
)T
− Rj · g−1rnd(0)T + yTj

)
+

(0
aj ·mj

)
≈s

(A
B
)
r′Tj +

(0
aj ·mj

)
.

108

From this, we conclude that(c1
c2

)
=

ℓ∑
j=1

(
C1,j · g−1rnd

(q
2aj
)T − (Ḡn − C1,j

) g−1rnd(0)T +AyTj
C2,j · g−1rnd

(q
2aj
)T

+
(Ḡk − C2,j

) g−1rnd(0)T + ByTj

)
+

(0
q
2b
)

≈s
ℓ∑

j=1

(A
B
)
r′Tj +

(0
q
2
(∑ℓ

j=1 ajmj + b
))

≈s

(A
B
)
r̄T +

(0
q
2 · f(m1, . . . ,mt)

)

where r̄ ←$ Dm
Z,μ. The last step follows from the fact that the sum of ℓ independent discrete gaus-

sians with parameter r′ (where r′ = β
√
1+ (α√t)2) is statistically indistinguishable from a discrete

gaussian with parameter
√
ℓr′.

Ciphertext rate. It is easy to see that the rate of the ciphertext tends to 1 for large enough k by
relying on Lemma 4.5.1. It is also easy to see that the size of the public key pk = (A,B = SA+E) ∈
Zn×m
q × Zk×m

q is bounded by k · poly(λ).

Larger plaintext space. In the construction presented above, the plaintext space is Zk
2. The

construction can be extended to support plaintext space Zk
p for any p = poly(λ) by choosing the

LWE modulus q of the form q = pp′ where p, p′ are co-prime and encoding the encrypted message
by q/p.

4.5.2 Construction from DDH

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an
input a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative
cyclic group, p is the order of the group which is always a prime number unless differently specified,
andg is a generator of the group. In the following,we state thedecisional versionof theDiffie-Hellman
(DDH) assumption.

Definition 4.5.8 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$ G(1λ). We say that the
DDH assumption holds (with respect to G) if for any PPT adversaryA∣∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣∣ ≤ negl(λ)

where a, b, c←$ Zp.

109

Shrinking ciphertexts.

Wefirst present howwe can shrinkDDH-based ciphertexts to achieve rate 1. The shrinkingmechanism
presented below is amodification of the one presented in [BBD+20] (which is itself based on previous
works [BGI16, DGI+19]).

Let (G, p, g)←$ G(1λ) and k ∈ Z. Consider anElGamalpublic keyof the formpk = (g, (h1, . . . , hk) =
(g, (gx1 , . . . , gxk)) ∈ Gk+1 for x1, . . . , xk ←$ Zp (here, x = (x1, . . . , xk) is the secret key). Consider
the following modified El Gamal encryption algorithm where a ciphertext form = (m1, . . . ,mk) ∈
{0, 1}k is of the form ct = (c1, (c2,1, . . . , c2,k)) ∈ Gk+1 where c1 = gr and c2,i = hrig⌈mi(p/2)⌋σ . 9

We now show how to compress ciphertexts of this form.
We will need the following ingredients: Let B,T ∈ poly(λ) and PRF = (KeyGen,Eval) be a

PRF that maps g ∈ G to {0, 1}τ for some τ ∈ Z. We also define the function LEq< : G2 → {0, 1}
which receives two group elements g0, g1 and outputs 1 if g0 < g1 and 0 otherwise, for some order
relation< (e.g. the lexicographic order).

ShrinkDDH(pk, ct) :

• Parse pk = (g, (h1, . . . , hk)) and ct = (c1, (c2,1, . . . , c2,k)). Letw = g⌊p/2⌋.
• Sample a PRF key K ←$ PRF.KeyGen(1λ) such that the following conditions are si-

multaneously satisfied:

1. For every i ∈ [k] and j ∈ {−B, . . . ,B}we have that

PRF.Eval(K, c2,i · gj) 6= 0 and PRF.Eval(K, c2,i · w · gj) 6= 0.

2. For all i ∈ [k] there exists ℓ ∈ {B+ 1, . . . ,T} such that

PRF.Eval(K, c2,i · gℓ) = 0 and PRF.Eval(K, c2,i · w · gℓ) = 0.

• For every i ∈ [k], let δ0,i, δ1,i > 0 be the smallest integer such that

PRF.Eval(K, c2,i · gδ0,i) = 0 and PRF.Eval(K, c2,i · w · gδ1,i) = 0.

Let α0,i = c2,i · gδ0,i and α1,i = c2,i ·w · gδ1,i . If LEq<(α0,i,α1,i) = 0, then set bi = 0.
Else, set bi = 1.

• Output c̄t = (c1,K, (b1, . . . , bk)).

DecShrinkDDH(sk, c̄t) :

• Parse sk = x = (x1, . . . , xk) and c̄t = (c1,K, (b1, . . . bk)). Letw = g⌊p/2⌋.
• For every i ∈ [k], compute β0,i = cxi1 and β1,i = cxi1 · w.

9Note that d·cσ is defined in section 4.4.

110

• For every i ∈ [k], find the smallest integers γ0,i,γ1,i > 0 such that

PRF.Eval(K, β0,i · gγ0,i) = 0 and PRF.Eval(K, β1,i · gγ1,i) = 0.

Let ᾱ0,i = β0,i · gγ0,i and ᾱ1,i = β1,i · gγ1,i . If LEq<(ᾱ0,i, ᾱ1,i) = bi, setmi = 0. Else,
setmi = 1.

• Outputm = (m1, . . . ,mk).

Lemma4.5.6 (Correctness). Let B = poly(λ) be such that B > λσ+1. Then the shrinking procedure
presented above is correct.

Proof. Wehave to showthatm← DecShrinkDDH(sk, Shrink(pk, ct)) forct = (c1, (c2,1, . . . , c2,k))
where c1 = gr and c2,i = hrig⌈mi(p/2)⌋σ for i ∈ [k].

For that, we will first show that

(ᾱ0,i = α0,i ∧ ᾱ1,i = α1,i)
∨

(ᾱ0,i = α1,i ∧ ᾱ1,i = α0,i)
.

We have that α0,i 6= α1,i.
The first observation is that 0 ∈ {z0 − (B− 1), . . . , z0 + (B− 1)}where z0 = d0cσ except with

negligible probability. This is becauseB > λσ+1 and |z0| < λσ exceptwith negligible probability.10
Thus 0 ∈ {z0 − B, . . . , z0 + B}

Likewise, p/2 ∈ [zp/2 − (B− 1), zp/2 + (B− 1)] where zp/2 = dp/2cσ and thus bp/2c ∈
{zp/2 − B, . . . , zp/2 + B}.

We divide the proof in two cases: Eithermi = 0 ormi = 1. We start by analyzing the case where
mi = 0.

Casemi = 0. Assume thatmi = 0. We first note that ᾱ0,i = β0,i · gγ0,i = cxi1 · gγ0,i = hri · gγ0,i ,
and α0,i = hri · gz0,i+δ0,i where z0,i = dmi(p/2)cσ = d0cσ.We prove that ᾱ0,i = α0,i. To prove this,
it is enough to show that γ0,i = z0,i + δ0,i. Observe that, if this is not the case, then one of the two
cases must be true:

(i) γ0,i < dmi(p/2)cσ + δ0,i = d0cσ + δ0,i: If this happens then one of the three cases must
hold:

(a) γ0,i < z0,i − B: This case cannot hold since 0 ∈ {z0,i − B, . . . , z0,i + B} (except with
negligible probability) and γ0,i ≥ 0. This implies that γ0,i ≥ z0,i − B, except with
negligible probability.

10Recall that for a gaussian random variable X centered on 0 and with parameter σ, the probability that
|X| > λσ is negligible in λ.

111

(b) z0,i − B ≤ γ0,i ≤ z0,i + B: This case cannot hold since it violates condition 1.
(c) z0,i+B < γ0,i < z0,i+δ0,i: This case violates condition 2 since δ0,i > B is the smallest

integer that fulfills PRF.Eval(K, hri · gz0,i+δ0,i).
(ii) γ0,i > z0,i + δ0,i: This case cannot happen as γ0,i is the smallest integer (greater than 0) such

that PRF.Eval(K, hri · gγ0,i) = 0.
Showing that, if mi = 0, then ᾱ1,i = α1,i follows an identical reasoning. We conclude that, if

mi = 0, then ᾱ0,i = α0,i ∧ ᾱ1,i = α1,i.

Casemi = 1. Now assume thatmi = 1. In this case, we show that ᾱ1,i = α0,i and ᾱ0,i = α1,i.
First, note that ᾱ1,i = hri · g⌊p/2⌋+γ1,i and α0,i = hri · gzp/2,i+δ0,i where zp/2,i = dmi(p/2)cσ =

dp/2cσ. We prove that ᾱ1,i = α0,i. To show this, we have to prove that bp/2c+ γ1,i = zp/2,i + δ0,i.
Assume that this is not true, then one of the two cases must happen:

(i) bp/2c+ γ1,i < zp/2,i + δ0,i: If this is the case, then one of the three cases must happen:

(a) bp/2c + γ1,i < zp/2,i − B: This case cannot happen because bp/2c ∈ {zp/2,i −
B, . . . , zp/2,i + B} except with negligible probability and γ1,i > 0.

(b) zp/2,i − B < bp/2c + γ1,i < zp/2,i + B: This case violates 1 since for any value j ∈
{zp/2,i − B, . . . , zp/2,i + B}, we have that PRF.Eval(K, hri · gzp/2,i · gj) 6= 0.

(c) zp/2,i+B < bp/2c+γ1,i < zp/2,i+δ0,i: This case is also impossible since, by condition
2, δ0,i is the smallest integer (greater than0) such thatPRF.Eval(K, hri ·gzp/2,i ·gδ0,i) = 0.

(ii) bp/2c+γ1,i > zp/2,i+ δ0,i: Assume that this is the case. Then γ1,i is not the smallest integer
greater than 0 such that PRF.Eval(K, hrig⌊p/2⌋+γ1,i) = 0.

Ifmi = 1, showing that ᾱ0,i = α1,i follows an identical reasoning as above.

Wrapping up. We proved that ifmi = 0 then α0,i = ᾱ0,i and α1,i = ᾱ1,i. On the other hand, if
mi = 1, then α0,i = ᾱ1,i and α1,i = ᾱ0,i. Thus, if the encrypted value ismi = 0

bi = LEq<(α0,i,α1,i) = LEq<(ᾱ0,i, ᾱ1,i)

and the value output byDecShrinkDDH is 0. Else ifmi = 0

bi = LEq<(α0,i,α1,i) 6= LEq<(ᾱ0,i, ᾱ1,i)

and the value output byDecShrinkDDH is 1.
Lemma 4.5.7 (Runtime). Let PRF be a PRF, τ = log(8Bk) and T = 2τλ loge(k) + B(1 + 4k).
Then, the shrinking algorithm ShrinkDDH described above terminates in polynomial time, except with
negligible probability.

112

Proof. The analysis of the runtime follows the same reasoning as the analysis of the runtime of the
shrinking procedure from [BBD+20].

We have to show that the algorithm ShrinkDDH is able to find a PRF keyK that fulfills both condi-
tions in expected polynomial time, since all other subroutines run in polynomial time. Here, we treat
PRF.Eval as a truly random function. The same analysis is true for the case wherePRF.Eval is a PRF
except with negligible probability.

We first lower-bound the probability that a certain PRF keyK← PRF.KeyGen(1λ) satisfies con-
dition 1. That is,

Pr
∀i ∈ [k], ∀j ∈ {−B, . . . ,B},

PRF.Eval(K, c2,i · gj) 6= 0
∧

PRF.Eval(K, c2,i · w · gj) 6= 0

 ≥ (1− 1
2τ
)4Bk

≥ 1− 4Bk
2τ

= 1− 1
2 =

1
2 .

Here, the first inequality comes from the fact that the outputs of PRF.Eval(K, ·) are uniform and
independent over {0, 1}τ and the second inequality is simply Bernoulli’s inequality.

We now upper-bound the probability that condition 2 is not met given that condition 1 happens.
Let S be the set of PRF keys for which condition 1 is satisfied. Then

Pr
∃i ∈ [k]∀j ∈ {B+ 1, . . . ,T} :

PRF.Eval(K, c2,i · gj) 6= 0
∨

PRF.Eval(K, c2,i · w · gj) 6= 0

∣∣∣∣∣∣K ∈ S

≤
k∑

i=1
Pr
∀j ∈ {B+ 1, . . . ,T} :

PRF.Eval(K, c2,i · gj) 6= 0
∨

PRF.Eval(K, c2,i · w · gj) 6= 0

∣∣∣∣∣∣K ∈ S

≤
k∑

i=1

(
1− 1

2τ
)T−B−4Bk

≤
k∑

i=1
e−(T−B−4Bk)/2τ =

k∑
i=1

e−λ loge(k) = e−λ.

Here, the first inequality is a simple consequenceof theunionboundand the second inequality follows
from observing thatK fixes PRF.Eval(K, ·) on at most 4Bk points.

We conclude that, after λ iterations of the protocol, the probability that all the keys do not fulfill
both conditions is negligible in λ.

Ciphertextrate. After applyingShrinkDDHweobtain a ciphertext composedby c̃t = (c1,K, (b1, . . . , bk)) ∈
G×K × {0, 1}k. Hence,

|c̃t|
|m| =

|c1|+ |K|+ |(b1, . . . , bk)|
k =

2λ+ k
k = 1+ 2λ

k

113

which tends to 1 for large enough k.

Function-private LHE from DDH.

We now present our circuit-private LHE overZ2 based on DDH.

KeyGen(1λ, k) :

• (G, p, g)←$ G(1λ)
• Sample x1, . . . , xk ←$ Zp. Compute hi = gxi .
• Output pk = (G, p, g, h1, . . . , hk) and sk = x = (x1, . . . , xk).

Enc(pk,m = (m1, . . . ,mk)) :

• Parse pk as (G, p, g, h1, . . . , hk).
• Sample r←$ Zp. Compute c1 = gr and c2,i = hrigmi for i ∈ [k].
• Output ct = (c1, (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ctℓ))

• Parsepk as (G, p, g, h1, . . . , hk), f as f(x1, . . . , xℓ) =
∑ℓ

i=1 aixi+b fora = (a1, . . . , aℓ) ∈
Zℓ
2 and b ∈ Zk

2 and cti as (c1,i, c2,i)where c2,i = (c2,1,i, . . . , c2,k,i)) for i ∈ [ℓ].

• Compute c̄t = (c̄1, (c̄2,1, . . . , c̄2,1))where

c̄1 =
ℓ∏

i=1

(
cdai

p
2cσ

1,i · (g · c−11,i)⌈0⌋σ
)
· gt

and

c̄2 =
ℓ⊙

i=1

(
cdai

p
2cσ

2,i � (g · c−12,i)⌈0⌋σ
)
�
(
gdb1

p
2cσ , . . . , gdbk

p
2cσ
)
� (ht1, . . . , htk)

for t←$ Zp and where� denotes the component-wise multiplication.

• Output c̄t.

Shrink(pk, ct) : Output c̄t← ShrinkDDH(pk, ct).

DecShrink(sk, ct) : Outputm← DecShrinkDDH(sk, c̄t).

114

Correctness and expectedpolynomial runtimeof theLHEdescribed above is guaranteedbyLemma
4.5.6 and Lemma 4.5.7 by setting B > λ(σ(

√
2ℓ + 1)). Semantic security of the scheme can be

established by a simple reduction to the DDH assumption in a similar way as inmany previous works
(the reduction is similar to the one that proves that El Gamal is semantically secure). It is also easy to
see that the scheme has rate-1 for large enough k.

We now show that the scheme is circuit private. Essentially, circuit privacy can be established by
resorting to Lemma 4.4.2.

Lemma 4.5.8 (Circuit-privacy). The scheme presented above is circuit private.
Proof. We need to show that we can simulate evaluated ciphertexts. We first present the simulator
that receives m̃← f(m1, . . . ,mℓ).

Sim(pk, m̃)

• Sample t←$ Zq and αi =
⌈m̃i

p
2
⌋
√2ℓ+1σ.

• Compute c̃t = (c̃1, (c̃2,1, . . . , c̃2,1)) where c̃1 = gt and c̃2,i = htigαi . Output ct′ ←
ShrinkDDH(pk, c̃t).

We now show that simulated ciphertexts are statistically indistinguishable from the ones output by
Eval.

Let cti = (gri , (hri1 gm1,i , . . . , hrik gmk,i). The output of Eval is (c̃1, (c̃2,1, . . . , c̃2,k))where

c̃1 = g
∑ℓ

i (ridai p2cσ−ri⌈0⌋σ)+t

and
c̃2,j = h

∑ℓ
i (ridai p2cσ−ri⌈0⌋σ)+t · g

∑ℓ
i (mj,idai p2cσ+(1−mj,i)⌈0⌋σ)+dbi p2cσ .

By Lemma 4.4.2 we have that

ℓ∑
i=1

(
mj,i

⌈
ai
p
2
⌋
σ
+ (1−mj,i) d0cσ

)
+
⌈
bi
p
2
⌋
σ
≈s
⌈
m̃j
p
2
⌋
√2ℓ+1σ

where m̃j is the j-th coordinate of f(m1, . . . ,mℓ). Hence,

g
∑ℓ

i=1(mj,idai p2cσ+(1−mj,i)⌈0⌋σ)+dbi p2cσ ≈s gdf(m1,...,mℓ)
p
2c√2ℓ+1σ .

Moreover, since t←$ Zp then
(gz+t, hz+t) ≈s (gt, ht)

for any z ∈ Zp. We conclude that

(c̃1, (c̃2,1, . . . , c̃2,k)) ≈s (gt, (ht1gα1 , . . . , htkgαk)

where αi =
⌈m̃i

p
2
⌋
√2ℓ+1σ.

115

Larger plaintext space. As in the LWE case, in the construction presented above, the plaintext
space is Zk

2. Both the shrinking algorithm and the function-private LHE schemes can be extended to
support plaintext space Zk

q where q = poly(λ) and q = 2ν for some ν ∈ Z (the constrain of q being
a power of 2 comes from Lemma 4.4.2)

4.5.3 Construction from QR

The scheme presented in this section is the packed version of the scheme from [BG10] together with
the shrinking technique from [DGI+19].

In the following, letN is a Blum integer ifN = p ·q for some primes p and q such that p (mod 4) =
q (mod 4) = 3. Moreover, we say p and q are safe primes if p = 2p′ + 1 and q = 2q′ + 1 for some
prime numbers p′, q′. We denote by JN the multiplicative group of the elements in Z∗N with Jacobi
symbol +1 and by QRN the multiplicative group of quadratic residues moduloN with generator g.
Note that QRN is a subgroup of JN and they have order ϕ(N)

4 and ϕ(N)
2 , respectively, where ϕ(·) is

Euler’s totient function. It is useful to write JN ' H × QRN, where H is the multiplicative group
(±1, ·) of order 2. Note that ifN is a Blum integer then gcd

(
2, ϕ(N)

4
)
= 1 and−1 ∈ JN \ QRN.

We recall the quadratic residuosity (QR) assumption [GM82].

Definition 4.5.9 (Quadratic Residuosity Assumption). LetN be a uniformly sampled Blum integer
and let QRN be the multiplicative group of quadratic residues modulo N with generator g. We say
the QR assumption holds with respect toQRN if for any PPT adversaryA

|Pr[1← A(N, g, a)]− Pr[1← A(N, g, (−1) · a)]| ≤ negl(λ)

where a←$ QRN.

Shrinking ciphertexts.

Werecall the shrinkingmechanismof [DGI+19]. Let a (packed) ciphertext ct = (gr, (−1)b1hr1, . . . , (−1)bkhrk) =
(c1, c2,1, . . . , c2,k) and let< be an order over JN (e.g., the lexicographic order). The shrinking mech-
anism of [DGI+19] simply outputs 0 if c2,i < −c2,i and outputs 1 otherwise.

Lemma 4.5.9 ([DGI+19]). There exists a correct shrinking procedure ShrinkQR,DecShrinkQR for the
packed QR-based PKE.

Circuit-private LHE from QR.

We now present the scheme which is essentially the same as the one from [BG10] together with the
shrinking technique of Lemma 4.5.9.

In the following, let (ShrinkQR,DecShrinkQR) be the pair of algorithms from Lemma 4.5.9.

KeyGen(1λ, k) :

116

• Choose two safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are primes and
computeN = pq. Choose a generator g ofQRN.

• Sample s←$ Zk
φ(N)/2 and compute h = gs.

• Output pk = (N, g,h) and sk = s.

Enc(pk,m = (m1, . . . ,mk)) :

• Parse pk as (N, g,h = (h1, . . . , hk)).
• Sample r←$ Z(N−1)/2. Compute c1 = gr and c2,i = (−1)mihri for i ∈ [k].
• Output ct = (c1, c2 = (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ctℓ))

• Parse pk as (N, g,h = (h1, . . . , hk)), f as f(x1, . . . , xℓ) =
∑ℓ

j=1 ajxj + b, where
a1, . . . , aℓ ∈ Z2, b ∈ Zk

2 and ctj as (c1,j, c2,j = (c2,1,j, . . . , c2,k,j)).
• Compute c̃t = (c̃1, c̃2 = (c̃2,1, . . . , c̃2,k)) where c̃1 = gt∏ℓ

j=1 c
aj
1,j and c̃2,i = hti ·

(−1)bi ·∏ℓ
j=1 c

aj
2,i,j where t←$ Z(N−1)/2. Output c̃t.

Shrink(pk, ct) : Output c̃t← ShrinkQR(pk, ct).

DecShrink(sk, ct) : Outputm← DecShrinkQR(sk, ct).

It is easy to see that correctness and compactness hold due to Lemma 4.5.9. Semantic security also
follows easily from the QR assumption.

To see that the scheme is circuit private, note that g(
∑

j rjaj)+t ≈s gt for a uniformly chosen t ←$

Z(N−1)/2 (this holds since the uniform distribution over Z(N−1)/2 is statistically indistinguishable

from the uniform distribution overZφ(N)/2). Similarly, we have that h(
∑

j raj)+t
i ≈s hti . Thus,(

g(
∑

j rjaj)+t, (−1)f(m)h(
∑

j rjaj)+t
)
≈s
(
gt, (−1)f(m)ht

)
and, thus, the distributions of an evaluated ciphertext and a fresh ciphertext are statistically indistin-
guishable.

4.6 Co-Private Information Retrieval

In this section, we present a new cryptographic primitive that we call co-PIR. In a co-PIR scheme, a
receiver (with input a set of indices S) and a sender (with no input) interact such that, in the end, the
sender obtains a string y ∈ Zm

q and the receiver obtains y−S (all positions of y except for the indices
in S).

117

In terms of security, we require that the sender learns nothing about S, whereas the string yS looks
pseudorandom to the receiver. In terms of efficiency, we require that the total communication of the
protocol scales only with |S|poly(λ)polylog(m) (that is, it scales only poly-logarithmically withm).

4.6.1 Definition

We start by defining Co-PIR and presenting its security properties.

Definition 4.6.1 (Co-PIR). A (two-round) Co-PIR schemeCoPIR overZq is parametrized by an inte-
germ wherem = poly[λ], and is composed by a tuple of algorithms (Query, Send,Retrieve) such
that

• Query(1λ, S) takes as input a set of indices S ⊆ [m]. It outputs amessage copir1 and a private
state st.

• Send(copir1) takes as input a first message copir1. It outputs a second message copir2 and a
string y ∈ Zm

q .

• Dec(copir2, st) takes as input a second message copir2 and a state st. It outputs a string ỹ ∈
Zm
q .

Definition 4.6.2 (Correctness). A Co-PIR schemeCoPIR is said to be correct if for anym = poly(λ)
and S ⊆ [m]we have that

Pr
y[m]\S = ỹ[m]\S :

(copir1, st)← Query(1λ, S)
(copir2, y)← Send(copir1)
ỹ← Retrieve(copir2, st)

 = 1.

In other words, the strings y and ỹmatch for every coordinate i ∈ [m] \ S.
In terms of security, we require two properties: receiver security and sender security.

Definition 4.6.3 (Receiver security). A Co-PIR scheme CoPIR is said to be receiver secure if for all
m = poly(λ), any subsets S1, S2 ⊆ [m]we have that for any adversaryA∣∣∣∣ Pr [1← A(k, copir1) : (copir1, st)← Query(1λ, S1)

]
−

Pr [1← A(k, copir1) : (copir1, st)← Query(1λ, S2)
] ∣∣∣∣ ≤ negl(λ).

Definition 4.6.4 (Sender security). A Co-PIR scheme CoPIR is said to be sender secure if for any
m = poly(λ), any subset S ⊆ [m]we have that for all adversariesA∣∣∣∣∣∣∣∣∣∣

Pr
[
1← A(k, st, copir2, yS) :

(copir1, st)← Query(1λ, S)
(copir2, y)← Send(copir1, x)

]
−

Pr
1← A(k, st, copir2, y′S) : (copir1, st)← Query(1λ, S)

(copir2, y)← Send(copir1, x)
y′S ←$ Z|S|q

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

118

Definition4.6.5 (Compactness). ACo-PIR schemeCoPIR is said tobe compact if |copir1|, |copir2| =
|S| · polylog(m) · poly(λ) for any S ⊆ [m]where (copir1, st)← Query(1λ, S) and (copir2, y)←
Send(copir1). In other words, the communication complexity depends only on poly-logarithmically
inm.

4.6.2 Co-PIR from Distributed GGM-PPRF Correlation

We now present a scheme for Co-PIR from the distributed GGM-PPRF correlation which is pro-
posed by Boyle et al. [BCG+19a]. For the sake of simplicity, we present the scheme for q = 2. Let
PPRFGGM = (KeyGen,Eval,Punct,EvalPunct) be a GGM puncturable PRF which maps from
[m] to {0, 1} and let PPRF-GGM = (R1, S,R2) be a distributed GGM-PPRF correlation scheme.

Query(1λ, S) :

• Parse S = {a1, . . . , at} ⊆ [m]t where t = |S|.
• For j ∈ [t] compute (pprf-ggm1,j, statej)← PPRF-GGM.R1(āj).
• Output copir1 = {pprf-ggm1,j}j∈[t] and st = {statej}j∈[t].

Send(copir1) :

• Parse copir1 = {pprf-ggm1,j}j∈[t].

• For j ∈ [t] computeKj ← PPRFGGM.KeyGen(1λ) and zj ← PPRFGGM.Eval(Kj, ∗).
• For j ∈ [t] compute pprf-ggm2,j ← PPRF-GGM.S(0,Kj, pprf-ggm1).

