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Abstract
In recent years, the application of advanced analytics, especially artificial intelligence (AI), to digital H&E images, and
other histological image types, has begun to radically change how histological images are used in the clinic.
Alongside the recognition that the tumour microenvironment (TME) has a profound impact on tumour phenotype,
the technical development of highly multiplexed immunofluorescence platforms has enhanced the biological
complexity that can be captured in the TME with high precision. AI has an increasingly powerful role in the
recognition and quantitation of image features and the association of such features with clinically important
outcomes, as occurs in distinct stages in conventional machine learning. Deep-learning algorithms are able to
elucidate TME patterns inherent in the input data with minimum levels of human intelligence and, hence, have the
potential to achieve clinically relevant predictions and discovery of important TME features. Furthermore, the diverse
repertoire of deep-learning algorithms able to interrogate TME patterns extends beyond convolutional neural
networks to include attention-based models, graph neural networks, and multimodal models. To date, AI models
have largely been evaluated retrospectively, outside the well-established rigour of prospective clinical trials, in part
because traditional clinical trial methodology may not always be suitable for the assessment of AI technology.
However, to enable digital pathology-based advanced analytics to meaningfully impact clinical care, specific
measures of ‘added benefit’ to the current standard of care and validation in a prospective setting are important.
This will need to be accompanied by adequate measures of explainability and interpretability. Despite such
challenges, the combination of expanding datasets, increased computational power, and the possibility of integration
of pre-clinical experimental insights into model development means there is exciting potential for the future
progress of these AI applications.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Visual interpretation of H&E-stained tissue sections by
specialist pathologists using an optical microscope has
been the cornerstone of diagnostic oncology since the
late 19th century [1]. Over several decades, detailed
descriptions of grading systems, such as the Gleason
score in prostate cancer or histological grade in breast
cancer, have been developed and refined, often
involving international working groups of pathologists
establishing consensus statements [2–6]. Similarly,
histological variants within tumour types and tumour

hallmarks known to represent indolent versus aggressive
behaviour have been described and validated, collec-
tively representing a huge wealth of pathological
knowledge [7–9]. Yet in the last 10 years, the applica-
tion of advanced analytics, especially artificial intelli-
gence (AI), to digital H&E images and other histological
image types has begun to radically change how histo-
logical images are used in the clinic.

Innovation in advanced analytics, especially AI, has
typically occurred outside of oncology but has been
rapidly transferred from other disciplines to diagnostic,
prognostic or predictive use in oncology. The automated
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extraction of quantitative data and the elucidation of
image patterns not detectable by the human eye are both
important areas of additional benefit over microscopic
assessment by a pathologist. Recent years have seen a
number of AI-based pathology products obtain regula-
tory approval, including from the FDA [10–12]. In a
large clinical study across more than 100 institutions,
use of a prostate cancer diagnostic AI algorithm was
shown to increase the sensitivity of cancer detection
and reduce both false positives and false negatives [10].
For a cancer that is very common globally, and for which
diagnosis requires meticulous examination of large tis-
sue areas to avoid missing small tumour foci, AI
approaches have a number of benefits. In the developed
world, this includes a reduction in pathologist workload
and fatigue, thus enabling pathologists to focus on the
description of tumour foci identified by the AI detection
system. In the developing world, the combination of
innovative smartphone technology and appropriate val-
idated AI algorithms could help to overcome the sub-
stantial clinically important lack in pathology expertise
and microscope facilities.

The tumour microenvironment (TME) encompasses
the wider cellular and acellular milieu in which tumour
cells reside. It primarily consists of innate and adaptive
immune cells alongside the tumour vasculature and
fibroblasts, which, together with tumour cells, are
supported by an extensive ECM. The TME has a pivotal
role in shaping tumour phenotype, evolutionary
dynamics, and therapy responses [13]. As a result,
characterising the spatial relationships between specific
cell populations in the TME using digital pathology
tools and analytical approaches that are able to capture
the TME complexity is a research priority.

This review will present the wide range of digital
pathology images to which advanced analytics are cur-
rently being applied, as well as the methodology for such
analytics, especially those based on machine learning.
Finally, we will discuss the feasibility and challenges of
widespread incorporation of AI approaches to clinical
practice.