• Output copir2 = {pprf-ggm2,j}j∈[t] and y =
∑t

i=1 zj
Dec(copir2, st) :

• Parse copir2 = {pprf-ggm2,j}j∈[t] and st = {statej}j∈[t].

• For j ∈ [t] compute K̄j ← PPRF-GGM.R2(statej, pprf-ggm2,j).

• For i ∈ [m] \ S, set ỹi =
∑t

i=1 PPRFGGM.EvalPunct(K̄j, i). For i ∈ S, set ỹi = 0.
Output ỹ = (ỹ1 . . . , ỹm).

We now analyze the scheme presented above starting with correctness.

Lemma 4.6.1 (Correctness). Assume that PPRF-GGM and PPRF are correct. Then the scheme pre-
sented above is correct

Proof. We have to prove that ỹ[m]\S = y[m]\S. Let y = (y1, . . . , ym) ∈ {0, 1}m. Note that yi =∑t
j=1 PPRF.Eval(Kj, i).

119

First, by the correctness of the underlying distributed GGM-PPRF correlation scheme, K̄j ←
PPRF.Punct(aj) for all j ∈ [t] and aj ∈ S. Also,

ỹi =
t∑

j=1
PPRFGGM.EvalPunct(K̄j, i)

for all i ∈ [m]\S. By the correctness of thePPRF,PPRFGGM.EvalPunct(K̄j, i) = PPRFGGM.EvalPunct(Kj, i)
for all i ∈ [m] \ S. Then ỹi = yi for all i ∈ [m] \ S.

Lemma 4.6.2 (Receiver security). Assume that PPRF-GGM implements FPPRF-GGM. Then the
scheme presented above is receiver secure.

The proof follows directly from the receiver security of PPRF-GGM.

Lemma 4.6.3 (Sender security). Assume that PPRF-GGM implements FPPRF-GGM and PPRF is a
pseudorandom PPRF. Then the scheme presented above is sender secure.

Proof. LetSimPPRF-GGMbe the simulator ofPPRF-GGM for sender security. The proof of security
follows the following sequence of hybrids.

HybridH0. This is the real protocol.

For all j ∈ [t] consider the following sub-hybrids.

HybridH1,j. In this hybrid, we replace pprf-ggm2,j by the message generated by SimPPRF-GGM.
Indistinguishability of hybrids follows from the sender security of PPRF-GGM.

HybridH2,j. In this hybrid, we replace PRFGGM.Eval(Kj, aj) by a uniform bit uj ←$ {0, 1}. Indis-
tinguishability of hybrids follows from the pseudorandomness of PPRF.

HybridH3,j. In this hybrid, we replace yaj by vj ←$ {0, 1}. Statistical indistinguishability follows
because

yaj =
t∑

i=1
PPRFGGM.Eval(Ki, aj) =

t∑
i=1,i ̸=j

PPRFGGM.Eval(Ki, aj) + uj ≈s vj.

Finally, note that in hybridH3,t the string yS is uniformly random to the receiver and we conclude
the proof

Compactness. To conclude,we analyze compactness of the scheme. Assuming that thedistributed
GGM-PPRF correlation schemehas polynomial communication complexity in |aj| = logm and inλ,
and |S| = t, we conclude that the receiver’s and the sender’smessage are of size t·poly(λ)·polylog(m).

120

Extending to Co-PIR over any Zq. The scheme can be easily extended to any q by taking a
PPRF that maps x ∈ [m] to Zq. It is easy to see that the resulting scheme has total communication
complexity of t · poly(λ) · polylog(m, q).

Hardness assumptions for Co-PIR. Since the distributed GGM-PPRF correlation scheme
and the GGM-PPRF can be based on LWE, DDH or QR assumptions (using only black-box tech-
niques), then the Co-PIR scheme presented above can also be based on these assumptions. Moreover,
the resulting scheme uses only black-box techniques.

4.6.3 Co-PIR from PPRF and PIR

The construction for Co-PIR from Section 4.6 uses a distributed GGM-PPRF correlation scheme
which can be built from a GGM-PPRF and an OT. In this section, we present a construction for Co-
PIR from any PPRF (not necessarily the GGM-PPRF) and a PIR in a black-box way.

The Protocol

For the sake of simplicity, we present the scheme for q = 2.
For ourCo-PIRconstruction,wewill need the following ingredients: LetPIR = (Query, Send,Retrieve)

be aPIR schemewithpoly-logarithmic communication complexity and senderprivacy and letPPRF =
(KeyGen,Eval,Punct,EvalPunct) be a puncturable PRF which maps from [m] to {0, 1}. We use
the notationPPRF.Eval(K, ∗) to denote the vector (PPRF.Eval(K, 1), . . . ,PPRF.Eval(K,m)) ∈
{0, 1}m.

Query(1λ, S) :

• Parse S = {a1, . . . , at}where t = |S|.
• For j ∈ [t] compute (qj, statej)← PIR.Query(aj).
• Output copir1 = {qj}j∈[t] and st = {statej}j∈[t].

Send(copir1) :

• Parse copir1 = {qj}j∈[t].

• For j ∈ [t] computeKj ← PPRF.KeyGen(1λ) and zj ← PPRF.Eval(Kj, ∗).

• For i ∈ [j] and ℓ ∈ [m], set K̇j,ℓ ← PPRF.Punct(Kj, ℓ).

• For j ∈ [t] setDBj = (K̇j,1, . . . , K̇j,m). Compute rj ← PIR.Send(DBj, qj).
• Output copir2 = {rj}j∈[t] and y =

∑t
i=1 zj

Dec(copir2, st) :

121

• Parse copir2 = {rj}j∈[t] and st = {statej}j∈[t].

• For j ∈ [t] compute K̄j ← PIR.Retrieve(rj, statej).

• For i ∈ [k] \ S, set ỹi =
∑t

i=1 PPRF.EvalPunct(K̄j, i). For i ∈ S, set ỹi = 0. Output
ỹ = (ỹ1 . . . , ỹm).

Analysis

We now analyze the scheme presented above starting with correctness.

Lemma 4.6.4 (Correctness). Assume that PIR and PPRF are correct. Then the scheme presented
above is correct

Proof. We have to prove that ỹ[k]\S = y[k]\S. Let y = (y1, . . . , ym) ∈ {0, 1}m. Note that yi =∑t
j=1 PPRF.Eval(Kj, i).
First, by the correctness of the underlying PIR scheme, K̄j = K̇j,aj for all j ∈ [t] and aj ∈ S. Also,

ỹi =
t∑

j=1
PPRF.EvalPunct(K̄j, i) =

t∑
i=1

PPRF.EvalPunct(K̇j,aj , i)

for all i ∈ [k]\S. By the correctness of thePPRF,PPRF.EvalPunct(K̇j,aj , i) = PPRF.EvalPunct(Kj, i)
for all i ∈ [k] \ S. Then ỹi = yi for all i ∈ [k] \ S.

Lemma 4.6.5 (Receiver security). Assume that PIR is user secure. Then the scheme presented above is
receiver secure.

The proof follows from a simple reduction from the receiver security of CoPIR to user security of
PIR.

Lemma4.6.6 (Sender security). Assume thatPIR is sender secure andPPRF is a pseudorandom PPRF.
Then the scheme presented above is sender secure.

Proof. The proof of security follows the following sequence of hybrids.

HybridH0. This is the real protocol.

For all j ∈ [t] consider the following sub-hybrids.

HybridH1,j. In this hybrid, we replaceDBj byDBj which is 0 everywhere but its aj-th coordinate is
equal toDBj,aj . Indistinguishability of hybrids follows from the sender security of PIR.

HybridH2,j. In this hybrid, we replace PRF.Eval(Kj, aj) by a uniform bit uj ←$ {0, 1}. The indis-
tinguishability of hybrids follows from the pseudorandomness of PPRF.

122

HybridH3,j. In this hybrid, we replace yaj by vj ←$ {0, 1}. Statistical indistinguishability follows
because

yaj =
t∑

i=1
PPRF.Eval(Ki, aj) =

t∑
i=1,i ̸=j

PPRF.Eval(Ki, aj) + uj ≈s vj.

Finally, note that in hybridH3,t the string yS is uniformly random to the receiver and we conclude
the proof

Compactness. To conclude, we analyze the compactness of the scheme. Assuming that the PIR
scheme has poly-logarithmic communication complexity and |S| = t, we conclude that the receiver’s
and the sender’s message are of size t · poly(λ) · polylog(m).

4.7 Oblivious Transfer with Overall Rate 1

We will now provide our construction of an oblivious transfer protocol with an overall rate-1.

Ingredients. We will make use of the following ingredients.

• Apacked linearly homomorphic encryption schemeLHE = (KeyGen,Enc,Eval, Shrink,DecShrink)
with plaintext space {0, 1}ℓ and a post homomorphism shrinking procedure Shrink which
converts ciphertexts into a rate 1 representation.11

• The binaryLPN(n,m,ρ) problemwith dimensionn = poly(λ),m = n ·ℓ ·poly(λ) samples
and slightly sub-constant noise-rate ρ = m1−ε.

• A 2-round PIR scheme PIR = (Query, Send,Retrieve) with poly-logarithmic communica-
tion complexity and sender privacy.

• A 2-round Co-PIR scheme CoPIR = (Query, Send,Retrieve) over Z2 parametrized bym.

AdditionalNotation. Furthermore, to declutter notation we define the following embedding
functions.

RowMatrix(ℓ, n, v1, . . . , vℓ): Takes row-vectors v1, . . . , vℓ ∈ {0, 1}n and outputs a matrix

V =

— v1 —
...

— vℓ —

 ,

i.e. for every i ∈ [ℓ] the i-th row ofV is the row-vector vi.
11Recall that we use the notation Eval&Shrink to denote the composition of algorithms Eval and Shrink.

123

SingleRowMatrix(ℓ, n, i, v): Takes a row-vector v ∈ {0, 1}n and outputs a matrix

V =

0 . . . 0
...

...
0 . . . 0
— v —
0 . . . 0
...

...
0 . . . 0

,

i.e. the i-th row ofV is v, butV is 0 everywhere else.

Diag(n, v): Takes a vector v = (v1, . . . , vn) ∈ {0, 1}n and outputs a matrix

D =

v1 0
. . .

0 vn

 ,

i.e. D ∈ {0, 1}n×n is a diagonal matrix with the components of v on its diagonal.

We observe the following:

• For any v1, . . . , vℓ ∈ {0, 1}n it holds that

RowMatrix(ℓ, n, v1, . . . , vℓ) =
ℓ∑

i=1
SingleRowMatrix(ℓ, n, i, vi).

• For x, y ∈ {0, 1}n it holds that

x · Diag(n, y) = x� y,

where� denotes component-wise multiplication.

4.7.1 The Protocol

The protocolOT = (OTR,OTS,OTD) is given as follows.

OTR(b ∈ {0, 1}mℓ) :

• Parse b = (b1, . . . ,bℓ), where the bi ∈ {0, 1}m are blocks of sizem.

• ChooseA←$ {0, 1}n×m uniformly at random and compute a pair of public and secret
key (pk, sk)← LHE.KeyGen(1λ, ℓ).

124

• For all i ∈ [ℓ], choose si ←$ {0, 1}n, and ei ←$ χm,t, compute ci ← siA + ei +
bi, and set Si ← SingleRowMatrix(ℓ, n, i, si). Compute a matrix-ciphertext cti ←
LHE.Enc(pk,Si).

• For all i ∈ [ℓ] set Ji = Supp(ei) to be the support of ei. Compute (copir1,i, sti) ←
CoPIR.Query(Ji). Additionally, for j ∈ [t] compute (qi,j, ŝti,j) = PIR.Query(Ji[j]).

• Outputot1 =
(
pk,A, {cti, ci, copir1,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t]

)
and st = (sk, {sti, Ji}i∈[ℓ], {ŝti,j}i∈[ℓ],j∈[t]]).

OTS((m0,m1) ∈ ({0, 1}mℓ)2, ot1) :

• Parse m0 = (m0,1, . . . ,m0,ℓ) and m1 = (m1,1, . . . ,m1,ℓ), where each mb,i =
(mb,i,1, . . . ,mb,i,m) ∈ {0, 1}m. Parseot1 =

(
pk,A, {cti, ci, copir1,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t]

)
.

• For i ∈ [ℓ] (yi, copir2,i) ← CoPIR.Send(copir1,i) where yi = (yi,1, . . . , yi,m). Set
zi = m0,i + yi.

• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).
• For all i ∈ [ℓ] setCi = SingleRowMatrix(ℓ,m, i, ci) andDi = Diag(m,m1,i−m0,i).
• Define the Z2-linear function f : ({0, 1}ℓ×n)ℓ → {0, 1}ℓ×m via

f(X1, . . . ,Xℓ) =

(
ℓ∑

i=1
(−XiA+ Ci) ·Di

)
+ Z.

• Compute c̃t← LHE.Eval&Shrink(pk, f, ct1, . . . , ctℓ).
• For i ∈ [ℓ] setDBi = (yi,1 + (m1,i,1 −m0,i,1), . . . , yi,m + (m1,i,m −m0,i,m)). For all
j ∈ [t] compute ri,j ← PIR.Send(DBi, qi,j).

• Output ot2 =
(
c̃t, {copir2,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t]

)
.

OTD(ot2, st):

• Parseot2 =
(
c̃t, {copir2,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t]

)
and st = (sk, {sti, Ji}i∈[ℓ], {ŝti,j}i∈[ℓ],j∈[t]]).

• For all i ∈ [ℓ] compute ỹi = (ỹi,1, . . . , ỹi,m)← CoPIR.Retrieve(copir2,i, sti).
• For i ∈ [ℓ] and j ∈ [t] compute z̃i,j ← PIR.Retrieve(ri,j, ŝti,j).

• For i ∈ [ℓ] set zi = (zi,1, . . . , zi,m)where

zi,l =
{
z̃i,j if l = Ji[j]
ỹi,ℓ otherwise

.

• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).
• Compute W̃← LHE.DecShrink(sk, c̃t) andW = W̃− Z.
• Letw1, . . . ,wℓ be the rows ofW. Outputw = (w1‖ . . . ‖wℓ) ∈ {0, 1}mℓ.

125

Correctness. We will first show thatOT is correct, given that LHE, CoPIR and PIR are correct.

Theorem 4.7.1. Assume that LHE, CoPIR and PIR are correct. Then the scheme presented above is
correct.

Proof. First, note that by linear-homomorphic correctness of LHE it holds that

W̃ = LHE.DecShrink(sk, LHE.Eval&Shrink(pk, f, LHE.Enc(pk,S1), . . . , LHE.Enc(pk,Sℓ))
= f(S1, . . . ,Sℓ)

=

(k∑
i=1

(−SiA+ Ci) ·Di

)
+ Z

Let w̃i be the i-th row of W̃. It holds by definition Si,Ci and Zi that

w̃i = (−siA+ ci)Di + zi
= (−siA+ siAi + ei + bi)Di +m0,i + yi
= bi � (m1,i −m0,i) +m0,i + ei � (m1,i −m0,i) + yi.

where yi = (yi,1, . . . , yi,m) is part of the output of CoPIR.Send.
Let Ji be the support of ei and let ỹi = (ỹi,1, . . . , ỹi,m) ← CoPIR.Retrieve(copir2,i, sti). By the

correctness of the Co-PIR schemeCoPIRwe have that ỹi,j = yi,j for all j /∈ Ji. On the other hand, by
the correctness of the PIR scheme PIR it holds that

z̃i,j = yi,j + (m1,i,j −m0,i,j)

for all j ∈ Ji. Consequently, we have that

zi,j =
{
yi,j + (m1,i,j −m0,i,j) if l = Ji[j]
yi,j otherwise

.

In other words, the term (m1,i,j − m0,i,j) only appears in the coordinates where ei is equal to one.
Then, it holds that

zi = ei � (m1,i −m0,i) + yi.
We conclude that

w = w̃i − zi = bi � (m1,i −m0,i) +m0,i.

Sincew = (w1‖ . . . ‖wℓ) it follows that

w = b� (m1 −m0) +m0,

i.e. OT is correct.

126

Communication complexity. Wewill now analyze the communication complexity ofOT and
show which choice of parameters leads to an overall rate approaching 1.

The bit-size of the message ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t]

)
can be bounded

as follows.

• |pk| = ℓ · poly(λ)

• |A| = n ·m

• |{cti}i∈[ℓ]| = ℓ2 · n · poly(λ)

• |{ci}i∈[ℓ]| = ℓ ·m

• |{copir1,i}i∈[ℓ]| = ℓ · t · polylog(m) · poly(λ)

• |{qi,j}i∈[ℓ],j∈[t]| = ℓ · t · polylog(m) · poly(λ).

Consequently, the overall upload-rate ρup can be bounded by

ρup =
|pk|+ |A|+ |(cti)i∈[ℓ]|+ |(ci)i∈[ℓ]|+ |{copir1,i}i∈[ℓ]|+ |(qi,j)i∈[ℓ],j∈[t]|

ℓm
≤ 1+ poly(λ)

m +
n
ℓ
+

ℓ · n · poly(λ)
m +

t · polylog(m) · poly(λ)
m

≤ 1+ n
ℓ
+

ℓ · n · poly(λ)
m +

t · polylog(m) · poly(λ)
m .

We get an overall upload rate of ρup = 1+O(1/λ) by choosing ℓ = λ · n andm = n2 · poly(λ) for
a sufficiently large poly(λ) depending on ε (where t = m1−ε).

The bit-size of the message ot2 =
(
c̃t, {copir2,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t]

)
can be bounded as follows.

• |c̃t| = ℓm(1+ ρLHE), where 1+ ρLHE is the ciphertext rate of LHE.

• |{copir2,i}i∈[ℓ]| = ℓ · t · polylog(m) · poly(λ)

• |{ri,j}i∈[ℓ],j∈[t]| = ℓ · t · polylog(m) · poly(λ)

Thus, the download-rate ρdown can be bounded by

ρdown =
|c̃t|+ |{copir2,i}i∈[ℓ]|+ |{ri,j}i∈[ℓ],j∈[t]|

ℓm ≤ 1+ ρLHE +
ℓ · t · polylog(m) · poly(λ)

m .

By the above choice ofm this comes down to ρdown ≤ 1+ ρLHE +O(1/λ).

127

4.7.2 Security

Receiver Security We now focus on the security of the scheme. We start by proving that the
scheme is secure against semi-honest senders.

Theorem 4.7.2. Assume that LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme,
CoPIR is a receiver secure Co-PIR scheme and that the LPN(n,m,ρ) assumption holds for ρ = m1−ε

for ε > 0. Then the scheme presented in Section 4.7.1 is receiver secure against semi-honest adversaries.

Recall that the receiver’s message is composed of LHE ciphertexts, LPN samples, Co-PIR and PIR
first messages. In a nutshell, receiver security follows from the fact that the ciphertexts hide the LPN
secret, the LPN samples hide the receiver’s inputb and finally the Co-PIR and PIR first messages hide
the indices Ji.

Proof. We first present the simulator for the semi-honest sender. The simulator Sim receives the
sender’s input and sends it to the ideal functionality. Then it simulates the receiver as follows:

Sim(1λ):

• ChooseA←$ {0, 1}n×m and compute (pk, sk)← LHE.KeyGen(1λ, ℓ).
• For all i ∈ [ℓ], choose ci ←$ {0, 1}m and compute cti ← LHE.Enc(pk, 0).
• For all i ∈ [ℓ], let Ji ⊂ [m]be a random subset of size t. Compute copir1,i ← CoPIR(Ji).

Additionally, for j ∈ [t] compute (qi,j, ŝti,j) = PIR.Query(ai,j)where ai,j ←$ [m].

• Output ot1 =
(
pk,A, {cti, ci, copir}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t]

)
.

We now show that the ideal world and real-world executions are indistinguishable. The proof fol-
lows from the following sequence of hybrids.

HybridH0. This hybrid is the real experiment.

For i ∈ [ℓ], consider the following sub-hybrids.

HybridH1,i. LetH1,0 = H0. This hybrid is identical to the previous one, except that the receiver
computes cti ← LHE.Enc(pk, 0).
Indistinguishability of hybrids H1,i−1 and H1,i are indistinguishable, for i = 1, . . . , ℓ and
whereH1,0 = H0. follows from the semantic security of LHE.

HybridH2,i. LetH2,0 = H1,ℓ. This hybrid is identical to the previous one, except that the receiver
computes (copir1,i, sti) = CoPIR.Query(J′i[j])where J′i is a uniform subset of [m] of size t.
Indistinguishability of hybrids H2,i−1 and H2,i, for i = 1, . . . , ℓ and where H2,0 = H1,ℓ,
follows directly from the receiver security of the underlying CoPIR.

128

Let φ : [ℓt]→ [ℓ]× [t] be a bijective function. For i′ ∈ [ℓt] consider the following hybrids.

HybridH3,i′ . Let H3,0 = H2,ℓ. Let φ(i′) = (i, j). This hybrid is identical to the previous one,
except that the receiver computes (qi,j, ŝti,j) = PIR.Query(ai,j)where ai,j ←$ [m].

Indistinguishability of hybridsH3,i−1 andH3,i, for i = 1, . . . , ℓt and whereH3,0 = H2,ℓ,
follows directly from the receiver security of the underlying PIR.

Finally for i ∈ [ℓ] consider the following sub-hybrids.

HybridH4,i. LetH4,0 = H3,ℓt. This hybrid is identical to the previous one, except that the receiver
samples ci ←$ {0, 1}m.

Indistinguishability of hybrids H4,i−1 and H4,i, for i = 1, . . . , ℓ and where H4,0 = H3,ℓt,
follows directly from the LPN assumption.

Finally, note that hybridH4,ℓ is identical to the ideal-world execution. This concludes the proof of
receiver security.

Sender Security

Theorem 4.7.3. Assume that LHE is a statistically function-private LHE scheme, PIR is a sender-
private PIR scheme and CoPIR is a sender-private Co-PIR scheme. Then the scheme presented in
Section 4.7.1 is sender secure.

Proof. We begin by presenting the simulator Sim against a semi-honest receiver. Recall that, in the
semi-honest case, the simulator has access to the receiver’s internal state. The simulator sends b =
(b1, . . . , bmℓ) to the ideal functionality and receives m̃ = (m̃1, . . . , m̃mℓ).

Sim(1λ, m̃ ∈ {0, 1}mℓ, e ∈ {0, 1}mℓ, ot1) :

• Parse ot1 =
(
pk,A, {cti, ci, copir}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t]

)
.

• It sets mbi,i = m̃i and m1−bi,i = 0. Finally, it sets m0 = (m0,1, . . . ,m0,mℓ) and
m1 = (m1,1, . . . ,m1,mℓ).

• For i ∈ [ℓ], let Ji = Supp(ei) := {Ji[1], . . . , Ji[t]}.Compute (copir2,i, yi)← CoPIR(copir1,i)
where yi = (yi,1, . . . , yi,m).

• For i ∈ [ℓ] and j ∈ [t], choose y′i,Ji[j] ←$ {0, 1} restricted to yi,Ji[j] = y′i,Ji[j]−(m1,i,Ji[j]−
m0,i,Ji[j]). SetDBi,j = (0, . . . , y′i,Ji[j], . . . , 0). Compute ri,j ← PIR.Send(DBi,j, qi,j).

• Compute c̃t ← LHE.Sim(pk,w∗) where w∗ := (w∗1, . . . ,w∗m) and w∗i = bi �
(m1,i −m0,i) +m0,i + z′i. Here, z′i = (zi,1, . . . , zi,m) such that

z′i,j′ =
{
y′i,j if j′ = Ji[j]
yi,j′ otherwise

129

• Output ot2 =
(
c̃t, {copir2,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t]

)
.

We will establish security via the following sequence of hybrids to show that the ideal-world exper-
iment and the real-world one are indistinguishable.

HybridH0. This is the real experiment.

For i′ ∈ [ℓt] consider the following sub-hybrid. Let φ : [ℓt]→ [ℓ]× [t].

HybridH1,i′ . Let H1,0 = H0. Let φ(i′) = (i, j). This hybrid is identical to the previous one
except that we setDBi,j = (0, . . . , yi,Ji[j] − (m1,i,Ji[j] −m0,i,Ji[j]), . . . , 0), i.e,DBi,j is set to 0
everywhere except for position Ji[j]where it assumes the value yi,Ji[j]− (m1,i,Ji[j]−m0,i,Ji[j]) as
in the previous hybrid. Additionally, we compute ri,j ← PIR.Send(DBi,j, qi,j).
Indistinguishability of hybridsH1,i′−1 andH1,i′ follows from the sender security of PIR.

For i ∈ [ℓ] consider the following hybrid.

HybridH2,i. LetH2,0 = H1,ℓt. This hybrid is identical to the previous one except that for all j ∈ [t],
choose y′i,Ji[j] ← {0, 1} such that yi,Ji[j] = y′i,Ji[j] − (m1,i,Ji[j] −m0,i,Ji[j]).

Indistinguishability of hybridsH2,i−1 andH2,i follows from the sender security of CoPIR.

Note that, in this hybridDBi,j is of the form

DBi,j = (0, . . . , y′i,Ji[j], . . . , 0).

Furthermore, note thatwe canwritezi aszi = z′i−e�(m1,i−m0,i), wherez′i = (z′i,1, . . . , z′i,m)
is defined by

z′i,j′ =
{
y′i,j if j′ = Ji[j]
ỹi,j′ otherwise

where ỹi,j = yi,j for j /∈ Ji by the correctness of CoPIR.

Finally, consider the remaining sub-hybrids.

HybridH3. In this hybrid we compute ct as follows: SetW∗ ← f(S1, . . . ,Sℓ) and compute ct ←
LHE.Sim(pk,W∗), where LHE.Sim is the function-privacy simulator for LHE. Statistical
indistinguishability betweenH2,ℓ andH3 follows from the statistical function privacy ofLHE.

HybridH4. In this hybrid, we computeW∗ = (w∗1, . . . ,w∗m) via

w∗i = bi � (m1,i −m0,i) +m0,i + z′i.

130

Finally, note that

W∗ = f(S1, . . . ,Sℓ)

=

(k∑
i=1

(−SiA+ Ci) ·Di

)
+ Z.

Letw∗i be the i-th row ofW∗. It holds by definition Si,Ci and Zi that

w∗i = (−siA+ ci)Di + zi
= (−siA+ siAi + ei + bi)Di +m0,i + zi
= bi � (m1,i −m0,i) +m0,i + ei � (m1,i −m0,i) + zi
= bi � (m1,i −m0,i) +m0,i + ei � (m1,i −m0,i) + (z′i − ei � (m1,i −m0,i))

= bi � (m1,i −m0,i) +m0,i + z′i

Consequently,H4 is identical to the ideal experiment.

Hardness assumptions for optimal-rate OT. When we instantiate the LHE with one of
the schemes from Section 4.5, the Co-PIR with the construction from Section 4.6 and the PIR with
a known black-box construction based on LWE, DDH or QR [DGI+19], we obtain the following
corollary

Corollary 4.7.4. Assuming the LWE, DDH or QR assumptions together with the LPN(n,m,ρ), there
is a black-box construction for optimal-rate OT.

4.8 Oblivious Matrix-Vector Product and Oblivious Linear Evaluation

In this section, we show how we can extend the techniques from the previous section to build proto-
cols for OMV and OLE that achieve optimal rates.

4.8.1 OMV Protocol

We start by presenting a secure protocol for oblivious matrix-vector products (OMV). In an OMV
functionality, there is a sender, with input a matrixM ∈ Zm×m

q and a vector v ∈ Zm
q , and a receiver

with input b ∈ Zm
q . In the end, the receiver gets the value bM+ v but learns nothing aboutM and

vwhereas the sender learns nothing about b.
We start by defining the functionality:

OMV functionality. The functionalityFOMV is parametrized by integersm = poly(λ) and q
and works as follows:

131

• Receiver phase. R sends b toFOMV where b ∈ Zm
q .

• Sender phase. S sends (M, v) to FOMV whereM ∈ Zm×m
q and v ∈ {0, 1}m. FOMV sends

bM+ v ∈ Zm
q to R.

Below, we present a protocol for OMV that supports a sublinear number of multiplications in the
size of the matrix. That is, all columns and rows of the matrixM should have bounded (sublinear in
m) hamming weight.12

The Protocol

We start by presenting the ingredients that we need for our OMV protocol.

Ingredients. Let q = poly(λ). We will need the following ingredients.

• Apacked linearly homomorphic encryption schemeLHE = (KeyGen,Enc,Eval, Shrink,DecShrink)
with plaintext space Zℓ

q and a post-homomorphism shrinking procedure Shrink which con-
verts ciphertexts into a rate 1 representation.

• The binary LPN(n,m,ρ, q) problem with dimension n = poly(λ), m = n · ℓ · poly(λ)
samples and slightly sub-constant noise-rate ρ = m1−ε.

• A 2-round PIR scheme PIR = (Query, Send,Retrieve) with poly-logarithmic communica-
tion complexity and sender privacy.

• A2-roundCo-PIR schemeCoPIR = (Query, Send,Retrieve)overZq parametrizedbym(q−
1).

Wedefine thehammingweightof amatrixD ∈ Zm×m
q tobe the valuehw(D) = maxi{hw(di)}, hw(d(i))}

for all i ∈ [m], where di and d(i) are the i-th row and column ofD respectively. In addition to the
notation presented in Section 4.7, we present the following algorithm:

AffineDecomp(D ∈ Zm×m
q) : Takes a matrixD such that hw(D) ≤ μ for all i ∈ [m]. It outputs

T1, . . . ,Tμ ∈ Zm×m
q such that hw(Ti) ≤ 1 for all i ∈ [μ] andD = T1 + · · ·+ Tμ.

Protocol. The protocolOMV = (OMVR,OMVS,OMVD) is presented below.

OMVR(b ∈ Zmℓ
q) :

• Parse b = (b1, . . . ,bℓ), where the bi ∈ Zm
q are blocks of sizem.

• ChooseA ←$ Zn×m
q uniformly at random and compute a pair of public and secret key

(pk, sk)← LHE.KeyGen(1λ, ℓ).
12Recall that hamming weight is used to count non-zero elements.

132

• For all i ∈ [ℓ], choose si ←$ Zn
q , and ei ←$ χm,t,q, compute ci ← siA + ei +

bi, and set Si ← SingleRowMatrix(ℓ, n, i, si). Compute a matrix-ciphertext cti ←
LHE.Enc(pk,Si).

• For all i ∈ [ℓ] set Ji = Supp(ei) to be the support of ei.
• For all i ∈ [ℓ] and k ∈ [μ] compute (copir1,i,k, sti,k) ← CoPIR.Query(Ji). Addition-

ally, for all j ∈ [t] compute (qi,k,j, ŝti,k,j) = PIR.Query((q− 1)(Ji[j]− 1) + ei,Ji[j]).
• Outputomv1 =

(
pk,A, {cti, ci}i∈[ℓ], {copir1,i,k}i∈[ℓ],k∈[μ], {qi,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
and

st =
(
sk, {Ji}i∈[ℓ], {sti,k}i∈[ℓ],k∈[μ], {ŝti,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
.

OMVS((D, v) ∈ Zm×mℓ
q × Zmℓ

q , omv1) :

• ParseD = (D1, . . . ,Dℓ) and v = (v1, . . . , vℓ). If hw(D) > μ abort the protocol.
Parse omv1 =

(
pk,A, {cti, ci}i∈[ℓ], {copir1,i,k}i∈[ℓ],k∈[μ], {qi,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
.

• For i ∈ [ℓ] and k ∈ [μ] (yi,k, copir2,i,k) ← CoPIR.Send(copir1,i,k) where yi,k =
(yi,k,1, . . . , yi,k,m).

• For all i ∈ [ℓ] set zi = vi +
∑μ

k=1 yi,k.
• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).
• For all i ∈ [ℓ] setCi = SingleRowMatrix(ℓ,m, i, ci).
• Define the Zq-linear function f : (Zℓ×n

q)ℓ → Zℓ×m
q via

f(X1, . . . ,Xℓ) =

(
ℓ∑

i=1
(−XiA+ Ci) ·Di

)
+ Z.

• Compute c̃t← LHE.Eval&Shrink(pk, f, ct1, . . . , ctℓ).
• For all∈ [ℓ], set (Ti,1, . . . ,Ti,μ)← AffineDecomp(Di). Moreover, for all k ∈ [μ] and

all l ∈ [m], let ti,k,l be the only non-zero element in the l-th row ofTi,k. If its l-th row is
a zero vector, set ti,k,l = 0.

• For all i ∈ [ℓ] and k ∈ [μ] set

DBi,k = (yi,k,1+ti,k,1, yi,k,1+2·ti,k,1, . . . , yi,k,1+(q−1)·ti,k,1, . . . , yi,k,m+(q−1)·ti,k,m),

whereDBi,k is a (q−1)m-sized vector. For all j ∈ [t] compute ri,k,j ← PIR.Send(DBi,k, qi,k,j).
• Output omv2 =

(
c̃t, {copir2,i,k}i∈[ℓ],k∈[μ], {ri,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
.

OMVD(omv2, st):

133

• Parse omv2 =
(
c̃t, {copir2,i,k}i∈[ℓ],k∈[μ], {ri,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
and

st =
(
sk, {Ji}i∈[ℓ], {sti,k}i∈[ℓ],k∈[μ], {ŝti,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
.

• For all i ∈ [ℓ] and k ∈ [μ] compute ỹi,k = (ỹi,k,1, . . . , ỹi,k,m)← CoPIR.Retrieve(copir2,i,k, sti,k).

• For i ∈ [ℓ], k ∈ [μ] and j ∈ [t] compute z̃i,k,j ← PIR.Retrieve(ri,k,j, ŝti,k,j).

• For all i ∈ [ℓ] and k ∈ [μ] set zi,k = (zi,k,1, . . . , zi,k,m)where

zi,k,l =
{
z̃i,k,j if l = Ji[j]
ỹi,k,l otherwise

.

• For all i ∈ [ℓ] set zi =
∑μ

k=1 zi,k.
• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).
• Compute W̃← LHE.DecShrink(sk, c̃t) andW = W̃− Z.

• Letw1, . . . ,wℓ be the rows ofW. Outputw = (w1‖ . . . ‖wℓ) ∈ Zmℓ
q .

Correctness. We first show that the scheme presented above is correct.

Theorem 4.8.1 (Correctness). Assume that LHE, CoPIR and PIR are correct. Then the scheme pre-
sented above is correct.

The proof follows the same reasoning as the proof of Theorem 4.7.1.

Communication complexity. We now analyze the communication complexity of OMV and
show which choice of parameters leads to an overall rate approaching 1.

Thebit-size of themessageomv1 =
(
pk,A, {cti, ci}i∈[ℓ], {copir1,i,k}i∈[ℓ],k∈[μ], {qi,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
can be bounded as follows:

• q = poly(λ)

• |pk| = ℓ · poly(λ)

• |A| = n ·m · log q

• |{cti}i∈[ℓ]| = ℓ2 · n · poly(λ)

• |{ci}i∈[ℓ]| = ℓ ·m · log q

• |{copir1,i,k}i∈[ℓ]| = μ · ℓ · t · polylog(m, q) · poly(λ)

• |{qi,k,j}i∈[ℓ],j∈[t]| = q · μ · ℓ · t · polylog(m) · poly(λ).

134

Thus, the overall upload-rate ρup can be bounded by

ρup ≤ 1+ n log q
ℓ

+
ℓ · n · poly(λ)

m +
μ · t · polylog(m) · poly(λ)

m .

We get an overall upload rate ofρup = 1+O(1/λ) by choosing ℓ = λ ·n log q,μ = m1−ζ (for some
ζ > 0 such that ζ+ ε > 1) andm = n2 · log q · poly(λ) for a sufficiently large poly(λ) depending
on ε (where t = m1−ε).

Thebit-size of themessageomv2 =
(
c̃t, {copir2,i,k}i∈[ℓ],k∈[μ], {ri,k,j}i∈[ℓ],k∈[μ],j∈[t]

)
canbebounded

as follows:

• q = poly(λ)
• |c̃t| = ℓm(1+ ρLHE), where 1+ ρLHE is the ciphertext rate of LHE

• |{copir2,i,k}i∈[ℓ]| = μ · ℓ · t · polylog(m) · poly(λ)
• |{ri,k,j}i∈[ℓ],j∈[t]| = q · μ · ℓ · t · polylog(m) · poly(λ).

Thus, the download-rate ρdown can be bounded by

ρdown ≤ 1+ ρLHE +
μ · ℓ · t · polylog(m) · poly(λ)

m .

By the above choice ofm and μ this comes down to ρdown ≤ 1+ ρLHE +O(1/λ).

Security. Finally, we state the result that guarantees security of the scheme.

Theorem 4.8.2 (Security). The scheme presented above is:

• Receiver secure if LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme,
CoPIR is a receiver secure Co-PIR scheme and that the LPN(n,m,ρ, q) assumption holds for
ρ = m1−ε for ε > 0.

• Sender secure if LHE is a statistically function-private LHE scheme, PIR is a sender-private PIR
scheme and CoPIR is a sender-private Co-PIR scheme.

The proof of the theorem follows the same reasoning as the proof of Theorem 4.7.2 and Theorem
4.7.3.

Again, instantiating the ingredients used in OMV with the constructions from this chapter, we
obtain the following corollary.

Corollary 4.8.3. There exists a black-box construction for OMV over Zq assuming:

• LWE and LPN(n,m,ρ, q) for q = poly(λ)
• DDH and LPN(n,m,ρ, q) for q = 2μ = poly(λ).

135

4.8.2 OLE Protocol

An oblivious linear evaluation (OLE) is a protocol between a sender, with input an affine function f,
and a receiver, with input a point b. It allows for the receiver to obliviously learn f(b). We now show
how we can obtain an OLE using the OMV protocol presented in Section 4.8.1.

We start by defining the functionality:

OLE functionality. The functionality FOLE is parametrized by integers k = poly(λ) and q
and works as follows:

• Receiver phase. R sends b toFOLE where b ∈ Zk
q.

• Sender phase. S sends (u0,u1) toFOLE where u0,u1 ∈ Zk
q. FOLE sends b� u0 + u1 ∈ Zk

q
to R.

Protocol for Small Fields

We briefly sketch how we can construct an OLE scheme over Zq where q = poly(λ). The protocol
follows as a particular case of the protocol of Section 4.8.1. We give a brief overview of the scheme
below.

Let Using the notation of Section 4.8.1, let b = (b1, . . . ,bℓ) ∈ Zmℓ
q be the receiver’s input and

let (u0 = (u0,1, . . . ,u0,ℓ),u1 = (u1,1, . . . ,u1,ℓ)) ∈ (Zmℓ
q)2 be the sender’s input. To achieve OLE,

the sender constructs the matricesDi = Diag(m,u0,i) and sets vi = u1,i for all i ∈ [ℓ]. Then they
run the OMV protocol where the receiver inputs b and the sender inputsD = (D1, . . . ,Dℓ) and
v = (v1, . . . , vℓ). It is easy to see that the output of the receiver is y = (y1, . . . , yℓ)where

yi = biDi + vi = bi � u0,i + u1,i

be the correctness of the OMV protocol.
Moreover, hw(Di) = 1 ≤ m1−ζ for some ζ > 0 such that ζ+ε > 1. Thus the resulting protocol

achieves overall rate 1. Finally, in terms of hardness assumptions, the OLE protocol inherits the same
security.

Extending OLE to Larger Rings

Following [DGI+19], we briefly explain how we can achieve OLE over larger rings (which can poten-
tially have a super-polynomial size in λ).

OLE overZN = Zq1 × · · · × Zqδ . LetN =
∏δ

i=1 qi be an integer (which might be superpolyno-
mial in λ) such that for all i ∈ [δ] qi = poly(λ) are different prime numbers. Then, via the Chinese
Remainder Theorem,ZN is isomorphic toZq1 ×· · ·×Zqδ . Thus, performing anOLE overZN boils
down to performing δOLEs over each one of the smaller fields Zqi . It is easy to see that, if each OLE
over Zqi has an overall rate-1, then the resulting OLE overZN also achieves an overall rate-1.

136

OLE over extension fields. We now show how these techniques can be adapted to perform
OLE over an extension fieldFqk of order qk for a prime q. Here, we rely on the fact that multiplication
over Fqk can be expressed as a linear function over the field Zq. That is, suppose that an element
x ∈ Fqk is of the form x = x1 + x2α + · · · + xkαk−1 where each xi ∈ Zq and α is a symbol. Then,
for elements a, x ∈ Fqk the product

xa = f1,a(x) + f2,a(x)α+ · · ·+ fk,a(x)αk−1

where each fi,a is a Zq-linear function which depends solely on a.
Given this, we briefly describe how we can perform several OLEs over Fqk while preserving overall

rate 1. The receiver has input b = (b1, . . . ,bt) ∈ Ftqk such that kt = mℓ and k|m (using the same
notation as in Section 4.8.1). It parses each bi as a k-dimensional vectors b̄i ∈ Zk

q. Then, it organizes
all t vectors bi in blocks ci ∈ Zm

q of sizem. It inputs c = (c1, . . . , cℓ) into the OMV protocol.
The sender, with input u, v ∈ Fqk rearranges u, v in the same way as the receiver and obtains

w = (w1, . . . ,wℓ), z = (z1, . . . , zℓ) respectively. Then, for each wi = (wi,1, . . . ,wi,m/k), it
computes the functions fj,wi,r for each j ∈ [k], i ∈ [ℓ] and r ∈ [m/k]. Let fj,wi,r be the vector
composed by the coefficients of fj,wi,r . The sender computes the matrices

D̄i,r =

 | |
f1,wi,r . . . fk,wi,r
| |

and then sets

Di =

D̄i,1
. . .

D̄i,m/k

 .

It inputsD = (D1, . . . ,Dℓ) and z into the OMV protocol.
It is easy to see that the receiver’s output will be b � u + v where � denotes component-wise

multiplication over Fqk . Moreover, hw(Di) = k. By choosing k such that k ≤ μ = m1−ζ we achieve
a protocol with overall rate 1. In particular, we can set the parameters such that k = λ and we achieve
an OLE over the field Fqλ of exponential size.

137

5
Privacy Preserving Signatures

In this chapter, we initiate our discussion on the final problem in privacy-preserving computation
that we address, which is related to the communication bandwidth and computational overhead of
a privacy-preserving signature scheme, referred to as stealth signatures. In contrast to previous chap-
ters, our primary focus here is on enhancing the concrete efficiency and bandwidth of the underlying
scheme.

Existing stealth signaturemechanisms either (1) exhibit security vulnerabilities in certain reasonable
adversarial models or (2) demonstrate inefficiency in practical scenarios. In this chapter, we provide a
formalizationof stealth signatures through game-baseddefinitions. We then introduce Spirit, the first
efficient post-quantum secure stealth signature construction based on NIST standardized signature
and key-encapsulation schemes, Dilithium and Kyber. The basic form of Spirit is secure only in a
weak security model; however, we provide an efficiency-preserving and generic transform that boosts
the security of Spirit to ensure the strongest security notion defined in this chapter. Compared to
the state-of-the-art, our approach offers a∼ 3.37x improvement in signature size while maintaining
signing and verification efficiency at around 0.2ms.

We enhance Spirit by incorporating a fuzzy tracking functionality, allowing recipients to dele-
gate the task of monitoring incoming transactions to a tracking server while upholding an anonymity
notion similar to fuzzy message detection (FMD), which was recently introduced in [BLMG21]. Ad-
ditionally, we extend Spirit with a novel fuzzy tracking framework called scalable fuzzy tracking, in-
troduced in this chapter. This framework can be viewed as a counterpart to FMD, as it reduces the
tracking server’s computational workload to sublinear levels in the number of users, in contrast to
FMD’s linear workload. Experimental results demonstrate that, for millions of users, the server only
requires 3.4ms to filter each incomingmessage, representing at least a∼ 76, 000x improvement over
existing methods.

138

5.1 Overview

Cryptocurrency payments have revolutionized payment infrastructures by overcoming the need for a
central authority and allowing for public verifiability.

On a very high level, cryptocurrency payments are made from a sender to a receiver, by posting a
transaction onto a public ledger called blockchain. In the most basic form, the sender and receiver are
identified by respective public keys (or addresses), and a transaction is authorized by the sender via a
digital signature on the transaction wrt. the public key of the sender.

This paradigm allows users to make payments to any other user in the system without having to
rely on banks, international money transfers- or exchange services. E-commerce [Webb], donation
platforms [Webj, Webd,Webg], gaming platforms [Webc], etc., are just some of the popular use cases
that are enabled by cryptocurrencies and their trustless payments. For example, donation platforms
accept donations in the form of cryptocurrency payments, and to do this, a donation platform an-
nounces its addresses and users can make transactions paying to these addresses without requiring
permission from any authority.

For transactions thatwant some level of anonymity, a criticalweakness of the above paradigm is that
it lacks reliable anonymity guarantees in its basic form. Several de-anonymization techniques [OKH13,
SO13,RH13,RS13,MSH+17] have been demonstrated that link addresses on the blockchain to the real-
world entities that own them. While de-anonymization of transactions may be beneficial in cases of
preventing crimes such asmoney laundering, it has also led toquestionable formsof censorship [Webe].
Combined with the public nature of blockchains, this also raises concerns about user privacy in gen-
eral.

A mechanism known as stealth addresses [Webi, vS, Tod, CM17] was developed to address these
anonymity issues. In the donation platform example above, the platform publishes a single master
address, a so-called stealth address, and any user can send payments to the platform, by using a locally
re-randomized version of the stealth address called one-time address. On one hand, such a one-time
address is unlinkable to the stealth address for any outside observer, consequently, transactions to
such a stealth address look as if they are going to random recipients (and not necessarily the donation
platform). On the other hand, with access to its master secret, the donation platform can link such a
one-time address to its stealth address and further generate the corresponding one-time secret locally,
on the fly. Using this one-time secret, the coins associated with the one-time address can be spent.

The stealth address mechanism proposed in [vS] has in fact been deployed in many of the major
currencies like Bitcoin [Webi], Ethereum [Webh], and Monero [vS]. The mechanism has further
found direct application in privacy enhancement of payment protocols like Blitz [AMKM21].

As [vS] implements stealth addresses via signature schemes, we will refer to the cryptographic ab-
straction of the mechanism from [vS] as stealth signatures. Thus we will henceforth use the terms
addresses and public keys interchangeably.

Notice that in the mechanism described above, the recipient only needs to publish its master ad-
dress, and does not need to give out fresh unlinkable addresses for each potential sender. As the num-
ber of senders could well be in the hundreds or thousands (as is the case with e-commerce, donations,
etc.), stealth signatures lead to a scalable solution.

139

Table 5.1: Comparisonwith PriorWorks about Stealth Signatures

Works w/KE1 Security Post-quantum opk Size Signature Size

Monero’s SS[vS] ◦ sEUF-CMA ◦ 64 B 64 B
Paring-based SS[LYW+19] • EUF-CMA ◦ 231 B 115 B
ABB10-based SS[LLN+20] • EUF-CMA • 3.35 GB 3.26 MB

[LLN+20] + NTRU (potential optimization) • EUF-CMA • 13.82 KB 13.82 KB

Section A.2 •◦2 sEUF-CMA ◦ 96 B 64 B
Section 5.5.1 ◦ EUF-CMA • 2.08 KB 2.54 KB

Section 5.5.1+Dilithium (compiler from Section 5.4) • sEUF-CMA • 2.08 KB 6.40 KB
Section 5.5.1+Falcon (compiler from Section 5.4) • sEUF-CMA • 2.08 KB 4.09 KB

1 Secure against key-exposures. Our construction presented in Section 5.5.1 can be upgraded to w/KE according to Section 5.4.
2 Secure against bounded key-exposures.

Recent academic works [LYW+19, LLN+20] initiated the formal treatment of stealth signatures
with cryptographic security guarantees. They observed that the construction of [vS] does not satisfy
security under so-called key-exposures. Roughly, this means that if an adversary learns the correspond-
ing one-time secret key for the one-time public keys that he generated, then he can potentially learn
all one-time secret keys of all one-time public keys that he generates for this particular master address.

More recent proposals of stealth signature schemes [LYW+19, LLN+20] were designed to be se-
cure against such key-exposure attacks, with the downside that their schemes use heavy tools such
as pairings [BF01] or lattice basis delegation [ABB10]. These are currently not compatible with any
of the major cryptocurrencies that exist today. Furthermore, with the threat of quantum comput-
ers looming large, cryptocurrency payments including the pre-quantum stealth signature mechanisms
of [vS, LYW+19] remain vulnerable. While a lattice-based (and thus plausibly post-quantum) con-
struction of stealth signatures was proposed in [LLN+20], this construction relies on the aforemen-
tioned lattice basis delegation. Consequently, their scheme is most likely too inefficient for practical
use1. We compare our constructions and related works in Table 5.1. Please refer to Section 5.6 formore
discussion.

this chapter is motivated by the following two questions:

• Can we have an efficient stealth signature scheme with security against unbounded key-exposures, that
is compatible with Schnorr, ECDSA and other group-based signature schemes predominantly used
in currencies today?

• Can we have an efficient stealth signature scheme secure with unbounded key exposure that is post-
quantum secure?

A caveat of the stealth address mechanism described above is that a recipient (online or offline) has

1As the authors of [LLN+20] point out in Section 1.1, their “public key and signature sizes are too large for
practical use”.

140

Table 5.2: Comparisonwith PriorWorks about Fuzzy/Private Tracking

Works Privacy Assumptions Post-quantum Server’s Work Latency/msg2 Receiver’s Time

FMD2[BLMG21] ρN-anonymity1 Random Oracle ◦ O(N) 933 sec 37.5 ms
ΠTEE[MSS+22] Full Privacy Trusted Execute Environment ◦ O(N) 228 sec 12 ms
ΠGC[MSS+22] Full Privacy Two Non-colluding Servers •◦ O(N) 81.1 hour 1 ms
OMRp2[LT22] Full Privacy Fully Homomorphic Encryption • O(N) 43.1 hour 63 ms

Section 5.5.2 ρN-anonymity Standard Model • O(N) 11.70 sec 37.5 ms
Section 5.5.3 ρN-anonymity Random Oracle • O(ρN) 3.42 ms 37.5 ms

1 ρ denotes the false-positive rate andN the number of clients.
2 Calculated in a setting withN = 220 users andM = 500, 000messages based on the numbers from their papers.

Latency per message induced by the server. See more discussion in Section 5.6.

to parse through a large number (hundreds of thousands per day) of transactions to identify those
that send coins to one-time addresses corresponding to his master address.

A workaround was proposed in [vS], where a recipient can delegate identification of incoming
payments to a semi-trusted third-party server called the tracking server. To do so, the recipient can
generate a so-called tracking key from his secret key and provide it to the tracking server. The track-
ing key allows the tracking server to identify or track all incoming payments to the recipient using the
tracking key, and later notify the recipient of these exact payments. On the other hand, such a track-
ing key should not enable the tracking server to generate one-time secrets for the concerned one-time
addresses. Prior works [LYW+19, LLN+20] omit this tracking functionality in their formalization of
stealth signatures.

A downside of the above tracking method is that the tracking server learns exactly which payments
are addressed to the recipient, thus providing a tracking key to a server amounts to fully giving up
on anonymity/unlinkability with respect to the tracking server. While there is a natural and obvious
tension between the anonymity goal of unlinkability and the functional goal of trackability, a recent
work by Beck et al. [BLMG21] attempts to strike a balance between these notions. They introduce
the concept of fuzzy message detection (FMD), where a tracking server can approximately detect mes-
sages meant for a recipient with an adjustable degree of uncertainty. More specifically, their notion
of detection is fuzzy in the sense that messages meant for the recipient are always correctly identified,
but there is a recipient-controlled false positive rate (baked into the fuzzy tracking key) which causes
messages meant for other users to be misclassified as being meant for the recipient.

Thus, the tracking server cannot decide with certainty if a detected message is actually intended
for the recipient or not. This mechanism makes it necessary for the sender of the message to include
additional fuzzy tracking information and the tracking server possesses a fuzzy tracking key. Together,
fuzzy tracking information and fuzzy tracking key enable fuzzy tracking. In principle, applying their
technique to enable fuzzy tracking of one-time addresses in stealth signatures is fairly straightforward.
However, relying on their schemes comes with considerable drawbacks. While their first scheme
(FMD2) is efficient, it relies on the pre-quantum DDH assumption. Their second scheme (FMDfrac)
relies on garbled circuits as an additional component and is hence plausibly post-quantum. But the

141

garbled circuits included in the ciphertext lead to an unacceptable size blowup of the sender’s message.
On the other hand, there are signalling detection or retrieval schemes [MSS+22, LT22] for fully private
tracking instead of fuzzy tracking, but all of them require linear work at the server side which doesn’t
scale to thousands or millions of users. We discuss their schemes and ours in Section 5.6 and present a
comparison about this in Table 5.2.