Image types for advanced analytics
There is a wide range of image types to which AI
algorithms are increasingly being applied. These include
H&E-stained sections – a simple and inexpensive part of
standard diagnostic procedures that is widely available
in routine pathology laboratories worldwide but lacks
unambiguous cell type information. Considerable pro-
gress has been made in AI algorithms using H&E
images, as discussed earlier [11,14,15]. Here, computa-
tional extraction of cell and nuclear size, as well as their
shape, is fairly straightforward and precise identification
of tumour cells versus fibroblast versus leukocyte is
increasingly possible, e.g. using digital pathology image
analysis tools such as QuPath [16] or convolutional
neural networks (CNNs) [17]. The haematoxylin stain
also enables the detection of specific chromatin
structures [18,19]. Furthermore, it is increasingly

possible to link H&E images with the genome using AI
algorithms, as discussed later. Immunohistochemical
stains, e.g. for CD8+ T cells or cytokeratins for tumour
cells, can be helpful in validating cell detection algo-
rithms using H&E, as well as being useful in their own
right for quantitative analysis. Non-cellular components
of the TME can be visualised using chemical stains such
as Picrosirius red, Masson’s trichrome or Gomori
trichrome, which specifically detect the collagen ECM
or immunofluorescence for other ECM components,
such as fibronectin, as exemplified in Figure 1. Both
immunohistochemistry and collagen stains are simple
and widely available but are limited in that they charac-
terise very few (typically one or two) components of the
TME in each section.
With the recognition that the TME has a profound

impact on tumour phenotype, construction of tissue
atlases encompassing a range of cell types at subcellu-
lar resolution is increasingly important. Highly
multiplexed platforms enable the detection of over
100 antigens on a single tissue section, with the obvious
advantage of capturing the spatial complexity of the
TME with much greater precision. Important multiplex
platforms include imaging mass cytometry (IMC),
Phenocycler (formerly CODEX), Akoya Biosciences
(Marlborough, MA, USA), and VECTRA Polaris,
Akoya Biosciences (Table 1). Of clinical relevance,
formalin-fixed paraffin-embedded tissue can be used
for all three platforms. IMC consists of high-resolution
(1 μm2) laser ablation and cytometry by time of flight to
detect up to 40 antigens labelled with antibodies con-
jugated to metal tags [32]. Multiplexed ion beam imag-
ing time of flight (MIBI-TOF) is technically very
similar to IMC, including the number of targets that
can be visualised, but uses a tuneable ion beam that
can be adjusted for tissue depth instead of a laser for
tissue ablation [33]. Phenocycler uses fluorescent
oligonucleotide-based tagging of antibodies, which
are sequentially hybridised and dehybridised across
multiple cycles; automated microscopy is able to detect
over 100 targets. In VECTRA Polaris, a secondary
antibody is fused to a fluorescent opal dye and using
up to six serial antigen retrieval cycles, six different
targets plus a counterstain can be visualised on a single
section [25]. Across platforms, there is a trade-off between
the number of targets visualised and the quantity of tissue
that can practically be imaged. As a result, whole-slide
imaging using ultra highly multiplexed systems is consid-
erably slower than with VECTRA Polaris; this is of prac-
tical relevance for discovery science and a very important
consideration for the clinic, where inexpensive high
throughput staining and scanning is essential.
Concomitant with the advances in imaging tech-

niques, innovative imaging data analysis and machine-
learning algorithms have been developed in the last
couple of decades to assist in tumour diagnosis and
understanding of clinically relevant tumour and micro-
environmental features [1,12,34] (Figure 2). In the fol-
lowing sections we discuss recent progress and
achievements in this area, with a focus on hand-crafted
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feature engineering and deep-learning studies that dis-
covered clinically relevant TME features.

What quantitative approaches are possible using
digital images?
A range of machine-learning models are used in the
quantitative analysis of digital images. These range from
less complex regression models to considerably more
complex AI approaches. AI can play a role at different
stages of the process of linking images to clinical param-
eters. First, AI can be trained to recognise features in

images and extract metrics of those features. Second,
features can be extracted using ‘rules-based’ algorithms
and AI then used to relate the output metrics to clinically
important features/outcomes as conventional machine
learning. Finally, AI can be used to perform both steps
together, i.e. there is no need for prior feature extraction,
this is referred to as deep learning.

Machine-learning applications can be categorised as
supervised, weakly supervised, and unsupervised,
depending on the extent and type of data annotation [35].
Whereas in a supervised method the label needs to be
provided for every data point (e.g. pixel-level annotation

Table 1. Types of image used in digital pathology.

Type of image Brief description Number of
detectable targets

Examples

H&E Routinely used stain in which haematoxylin precisely stains nuclear components,
including heterochromatin and nucleoli, whereas eosin stains cytoplasmic
components, including collagen and elastic fibres, muscle fibres, and red blood cells.

Unspecified [10,11,14]

Picrosirius red staining A widely used histological technique to visualise the distribution of collagen. The stain
highlights the natural birefringence of collagen fibres when exposed to polarised
light, enabling a detailed study of collagen organisation.

1 [20,21]

Immunohistochemistry A commonly used test in which an antibody detects a specific antigen or marker in a
sample of tissue. The antibody is typically linked to an enzyme or a fluorescent dye,
which is activated to enable visualisation using a microscope or digital scanner.