This leads us to the following question:

• Can we have a stealth signature scheme with efficient fuzzy tracking in the post-quantum setting and
scalable to hundreds of thousands (or even millions) of users?

5.1.1 Our Contributions

We summarize our contributions below.
ClearConstructions. We introduce Spirit (in Section 5.5.1), the first practically efficient post-quantum
secure stealth signature scheme secure without key exposure. Towards this goal, we consider the
Dilithium [LDK+20] signature scheme which is lattice-based and a winner of the NIST competi-
tion. Without changing the signature scheme in any way, we augment Dilithium with additional al-
gorithms to obtain Spirit so that it now supports one-time key derivations and tracking. One of the
main motivations for considering Dilithium is that we believe it is one of the most popular and most
likely post-quantum signature schemes to be adopted into cryptocurrencies for the authentication of
payments.

Next, we show how one can generically transform (in Section 5.4) a stealth signature scheme that is
secure without key-exposure into a scheme that is secure with unbounded key-exposure.

Thus we can transform Spirit into one that is practically efficient and secure with an unbounded
key exposure. Both Spirit and the transformed construction are compatible with cryptocurrencies
that would support Dilithium signature verification. Moreover, we do not require any additional
support from the scripting language of cryptocurrency.

Furthermore, we construct a stealth signature scheme (in Section A.2) that is compatible with
group-based schemes like Schnorr and ECDSA which are used in most of the currencies today. How-
ever, it only guarantees security with bounded key-exposure: It tolerates a-priori number of one-time
secret key leakage.
Fuzzy Constructions. We then present two fuzzy stealth signature schemes (using Spirit), both of
which are the first efficient and post-quantum candidates.

In the first construction (in Section 5.5.2), we take a similar approach as FMD from [BLMG21].
But we reduce its overhead fromO(λ) to 1 bit per signal by making novel use of ciphertext compres-
sion techniques [BDGM19]. Additionally, we show how to allow finer false-positive rates without
requiring garbled circuits as in [BLMG21].

We then present a new scalable framework for fuzzy tracking (in Section 5.3.4) followed by an effi-
cient construction (in Section 5.5.3) in the random oracle model. This framework can be viewed as a
‘dual’ version of the FMDmechanism from [BLMG21].

142

Intuitively, it is a trade-off between efficiency and usability: By limiting the users’ ability to choose
false-positive rates, we are able to reduce the tracking server’s computational work to sublinear in the
total number of users. This compares very favourably with prior works, where the server needs to take
a linear scan of each user’s tracking key [BLMG21, MSS+22, LT22].
Implementation. We implemented Spirit, post-quantum FMD, and scalable fuzzy tracking based
on Dilithium, Kyber, and Falcon with anonymized open-source code [Weba]. We test them with
different parameter sets on an ordinary laptop as presented in Table 5.3 and Table 5.4 (in Section 5.6).
Experiment results show that our stealth signature with the strongest security only yields a 4.09 KB
signature (∼ 797x improvement), meanwhile, the verification time is less than 0.2 ms. Similarly,
our scalable fuzzy tracking mechanism only takes 3.42 ms (∼ 76, 000x improvement) to filter each
incoming message with millions of users in the setting.

5.2 Techniques

Let us first recall the group-based stealth signature scheme of [vS]: Given a cryptographic groupG =
〈g〉 of prime order p, the master public key ismpk := (g, h0 := ga, h1 := gb) ∈ G3,wheremsk :=
(a ←$ Zp, b ←$ Zp) is the master secret key, andmtk := a is the tracking key. To re-randomizempk
to a one-time address (i.e., one-time public key), the sender samples a uniformly random r←$ Zp and
computes opk := gH(hr0) · h1 ∈ G where H : G 7→ Zp is a hash function modelled as a random
oracle. Additionally, the sender attaches tracking information tki := gr ∈ G to the opk. To derive
the corresponding one-time secret key osk frommsk, the receiver computes osk := H(tkia)+b ∈ Zp
with the help of tki. Now, the receiver can sign (for e.g., Schnorr or ECDSA) any message with osk to
output a signature which can be verified with corresponding opk because of the discrete-log relation
opk = gosk. An additional mechanism is thatmtk := a can be given to a tracking server for tracking:
By comparing whether opk ?

= gH(tkimtk) · h1, the tracking server can determine whether opk links to
the issuer ofmtk.

Taking a closer look, this approach to build a stealth signature apparently can be generically decom-
posed to a linearly homomorphic one-way function f : D 7→Mwhere f(x+ y) = f(x)+ f(y), and
a key-exchange protocol (KE1,KE2,KE3), whereKEi denotes the i-th message function:

ct1 ∈ C1 ←KE1(r1),
(ct2 ∈ C2,K ∈ K)←KE2(r2, ct1),

K ∈ K ←KE3(r1, ct2),

where r1, r2 are two user’s secrets, and K is the agreed-upon key. Here C1, C2 andK are the first mes-
sage, the second message and the key space, respectively. Now, let mpk :=

(
ct1 := KE1(r1),B :=

f(b)) and msk := (r1, b),mtk := r1. To publish a one-time address, the sender can just compute
(ct2,K)← KE2(r2, ct1) and publish

opk := B+ f
(
H(K)), tki := ct2

143

whereH : K 7→ D. Correspondingly,

osk := b+ H
(
KE3(r1, tki)

)
.

Since they obey the relation f(osk) = opk, we can leverage this to sign and verify. The tracking
mechanism still works by checking if

opk
?
= f
(
H
(
KE3(mtk, tki)

))
+ B.

We will now adopt this blueprint to construct a stealth signature in the lattice setting.

5.2.1 Spirit: Lattice-based Stealth Signature

Tomake our protocol both efficient and practical, wewould like to use optimizedNISTwinners as our
building blocks. In this chapter, we choose Dilithium as the underlying digital signature considering
that it is one of the most popular signature schemes in NIST [LDK+20]. We call the resulting stealth
signature scheme Spirit. Basically, it follows the above approach: In Dilithium, the public key is a
Module Learning With Errors (MLWE) [BGV12] sample t := As1 + s2 where its secret-error pair
(s1, s2) (both chosen from a suitable short distribution) acts as the secret key. SinceMLWE involves
only linear operations, we have that

t+ t′ = A(s1 + s′1) + s2 + s′2.

Yet, even though adding samples is approximately linearly homomorphic, this addition will increase
error rates or lengths for both s1 and s2. Typically, the s1 and s2 are generated by sampling their
coefficients uniformly with absolute value at most η (for some small parameter η). The increased
norm of the new secrets (s1 + s′1, s2 + s′2) will incur additional running time during signing due
to the so-called “Fiat-Shamir with Abort” mechanism of Dilithium. To alleviate this issue, we only
prove Spirit to be existential unforgeable. This will give us better parameters to balance security and
efficiency. Looking ahead, we point out that Spirit can be transformed to an strongly existentially
unforgeable scheme using a generic compiler which we will introduce later.

Apart from linearly homomorphic one-way functions, we still need a key-exchange protocol. How-
ever, this key exchange needs some additional properties. Specifically, we need a non-interactive key
exchange (NIKE) protocol which is substantially stronger than KE we depicted above. The starting
point is that it needs to be anonymous under chosen plaintext attacks (CPA), which means giving the
message ct2, the adversary cannot link it to the ct1 used to generate ct2. This is for stealth signatures as
we don’t want our one-time address to be linkable to the original master public address. This security
notion is formalized as unlinkability.

But anonymity under chosen plaintext attacks will not even suffice yet for our applications. We
will require a stronger notion of anonymity under plaintext checking attacks (PCA). Here, the adver-
sary is given an additional oracle which allows him to check whether a ciphertext-plaintext pair is valid
or not. To see why this is necessary, consider an adversary who is trying to link some (opk, tki) to

144

mpk. Such an adversary will be able to sample ct2 ←$ C2,K ←$ K to generate (opk′, tki′), which
can then be published to see if the tracking check passes. It turns out that anonymity under plain-
text checking attacks is sufficient for this setting. However, we currently don’t have a simple con-
struction satisfying anonymity under plaintext checking attacks. As a consequence, we use an even
stronger key-exchange protocol which is anonymous under chosen ciphertext attacks (CCA), namely,
it is ANO-CCA-secure (formalized in Definition 1.1.5). Fortunately, the recent standardized KEM by
NIST, Kyber [SAB+20], can be slightly modified to be ANO-CCA-secure [GMP22] and we use Ky-
ber in the concrete instantiation. There are multiple technical details not covered in this outline, for
instance, besides tki, the one-time address opk itself also needs to be anonymous. We refer to Sec-
tion 5.5.1 for detailed construction and analysis.

So far, we brieflymentioned two important security notions for stealth signatures, namely unforge-
ability and unlinkability (Section 5.3 for formalization). However, we note that we only formalize
these two notions as unforgeability without key-exposure and unlinkability without key-exposure, re-
spectively. It turns out the above approach to build stealth signatures (as well as in Spirit) is no longer
secure if a one-time secret key osk leaks: Suppose the sender learns osk somehow, he can instantly re-
covermsk as

b := osk− H
(
KE3(r1, tki)

)
,

if he knows r1 which is used to generate corresponding opk.

5.2.2 Generic Transformation: Security with Key-exposure

Asmentioned above and noticed in prior works[LYW+19, NMRL16], leaking one-time secret keys is
almost as bad as leaking the master secret key. This is a potential issue in current practical stealth sig-
nature schemes [vS] and it is costly to avoid. For instance, if we are willing to use techniques implying
hierarchical identity-based encryption (HIBE), we could have a stealth signature scheme secure with
key-exposure attacks by using pairing[BF01, LYW+19], lattice basis delegation[ABB10, LLN+20], or
non-black box tools[DG17b]. All of above techniques are several orders of magnitude slower in com-
putational time, or orders of magnitude larger in the signature or one-time public key size.

The reasonwe don’t have a simple solution to this issue is that one-time secret keys are usually a lin-
ear functionof themsk asmentioned in [LRR+19]. Apparently, we can achieve securitywith bounded
key-exposure by addingmore secrets inmskwhere bounded key-exposure meansmsk remains secure
if thenumber of leakedosk is smaller than some ‘a priori bound’ andwe showa candidate construction
in Section A.2. However, any generic-group-based techniques to prevent unbounded key exposure
should imply IBE which is known to be impossible using only black-box techniques [PRV12, SGS21].

In this chapter, we provide a conceptually simple, generic, and powerful black-box compiler to
tackle this problem in the context of stealth signatures (in Section 5.4): Weuse a short chainof signatures[Mer90]
to compile any stealth signatureSSw/o securewithout key-exposure into a strong stealth signatureSSw
securewith unbounded key-exposure. The high-level idea is to break this ‘linear’ relation between osk
and msk. Specifically, instead of generating osk directly, with the help of an additional digital signa-

145

tureDS, we generate
osk := (σ1, sk, vk),

whereσ1 ← SSw/o.Sign(osk
′, vk) and (vk, sk)← DS.Gen(λ). Note thatosk′ is the one-time secret

key in the scheme SSw/o. Intuitively, since osk has a non-linear relation withmsk, the adversary can-
not recovermsk fromosk asSSw/o is unforgeable. To sign amessagem, it runsσ2 ← DS.Sign(sk,m)
and outputs the final signature σ := (σ1, σ2, vk). Similarly, to verify σ just use opk to verify the sig-
nature σ1 on vk and use vk to verify the signature σ2 onm. Compared to the original stealth signature
SSw/o, our compiled one SSw incurs a slightly larger signature size and longer verification time, but
in turn, is far more efficient than the above HIBE-related techniques.

Additionally, we show this compiler can also leverage SSw/o with existential unforgeability to SSw
with strongunforgeability via a small tweak: Insteadof signingonm, we sign asσ2 ← DS.Sign(sk,m||σ1).
This prevents strong unforgeability attacks ofSSw because: Assuming vk inσ is not altered, a different
σ′1 6= σ1 will lead to a forgery (m||σ′1, σ2) of DS in SSw. Therefore, Spirit can also be leveraged in
this way to be strongly unforgeable with a key exposure. This gives us the first practical post-quantum
SSw secure with a key exposure.

5.2.3 Fuzzy Tracking

We will now turn to the issue that in the above constructions, the tracking mechanism will leak the
users’ metadata to the tracking servers, i.e., the tracking server will know exactly whichmtk belongs to
which specific (opk, tki). As discussed above, to address this problem, Beck et al. [BLMG21] proposed
a mechanism named fuzzy message detection (FMD): The server is given a fuzzy tracking key ftk
instead of mtk to filter incoming fuzzy tracking information ftki for its users. Here, ftki is attached
with (opk, tki). Specifically, for unmatched ftki and ftk, they will be linked with probability roughly
ρ.

Transforming their scheme to a post-quantum world is non-trivial as there are still two potential
obstacles in the lattice setting: First, it is not practically efficient since its ftki is as large asO(n · |ct|)-
bit where |ct| = poly(λ). This is highly undesirable in practice as our expectation is something like
O(λ) + n. The other problem is the uniformly-ambiguous (recalled in Chapter 1) encryption, as it is
unclear how to extend the random oracle-based approach in [BLMG21], to the lattice setting due to
the presence of noise. We show that these two obstacles are related and can be resolved simultaneously.
For simplicity, assume n = 1 for the moment. Recall that in Regev encryption with modulus q, the
ciphertext is composed of two parts, a vector c1 ∈ Zℓ

q and a scalar c2 ∈ Zq. The secret key is s ∈ Zℓ
q

and decryption consists of rounding after a linear operation:

dsTc1 − c2c2 = d
q
2 ·m+ ec2,

where e < B <
q
4 is a bounded error. This is not just bad for efficiency (as we need additional n log q

bits to encryptnmore bits), but also for security: With the correct secret key s, sTc1−c2 is distributed
as a Gaussian around q

2 or 0; With a wrong key s∗, sT∗c1 − c2 is distributed uniformly random over

146

the entire domain Zq. These two cases are clearly distinguishable by an adversary.
Our solution will be to compress c2 into a single bit, which doesn’t convey enough information

about the distribution. Hence this idea will solve both of the above problems simultaneously. Brak-
erski et al. [BDGM19] introduced rate-1 packed Regev encryption which can compress each c2 to just
one bit but require an additional offset scalar z ∈ Zq in the header. Thus to to encrypt n bits, the ci-
phertext after compression is (c1, z,w1, . . . ,wn)wherewi ∈ {0, 1}. Tomake the offset z statistically
close to uniformly random (in our setting pseudorandomdoesn’t suffice because the adversary gets the
secret key), we require super-polynomial noise-modulus ratio of LearningWith Errors (LWE)[Reg05]
which makes the scheme slightly less efficient. This gives us a lattice-based fuzzy tracking scheme (and
ambiguous encryption), and surprisingly, it doesn’t rely on heuristic assumptions like random oracles
which are necessary in [BLMG21].

5.2.4 Scalable Fuzzy Tracking

We observe that in the above FMD style tracking, the server’s computational work is O(N) with N
users and is not scalable when thousands (or millions) of users are using the service of the server. We
provide a framework for scalable fuzzy tracking which we view as a dual version of FMD [BLMG21],
where the server’s work is sublinear. In this framework, we weaken the requirement that the false-
positive rate can be adaptively changed by users. Instead, it is fixed in advance in this setting. This
weakening is reasonable as it was shown in [SPB21] that an adversary can mount statistical attacks if
users have varying false positive rates. To circumvent such attacks it was suggested that all users have
high enough false positivity rates as even a small subset of low-rate users can affect unlinkability for
the entire pool of users. Therefore we can fix the false positivity rate to be a high enough value for
everyone. For example, as calculated in [SPB21], the false-positive rate ρ is better to be as large as 1√

N .
In this case, we can make the server’s overheadO(ρN) for each incoming message which was at least
O(N) in prior works [BLMG21, MSS+22, LT22].

We let the tracking server runFTKGen in the beginning to publish fuzzy public key fpk and secretly
hold the fuzzy tracking key ftk. For each ftki received from senders, the tracking server will expand
ftki to a list of size t composed of potential users’ master public keys to which ftki may belong. The
tracking server can then store (opk, tki) in the mailbox of each candidate in this list. Crucially, the
master public keys of other potential candidates should remain uncontrollable to either the sender or
the server. Otherwise, the sender might manipulate the chance of each key appearing in the list. This
additional property is named unbiasedness. This rules out the trivial solution, where for instance the
sender just sends directly a range of master public keys including the targetedmpk.

Sincempk of each user can be large, in our constructionwe hashmpk ∈ K to some small hint ∈ T
(while making |T | ≥ N) and use the hint to locate each user’s mailbox. Our scheme is based on the
underlying IND-CPA encryption of Kyber, except that we use a non-prime modulus. For instance,
assuming the hint contains n = dlogNe bits, i.e., b := hint ∈ {0, 1}n, to generate ftki, the sender

147

modifies the Kyber512’s ciphertext ct := (c1, c2) to ct′ := (c′1, c′2) as follows:

c′1 := c1 +
q
2

[xi
0
]
c′2 := c2 +

q
2yi,

where ct (and ct′) encrypts hinti as the plaintext, xi ← encodeRq(xi) is a polynomial mapped from
the vector xi, and xi, yi ∈ {0, 1}m ← H(δ, i) are outputs of a hash functionHwith the seed δ. Here
i ∈ [t] denotes the i-th targetmpk as the intended recipient.

For ftki := ct′, the tracking server decrypts ct′ using the key sk = s as follows: for ∀j ∈ [t],

hintj ← decodeRq(dsT(c′1 −
q
2

[xj
0
]
)− c′2)c2 ⊕ yj),

to get t potential hints. To argue privacy, intuitively, since s remains random to the sender, the de-
crypted hint for j 6= iwould also be random to the sender as

hintj = hinti ⊕ (yj ⊕ yi)⊕ decodeRq(d
q
2s

T
[xj
0
]
c2).

However, to prove the unbiasedness wementioned above, we need to be careful because the standard
regularity lemma seems hard to apply with such a small noise parameter and modulus in ideal lattices.
Our solution is to rely on the specific structure of the corresponding cyclotomic polynomial and shows

that even sT
[xj
0
]
is not close to a uniformly random polynomial but there’s enough entropy to make

hintj uniformly random over {0, 1}n as long as n is much smaller than the degree of the polynomial.

5.3 Definitions

In this section we first present our formal definitions for a stealth signature scheme, followed by
how we can add-on fuzziness to the scheme. Note that stealth signatures were formalized in prior
works [LYW+19, LLN+20], however our formalization of security is strictly stronger than theirs, and
moreover we are the first to formalize tracking and fuzzy tracking for a stealth signature scheme. We
will point out the exact differences in the formalism as we introduce the security notions formally.

Belowwe present the definition of stealth signatures, that formalizes the tracking of keyswhichwas
absent in prior works. This formalization allows for tracking to be outsourced to third-party servers.

Definition 5.3.1. A stealth signature (SS) scheme consists of the PPT algorithms (MKGen,OPKGen,
OSKGen,Track, Sign, Vf) that are defined as follows.
(mpk,msk,mtk)← MKGen(λ): themaster key generation algorithm takes as input the security pa-
rameterλ and outputs the master public keympk, the master secret keymsk, and the master tracking
keymtk.

148

(opk, tki)← OPKGen(mpk): the one-time public key generation algorithm takes as input the mas-
ter public keympk and outputs the one-time public key opk and a tracking information tki.
osk/ ⊥← OSKGen(msk, opk, tki): the one-time secret key generation algorithm takes as input the
master secret keymsk, the one-time public key opk, and the tracking information tki, and outputs a
one-time secret key osk or a special symbol⊥.
true/false← Track(mtk, opk, tki): the tracking algorithm takes as input the master tracking key
mtk, the one-time public key opk, and the tracking information tki, and outputs true or false.
σ/ ⊥← Sign(osk,m): the signing algorithm takes as input the one-time secret keyosk, and amessage
m, and outputs a signature σ or a special symbol⊥.
true/false← Vf(opk,m, σ): the verification algorithm takes as input the one-time public key opk,
a messagem, and a signature σ, and outputs true or false.

The notion of correctness if formalized below.

Definition 5.3.2 (Correctness). A SS scheme (MKGen,OPKGen,OSKGen, Track, Sign, Vf) is said
to be correct if for allλ ∈ N, all (mpk,msk,mtk)← MKGen(λ), all (opk, tki)← OPKGen(mpk),
all osk← OSKGen(msk, opk, tki), we have the following that hold simultaneously:

• we have Pr[Track(mtk, opk, tki) = true] = 1
• we have Pr[Vf(opk,m, Sign(osk,m)) = true] = 1,
note that sometimeswedon’t require perfect correctness andhaving correctness probability1−negl(λ)
instead would suffice.

5.3.1 Security of SS Without Key Exposure

In terms of security, we first want unforgeability, which guarantees that it is infeasible for an adversary
to forge a signature on a (fresh) message wrt. some one-time public key opk∗ for a master public key
mpk. The adversary is given access to a one-time secret key generation oracleOSKGenO using which
the adversary can generate a fresh one-time secret key. However, the adversary does not get to learn the
generated one-time secret keys, therefore the notion is said to be without key exposure. The adversary
also has access to a signing oracle, to which it can query a signature on any message of its choice wrt.
any one-time secret key that has been generated with a query toOSKGenO. The formal definition is
presented below.

Definition 5.3.3 (Unforgeability without key-exposure). A SS scheme (MKGen,OPKGen,OSKGen,
Track, Sign,Vf) is said to be unforgeable without key exposure if there exists a negligible function negl
for all λ ∈ N, and for all PPT adversariesA the following holds:

Pr
[
sEUF-CMAAw/o−ke(λ) = 1

]
≤ negl(λ)

where sEUF-CMAw/o−ke is defined in Figure 5.1.

149

EUF-CMAAw/o−ke(λ)
(mpk,msk,mtk)← MKGen(λ)
OK := [],Q := ∅
(m∗, σ∗, i∗)

← AOSKGenO,SignO(mpk,mtk)

(opk∗, osk∗) := OK[i∗]
b0 := (m∗, ·, i∗) /∈ Q

// (m∗, σ∗, i∗) /∈ Q for sEUF-CMAw/o−ke

b1 := Vf(opk∗,m∗, σ∗) ?
= true

return b0 ∧ b1

OSKGenO(opk, tki)
osk← OSKGen(msk, opk, tki)

OK := OK||(opk, osk)
return 1

SignO(i,m)

(opk, osk)← OK[i]
σ← Sign(osk,m)

Q := Q ∪ (m, σ, i)
return σ

Figure 5.1: Experiment for unforgeability without key exposure.

We then want unlinkability, which guarantees that it is infeasible for an adversary to associate a
one-time public key to the master public key wrt. which it was generated. The adversary is given two
master public keys mpk0 and mpk1, while also given a challenge one-time public key opkb and the
corresponding tracking information tkib (for b ∈ {0, 1}) generated wrt. mpkb. The adversary is
given access to theOSKGenO as before, and a signing oracle. The adversary is not given access to any
of the one-time secret keys and therefore the notion is said to be without key exposure. The formal
definition is presented below.

Definition 5.3.4 (Unlinkability without key-exposure). A SS scheme (MKGen,OPKGen,OSKGen,
Track, Sign, Vf) is said to be unlinkability without key exposure if there exists a negligible function
negl for all λ ∈ N, and for all PPT adversariesA the following holds:

Pr
[
UNLNKAw/o−ke(λ) = 1

]
≤ 1
2 + negl(λ)

where UNLNKw/o−ke is defined in Figure 5.2.

5.3.2 Security of SS With Key Exposure

Prior works [LYW+19, LLN+20] formalized security with additionally giving adversary the one-time
secret keys, i.e., theOSKGenO returns the generated osk to the adversary.

The unforgeability notion with key exposure is formalized below. Notice that our formalization
exposes the one-time secret keys osk to the adversary except the key wrt. which the adversary forges
the signature.

Definition 5.3.5 (Unforgeability with key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf) is said to be unforgeable with key exposure if there exists a negligible function negl

150

UNLNKAw/o−ke(λ)
(mpk0,msk0,mtk0)← MKGen(λ)
(mpk1,msk1,mtk1)← MKGen(λ)
OK0 := OK1 := []

b← {0, 1}
(opkb, tkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

b′ ← AOSKGenO,SignO(X, opkb, tkib)
// whereX := (mpk0,mpk1)

b0 := (b = b′)
return b0

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return 1

SignO(b∗, i,m)

if i = −1 then
σ← Sign(oskb,m)

else
(opk, osk)← OKb∗ [i]
σ← Sign(osk,m)

return σ

Figure 5.2: Experiment for unlinkability without key exposure.

sEUF-CMAAw−ke(λ)
(mpk,msk,mtk)← MKGen(λ)
OK := [],Q := ∅
(m∗, σ∗, i∗)

← AOSKGenO,SignO(mpk,mtk)

(opk∗, osk∗, ·) := OK[i∗]
b0 := (m∗, σ∗, i∗) /∈ Q
b1 := Vf(opk∗,m∗, σ∗) = 1
b2 := (OK[i∗] ̸= (·, ·, true))
return b0 ∧ b1 ∧ b2

OSKGenO(i, opk, tki, flag)
ifOK[i] = (opk, ·, ·) ∧ flag = true

returnOK[i].osk
osk← OSKGen(msk, opk, tki)

OK := OK||(opk, osk, flag)
if flag = true then return osk

else return 1

SignO(i,m)

(opk, osk, flag)← OK[i]
σ← Sign(osk,m)

Q := Q ∪ (m, σ, i)
return σ

Figure 5.3: Experiment for unforgeability with key exposure.

for all λ ∈ N, and for all PPT adversariesA the following holds:

Pr[sEUF-CMAAw−ke(λ) = 1] ≤ negl(λ)

where sEUF-CMAw/o−ke is defined in Figure 5.3.

The notion of unlinkability with key exposure is formalized below. Similar to the case above, the
OSKGenO returns the generated osk. Our formalization apart from the tracking functionality is
stronger than prior works in that the adversary is even given the challenge one-time secret key oskb.

151

UNLNKAw−ke(λ)
(mpk0,msk0,mtk0)← MKGen(λ)
(mpk1,msk1,mtk1)← MKGen(λ)
OK0 := OK1 := []

b← {0, 1}
(opkb, tkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

b′ ← AOSKGenO(X, opkb, tkib, oskb)
// whereX := (mpk0,mpk1)

b0 := (b = b′)
return b0

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 5.4: Experiment for unlinkability with key exposure.

Definition 5.3.6 (Unlinkabilitywithkey-exposure). ASS scheme (MKGen,OPKGen,OSKGen,Track,
Sign, Vf) is said to be unlinkability with key exposure if there exists a negligible function negl for all
λ ∈ N, and for all PPT adversariesA the following holds:

Pr[UNLNKAw−ke(λ) = 1] ≤ 1
2 + negl(λ)

where UNLNKw/o−ke is defined in Figure 5.4.

5.3.3 Fuzzy Stealth Signatures

We now formally incorporate the fuzzy tracking functionality into the definition of stealth signing.

Definition 5.3.7 (Fuzzy Stealth Signatures). A fuzzy stealth signatures (F-SS) scheme is a SS scheme
(MKGen, OPKGen, OSKGen, Track, Sign, Vf) with additional interfaces (FTKGen, FTrack) de-
fined below.
(opk, tki, ftki)← OPKGen(mpk): overloading the interfaceOPKGen to output the fuzzy tracking
information ftki.
ftk← FTKGen(mtk,ρ): the fuzzy tracking key generation algorithm takes as input themaster track-
ing keymtk, and a false positivity rate ρ, and outputs a fuzzy tracking key ftk.
true/false← FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key
ftk, the fuzzy tracking information ftki, and outputs true or false.

We define the notion of correctness below. We borrow the notion of fuzziness from [BLMG21]
and adapt the same for the stealth signature setting. Intuitively, the correctness of fuzzy tracking says
that with a probability ρ, the fuzzy tracking algorithm returns true for a mismatched fuzzy tracking

152

key and a one-time public key. For a correctly matched fuzzy tracking key and a one-time public key,
the tracking algorithm always returns true.

Definition 5.3.8 (Correctness for fuzzy tracking). An F-SS scheme (MKGen, OPKGen, OSKGen,
Track,Sign,Vf ,FTKGen,FTrack) is said to be correct if the original SS scheme is correct and if for all
λ ∈ N, all ρ ∈ (0, 1], all (mpk,msk,mtk) ← MKGen(λ), all (opk, tki, ftki) ← OPKGen(mpk),
all osk ← OSKGen(msk, opk, tki), all ftk ← FTKGen(mtk,ρ), we have the following that holds
simultaneously:

• Pr[FTrack(ftk, ftki) = true] = 1
• and for any ftki′ /∈ SUPP(OPKGen(mpk)), we have

Pr[FTrack(ftk, ftki′) = true
]
= ρ.

The unforgeability notion is the same as in Figure 5.3 as the adversary in the notion is given the
master tracking key already.

Unlinkability with fuzzy tracking guarantees that it is infeasible for an adversary given two fuzzy
tracking keys, both of which return a true or a false when tracking a challenge one-time public key
(opkb, ftkib) simultaneously, to associate (opkb, ftkib)with the correct tracking key, i.e., either ftk0 or
ftk1. The adversary is said to violate the notion if it can guess correctly the association non-negligibly
more than 1/2.

Definition 5.3.9 (Unlinkabilitywithkey-exposure and fuzzy tracking). AF-SS scheme (MKGen,OPKGen,
OSKGen, Track, Sign, Vf , FTKGen, FTrack) is said to be unlinkable with key-exposure and fuzzy
tracking if there exists a negligible function negl for all λ ∈ N, all ρ ∈ (0, 1], and for all PPT adver-
sariesA the following holds:

Pr[UNLNKAfw−ke(λ,ρ) = 1] ≤ 1
2 + negl(λ)

where UNLNKfw−ke is defined in Figure 5.5.

5.3.4 Scalable Fuzzy Tracking

We now formalize the functionality, correctness, and security of fuzzy scalable stealth signatures as
follows.

Definition 5.3.10 (Fuzzy Scalable Stealth Signatures). A fuzzy scalable stealth signature (F-SSS) is a SS
scheme (MKGen,OPKGen,OSKGen,Track,Sign,Vf)with additional interfaces (FTKGen,FTrack)
and a modifiedOPKGen defined below.
(fpk, ftk)← FTKGen(ρ,N): the fuzzy tracking key generation algorithm takes as input a false pos-
itivity rate ρ, and the number of total usersN, and outputs a fuzzy tracking key ftk and fuzzy public
key fpk. The algorithm is run by the tracking server ahead of time.

153

UNLNKfw−ke(λ)
OK0 := OK1 := []

(mpk0,msk0,mtk0)← MKGen(λ)
(mpk1,msk1,mtk1)← MKGen(λ)
b← {0, 1}
(opkb, tkib, ftkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

(stA, ρ)← A1(mpk0,mpk1, opkb,

tkib, ftkib, oskb)

ftk0 ← FTKGen(mtk0, ρ)
ftk1 ← FTKGen(mtk1, ρ)
b1 ← FTrack(ftk0, ftkib)

b2 ← FTrack(ftk1, ftkib)

if b1 = b2
b′ ← AOSKGenO

2 (stA, ftk0, ftk1)

else
b′ ←$ {0, 1}

return (b = b′)

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 5.5: Experiment for unlinkability of F-SS with key-exposure.

(opk, tki, ftki)← OPKGen(mpk, fpk): overloading the interface OPKGen to additionally take in-
put fpk and output fuzzy tracking information ftki.
list← FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key ftk, the
fuzzy tracking information ftki, and outputs a list consisting of master public keys.

Definition 5.3.11 (Correctness for fuzzy scalable stealth signatures). AnF-SSS scheme (MKGen,OPKGen,
OSKGen,Track, Sign,Vf , FTKGen, FTrack) is said to be correct if the original SS scheme is correct
and if for all λ ∈ N, all ρ ∈ (0, 1], all (mpk,msk,mtk) ← MKGen(λ), all (opk, tki, ftki) ←
OPKGen(mpk, fpk), all osk ← OSKGen(msk, opk, tki), all (fpk, ftk) ← FTKGen(ρ,N), we
have the following that holds simultaneously:

• Pr[mpk ∈ FTrack(ftk, ftki)] = 1
• and for anympk′ 6= mpk, we have

Pr[mpk′ ∈ FTrack(ftk, ftki)
]
≈ ρ.

Crucially, we omit opk in FTrack as ftki is already associated with opk and we still have the regu-
lar Track algorithm that works with tk, opk and tki for tracking. The correctness definition above
’ties’ together the keys ftk, mpk and mtk, and (opk, tki, ftki) ← OPKGen(mpk) by requiring that
FTrack(ftk, ftki) always returns 1.

154

UNLNKfsw−ke(λ,ρ,N)

OK0 := OK1 := []

(mpk0,msk0,mtk0)← MKGen(λ)
(mpk1,msk1,mtk1)← MKGen(λ)
(fpk, ftk)← FTKGen(ρ,N)

b← {0, 1}
(opkb, tkib, ftkib)← OPKGen(mpkb,

fpk)

oskb ← OSKGen(mskb, opkb, tkib)

list← FTrack(ftk, ftkib)

ifmpk0 ∈ list ∧mpk1 ∈ list

b′ ← AOSKGenO
2 (ftk,mpk0,mpk1,

opkb, tkib, ftkib, oskb)

else
b′ ←$ {0, 1}

b0 := (b = b′)
return b0

UNI-UBSfs(λ,ρ,N)

(fpk, ftk)← FTKGen(ρ,N)

(stA, ftki, i, j,mpk)← A1(fpk)

list← FTrack(ftk, ftki)

b←$ {0, 1}
if list[i] ̸= mpk ∨ i = j ∨mpk ̸= K
b′ ←$ {0, 1}

else
v0 := list[j], v1 ←$ K

b′ ← A2(stA, vb)

return b ?
= b′

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 5.6: Experiments for unlinkability and uniformly unbiasedness of F-SSS with Key-Exposure.

Definition 5.3.12 (Unlinkabilitywithkey-exposure and fuzzy scalable tracking). AF-SSS scheme (MKGen,
OPKGen, OSKGen, Track, Sign, Vf , FTKGen, FTrack) is said to be unlinkable with key-exposure
and fuzzy scalable tracking if there exists a negligible function negl for all λ ∈ N, all ρ ∈ (0, 1], and
for all PPT adversariesA the following holds:

Pr[UNLNKAfsw−ke(λ,ρ,N) = 1] ≤ 1
2 + negl(λ)

where UNLNKfsw−ke is defined in Figure 5.6. Note that, similar to prior works, we only consider the
semi-honest server in the definition.

Definition 5.3.13 (Unbiasedness for fuzzy scalable tracking). A F-SSS scheme (MKGen, OPKGen,
OSKGen, Track, Sign, Vf , FTKGen, FTrack) is said to be unbiased by senders if there exists a negli-
gible function negl, for all λ ∈ N, and for all PPT adversariesA the following holds:

Pr[UNI-UBSAfs (λ,ρ,N) = 1] ≤ 1
2 + negl(λ),

where the experiment UNI-UBSfs is defined in Figure 5.6 where list[i] denotes the i-th item of the list
andK denotes the master public key space.

155

MKGen(λ)
return SSw/o.MKGen(λ)

OSKGen(msk, opk, tki)

(vk, sk)← DS.Gen(λ)
epk← SSw/o.OSKGen(msk, opk, tki)

return ⊥ if epk =⊥
σ1 ← SSw/o.Sign(epk, vk)

return osk := (σ1, sk, vk)

Track(mtk, opk, tki)

return SSw/o.Track(mtk, opk, tki)

OPKGen(mpk)

return SSw/o.OPKGen(mpk)

Sign(osk,m)

return ⊥ if osk =⊥
(σ1, sk, vk)← osk

σ2 ← DS.Sign(sk,m||σ1)
return σ := (σ1, σ2, vk)

Vf(opk, σ,m)

(σ1, σ2, vk) := σ
if SSw/o.Vf(opk, σ1, vk)∧

DS.Vf(vk, σ2,m||σ1)
return 1

else return 0

Figure 5.7: A generic transformation to liftSSw/o toSSw .

5.4 Generic Transformation of Stealth Signatures

Weprovide our black-box compiler below to upgrade an SSw/o without key-exposure to an SSw with
key-exposure.

Suppose we have a digital signature schemeDS which is strongly unforgeable sEUF-CMA. Then
we have a black-box compiler leveraging SS to stronger version as shown in Figure 5.7. Basically, the
compiler transforms any SSw/o with EUF-CMAw/o−ke and UNLNKw/o−ke security (without key-
exposure) into an SSw with sEUF-CMAw−ke and UNLNKw−ke security (with key-exposure).

It is easy to see that correctness always holds as long as SSw/o and DS are correct. The security
of unforgeability and unlinkability for SSw are captured informally in the following theorem. The
formal theorem and security proofs are deferred to Section 5.7.

Theorem5.4.1 (informal). The stealth signature SSw constructed in Section 5.4 is secure in sEUF-CMAw−ke
and UNLNKw−ke experiments if SSw/o is EUF-CMAw/o−ke secure, UNLNKw/o−ke secure, and
DS is sEUF-CMA secure.

5.5 Spirit: Lattice-based (Fuzzy) Stealth Signature

We first describe Spirit and later show we can make it fuzzy.

156

MKGen(λ)
A ∈ Rk×ℓ

q ← Dil.ExpandA(crs)

(s1, s2)←$ Sℓη × Skη
t := As1 + s2
(ek, dk)← KEM.Gen(λ)
mpk := (t, ek),
msk := (s1, s2, dk, t)
mtk := (dk, t)
return (mpk,msk,mtk)

OSKGen(msk, opk, tki)

(s1, s2, dk, t) := msk

if false← Track((dk, t), opk, tki)
return ⊥

K← KEM.Decaps(dk, tki)

(s′1, s′2)← Dil.ExpandS(K)
return osk := (s1 + s′1, s2 + s′2)

Vf(opk, σ,m)

returnDil.Vf(opk, σ,m)

OPKGen(mpk)

(t, ek) := mpk

A← Dil.ExpandA(crs)

(C,K)← KEM.Encaps(ek)

(s′1, s′2) ∈ Sℓη × Skη ← Dil.ExpandS(K)
t′ := t+ As′1 + s′2
(t′1, ·)← Dil.power2Round(t′, d)
return (opk := t′1, tki := C)

Sign(osk,m)

return ⊥ if osk =⊥
return σ := Dil.Sign(osk,m)

Track(mtk, opk, tki)

(dk, t) := mtk

A← Dil.ExpandA(crs)

K← KEM.Decaps(dk, tki)

(s′1, s′2)← Dil.ExpandS(K)
t̃ := t+ As′1 + s′2
(̃t1, ·)← Dil.power2Round(̃t, d)

return opk
?
= t̃1

Figure 5.8: Construction of Spirit with EUF-CMAw/o−ke and UNLNKw/o−ke security

5.5.1 Lattice-based Stealth Signature

We use an ANO-CCA-secure key exchangeKEM (Kyber) [SAB+20] and an EUF-CMA-secure signa-
ture (Dilithium) to construct an SS scheme with existential unforgeability without key-exposure and
unlinkability without key-exposure in random oracle model. We require a common reference string
crs ←$ {0, 1}256, but for conciseness, we omit the explicit mention of crs in interfaces. We provide
the detailed construction in Figure 5.8.

Intuitively, we useKEM to re-randomize the underlying master secret keymsk to obtain osk each
time and it needs to be actively anonymous which can be instantiated by Kyber with slight modifica-
tion as shown in [GMP22]. Also, we only require Dilithium to be EUF-CMA secure which gives us a
larger space to choose parameters. We recall Dilithium as follows.

Definition 5.5.1 (Dilithium [LDK+20]). Dilithium denoted by Dil is a post-quantum digital signa-
ture DS scheme based on the “Fiat-Shamir with Aborts” approach [Lyu09, Lyu12]. It is based on
MLWE,MSIS and SelfTargetMSIS assumptions with ring Rq := Zq[X]/(Xm + 1). Moreover, for
secrets s←$ Sℓη, each coefficient of the vector is an element ofRq with small coefficients of size at most

157

η. In its optimized construction, there are some useful supporting algorithms which we described as
follows:

• ExpandA(crs) : The function maps a uniform seed crs to a matrixA ∈ Rk×ℓ
q .

• ExpandS(K) :The function used for generating the secret vectors in key generation, maps a seedK
to (s1, s2) ∈ Sℓη × Skη.

• power2Round(r, d) : The function is the straightforward bit-wise way to break up an element
r := r1 · 2d + r0 where r0 = r mod 2d and r1 = (r− r0)/2d.

• HighBitsq(r,α) :The function select an α that is a divisor of q− 1 and write r = r1 ·α+ r0 in the
same way as before then returns r1.

• MakeHintq(z, r,α) :The function runs r1 ← HighBits(r,α) and v1 ← HighBits(r+z,α), then
returns r1 6= v1.

Correctness. Since
t′ = t+As′1 + s′2 = A(s′1 + s1) + (s2 + s′2),

it is easy to see we have 1− negl(λ) correctness as long as underlyingKEM andDil have 1− negl(λ)
correctness.

Notably, s′1 + s1 and s2 + s′2 have roughly doubled the norm thus doubling β in signatures.

This will incur additional iterations in Sign as the number of repetitions is roughly 2−256·β(
ℓ
γ1

+ k
γ2

)

where γ1 ≈ 2γ2[LDK+20]. However, besides having doubled β, we can increase γ1 and γ2 to
2γ1 and 2γ2, respectively. This tweak just slightly lowers the SelfTargetMSIS hardness but won’t
harm the running time. To see this, in Dil’s proof, the reduction’s advantage mainly dominated by
MSISk,ℓ,4γ2 for sEUF-CMA security, but SelfTargetMSISk,ℓ+1,2γ2 for EUF-CMA security. Without
using the forking lemma (since it is not tight and not possible in a quantum setting), the hardness of
SelfTargetMSIS ismainly from finding some sort (‖·‖∞ ≤ 2γ2) vectors z,u′ such thatAz+u′ = t′
and amounts toMSIS problem (referring to Section 6.2.1 andAppendix C.3 in [LDK+20] for details).
Therefore, doubled γ2 in our Spirit construction gives the reduction of EUF-CMAw/o−ke roughly
the same advantage as that of sEUF-CMA inDil. We present the concrete security level in Table 5.3.
Security Analysis. We prove the construction of Spirit in Figure 5.8 is existential unforgeable and
unlinkablewithout key exposure, and is secure in EUF-CMAw/o−ke andUNLNKw/o−ke experiment,
respectively. For the security of EUF-CMAw/o−ke, we prove this in two steps. First, we show it is
unforgeable without key exposure under no-message attacks (NMA), i.e., the adversary cannot query
SignO(·), andwe refer the corresponding experiment toUF-NMAw/o−ke; Next, we showa reduction
from UF-NMAw/o−ke to EUF-CMAw/o−ke. SinceDil does not rely on the lower parts of the public
key t0 to be secret, so for simplicity, we assume the one-time public key opk is t′ instead of t′1. Also,
we assume crs := A directly and is publicly known.

Lemma 5.5.1 (informal). Spirit in Figure 5.8 is unforgeable without key exposure under no-message
attacks if SelfTargetMSIS and MLWE assumptions hold.

158

MKGen(λ, n)
mpk′,mtk′,msk′ ← SS.MKGen(λ)
(pk, sk)← pRgv.Gen(λ, n)
mpk := (mpk′, pk),msk := msk′

mtk := (mtk′, sk)

return (mpk,mtk,msk)

FTKGen(mtk,ρ)
parse (mtk′, sk) := mtk

parse (s1, . . . , sn) := sk

t← ⌊log2(
1
ρ)⌉

return ftk := (s1, . . . , st)

Sign(osk,m)

return SS.Sign(osk,m)

Vf(opk, σ,m)

return SS.Vf(opk, σ,m)

OPKGen(mpk)

parse (mpk′, pk) := mpk

ftki← pRgv.Enc(pk, 1)
return (SS.OPKGen(mpk′), ftki)

FTrack(ftk, ftki)

[m1, . . . ,m|ftk|]← pRgv.Dec(ftk, ftki)

b :=
|ftk|∧
i=1

mi

return b ?
= 1

Track(mtk, opk, tki)

parse (mtk′, sk) := mtk

return SS.Track(mtk′, opk, tki)

OSKGen(msk, opk, tki)

return SS.OSKGen(msk, opk, tki)

Figure 5.9: Post-quantum FMD fuzzy tracking

Then we have the following theorems to show the construction is unforgeable and unlinkable.
The formal statement and analysis of the above lemma and the following theorem is deferred to Sec-
tion 5.7.1.

Theorem 5.5.2 (informal). Spirit in Figure 5.8 is existential unforgeable and unlinkable without key
exposures if it is UF-NMAw/o−ke and the KEM used is ANO-CCA secure.

5.5.2 Lattice-based Fuzzy Stealth Signature

We provide a lattice-based construction for fuzzy tracking in a standard model. Basically, it is packed
Regev encryptionwith ciphertext compression [BDGM19]. And this gives us the first post-quantumly
ambiguous encryption without relying on random oracles.
Packed Regev (compressed). We first recall the construction of packed Regev with ciphertext com-
pression [BDGM19] in Figure 5.13 of Section 5.7.2, where χ is the error distribution and B is the error
bound between z+ c2,i and z+ sTi c1.

Note that apart from the header (c1, z), the payload (wi) are justnbitswhich is almost as succinct as
DLog-based fuzzy message detection scheme FMD2 in [BLMG21]. Specifically, the entire ciphertext

159

is (ℓ+ 1) log q+ n-bit large.
Since IND-CPA and IK-CPA security (recalled in Chapter 1) of pRgv are discussed in prior works

already, we focus on its ambiguous security andwe show it is actuallyUniformly-Ambiguous (recalled
in Chapter 1) with super-poly noise-modulus ratio. The formal statement and proof of the lemma
below are deferred to Section 5.7.2.

Lemma 5.5.3. Packed Regev encryption pRgv with ciphertext compression shown in Figure 5.13 satis-
fies Definition 1.1.6 and is uniformly-ambiguous UNI-AMB-secure when 4Bn

q is negl(λ).

The modulus of Figure 5.13. To argue uniformly-ambiguous security, we need a super-polynomial
noise-to-modulus ratio (e.g., 60-bit modulus in our case) which is usually assumed in homomorphic
encryption-relatedworks. This is a somewhat stronger assumption since it assumes the lattice problem
BDD or GapSVP is hard to even with super-polynomial approximation factor [Reg05].
Construction. We then provide a lattice-based fuzzy stealth signature in Figure 5.9, which is composed
of a standard stealth signature SS and a compressed packed Regev encryption pRgv shown above.
Basically, it uses the same framework as FMD1 presented in [BLMG21].
Correctness. We provide the correctness analysis in Section 5.7.2.

Now we consider the false-positive rate ρ when using different fuzzy tracking keys. Since c1 looks
uniformly random due to LWE assumption, sTi c1 is uniformly random over Zq by Leftover Hash
Lemma as the inner product is a strong randomness extractor. This implies dsTi c1 + zc is uniformly
random over {0, 1} and FTrack returns truewith probability 2−t ≈ ρ.
Security Analysis. Formal statement and corresponding proof of the following theorem are deferred
to Section 5.7.2

Theorem 5.5.4 (informal). The fuzzy stealth signature constructed in Figure 5.9 is unlinkable with
key-exposure and fuzzy tracking if the underlying stealth signature is UNLNKw−ke and pRgv is
UNI-AMB and IK-CPA secure.

We also provide an approach to extend it to a finer false-positive rate as shown in Section 5.7.2.

5.5.3 Scalable Lattice-based Fuzzy Tracking

As discussed in Section 5.2.4, we limit the user’s ability to choose a false-positive rate and provide a new
frameworkof fuzzy trackingwhich is substantiallymore scalable thanpriorworks[BLMG21,MSS+22,
LT22]. Please refer to Section 5.3.4 for functionality and security definitions.
Construction. Wedescribe thedetailed construction inFigure 5.10,where{0, 1}2m ← H(k ∈ {0, 1}λ, i ∈
[t]) is a hash function with the seed k and Hn : {0, 1}|mpk| 7→ {0, 1}n is another hash function
mapping mpk to a hint which is used to locate mpk’s mailbox in server’s storage. Since it is based
on Module-LWE assumption, Rq denotes the ring Zq[X]/(Xm + 1), and encodeRq : {0, 1}m 7→
Zq[X]/(Xm + 1) is a function mapping binary strings to the ring elements with binary coefficients;
Similarly, decodeRq is the reverse operation to map back to a binary string. Basically, it is a variant

160

MKGen(λ)
return SS.MKGen(λ)

FTKGen(ρ,N)

n := ⌈log2 N⌉
t := ⌈ρ · 2n⌉
A ∈ Rℓ×ℓ

q ←$ crs

(s, e)←$ (Bℓη)2

b := As+ e
return ftk := (s, t), fpk := (b,Hn, t)

FTrack(ftk, ftki)

parse (s, t) := ftk, (c1, c2, δ) := ftki

∀i ∈ [t] :
(xi, yi)← H(δ, i)

xi, yi ∈ Rq ← encodeRq (xi, yi)

ci1 := c1 −
q
2 · (

[
xi
0
]
)

wi := ⌈sTci1 − c2⌋2 ⊕ yi

hinti := decodeRq (wi)[: n]
return list := {hint1, . . . , hintt}

Sign(osk,m)

return SS.Sign(osk,m)

OPKGen(mpk, fpk)

parse (b ∈ Rℓ
q ,Hn, t) := fpk

hint ∈ {0, 1}n ← Hn(mpk)

z←$ {0, 1}m−n

wT := [hintT∥zT]
i←$ [t]
δ←$ {0, 1}λ

(r, e1)←$ (Bℓη)2, e2 ←$ Bη
(x, y ∈ {0, 1}m)← H(δ, i)
x, y,w ∈ Rq ← encodeRq (x, y,w)

c1 := ATr+ e1 +
q
2 ·

[x
0
]

c2 := bTr+ e2 +
q
2 · (w+ y)

ftki := (c1, c2, δ)
return SS.OPKGen(mpk), ftki

OSKGen(msk, opk, tki)

return SS.OSKGen(msk, opk, tki)

Track(mtk, opk, tki)

return SS.Track(mtk, opk, tki)

Vf(opk, σ,m)

return SS.Vf(opk, σ,m)

Figure 5.10: Scalable lattice-based fuzzy tracking

of the underlying IND-CPA encryption of Kyber with a non-prime modulus. Though we lose the
advantage of NTT multiplications, we can still mitigate this by using Karatsuba and Toom-Cook al-
gorithms.
Correctness. It is clear to see that the targeted mpk must have hint := hinti = Hn(mpk) appears
in list with probability 1: For the targeted index i ∈ [t], we have ci1 = ATr + e1 which is the same
as standard ciphertext header. The decryption will output hint directly as long as q > 4B. Now we
focus on the other case wherempk′ 6= mpk. Firstly, considering hintj ∈ list, it is decrypted as

dsTcj1 − c2c2 ⊕ yj = de′ + q
2(w+ s1(xi − xj) + yi)c2 ⊕ yj,

where s1 is the first ring element of s. hintj is uniformly random over {0, 1}n after rounding d·c2 as

161

Table 5.3: Performance Result of Constructions in Section 5.4 and Section 5.5.1

Scheme1 w/KE sec secq2 opk Signature MKGen OPKGen Track OSKGen Sign Vf

Spirit2 ◦ 114 104 2.08 KB 2.54 KB 0.068 ms 0.074 ms 0.076 ms 0.078 ms 0.208 ms 0.053 ms
Spirit3 ◦ 171 155 3.04 KB 3.45 KB 0.131 ms 0.137 ms 0.136 ms 0.138 ms 0.377 ms 0.089 ms
Spirit5 ◦ 245 223 4.16 KB 4.81 KB 0.191 ms 0.198 ms 0.202 ms 0.215 ms 0.443 ms 0.145 ms

Dilithium2+Spirit2 • 114 104 2.08 KB 6.40 KB 0.070 ms 0.076 ms 0.078 ms 0.358 ms 0.222 ms 0.114 ms
Dilithium3+Spirit3 • 171 155 3.04 KB 8.85 KB 0.129 ms 0.136 ms 0.132 ms 0.597 ms 0.369 ms 0.182 ms
Dilithium5+Spirit5 • 245 223 4.16 KB 12.2 KB 0.186 ms 0.193 ms 0.197 ms 0.762 ms 0.428 ms 0.291 ms

Falcon512+Spirit2 • 114 104 2.08 KB 4.09 KB 0.069 ms 0.074 ms 0.075 ms 5.458 ms 0.226 ms 0.074 ms
Falcon1024+Spirit3 • 171 155 3.04 KB 6.51 KB 0.133 ms 0.133 ms 0.133 ms 17.7 ms 0.444 ms 0.130 ms
Falcon1024+Spirit5 • 245 223 4.16 KB 7.88 KB 0.194 ms 0.198 ms 0.201 ms 17.5 ms 0.441 ms 0.185 ms

1 Spirit2 builds on Dilithium2 and anonymized Kyber512, Spirit3 builds on Dilithium3 and anonymized Kyber768,
and Spirit5 builds on Dilithium5 and anonymized Kyber1024.

2 secq indicates the hardness of Quantum Core-SVP whereas sec indicates that of Classical Core-SVP.

yj⊕yi are outputs of the randomoracleH. Then, for anympk′ 6= mpk,Pr[Hn(mpk′) = hintj
]
= 1

2n
sinceHn is a random oracle, and

Pr[Hn(mpk′) ∈ list
]
=

t∑
j=1

Pr[Hn(mpk′) = hintj
]

=
t

2n ≈ N ≈ ρ.

Security Analysis. The formal theorem statements and proof of the following theorems are deferred
to Section 5.7.3.

Theorem 5.5.5 (informal). The fuzzy scalable stealth signature constructed in Figure 5.10 is unlinkable
with key exposure and fuzzy tracking if the underlying stealth signature is UNLNKw−ke and MLWE
holds. It is also unbiased and satisfying UNI-UBSfs defined in Definition 5.3.13 if n ≤ m

2 where m is
a power of 2 and Bη is a centered binomial distribution.

5.6 Performance Analysis

5.6.1 Implementations

We present the performance result in Table 5.3 and Table 5.4. The open source code can be checked
at [Weba].

For Spirit in Section 5.5.1, similar to Dilithium, we denote the scheme with three security levels
as Spirit2, Spirit3, and Spirit5. Parameters are the same as Dilithium’s, except that our β,γ1,γ2
are doubled. Moreover, we use a variant of Kyber in Spirit: Replacing the original FO transform of

162

Table 5.4: Performance Result of Constructions in Section 5.5.2 and Section 5.5.3

Scheme sec secq N Clients ρ Public Key Fuzzy Tracking Info Setup Time OPKGen1 FTrack2

Post-quantum FMD 104 94 220 2−10 345.6 KB 17.2 KB 108.8 ms 75.13 ms 11.74 sec
Post-quantum FMD 104 94 230 2−15 518.4 KB 17.2 KB 124.3 ms 74.64 ms 4.772 hour

Scalable Fuzzy Tracking 115 104 220 2−10 800 B 800 B 0.011 ms 0.0148 ms 3.424 ms
Scalable Fuzzy Tracking 115 104 230 2−15 800 B 800 B 0.011 ms 0.0149 ms 108.77 ms

1 Only consider the fuzzy part, i.e., the time to generate the fuzzy tracking information, ftki.
2 The server’s running time for each incoming ftki.

For Post-quantum FMD, we calculate the time to run FTrack for all of clients (recipients).

Kyberwith the one suggested in [GMP22]whichmakesKyberANO-CCA-secure. ForPost-quantum
FMD in Section 5.5.2, to get 104-bit computational security and 40-bit statistical security, we choose
q = 260, ℓ = 2304 and χ = Bη is binomial distribution with parameter η = 3. For Scalable Fuzzy
Tracking in Section 5.5.3, to get115-bit security andnegligible failure probability, we choose q = 4096,
other parameters are the same as Kyber512, specifically, we havem = 256, η = 3, ℓ = 2.

We run the implementation on a regular laptop: Macbook Air (M1 2020) with 8GB RAM and 2.1
GHz CPU (Turbo 3.2 Ghz). Note that our implementation is based on the reference implementation
of Dilithium, Kyber, and Falcon, without using AES or AVX optimization. We run each test 10000
times to calculate its average running time. For Post-quantumFMD,we run tests 100 times to average
the running time.

Experimental results show that Falcon512+Spirit2 yields the smallest signature size (4.09 KB) for
security against key exposures with a decent hardness level (114-bit security). And Scalable Fuzzy
Tracking yields the smallest communicational cost (800 Bytes) and server’s computational overhead
(3.4 ms) for millions of clients.

5.6.2 Prior Works

We also present tables for comparison with prior works in Table 5.1 and Table 5.2.
In Table 5.1 we compare our group-based stealth signature (Section A.2), Spirit2 (Section 5.5.1),

Spirit2 +Dilithium2, andSpirit2 +Falcon512withpriorworks. Wewould like to stress that [LLN+20]
is a theoretical work without giving concrete parameters. We estimate the number as follows: Ac-
cording to Lemma 5 in Section 2.2, it requires m ≥ 6n log q, and according to Section 3.4, it re-
quires q = Õ(m5/2) · superpoly(logm). Concretely, if we choose the security parameter n = 210
which is the case in our thesis, a typical choice for [LLN+20] to satisfy all of the above conditions is
n = 210,m = 218, q = 250.

If we want to improve their work with recent advancement in NTRU, note that the techniques
used in [LLN+20] is from [ABB10] which implies HIBE. Though combining it with NTRU could
improve its efficiency, however, it is highly likely to have similar parameters as the state of the art about
NTRU-based HIBE [ZMS+21]. Thus we estimate numbers here with parameters from [ZMS+21]
for 80-bit security since they only have two levels of security (80-bit or 160-bit).

163

In Table 5.2 we compare our Post-quantum FMD (Section 5.5.2) and Scalable Fuzzy Tracking (Sec-
tion 5.5.3) with prior works about message detection or retrieval. All of the works assume the semi-
honest server, except thatΠTEE also considers the malicious server. Note that for security, ρ needs to
be as large as 1√

N as calculated in [SPB21]. Also, some prior works consider fuzzy schemes ([BLMG21]
and ours) are ρM-anonymity whereM is the number of total messages. However, it is not accurate
due to statistical attacks as shown in [SPB21]: If there is only one message (M = 1), it still has some
extent of anonymity ifN is large.

Regarding the server’s work, we compare a single server with a single thread as all of the works (ex-
cept forΠGC) supporting distributed servers or parallelized threads. [BLMG21] actually needs to run
their test functionality for each recipient’s detection key for each incoming message. Other schemes
with full privacy inherently requireO(N)work for the server otherwise it will leak information.

Latency permessage is dominated by the server’s computational time. Assuming there areN = 220
clients (millions of users is a legit assumption for cryptocurrency [Webf]). Set false-positive rate ρ =
2−10 for [BLMG21] and ours. The numbers of others are taken from their paper directly. Assuming
10 − 20messages per second (e.g., Bitcoin or Ethereum), only ours is practical with many users. To
compute each recipient’s computational time, we assume there areM = 500, 000 messages in total
(which is roughly the number of transactions of Bitcoin or Ethereum per day). We let fuzzy tracking
schemes runTrack (shown in Definition 5.3.1) for each message retrieved.

5.7 Security Analysis

Proof of Theorem 5.4.1 We restate the theorem here more formally for the case of unforgeability.

Theorem 5.7.1. The stealth signature SSw constructed in Section 5.4 is secure in sEUF-CMAw−ke
experiment if SSw/o is EUF-CMAw/o−ke secure and DS is sEUF-CMA secure. Specifically, for any
λ ∈ N, and for any PPT adversary A, if it succeeds in the experiment sEUF-CMAw−ke, then there
are other adversaries B1,B2 running in roughly same time such that

Adv
sEUF-CMAw−ke

λ (A) ≤ Adv
EUF-CMAw/o−ke

λ (B1) + AdvsEUF-CMA
λ (B2).

Proof. We prove the theorem by reduction. Suppose there’s an adversary A has a non-negligible
advantage in sEUF-CMAw−ke, then we can construct another adversary B to win the experiment
EUF-CMAw/o−ke of SSw/o or the experiment sEUF-CMA (strong unforgeability) ofDS as follows.
B forwardsmpk,mtk from the challenger in EUF-CMAw/o−ke toA.

To simulate OSKGenO(i, opki, tkii, flagi), if flagi = true, B runs (vki, ski) ← DS.Gen, then
queries σi1 ← SignO(vki) in EUF-CMAw/o−ke and returns oski := (σi1, vki, ski) toA; If flagi =
false,B asks a challenger Ci in sEUF-CMAofDS to send a challenge verification key vki, then queries
σi1 ← SignO(vki) in sEUF-CMAw/o−ke of SSw/o and stores σi1; If OK[i] = (opki, ·, ·) ∧ flagi =
true,B signals Ci to terminal the experiment and asks for its oski then forwards that toA. To simulate
SignO(i,mj), B queries σj2 ← SignO(mj||σi1) and returns σj := (σi1, σ

j
2, vk

i) toA.

164

OnceA submits some valid forgery σ′ := (σ′1, σ′2, vk′),m′, i′ as shown in Figure 5.3,B behaves in
following cases:

• If m′ is not appeared in Q (recall that Q is the set to record signing queries), B forwards
σ′2,m′||σ′1 to i′-th challenger in sEUF-CMA ofDS;

• If vk′ is not appeared inQ,B forwardsσ′1, vk′ to the challenger in EUF-CMAw/o−ke ofSSw/o;

• If both m′, vk′ are in Q, then the only case that σ′ is a valid forgery is either σ′1 or σ′2 not
appeared in Q. In either case, B just forwards σ′2,m′||σ′1 to the challenger in sEUF-CMA of
DS.

This completes the proof.

We restate the theorem here for unlinkability.

Theorem 5.7.2. The stealth signature SSw constructed in Section 5.4 is secure in UNLNKw−ke exper-
iment if SSw/o is UNLNKw/o−ke secure. Specifically, for any λ ∈ N, and for any PPT adversary A,
if it succeeds in the experiment UNLNKw−ke, then there are other adversaries B running in roughly
same time such that

Adv
UNLNKw−ke

λ (A) ≤ Adv
UNLNKw/o−ke

λ (B).

Proof. Similarly, we can also prove this theorem easily by reduction. Suppose there’s an adversaryA
has a non-negligible advantage in UNLNKw−ke, then we can construct another adversary B to win
the experiment UNLNKw/o−ke of SSw/o as follows. B forwards mpk0,mpk1, opkb, tkib from the
challenger inUNLNKw/o−ke toA. To simulate oskb,B runsDS.Gen to get (vk, sk), then queries the
signing oracle via SignO(·,−1, vk) from UNLNKw/o−ke to learn a signature σ1 of vk, then returns
oskb := (σ1, vk, sk) toA. To simulateOSKGenO, B queries SignO and runs DS.Gen as above to
generate osk. OnceA submits b′, B simply forwards b′ as its final guess. This completes the proof.

5.7.1 Security Analysis of Stealth Signature Without Fuzzy Tracking

Proof of Lemma 5.5.1 We restate the lemma formally here.

Lemma 5.7.3. Spirit in Figure 5.8 is unforgeable without key exposure under no-message attacks. Specif-
ically, in random oracle model, for any λ ∈ N, for any adversary A, if Dil has parameters β,γ1,γ2,
and we denote H′ as a random oracle can be accessed byA and B2, then the advantage to win the game
UF-NMAAw/o−ke(λ) is

Adv
UF-NMAw/o−ke

λ,H′,γ1,γ2,β (A) ≤ AdvMLWE
k,ℓ,D (B1) +AdvSelfTargetMSIS

H′,k,ℓ+1,ζ (B2).

165

Proof. Consider the experiment EUF-CMAw/o−ke in Figure 5.1 where the SignO is forbidden to ac-
cess. SupposeA forges σ∗, then we have the following claim.

Claim 5.7.1. If an adversary A can forge σ∗ without accessing SignO and assuming MLWEk,ℓ,D as-
sumption holds, then there is another adversary B2 who solves SelfTargetMSISH′,k,ℓ+1,ζ in roughly
same time with non-negligible probability.

Proof. After receiving uniformly random samples (A, t) ∈ Rk×ℓ × Rk and random oracle access
H′(·) from the challenger in SelfTargetMSISH′,k,ℓ+1,ζ′+β,B2 computesmpk := (A, t, ek),mtk :=
(dk, t) and forwards mpk,mtk,H′ to A. As long as the MLWEk,ℓ,D assumption holds, mpk looks
indistinguishable from real public key forA. For i-th query in OSKGenO, B2 computes and stores
si1, si2. OnceA submits some valid forgery σ∗ with i∗, meaning it finds some (x, z, c) for opk∗ := t∗
such that

H′

μ ‖ [Ik|A|t∗] ·
xz
c

 = c,

where ‖x‖∞ ≤ 2γ2 + 1 + 2d−1τ, ‖z‖∞ ≤ γ1 − 2β and ‖c‖∞ = 1[LDK+20]. Then B2 can

retrieve s∗1, s∗2 from its storage and instantly return y :=

x′z′
c

 ,μ to the SelfTargetMSISH′,k,ℓ+1,ζ

challenger, where x′ := x+ cs∗2 and z′ := z+ cs∗1 . Note that
∥∥cs∗1∥∥, ‖cs∗2‖ ≤ β. Since we can write

t∗ := t+As∗1 + s∗2 , it is easy to check that this is a valid solution

H′

μ ‖ [Ik|A|t] ·
x+ cs∗2
z+ cs∗1

c

 = c

where ‖y‖∞ ≤ ζ and ζ := max{γ1 − β, 2γ2 + 1+ 2d−1τ+ β}.

This completes the proof to show it is secure in the UF-NMAw/o−ke experiment.

Proof of Theorem 5.5.2 We restate the theorem for unforgeable without key exposures formally here.

Theorem 5.7.4. Spirit in Figure 5.8 is existential unforgeable without key exposures. Specifically, for
any adversary A, if it succeeds in the experiment EUF-CMAw/o−ke, then there is another adversary
B running in roughly same time such that

Adv
EUF-CMAw/o−ke

λ,H,γ1,γ2,β (A) ≤ Adv
UF-NMAw/o−ke

λ,H′,γ1,γ2,β (B) + negl(λ),

where we denote H′,H as random oracles can be accessed by B1 and A, respectively.

Proof. Intuitively, a reduction fromCMA toNMAusually needs “patching” randomoracles [KLS18,
AFLT12]. We prove this theorem in a sequence of hybrid games as follows.

166

H(w1||μ)
// inHyb2 andHyb3

Retrieve ⟨μ : (cμ,wμ
1 ⟩ for μ

if w1 = wμ
1

then return c := cμ

else return c := H′(w1||μ)

EUF-CMAAw/o−ke(λ)
(mpk,msk,mtk)← MKGen(λ)
OK := [],Q := ∅

(m∗, σ∗, i∗)← AOSKGenO,SignO(mpk,mtk)

(opk∗ := t∗, osk∗, ·) := OK[i∗]
//Hyb3 block begins

(z∗, c∗,h∗) := σ∗
μ∗ ← G(m∗||t∗)
w∗
1 ← HighBitsq(Az∗ − c∗t∗, 2γ2)

ifH′(w∗
1 ||μ∗) ̸= c∗

then return 0
//Hyb3 block ends

b0 := (m∗, i∗) /∈ Q
b1 := Vf(opk∗,m∗, σ∗) = 1
b2 := (OK[i∗] ̸= (·, ·,⊥))
return b0 ∧ b1 ∧ b2

Figure 5.11: SimulatedH and EUF-CMAA
w/o−ke(λ) inHybrid2 andHybrid3

Hybrid0: This is exactly the standard EUF-CMAw/o−ke experiment. Thus we have

Pr[Hybrid0 ⇒ 1] = Adv
EUF-CMAw/o−ke

λ,H,γ1,γ2,β (A).

Hybrid1: We modify Hybrid0 as follows. In OSKGenO(opki, tkii), for i-th query, if true ←
Track(mtk, opki, tkii) it only stores si1, si2, ti := Asi1 + si2 + t, sets oski := > and returns 1. In
SignO(i,mj), for j-th query, it generates and sets oski by msk if oski := >, then return a signature
σj by using oski.

This game only changes the time to generate oski, thus advantage remains the same:

|Pr[Hybrid1 ⇒ 1]− Pr[Hybrid0 ⇒ 1]| = 0.

Hybrid2: We updateHybrid1 by modifying SignO(i,mj) in j-th query: Instead of generating σj
with oski when needed, it just simulates σj by choosing uniformly random (zj, cj) ∈ Sℓγ1−2β−1 × Bτ
and stores a key-value pair 〈μj : (cj,wj

1)〉whereμj ← G(mj||ti),wμj
1 ← HighBitsq(Azj−cjti, 2γ2),

and G is a perfect random function. We also use a new random oracleH(w1||μ) to simulate random
oracle H′(w1||μ) in above game as shown in left part of Figure 5.11. Now we analyze the advantage.
In our construction, Dil.Sign remains unaltered, thus the resulting signature σ is still perfectly zero-
knowledge (where the exact simulation is shown in Sign of Figure 5.12). Therefore the distribution of

167

each σ is exactly the same as the one inHybrid1, then we have

|Pr[Hybrid2 ⇒ 1]− Pr[Hybrid1 ⇒ 1]| = 0.

Hybrid3: Wemodify the above gameby adding an additional block in EUF-CMAw/o−ke as shown in
the rightpart of Figure 5.11. This gameonlydiffers fromtheHybrid2 ifw∗1 = wμ∗

1 and ((m∗, ·, i∗) /∈ Q)∧
b1 ∧ b2 (Hybrid3 return 0 and Hybrid2 return 1). However, A didn’t query SignO(i∗,m∗) be-
fore, thus wμ∗

1 should remain hidden. And from [KLS18], it shows that Dil signature has enough
min-entropy, thus the probability Pr[w∗1 = wμ∗

1] is negligible, i.e.,

|Pr[Hybrid3 ⇒ 1]− Pr[Hybrid2 ⇒ 1]| ≤ negl(λ).

This game canbe fully simulatedbyB againstUF-NMAw/o−ke as follows. B1 simulatesOSKGenO,
SignO oracles without knowing msk, and it patches H′ from UF-NMAw/o−ke to H for generating
σi. Once A submits a valid signature σ∗ and if H′ works well in σ∗, B directly forwards σ∗ to the
challenger of UF-NMAw/o−ke. Therefore

Pr[Hybrid3 ⇒ 1] = Adv
UF-NMAw/o−ke

λ,H′,γ1,γ2,β (B1)

and we complete the proof.

We state the theorem for unlinkable without key exposures formally here.

Theorem 5.7.5. Spirit in Figure 5.8 is unlinkable without key exposures. Specifically, for any adversary
A, if it succeeds in the experiment UNLNKw/o−ke, then there are other adversaries B1,B2 running
in roughly same time such that

Adv
UNLNKw/o−ke

λ,H,γ1,γ2,β (A) ≤ AdvANO-CCA
λ (B1) + AdvMLWE

k,ℓ,D (B2).

where we denote H as a random oracles can be accessed by A and γ1,γ2, β are parameters of the
underlying Dil scheme.

Proof. We prove the theorem in a sequence of hybrid games.
Hybrid0: This is the original UNLNKw−ke experiment, thus we have

Pr[Hybrid0 ⇒ 1] = Adv
UNLNKw/o−ke

λ,H,γ1,γ2,β (A).

Hybrid1: We modify the above game by changing the function Sign(osk,mj) in UNLNKw/o−ke
experiment to the Sign(opki,mj) without using osk in Figure 5.12. Specifically, it samples uniformly
random (zj, cj), programs the random oracle such thatH(μj||wj

1) = cj whereμj is determined bymj

andwj
1 := HighBits(Azj − cjti, 2γ2). Then set σj := (zj, cj,hj) where hj can be determined by

168

Sign(opki,mj)

// inHyb1 andHyb2
parse ti := opki

(zi, ci)←$ Sℓγ1−2β1 × Bτ
μi ← G(mj||ti)
wi
1 ← HighBitsq(Azi − citi, 2γ2)

ProgramH s.t. H(wi
1||μi1) := ci

hi ← MakeHintq(−citi0,Azi − citi + citi0, 2γ2)
// ti0 are lower bits of ti

return σi := (zi, ci,hi)

Figure 5.12: Simulation ofSign fromHybrid1 toHybrid2

cj, ti, zj. Because of the perfectly zero-knowledge of σj, the distribution of signatures in this hybrid is
the same as the one inHybrid0, i.e.,∣∣Pr[Hybrid0 ⇒ 1]− Pr[Hybrid1 ⇒ 1]

∣∣ = 0.

Hybrid2: Wemodify the above game as follows. Parsempk0 := (t0, ek1,0) andmpk1 := (t1, ek1,1),
insteadof generating t0, t1 frommsk, we sampleuniformly random (t0, t1)←$ Rk

q×Rk
q. ByMLWEk,ℓ,D

assumption, we know this hybrid only differs fromHybrid1 by:∣∣Pr[Hybrid2 ⇒ 1]− Pr[Hybrid1 ⇒ 1]
∣∣ ≤ AdvMLWE

k,ℓ,D (B2).

Besides, this hybrid can be fully simulated by an adversaryB1 of ANO-CCA experiment. B1 simu-
lates the random oracleH forA. Upon receiving ek0, ek1 and (Cb,Kb) fromANO-CCA experiment,
B1 setsmpk0 := (t0, ek0) andmpk1 := (t0, ek1)where (t0, t1)←$ Rk

q×Rk
q are uniformly sampled.

B1 sets tkib := Cb, oskb := >, opkb ←$ Rk
q, and sends (mpk0,mpk1, tkib, opkb) toA ofHybrid2.

For each query ofOSKGenO(b∗, opki, tkii), B1 queries Ki ←KEM.DecapsO(b∗, tkii) to check if
Asi1 + si2 + tb∗ = opki where si1, si2 ← Dil.ExpandS(Ki). If the check doesn’t pass, set oskib∗ :=⊥;
Otherwise set oskib∗ := >. For each query of SignO(b∗, i,mj), B1 simulates the signature σj by us-
ing opkib∗ if the corresponding oskib∗ = >, otherwise return⊥. If i = −1, just simulates a signature
using opkb.

Then Hybrid2 can be simulated without knowing any msk,mtk or b. Once A returns b′, B1
simply forwards b′ to the challenger of ANO-CCA. Thus we have

Pr[Hybrid2 ⇒ 1] = AdvANO-CCA
λ (B1),

169

pRgv.Gen(λ, n)
A ∈ Zℓ×ℓ

q ←$ crs

(S,E)←$ (χℓ×n)2

B := AS+ E
return pk := B, sk := S

pRgv.Dec(sk, ct)

parse (c1, z,w1, . . . ,wn) := ct

parse (s1, . . . , st) := sk

∀i ∈ [t],mi := ⌈sTi c1 + z⌋2 ⊕ wi
returnm := [m1, . . . ,mt]

pRgv.Enc(pk,m ∈ {0, 1}n)
(r, e1)←$ (χℓ)2, e2 ←$ χn

c1 := ATr+ e1
c2 := BTr+ e2 +

q
2 ·m

z←$ Zq such that ∀i ∈ [n] :
z+ c2,i /∈ [

q
4 − B, q4 + B]∪

[
3q
4 − B, 3q4 + B]

∀i ∈ [n],wi := ⌈z+ c2,i⌋2
return ct := (c1, z,w1, . . . ,wn)

Figure 5.13: Packed Regev encryption pRgvwith ciphertext compression

and this completes the proof.

5.7.2 Analysis of Post-quantum FMD

Correctness. We show the scheme in Figure 5.9 satisfies Definition 5.3.8 as follows. For each i ∈ [t],
we have dsTi c1 + zc2 ⊕ wi = 1. Since c2,i − sTi c1 =

q
2 + e′ where e′ ∈ [−B,B] is some short error,

we have c2,i − e′ = sTi c1 +
q
2 . Also, we choose

c2,i + z /∈ [
q
4 − B, q4 + B] ∪ [

3q
4 − B, 3q4 + B],

thus we have dc2,i+ zc2 = dc2,i+ z− e′c2, which implieswi = dsTi c1+ z+ q
2c2 = dsTi c1+ zc2⊕1.

Therefore, with correct ftk, FTrack always returns true. Note that for correctness, we require q >
4Bn.
Security Analysis. We show the scheme in Figure 5.9 is unlinkable with key-exposure and fuzzy track-
ing (Definition 5.3.9).
Proof of Lemma 5.5.3 and Theorem 5.5.4 We restate the formal lemma here.

Lemma 5.7.6. Packed Regev encryption pRgv with ciphertext compression shown in Figure 5.13 satis-
fies Definition 1.1.6 and is uniformly-ambiguous UNI-AMB-secure when 4Bn

q is negl(λ). Specifically,
we have

AdvUNI-AMB
λ (A) ≤ AdvLWE

ℓ,q (A) + 4Bn
q ,

where B is the bound such that
∥∥STc1 − c2∥∥∞ mod q

2 < B.

Proof. To see it is uniformly ambiguous, firstly note that c1 looks uniformly random due to LWE
assumption, andwi is uniformly random due tomi being a uniformly random bit in the experiment

170

in Figure 1.2. For z, the statistical distance between its distribution anduniformly randomdistribution
overZq is 4Bnq . Thus as long as 4Bnq ≤ negl(λ), we can simulate the entire ciphertextwithout knowing
b or sk.

We restate the theorem formally here.

Theorem 5.7.7. The fuzzy stealth signature constructed in Figure 5.9 is unlinkable with key exposure
and fuzzy tracking. Specifically, for any λ, n, t where n ≥ t, if there is a PPT adversary A has non-
negligible advantage in experiment defined in Figure 5.5, then there exist other adversaries B1,B2,B3
running in roughly same time such that:

Adv
UNLNKfw−ke

λ,n,t (A) ≤ 2AdvUNLNKw−ke

λ (B1)+
p(λ) · (4tAdvUNI-AMB

λ (B2) + (n− t)AdvIK-CPA
λ (B3)

)
,

where p(λ) is some polynomial on security parameter λ.

Proof. Combined with Lemma 5.7.6, recall Theorem 11 and Lemma 2 in [BLMG21] to prove this via
the same approach.

Extends to finer false-positive rates. We introduce an approach to achieve finer false-positive rates
(ρ 6= 1

2t) in fuzzy tracking (and also FMD) schemes. As mentioned in [BLMG21], to achieve finer
rates like 1

3 ,
1
5 is easy via switching the base. However, achieving rates like 3

4 is still challenging without
garbled circuits. We show how to achieve a rate like α

2k where 1 ≤ α ≤ 2k − 1 with a small tweak
but α, k needs to be fixed in advance. The sender instead of computing Enc(pki, 1) for each i ∈ [n],
it computes ci ← Enc(pki,msgi) where msgi is uniformly sampled via msgi ←$ {0, 1, . . . ,α}.
The detector only accepts the ciphertext ci if and only if Dec(ski, ci) ≤ α. It is easy to see that this
satisfies correctness, fuzziness and security simultaneously and is compatible with FMD1,FMD2 in
[BLMG21] and our fuzzy tracking scheme in Figure 5.9. Essentially, the receiver is able to ‘tune’ the
false-positive rate ρ via a finer step: Originally, ρ can only be decreased half by half (i.e., from ρ to
ρ
2 each time); Now it can be decreased by a factor α

2k (i.e., from ρ to ρα
2k). For example, if we choose

k = 2,α = 3, then we have rates set like { 34 ,
32
42 , . . . ,

3n
4n }.

5.7.3 Analysis of Scalable Fuzzy Tracking

Security Analysis. For adversaries without holding secret keys, arguments for security are the same
as standard encryption. We consider the unlinkability defined in Definition 5.3.12, then we argue it
also satisfies unbiased fuzziness defined in Definition 5.3.13. Intuitively, unlinkability is to make true-
positive and false-positive indistinguishable from the tracking server; And unbiased fuzziness is to
make the hint′ of each potentialmpk′ uniformly random for the sender.
Proof of Theorem 5.5.5 We restate the theorem for unlinkability formally here.

171

Theorem 5.7.8. The fuzzy scalable stealth signature constructed in Figure 5.10 is unlinkable with key
exposure and fuzzy tracking. Specifically, for any λ,N,ρ, if there is a PPT adversary A has non-
negligible advantage in experiment defined in Figure 5.6, then there exist other adversaries B running
in roughly same time such that:

Adv
UNLNKfsw−ke

λ,N,ρ (A) = Adv
UNLNKw−ke

λ (B) + AdvMLWE
ℓ,q,η (C).

Proof. First, consider the two hybrids as follows:
Hybrid0: This is the standard experiment.
Hybrid1: This only changes ftkib to ftki1−b when hint0 ∈ list ∧ hint1 ∈ list whereas opkb, tkib
remain unchanged.

Claim 5.7.2. Hybrid0 and Hybrid1 are computationally indistinguishable to the adversary if the
decisional MLWE holds.

Proof. Sincewemap eachmpk to hint, we only need to consider the casewhere hint0 ∈ list∧hint1 ∈
list as otherwise b′ ←$ {0, 1} and A2 will not be invoked. Without loss of generality, we assume
ftkib = ftki0 and hint0 = list[i] which implies that, for list generated from ftki0 and ∀j ∈ [|list|],
there is

wj
0 = dsTc

j
1 − c2c2 ⊕ yj

= dq2(s1(x
i − xj)) + e′ − q

2(w0 + yi)c2 ⊕ yj

= dq2(s1(x
i − xj)) + e′ − q

2(w0)c2 ⊕ (yi ⊕ yj)

= dq2(w0 + e′ + s1(xi − xj))c2 ⊕ yi ⊕ yj

= w0 ⊕ (yi ⊕ yj)⊕ dq2(s1(x
i − xj))c2,

where s1 is the first ring element of s and hint0 = decodeRq(w0)[: n]. On the other hand, if hint1
(i.e., w1) appears in the list with index k, i.e., w1 = list[k] = wk

0, then the list can also be generated

172

from ftki1 because ∀j ∈ [|list|] :

wj
1 = w1 ⊕ (yk ⊕ yj)⊕ dq2(s1(x

k − xj))c2
= wk

0 ⊕ (yk ⊕ yj)⊕ dq2(s1(x
k − xj))c2

= w0 ⊕ (yi ⊕ yk)⊕ dq2(s1(x
i − xk))c2

⊕ (yk ⊕ yj)⊕ dq2(s1(x
k − xj))c2

= w0 ⊕ (yi ⊕ yj)⊕ dq2(s1(x
i − xj))c2

= wj
0,

which means ftki0 and ftki1 will generate exactly the same list. Particularly, there is

q
2(w0 + yi + s1xi) =

q
2(w1 + yj + s1xj).

Now consider the hybrids. We have ftki0 := (c1, c2) and ftki1 := (c′1, c′2), specifically,

c1 = ATr+ e1 +
q
2 ·
[xi
0
]
, c2 = bTr+ e2 +

q
2 · (w0 + yi)

c′1 = ATr+ e1 +
q
2 ·
[xj
0
]
, c′2 = bTr+ e2 +

q
2 · (w1 + yj).

Thus, there is

(c1, c2) ≈c (u+
q
2 ·
[xi
0
]
, sTu+

q
2 · (w0 + yi) + e′)

≈s (u′, sTu′ +
q
2 · (w0 + yi − sT

[xi
0
]
) + e′)

= (u′, sTu′ + q
2 · (w0 + yi + s1xi) + e′)

= (u′, sTu′ + q
2 · (w1 + yj + s1xj) + e′)

≈c (c′1, c′2),

where e′ = e2 + eTr − sTe1 is the small noise term and u′ = u − q
2 ·
[xi
0
]
. Note that q

2(+s1xi) =
q
2(−s1xi) mod q.Therefore, we have shown that ftki0 and ftki1 are indistinguishable for the adver-
sary.

Since ftkib and ftki1−b are indistinguishable and exchangeable forA in UNLNKfsw−ke. Now we

173

show thatB can fully simulate theUNLNKfsw−ke experiment as follows. Upon receivingmpk0,mpk1,
opkb, tkib, oskb from UNLNKw−ke, B sample ftk, fpk then computes corresponding ftkib′ and list
for b′ ←$ {0, 1}, such that w0 ∈ list ∧ w1 ∈ list where H(mpk0) = decodeRq(w0)[: n] and
H(mpk1) = decodeRq(w1)[: n]. Then B forwards all of them toA of UNLNKfsw−ke andA can-
not distinguish between ftki0 or ftki1 due to Claim 5.7.2. IfA has non-negligible advantage u(λ) in
UNLNKfsw−ke, then B has the same non-negligible advantage u(λ) in UNLNKw−ke.

We restate the theorem for UNI-UBSfs formally here.

Theorem 5.7.9. If there is n ≤ m
2 where m is a power of 2, and Bη is a centered binomial distribution,

then the scalable fuzzy tracking constructed in Figure 5.10 is information theoretically unbiased and
satisfies UNI-UBSfs defined in Definition 5.3.13.

Proof. IfA is able to output validmpki (i.e., valid hinti andwi), then for him, there is

wj = wi ⊕ yi ⊕ yj ⊕ dq2(s1(x
i − xj))c2.

Note that the coefficients of d q2s1c2 are uniformly random over {0, 1}m because s1 ←$ Bη where
Bη is a centred binomial distribution. Moreover, since polynomial multiplication can be written as
circular convolution, d q2(s1(xi− xj))c2 can be written asXs mod 2where s← decodeRq(d

q
2s1c2)

andX is the circulant matrix represented by the polynomial x← d q2(xi − xj)c2. Specifically, the first
column ofX is decodeRq(x) and other columns are rotational shifts of the previous column. Sincem
is a power of 2, it only has divisors from 20 to 2logm. According to Lemma 1.0.2 and Definition 1.3.1,
the biggest divisor ofXm − 1 is the polynomialΦm(X) = Xm

2 + 1with degree m
2 . Thus the rank of

X is at leastm− m
2 and at least a half of elements inXs mod 2 are uniformly randomly distributed.

This means hintj ← decodeRq(wj)[: n] is uniformly random as long as n ≤ m
2 .

174

6
Conclusion

This thesis is centred around enhancing efficiency and reducing the costs of communication and com-
putation for commonly used privacy-preserving primitives, including private set intersection, obliv-
ious transfer, and stealth signatures. Specifically, In Chapter 2, we present a protocol of multiparty
thresholdprivate set intersection,which improves communicationbandwidth from Õ(N2t2) to Õ(Nt2)
where N is the number of parties and t the threshold while retaining the same computational over-
head and security level. In Chapter 3, we introduce a new primitive, laconic private set intersection,
which solves unbalanced PSI in a non-interactive way while making communication bandwidth as
succinct as possible. Specifically, after the server publishes a short digest of constant size, any client
can non-interactively send its message of size independent of the server’s dataset. In Chapter 4, we
present a two-message oblivious transfer protocol which has asymptotically minimum communica-
tional bandwidth, namely, to transfer n bits information, it only requires n(1+ o(1)) bits bandwidth
for each user while retaining computational efficiency. We also show how to efficiently emulate Z2
inside a prime-order groupZp in a function-privatemanner. InChapter 5, we present a post-quantum
privacy-preserving signature called stealth signature that saves 70% bandwidth compared to the state
of the art while achieving the strongest security. Additionally, we present a fuzzy variant which pro-
tects users’ metadata and improves the server’s computational work fromO(N) toO(

√
N)whereN

is the number of users.

175

A
Additional Constructions

A.1 Threshold PSI: Oblivious Linear Algebra

A.1.1 Oblivious Matrix Multiplication

Protocol. The following Protocol 4 allows several parties to jointly compute the (encrypted)
product of two encryptedmatrices. Note that the protocol can also be used to compute the encryption
of the product of two encrypted values in F.

Analysis. We proceed to the analysis of the protocol described above.

Lemma A.1.1 (Correctness). The protocol secMult is correct.

Proof. The correctness is straightforward.

Lemma A.1.2 (Security). The protocol secMult securely EUC-realizes FOMM with shared ideal func-
tionality FGen against semi-honest adversaries corrupting up to N − 1 parties, given that TPKE is
IND-CPA.

Proof (Sketch). Assume that the adversary corrupts N − k parties. The simulator takes the inputs
from these parties and send them to the ideal functionality. Upon receiving the encrypted value
Enc(pk,Ml ·Mr), it simulates the protocol as the honest parties would do.

We nowprove that no set of atmostN−1 colluding parties can extract information aboutMl,Mr.
First, observe that any set ofN−1 parties cannot extract any information about encrypted values that
are not decrypted during the protocol (because there is always a missing secret key share) given that
TPKE is IND-CPA. Second, we analyze the matrixM′l (which is decrypted during the protocol). We
have thatM′l = Ml +

∑
jR

(j)
l . Hence, there is always at least one matrixR(ℓ)

l which is unknown to
the adversary and that perfectly hides the matrixMl (the same happensM′r.

176

Algorithm 4 Secure Multiplication secMult

Require: Each party Pi has a secret share ski of a secret key for a public key pk of a TPKE
schemeTPKE = (Gen,Enc,Dec).

Ensure: Party P1 inputs Enc(pk,Ml) and Enc(pk,Mr), whereMl,Mr ∈ Ft×t.
Goal: Every one knows the product Enc(Ml ·Mr).

1: for all party Pi do
2: It samples two random matricesR(i)

l ,R(i)
r ←$ Ft×t.

3: It computes c(i)l = Enc(pk,R(i)
l), c(i)l = Enc(pk,R(i)

r), d(i)r = Enc(pk,Ml · R(i)
r),

d(i)l = Enc(pk,R(i)
l ·Mr).

4: It broadcasts {c(i)l , c(i)r , d(i)l , d(i)r }.
5: end for
6: Each party Pi computes c̃(i) = Enc(pk,

∑
j ̸=iR(i)

l ·R
(j)
r) (using c(j)r andR(i)

l) and broad-
casts c̃(i).

7: All parties mutually decrypt i) Enc(M′l) := Enc(pk,Ml) +
∑

j c
(j)
l (to obtain M′l ∈

Ft×t), ii) Enc(M′r) := Enc(pk,Mr) +
∑

j c
(j)
r (to obtainM′r ∈ Ft×t)

8: for all party Pi do
9: It computes d̃ = Enc(pk,M′l ·M′r).
10: It outputs e = d̃−∑j d

(j)
l −

∑
j d

(j)
r −

∑
j c̃(j)

11: end for

177

Complexity. The communication complexity of the protocol is dominated by the messages car-
rying the (encrypted) matrix. Hence, assuming a broadcast channel between the parties, the protocol
has communication complexity ofO(Nt2)where t is the size of the inputmatrices andN the number
of parties involved in the protocol.

A.1.2 Compute the Rank of a Matrix

Protocol. We now present the Protocol 5 to compute the rank of an encrypted matrix.

Algorithm 5 Secure Rank secRank
Require: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the oblivious matrix multiplication ideal
functionalityFOMM.

Ensure: Party P1 inputs Enc(pk,M)whereM ∈ Ft×t.
1: EachpartyPi broadcasts an encrypteduniformly chosen at randomunit upper and lower

triangularToeplitzmatricesEnc(pk,Ui) andEnc(pk,Zi) and a uniformly chosen at ran-
dom diagonal matrix Enc(pk,Xi), whereUi,Zi ∈ Ft×t and Xi ∈ Ft×t.

2: Each party Pi computes: i) Enc(pk,X) =
∑

i Enc(pk,Xi), ii) Enc(pk,U) =
Enc(pk, (

∑
iUi) − (N − 1)I), and iii) Enc(pk,Z) = Enc(pk, (

∑
i Zi) − (N − 1)I),

where I is the identity matrix.
3: All parties mutually compute Enc(pk,N) = Enc(pk,XUMZ) via three invocations of
FOMM.

4: Each party Pi samples ui, vi ←$ Ft and broadcasts Enc(pk,ui),Enc(pk, vi).
5: Each party Pi computes Enc(pk,u) =

∑
j Enc(pk,uj) and Enc(pk, v) =∑

j Enc(pk, vj). Then, it computes the sequence Enc(a) with 2 log t invocations of
FOMM,1where a = {a0, . . . , a2t−1} and Enc(pk, aj) = Enc(pk,uNjv) for 0 ≤ j ≤
2t− 1.

6: All parties mutually compute Enc(pk, r − 1) where r is the degree ofma, the minimal
polynomial of the (encrypted) sequence Enc(a). This can be calculated using a Boolean
circuit with sizeO(t2k log t) (which can be securely constructed from TPKE [ST06]).

Analysis. We analyze the correctness and security of the protocol.

Lemma A.1.3 (Correctness). The protocol secRank is correct.

Proof. The correctness of the protocol is guaranteed by Lemma 1.2.2 and Lemma 1.2.3.
1We can perform tmultiplications inO(log t) calls to FOMM by performing multiplications in a batched

fashion [KMWF07].

178

LemmaA.1.4 (Security). The protocol secRank securely EUC-realizes FORank with shared ideal func-
tionality FGen in the FOMM-hybrid model against semi-honest adversaries corrupting up to N − 1
parties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator takes the corrupted parties input, sends them to the ideal functionality
and simulates the protocol as the honest partieswoulddo. It is easy to see that, evenwhen the adversary
corruptsN−1parties, the information is hiddenby theTPKEand thusno informationonM is leaked
to the adversary by the IND-CPA of the underlying TPKE.

Complexity. Each party broadcastsO(t2k log t) bits of information, where k = log |F|. To see
this, note that the communication of the protocol is dominated by the computation of the circuit
that computes the degree of a and this can be implemented with communication cost ofO(t2k log t)
[KMWF07]. Assuming a broadcast channel, the communication complexity is Õ(Nt2)

A.1.3 Invert a Matrix

In this section, we present and analyze a protocol that allowsN parties to invert an encrypted matrix.
In this setting, each of the N parties holds a secret share of a public key pk of a TPKE. Given an
encrypted matrix, they want to compute an encryption of the inverse of this matrix.

Ideal Functionality. The ideal functionality of oblivious rank computation is defined below.

FOInv functionality

Parameters: sid,N, q, t ∈ N and F, where F is a field of order q, known to
theN parties involved in the protocol. pk public-key of a threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk,M)) from party P1 (whereM ∈ Ft×t
is a non-singular matrix), FORank outputs Enc(pk,M−1) to P1 and
(Enc(pk,M),Enc(pk,M−1)) to all other parties Pi, for i = 2, . . . ,N.

Protocol. Wenowdescribe theProtocol 6 that allowsNparties to jointly compute the encryption
of the inverse of a matrix, given that this matrix is non-singular.

Analysis. The proofs of the following lemmas follow the same lines as the proofs in the analysis
of secMult protocol. We state the lemmas but omit the proofs for briefness.

Lemma A.1.5. The protocol secInv is correct.

Lemma A.1.6. The protocol secInv securely EUC-realizes FOInv with shared ideal functionality FGen

against semi-honest adversaries corrupting up to N− 1 parties, given that TPKE is IND-CPA.

179

Algorithm 6 Secure Matrix Invert secInv
Require: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec).
Ensure: Party P1 inputs Enc(pk,M)whereM ∈ Ft×t is a non-singular matrix.

1: Each party Pi samples a non-singular matrixRi ←$ Ft×t.
2: Set Enc(pk,M′) := Enc(pk,M).
3: for i from 1 toN do
4: Pi calculates Enc(pk,M′) = Enc(pk,RiM′)
5: Pi broadcasts Enc(pk,M′).
6: end for
7: All parties mutually decrypt the final Enc(pk,M′). Then they compute its inverse to

obtain Enc(pk,N′) = Enc(pk,M′−1∏iR−1i).
8: for i fromN to 1 do
9: Pi computes Enc(pk,N′) = Enc(pk,N′R−1i).
10: Pi broadcasts Enc(pk,N′)
11: end for
12: Finally, P1 outputs Enc(pk,M−1) = Enc(pk,N′).

Complexity. Each party broadcastsO(t2) bits of information. The communication complexity
of the protocol isO(Nt2), assuming a broadcast channel.

A.1.4 Secure Unary Representation

Following [KMWF07], we present a protocol that allows to securely compute the unary representa-
tion of a matrix.

Ideal Functionality. The ideal functionality for Secure Unary Representation is given below.

FSUR functionality

Parameters: sid,N, q, t ∈ N and F, where F is a field of order q, known to
theN parties involved in the protocol. pk public-key of a threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk, r)) from party P1 (where r ∈
F and r ≤ t), FSUR computes (Enc(pk, δ1), . . . ,Enc(pk, δt))
such that δi = 1 if i ≤ r, and δi = 0 otherwise.
The functionality outputs (Enc(pk, δ1), . . . ,Enc(pk, δt)) to P1 and
(Enc(pk, r), (Enc(pk, δ1), . . . ,Enc(pk, δt))) to all other parties Pi, for
i = 2, . . . ,N.

180

Protocol. A protocol for secure unary representation can be implemented with the help of a
binary-conversionprotocol [ST06]. That is, givenEnc(pk, r), all parties jointly computeEnc(pk, δi),
whereδi = 1, if i ≤ r, andδi = 0otherwise, via aBoolean circuit (which canbe securely implemented
based on Paillier cryptosystem).

Communicationcomplexity. Wecan calculate the result using aBoolean circuit of sizeO(r log t),
thus the communication complexity isO(Nr log t).

A.1.5 Solve a Linear System

Protocol. We nowpresent the Protocol 7 that allowsmultiple parties to solve an encrypted linear
system. In the following, we assume that the system has at least one solution (note that this can be
guaranteed using the secRank protocol).

Lemma A.1.7 (Correctness). The protocol secLS is correct.

Proof. The proof follows directly from [KDS91, KMWF07].

Lemma A.1.8. The protocol secLS securely EUC-realizes FOLS with shared ideal functionality FGen

in the (FORank,FOInv,FSUR)-hybrid model against semi-honest adversaries corrupting up to N − 1
parties, given that TPKE is IND-CPA.

Communication complexity. Each party broadcasts O(t2k log t) bits of information where
k = |F|. The total communication complexity is Õ(t2).

A.2 Stealth Signature: Group-based Construction against Bounded Leak-
age

Weprovide anSSwhich is unforgeable and unlinkable with bounded key-exposure. The construction
is shown in Figure A.1, where G is a group of primer order p, g is a generator, and H is a random
oracle mapping fromG to Zp. Additionally,DS is an efficient group-based signature scheme such as
ECDSA, Schnorr and others whose verification key and signing key has discrete logarithm relation,
i.e., vk = gsk.
Correctness. It is clear that opk = gosk as

opk =

n∏
i=1

hH(h
r
i)

i = g
∑n

i=1 xi·H(gr·xi) = gosk.

The tracking mechanism also works since

R0 = opkH(hr0) = opkH(gr·x0).

181

Algorithm 7 Secure Linear Solve secLS
Require: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOInv and
FSUR.

Ensure: Party P1 inputs Enc(pk,M)whereM ∈ Ft×t is a non-singular matrix.
1: All parties jointly compute an encryption of the rank Enc(pk, r) ofM via the ideal func-

tionalityFORank.
2: Set Enc(pk,M′) := Enc(pk,M) and Enc(pk, y′) := Enc(pk, y).
3: for i from 1 toN do
4: Pi samples two non-singular matrices Ri,Qi from Ft×t. It calculates

Enc(pk,M′) = Enc(pk,RiM′Qi) and Enc(pk, y′) = Enc(pk,Riy′). Pi broadcasts
Enc(pk,M′),Enc(pk, y′).

5: end for
6: All the parties jointly compute Enc(δ1), . . . ,Enc(δt) by invoking FSUR on input

Enc(pk, r). They set Enc(pk,Δ) := Enc

pk,

δ1 . . . 0
...
0 . . . δt

. Finally, they com-

pute Enc(pk,N) := Enc(pk,M′ · Δ + It − Δ), where It ∈ Ft×t is the identity matrix.

7: All the parties jointly compute Enc(N−1) by invokingFOInv on input Enc(pk,N).
8: Each party Pi samples ui ←$ Ft and broadcasts (Enc(pk,M′ui),Enc(pk,ui)).
9: All parties jointly compute Enc(pk,u′) = Enc(pk,N−1y′r) by invoking FOMM,

where Enc(pk, y′r) = Enc(pk, (y′ + ∑
jM′uj)Δ). Then they set Enc(pk, x) =

Enc(pk, (
∑

j uj)− u′).
10: for i fromN to 1 do
11: Pi calculates Enc(pk, x) = Enc(pk,Q−1i x). Pi broadcasts Enc(pk, x).
12: end for
13: P1 outputs Enc(pk, x).

182

MKGen(λ)
SampleG = ⟨g⟩
(x0, x1, . . . , xn)←$ Zp
mpk := (g, h0 := gx0 , . . . , hn := gxn)
msk := (x0, . . . , xn)
mtk := x0
returnmpk,msk,mtk

OSKGen(msk, opk, tki)

parse (x0, . . . , xn) := msk

parse (R,R0) := tki

return ⊥ if
false← Track(x0, , opk, tki)

osk :=
n∑

i=1
xi · H(Rxi)

return osk

Vf(opk, σ,m)

returnDS.Vf(opk, σ,m)

OPKGen(mpk)

parse (g, h0, . . . , hn) := mpk

r←$ Zp

opk :=
n∏

i=1
hH(h

r
i)

i

tki := (R := gr,R0 := opkH(h
r
0)

return opk, tki

Sign(osk,m)

return σ := DS.Sign(osk,m)

Track(mtk, opk, tki)

parse (R,R0) := tki

parse x0 := mtk

return opkH(R
x0) ?

= R0

Figure A.1: Construction of group-based SS secure with (n− 1)-bounded key-exposure

Security Analysis. Now we analyze the security of above construction.

TheoremA.2.1. The construction in Figure A.1 is (strongly) unforgeable and unlinkable with (n− 1)-
bounded key exposures.

Proof. (sketch)Forunlinkability,without knowingxi or r, byDDHassumption, the triplegr, gxi , gr·xi
remains uniformly random over G. With random oracle H, H(gr·xi) is also uniformly random over
Zp. Therefore, it is clear that opk,R,R0 are uniformly random.

For unforgeability, as long asDS is (strongly) unforgeable, then SS is also (strongly) unforgeable.
Now we consider key-exposures. Since

osk =
n∑
i=1

xi · H(hri),

this is an equation with n variables (xi) for adversaries. If the adversary learns at most n−1 equations,
then this linear system is undetermined and has at least p solutions which is exponentially large. Thus
msk is hiding when there are at most (n− 1) key-exposures.

183

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 553–572, French Riviera, May 30 – June 3, 2010.
Springer, Heidelberg, Germany.

[ABD+21a] NavidAlamati, PedroBranco,NicoDöttling, SanjamGarg,MohammadHajiabadi, and
Sihang Pu. Laconic private set intersection and applications. In Kobbi Nissim and Brent
Waters, editors, TCC 2021: 19th Theory of Cryptography Conference, Part III, volume 13044
of Lecture Notes in Computer Science, pages 94–125, Raleigh, NC, USA, November 8–11, 2021.
Springer, Heidelberg, Germany.

[ABD+21b] NavidAlamati, PedroBranco,NicoDöttling, SanjamGarg,MohammadHajiabadi, and
Sihang Pu. Laconic private set intersection and applications. Cryptology ePrint Archive, Re-
port 2021/728, 2021. https://ia.cr/2021/728.

[ADT11] GiuseppeAteniese, EmilianoDeCristofaro, andGeneTsudik. (If) sizematters: Size-hiding
private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Ni-
colosi, editors, PKC 2011: 14th International Conference on Theory and Practice of Public Key
Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 156–173, Taormina,
Italy, March 6–9, 2011. Springer, Heidelberg, Germany.

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi.
Tightly-secure signatures from lossy identification schemes. InDavid Pointcheval andThomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 572–590, Cambridge, UK, April 15–19, 2012. Springer, Hei-
delberg, Germany.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In
Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer Science, pages
120–129, Palm Springs, CA, USA, October 22–25, 2011. IEEE Computer Society Press.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (ex-
tended abstract). In 30th Annual ACM Symposium on Theory of Computing, pages 10–19,
Dallas, TX, USA, May 23–26, 1998. ACM Press.

[AMKM21] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Se-
cure multi-hop payments without two-phase commits. In Michael Bailey and Rachel Green-

184

https://ia.cr/2021/728

stadt, editors, USENIX Security 2021: 30th USENIX Security Symposium, pages 4043–4060.
USENIX Association, August 11–13, 2021.

[AR16] Divesh Aggarwal and Oded Regev. A note on discrete gaussian combinations of lattice vec-
tors. Chicago Journal of Theoretical Computer Science, 2016(7), June 2016.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296(4):625–636, 1993.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23, 2018.
IEEE Computer Society Press.

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim
Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 669–699, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[BBD+20] Zvika Brakerski, Pedro Branco, NicoDöttling, SanjamGarg, andGiulioMalavolta. Con-
stant ciphertext-rate non-committing encryption from standard assumptions. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference, Part I,
volume 12550 of Lecture Notes in Computer Science, pages 58–87, Durham, NC, USA, Novem-
ber 16–19, 2020. Springer, Heidelberg, Germany.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy
in public-key encryption. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001,
volume 2248 of Lecture Notes in Computer Science, pages 566–582, Gold Coast, Australia, De-
cember 9–13, 2001. Springer, Heidelberg, Germany.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 41–55, Santa Barbara, CA,USA, August 15–19, 2004. Springer, Heidel-
berg, Germany.

[BBV+20] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Kent Larson, and Alex ’Sandy’ Pent-
land. Assessing disease exposure risk with location data: A proposal for cryptographic preser-
vation of privacy, 2020.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and
Peter Scholl. Efficient two-round OT extension and silent non-interactive secure computa-
tion. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 291–308,
London, UK, November 11–15, 2019. ACM Press.

185

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In Alexandra
Boldyreva andDanieleMicciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 489–518, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. InDennisHofheinz
and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume
11892 of Lecture Notes in Computer Science, pages 407–437, Nuremberg, Germany, Decem-
ber 1–5, 2019. Springer, Heidelberg, Germany.

[BDM22] Pedro Branco, Nico Döttling, and Paulo Mateus. Two-round oblivious linear evaluation
from learning with errors. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,
Public-Key Cryptography – PKC 2022, pages 379–408, Cham, 2022. Springer International
Publishing.

[BdMW16] Florian Bourse, Rafaël del Pino,MicheleMinelli, andHoeteckWee. FHE circuit privacy
almost for free. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 62–89, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BdV18] Niek J. Bouman andNiels de Vreede. New protocols for secure linear algebra: Pivoting-free
elimination and fast block-recursive matrix decomposition. IACR Cryptology ePrint Archive,
2018:703, 2018.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In Tal Rabin,
editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 1–20, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Ger-
many.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory
and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science,
pages 501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation underDDH. InMatthewRobshaw and JonathanKatz, editors,Advances in Cryptology

186

– CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages 509–539,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lec-
ture Notes in Computer Science, pages 325–341, Cambridge, MA, USA, February 10–12, 2005.
Springer, Heidelberg, Germany.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations
in Theoretical Computer Science, pages 309–325, Cambridge, MA, USA, January 8–10, 2012.
Association for Computing Machinery.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision Diffie-Hellman. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 108–125, Santa Bar-
bara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[BL18] Fabrice Benhamouda andHuijia Lin. k-roundmultiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In Jesper BuusNielsen andVincentRijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Com-
puter Science, pages 500–532, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg,
Germany.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and
Communications Security, pages 1507–1528, Virtual Event, Republic of Korea, November 15–19,
2021. ACM Press.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, andVinodVaikuntanathan. Anonymous IBE,
leakage resilience and circular security from new assumptions. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part I, volume 10820
of Lecture Notes in Computer Science, pages 535–564, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

[BMRR21] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter Rindal.
Multi-party threshold private set intersection with sublinear communication. In Juan Garay,
editor, PKC 2021: 24th International Conference on Theory and Practice of Public Key Cryp-
tography, Part II, volume 12711 of Lecture Notes in Computer Science, pages 349–379, Virtual
Event, May 10–13, 2021. Springer, Heidelberg, Germany.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of

187

Computer Science, pages 97–106, PalmSprings, CA,USA,October 22–25, 2011. IEEEComputer
Society Press.

[BW13] Dan Boneh and BrentWaters. Constrained pseudorandom functions and their applications.
InKazue Sako andPalash Sarkar, editors,Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India, Decem-
ber 1–5, 2013. Springer, Heidelberg, Germany.

[Can01] RanCanetti. Universally composable security: Anewparadigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145, LasVegas,NV,
USA, October 14–17, 2001. IEEE Computer Society Press.

[CD01] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number
of rounds. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 119–136, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[CDG+17] ChongwonCho,NicoDöttling, SanjamGarg, DivyaGupta, PeihanMiao, andAntigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz andHovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lec-
ture Notes in Computer Science, pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Os-
trovsky, andVinodVaikuntanathan. Reusable non-interactive secure computation. InAlexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part III, volume 11694 of Lecture Notes in Computer Science, pages 462–488, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, Advances in Cryptology –
EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 280–299, Inns-
bruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography
Conference, volume 4392 of Lecture Notes in Computer Science, pages 61–85, Amsterdam, The
Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

[CGH+21] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan Miao. Amor-
tizing rate-1 OT and applications to PIR and PSI. In Kobbi Nissim and Brent Waters, editors,
TCC 2021: 19th Theory of Cryptography Conference, Part III, volume 13044 of Lecture Notes
in Computer Science, pages 126–156, Raleigh, NC, USA, November 8–11, 2021. Springer, Hei-
delberg, Germany.

188

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In 36th Annual Symposium on Foundations of Computer Science, pages 41–50, Mil-
waukee, Wisconsin, October 23–25, 1995. IEEE Computer Society Press.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully ho-
momorphic encryption with malicious security. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and
Communications Security, pages 1223–1237, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, ed-
itors, ACM CCS 2017: 24th Conference on Computer and Communications Security, pages
1243–1255, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[CM17] Nicolas T Courtois and Rebekah Mercer. Stealth address and key management techniques
in blockchain systems. ICISSP, 2017:559–566, 2017.

[CS02] RonaldCramer andVictor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology
– EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64, Ams-
terdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[DCW13] ChangyuDong, LiqunChen, andZikaiWen. When private set intersectionmeets big data:
an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013: 20th Conference on Computer and Communications Security, pages
789–800, Berlin, Germany, November 4–8, 2013. ACM Press.

[DG17a] NicoDöttling and SanjamGarg. From selective IBE to full IBE and selective HIBE. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I,
volume 10677 of Lecture Notes in Computer Science, pages 372–408, Baltimore, MD, USA,
November 12–15, 2017. Springer, Heidelberg, Germany.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 537–569,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[DGGM19] Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic conditional
disclosure of secrets and applications. In David Zuckerman, editor, 60th Annual Symposium
on Foundations of Computer Science, pages 661–685, Baltimore, MD, USA, November 9–12,
2019. IEEE Computer Society Press.

189

[DGHM18] NicoDöttling, SanjamGarg,MohammadHajiabadi, andDanielMasny. New construc-
tions of identity-based and key-dependent message secure encryption schemes. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018: 21st International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 10769 of Lecture Notes in Computer Sci-
ence, pages 3–31, Rio de Janeiro, Brazil, March 25–29, 2018. Springer, Heidelberg, Germany.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Os-
trovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva andDaniele
Micciancio, editors,Advances in Cryptology – CRYPTO 2019, Part III, volume 11694ofLecture
Notes in Computer Science, pages 3–32, Santa Barbara, CA,USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[DJ01] IvanDamgård andMats Jurik. Ageneralisation, a simplification and some applications ofPail-
lier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography, volume 1992 of Lecture Notes
in Computer Science, pages 119–136, Cheju Island, South Korea, February 13–15, 2001. Springer,
Heidelberg, Germany.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set inter-
section protocols secure in malicious model. InMasayuki Abe, editor, Advances in Cryptology
– ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 213–231, Sin-
gapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private infor-
mation retrieval implies oblivious transfer. In Bart Preneel, editor, Advances in Cryptology –
EUROCRYPT 2000, volume 1807 ofLecture Notes in Computer Science, pages 122–138, Bruges,
Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[DMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient ro-
bust private set intersection. InMichel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS 09: 7th International Conference on Applied Cryptogra-
phy and Network Security, volume 5536 of Lecture Notes in Computer Science, pages 125–142,
Paris-Rocquencourt, France, June 2–5, 2009. Springer, Heidelberg, Germany.

[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and sample amplifi-
cation. In Jonathan Katz, editor, PKC 2015: 18th International Conference on Theory and
Practice of Public Key Cryptography, volume 9020 of Lecture Notes in Computer Science, pages
604–626, Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany.

[EGL82] Shimon Even, OdedGoldreich, and Abraham Lempel. A randomized protocol for signing
contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology – CRYPTO’82, pages 205–210, Santa Barbara, CA, USA, 1982. Plenum Press, New
York, USA.

190

[Elg85] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027ofLecture Notes in Computer Science, pages 1–19, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[FT14] Pierre-Alain Fouque andMehdi Tibouchi. Close to uniform prime number generation with
fewer randombits. In Javier Esparza, Pierre Fraigniaud,ThoreHusfeldt, andEliasKoutsoupias,
editors, ICALP 2014: 41st International Colloquium on Automata, Languages and Program-
ming, Part I, volume 8572 ofLecture Notes in Computer Science, pages 991–1002, Copenhagen,
Denmark, July 8–11, 2014. Springer, Heidelberg, Germany.

[GGH19] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques for efficient
trapdoor functions and applications. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer
Science, pages 33–63, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[GGM84] Oded Goldreich, Shafi Goldwasser, and SilvioMicali. On the cryptographic applications
of random functions. In G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 276–288, Santa Barbara,
CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, August 1986.

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis
Hofheinz andAlonRosen, editors,TCC 2019: 17th Theory of Cryptography Conference, Part II,
volume 11892 of Lecture Notes in Computer Science, pages 438–464, Nuremberg, Germany,
December 1–5, 2019. Springer, Heidelberg, Germany.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In Dongdai
Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory and Prac-
tice of Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Computer Science,
pages 63–93, Beijing, China, April 14–17, 2019. Springer, Heidelberg, Germany.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptography Confer-
ence, Part I, volume 11239 of Lecture Notes in Computer Science, pages 689–718, Panaji, India,
November 11–14, 2018. Springer, Heidelberg, Germany.

191

[GHO20] Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-trapdoor
functions and applications: Rate-1 OT and more. In Rafael Pass and Krzysztof Pietrzak, edi-
tors,TCC 2020: 18th Theory of Cryptography Conference, Part I, volume 12550 ofLecture Notes
in Computer Science, pages 88–116, Durham, NC, USA,November 16–19, 2020. Springer, Hei-
delberg, Germany.

[GJR10] Elena Grigorescu, Kyomin Jung, and Ronitt Rubinfeld. A local decision test for sparse
polynomials. Inf. Process. Lett., 110(20):898–901, September 2010.

[GM82] Shafi Goldwasser and SilvioMicali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th Annual ACM Symposium on Theory of Com-
puting, pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press.

[GMP22] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-
quantum public key encryption. In Orr Dunkelman and Stefan Dziembowski, editors, Ad-
vances in Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Com-
puter Science, pages 402–432, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidel-
berg, Germany.

[GMPW20] Nicholas Genise, DanieleMicciancio, Chris Peikert, andMichaelWalter. Improved dis-
crete gaussian and subgaussian analysis for lattice cryptography. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd International Confer-
ence on Theory and Practice of Public Key Cryptography, Part I, volume 12110 of Lecture Notes
in Computer Science, pages 623–651, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg,
Germany.

[GMW19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a
completeness theorem for protocols with honestmajority. InProviding Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. 2019.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private set
intersection. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Science, pages 154–185,
Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[GNN17] Satrajit Ghosh, Jesper BuusNielsen, andTobiasNilges. Maliciously secure oblivious linear
function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Com-
puter Science, pages 629–659, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for
NP. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004

192

of Lecture Notes in Computer Science, pages 339–358, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Heidelberg, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria, BC, Canada,
May 17–20, 2008. ACM Press.

[Gre19] Matthew Green, 2019. https://blog.cryptographyengineering.com/2019/12/08/on-client-
side-media-scanning/.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lec-
ture Notes in Computer Science, pages 415–432, Istanbul, Turkey, April 13–17, 2008. Springer,
Heidelberg, Germany.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bi-
linear maps. In Chris Umans, editor, 58th Annual Symposium on Foundations of Computer
Science, pages 588–599, Berkeley, CA,USA,October 15–17, 2017. IEEEComputer Society Press.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from
minimal assumptions. In Jesper BuusNielsen and Vincent Rijmen, editors, Advances in Cryp-
tology – EUROCRYPT 2018, Part II, volume 10821 ofLecture Notes in Computer Science, pages
468–499, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[GS19a] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set
intersection. In Alexandra Boldyreva andDanieleMicciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part II, volume 11693 ofLecture Notes in Computer Science, pages 3–29, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[GS19b] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set
intersection. Cryptology ePrint Archive, Report 2019/175, 2019. https://eprint.iacr.
org/2019/175.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lec-
ture Notes in Computer Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In
DanieleMicciancio andThomasRistenpart, editors,Advances in Cryptology – CRYPTO 2020,
Part I, volume 12170 of Lecture Notes in Computer Science, pages 621–651, Santa Barbara, CA,
USA, August 17–21, 2020. Springer, Heidelberg, Germany.

193

https://eprint.iacr.org/2019/175
https://eprint.iacr.org/2019/175

[GVW20] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. New constructions of hint-
ing PRGs, OWFs with encryption, and more. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture Notes in
Computer Science, pages 527–558, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Hei-
delberg, Germany.

[HOS17] Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. PrivatePool: Privacy-preserving
ridesharing. In Boris Köpf and Steve Chong, editors, CSF 2017: IEEE 30st Computer Security
Foundations Symposium, pages 276–291, Santa Barbara, CA, USA, August 21–25, 2017. IEEE
Computer Society Press.

[HV17] Carmit Hazay andMuthuramakrishnan Venkitasubramaniam. Scalable multi-party private
set-intersection. In Serge Fehr, editor,PKC 2017: 20th International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 10174 of Lecture Notes in Computer Sci-
ence, pages 175–203, Amsterdam, The Netherlands, March 28–31, 2017. Springer, Heidelberg,
Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Conference on
Innovations in Theoretical Computer Science, pages 163–172,Rehovot, Israel, January 11–13, 2015.
Association for Computing Machinery.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, David
Shanahan, and Moti Yung. Private intersection-sum protocol with applications to attribut-
ing aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738, 2017. https:
//eprint.iacr.org/2017/738.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 145–161, SantaBarbara, CA,USA,August 17–21, 2003.
Springer, Heidelberg, Germany.

[ILL89] Russell Impagliazzo, Leonid A. Levin, andMichael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In 21st Annual ACM Symposium on Theory of Com-
puting, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[Ing56] A.W. Ingleton. The rank of circulantmatrices. Journal of the London Mathematical Society,
s1-31(4):445–460, 1956.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P.
Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture
Notes in Computer Science, pages 575–594, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg, Germany.

194

https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2017/738

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Confer-
ence, volume 5444 of Lecture Notes in Computer Science, pages 294–314. Springer, Heidelberg,
Germany, March 15–17, 2009.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Juan A.
Garay and Roberto De Prisco, editors, SCN 10: 7th International Conference on Security in
Communication Networks, volume 6280 of Lecture Notes in Computer Science, pages 418–435,
Amalfi, Italy, September 13–15, 2010. Springer, Heidelberg, Germany.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 60–73, New York, NY, USA, 2021. Association for
Computing Machinery.

[KDS91] Erich Kaltofen and B. David Saunders. On wiedemann’s method of solving sparse linear
systems. In Harold F. Mattson, Teo Mora, and T. R. N. Rao, editors, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, pages 29–38, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRFwith applications to private set intersection. In Edgar R.Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security, pages 818–829, Vienna, Austria,
October 24–28, 2016. ACM Press.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 552–586, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

[KMP+17] Vladimir Kolesnikov, NaorMatania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practi-
calmulti-party private set intersection from symmetric-key techniques. InBhavaniM.Thurais-
ingham,DavidEvans, TalMalkin, andDongyanXu, editors,ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 1257–1272, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

[KMWF07] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew K. Franklin. Secure linear
algebra using linearly recurrent sequences. In Salil P. Vadhan, editor, TCC 2007: 4th Theory
of Cryptography Conference, volume 4392 of Lecture Notes in Computer Science, pages 291–310,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

195

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer and Commu-
nications Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 241–257, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg,
Germany.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[LLN+20] Wenling Liu, Zhen Liu, Khoa Nguyen, Guomin Yang, and Yu Yu. A lattice-based key-
insulated and privacy-preserving signature scheme with publicly derived public key. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, Part II, volume 12309 of Lecture Notes
in Computer Science, pages 357–377, Guildford, UK, September 14–18, 2020. Springer, Heidel-
berg, Germany.

[LNO13] Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size in secure two-
party computation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages 421–440,
Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

[LRR+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Kr-
ishnan Thyagarajan, and Jiafan Wang. Omniring: Scaling private payments without trusted
setup. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 31–48,
London, UK, November 11–15, 2019. ACM Press.

[LT22] Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lec-
ture Notes in Computer Science, pages 753–783, Santa Barbara, CA, USA, August 15–18, 2022.
Springer, Heidelberg, Germany.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume
5912 ofLecture Notes in Computer Science, pages 598–616, Tokyo, Japan,December 6–10, 2009.
Springer, Heidelberg, Germany.

196

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 738–755, Cambridge, UK,April 15–19, 2012. Springer,
Heidelberg, Germany.

[LYW+19] Zhen Liu, Guomin Yang, Duncan S. Wong, Khoa Nguyen, and Huaxiong Wang. Key-
Insulated and Privacy-Preserving signature scheme with publicly derived public key. In 2019
IEEE European Symposium on Security and Privacy (EuroS P), pages 215–230, 2019.

[Mea86] C. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In 1986 IEEE Symposium on Security and Privacy,
pages 134–134, 1986.

[Mer90] Ralph C.Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryp-
tology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–238, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[MP12] DanieleMicciancio andChris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MR04] DanieleMicciancio and Oded Regev. Worst-case to average-case reductions based on Gaus-
sianmeasures. In 45th Annual Symposium on Foundations of Computer Science, pages 372–381,
Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

[MSH+17] MalteMöser, Kyle Soska, EthanHeilman, KevinLee,HenryHeffan, Shashvat Srivastava,
Kyle Hogan, JasonHennessey, AndrewMiller, ArvindNarayanan, et al. An empirical analysis
of traceability in the monero blockchain. arXiv preprint arXiv:1704.04299, 2017.

[MSS+22] Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and Denis
Varlakov. Private signaling. In 31st USENIX Security Symposium (USENIX Security 22), pages
3309–3326, Boston, MA, August 2022. USENIX Association.

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly opti-
mal communication complexity. IEEE Trans. Information Theory, 49(9):2213–2218, 2003.

[NMRL16] ShenNoether, AdamMackenzie, and theMoneroResearchLab. Ring confidential trans-
actions. Ledger, 1:1–18, Dec. 2016.

[NW06] Kobbi Nissim and Enav Weinreb. Communication efficient secure linear algebra. In Shai
Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume
3876 of Lecture Notes in Computer Science, pages 522–541, New York, NY, USA, March 4–7,
2006. Springer, Heidelberg, Germany.

197

[OKH13] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. Structure and anonymity of the
bitcoin transaction graph. Future internet, 5(2):237–250, 2013.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer,
Heidelberg, Germany.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 80–97, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight pri-
vate set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 401–431, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[PRV12] Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis. How powerful
are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653, 2012. https://
eprint.iacr.org/2012/653.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set
intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors,
USENIX Security 2015: 24th USENIX Security Symposium, pages 515–530, Washington, DC,
USA, August 12–14, 2015. USENIX Association.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 125–157, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[PSZ14] Benny Pinkas, Thomas Schneider, andMichael Zohner. Faster private set intersection based
on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014: 23rd
USENIX Security Symposium, pages 797–812, San Diego, CA, USA, August 20–22, 2014.
USENIX Association.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Bar-
bara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[QWW18] Willy Quach, HoeteckWee, andDanielWichs. Laconic function evaluation and applica-
tions. InMikkel Thorup, editor, 59th Annual Symposium on Foundations of Computer Science,
pages 859–870, Paris, France, October 7–9, 2018. IEEE Computer Society Press.

198

https://eprint.iacr.org/2012/653
https://eprint.iacr.org/2012/653

[RA18] Amanda C. Davi Resende and Diego F. Aranha. Faster unbalanced private set intersection.
In Sarah Meiklejohn and Kazue Sako, editors, FC 2018: 22nd International Conference on Fi-
nancial Cryptography and Data Security, volume 10957 of Lecture Notes in Computer Science,
pages 203–221, Nieuwpoort, Curaçao, February 26 –March 2, 2018. Springer, Heidelberg, Ger-
many.

[Rab05] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint
Arch., 2005(187), 2005.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[RH13] FergalReid andMartinHarrigan. An analysis of anonymity in the bitcoin system. In Security
and privacy in social networks, pages 197–223. Springer, 2013.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious ad-
versaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology –
EUROCRYPT 2017, Part I, volume 10210 ofLecture Notes in Computer Science, pages 235–259,
Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual execu-
tion. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1229–
1242, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. In
International Conference on Financial Cryptography and Data Security, pages 6–24. Springer,
2013.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-
KYBER. Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[SGS21] Gili Schul-Ganz and Gil Segev. Generic-group identity-based encryption: A tight impos-
sibility result. Cryptology ePrint Archive, Report 2021/745, 2021. https://eprint.iacr.
org/2021/745.

[SO13] Marc Santamaria Ortega. The bitcoin transaction graph anonymity. 2013.

[SPB21] István András Seres, Balázs Pejó, and Péter Burcsi. The effect of false positives: Why fuzzy
message detection leads to fuzzy privacy guarantees? Cryptology ePrint Archive, Report
2021/1180, 2021. https://eprint.iacr.org/2021/1180.

199

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2021/745
https://eprint.iacr.org/2021/745
https://eprint.iacr.org/2021/1180

[ST06] Berry Schoenmakers and PimTuyls. Efficient binary conversion for Paillier encrypted values.
In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 522–537, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Heidelberg, Germany.

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döttling,
Aniket Kate, and Dominique Schröder. Verifiable timed signatures made practical. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th
Conference on Computer and Communications Security, pages 1733–1750, Virtual Event, USA,
November 9–13, 2020. ACM Press.

[Tod] Peter Todd. Stealth addresses, 2014. http://www.mailarchive.com/
bitcoin-development@lists.sourceforge.net/msg03613.html.

[vS] Nicolas van Saberhagen. Cryponote v 2.0. 2013. https://cryptonote.org/whitepaper.
pdf.

[Weba] Website. https://anonymous.4open.science/r/SPIRIT-2CE8.

[Webb] Website. Cryptocurrency and e-commerce. https://shiphero.com/blog/
cryptocurrency-e-commerce/.

[Webc] Website. Cryptocurrency and online gaming. https://forumpay.com/gaming.

[Webd] Website. Cryptocurrency solutions for institutional philanthropy. https://
thegivingblock.com.

[Webe] Website. Digital currency donations for freedom convoy evading
seizure by authorities. https://www.cbc.ca/news/canada/ottawa/
freedom-convoy-cryptocurrency-asset-seizure-1.6389601.

[Webf] Website. How many people own and use bitcoin? https://www.
buybitcoinworldwide.com/how-many-bitcoin-users/.

[Webg] Website. How to donate crypto. https://www.coinbase.com/learn/
crypto-basics/how-to-donate-crypto.

[Webh] Website. Umbra: Privacy preserving stealth payments. https://gitcoin.co/grants/
821/umbra-privacy-preserving-stealth-payments.

[Webi] Website. Untraceable transactions which can contain a secure message are inevitable. 2011.
https://bitcointalk.org/index.php?topic=5965.0.

[Webj] Website. Why donate bitcoin, ethereum, nfts and other cryptocurrencies to charity.

200

http://www.mailarchive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
http://www.mailarchive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://anonymous.4open.science/r/SPIRIT-2CE8
https://shiphero.com/blog/cryptocurrency-e-commerce/
https://shiphero.com/blog/cryptocurrency-e-commerce/
https://forumpay.com/gaming
https://thegivingblock.com
https://thegivingblock.com
https://www.cbc.ca/news/canada/ottawa/freedom-convoy-cryptocurrency-asset-seizure-1.6389601
https://www.cbc.ca/news/canada/ottawa/freedom-convoy-cryptocurrency-asset-seizure-1.6389601
https://www.buybitcoinworldwide.com/how-many-bitcoin-users/
https://www.buybitcoinworldwide.com/how-many-bitcoin-users/
https://www.coinbase.com/learn/crypto-basics/how-to-donate-crypto
https://www.coinbase.com/learn/crypto-basics/how-to-donate-crypto
https://gitcoin.co/grants/821/umbra-privacy-preserving-stealth-payments
https://gitcoin.co/grants/821/umbra-privacy-preserving-stealth-payments
https://bitcointalk.org/index.php?topic=5965.0

[ZMS+21] Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill.
Quantum-safe HIBE: does it cost a latte? Cryptology ePrint Archive, Report 2021/222, 2021.
https://eprint.iacr.org/2021/222.

201

https://eprint.iacr.org/2021/222

	Introduction
	Preliminary
	Basic Primitives
	Polynomials
	Lattices
	Hardness Assumptions
	Threshold Public-key Encryption
	Programmable Pseudorandom Functions
	Puncturable Pseudorandom Functions
	Designated-Verifier Non-Interactive Zero-Knowledge
	Private Information Retrieval

	Threshold Private Set Intersection
	Overview
	Techniques
	Definitions
	Oblivious Degree Test for Rational Functions
	Multi-Party Threshold Private Set Intersection

	Laconic Private Set Intersection
	Overview
	Techniques
	Definitions
	Semi-Honest Laconic Private Set Intersection from CDH/LWE
	Reusable DV-NIZK Range Proofs for DJ Ciphertexts
	Reusable Laconic Private Set Intersection
	Labeled Laconic PSI and Laconic OT
	Self-Detecting Encryption

	Rate-1 Oblivious Transfer
	Overview
	Techniques
	Definitions
	Compression-friendly Subgroup Emulation via Gaussian Rounding
	Rate-1 Circuit-Private Linearly Homomorphic Encryption
	Co-Private Information Retrieval
	Oblivious Transfer with Overall Rate 1
	Oblivious Matrix-Vector Product and Oblivious Linear Evaluation

	Privacy Preserving Signatures
	Overview
	Techniques
	Definitions
	Generic Transformation of Stealth Signatures
	Spirit: Lattice-based (Fuzzy) Stealth Signature
	Performance Analysis
	Security Analysis

	Conclusion
	Appendix Additional Constructions
	Threshold PSI: Oblivious Linear Algebra
	Stealth Signature: Group-based Construction against Bounded Leakage

	References