1–2 [22–24]

VECTRA Polaris A secondary antibody is fused to a fluorescent opal dye and using up to six serial
antigen retrieval cycles, six different targets plus a counterstain can be visualised on
a single section

Up to 6 [25,26]

IMC High-resolution (1 μm2) laser ablation and cytometry by time of flight is combined to
detect up to 40 antigens labelled with antibodies conjugated to metal tags

Up to 40 [27–29]

Phenocycler
(formerly CODEX)

Uses oligonucleotide-based tagging of antibodies, which are sequentially hybridised
and dehybridised across multiple cycles

Over 100 [30,31]

Figure 1. Exemplar analyses of quantitative feature extraction. (A) Quantitative matrix features extracted using TWOMBLI based on
immunofluorescence for fibronectin. (B) Density of T cells extracted using QuPath based on CD8 staining. Curv, curvature; Frac, fractal
dimension; HDM, high-density matrix; LRA, long-range alignment; SRA, short-range alignment.

580 X Fu et al

© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2023; 260: 578–591
www.thejournalofpathology.com

 10969896, 2023, 5, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.6153 by T

est, W
iley O

nline L
ibrary on [27/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


of tumour versus normal tissue), in a weakly supervised
method the label is given at the patient level (e.g. the
whole-slide H&E image contains areas of tumour).
When the aim is to identify distinct phenotypes present
in the data without labels, unsupervised methods, such
as dimensionality reduction and clustering analysis, are
applied.

In conventional machine learning, an image
processing step prior to feature engineering is commonly
segmentation to identify cell positions and classify cell
types. Neural network models have been increasingly
employed to perform image segmentation [36–38].
Subsequently, a set of quantitative features are extracted
from a digital image based on certain mathematical
descriptions, which are usually referred to as ‘hand-
crafted’ features (Figure 1). These are then applied to a
conventional machine-learning system, which estab-
lishes relationships between these input features and an
output label, such as tumour diagnosis. In contrast, in
deep-learning AI approaches, the raw image is fed into
the AI model, such as a CNN, which then progressively
‘learns’ which aspects of the image are most relevant for
the outcome of relevance [1]. Both conventional and
deep-learning models usually require images to be

broken down into a number of equally sized ‘tiles’ for
computational tractability. In addition, each image needs
to be labelled for the outcome of interest, i.e. cancer or
no cancer, recurrence versus non-recurrence, and this
label will then be applied to all tiles in the image. As it
is either laborious (cancer or no cancer) or infeasible
(recurrence status) for pathologists to provide pixel-level
annotations for all images, weakly supervised learning
that labels tiles according to slide-level annotation has
been commonly applied (e.g. [11]). The subsequent
sections will discuss conventional machine-learning
and deep-learning approaches to study the TME in
greater depth.

Conventional machine learning to map from hand-
crafted TME features to clinical outcomes

Quantitative hand-crafted TME features are frequently
employed to predict patient outcomes via the use of
conventional machine learning. These features are
commonly defined according to mathematical
descriptions of the density, spatial distribution, and

Figure 2. Prediction of clinical outcomes via conventional versus deep learning. Created with BioRender.com.
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higher-order structures of cancer cells and microenvi-
ronmental components. Conventional machine-learn-
ing approaches, such as logistic regression and random
forests, and survival statistical models, such as Cox
proportional hazards model, are applied to map from
features to clinical labels such as patient survival
outcomes.

Lymphocyte features
Evasion of immunosurveillance is a hallmark of many
cancers and can arise from a deficiency of anti-cancer
immune cells (e.g. CD8+ cytotoxic T lymphocytes)
or the presence of immunosuppressive elements
(e.g. regulatory T cells) [39]. Consequently, features of
immune contexture that represent the density, composi-
tion, and spatial organisation of immune components are
shown to be correlated with cancer prognosis [40–42].
Imaging-based quantitative analysis of immune con-

texture has led to the identification of immune features
associated with patient outcomes. An international study
involving 13 countries demonstrated that Immunoscore,
which quantifies the density of CD8+ and CD3+ cells in
tumour core versus invasive margin based on immuno-
histochemistry images, was a reproducible and robust
prognostic factor in patients with stage I–III colon
cancer [22]. Immunoscore was also shown to predict
responses to chimeric antigen receptor T cell therapy in
large B cell lymphoma [23]. A similar quantitative
metric applied to more immune cell types based on
immunohistochemistry images showed that immune
topographies involving both CD8 and CD163 were
prognostic [24].
Analysis of tumour-infiltrating lymphocytes (TIL) has

increasingly been facilitated by the application of CNNs,
a type of deep learning that will be discussed in greater
detail later. One CNN approach predicts the over- or
under-representation of TILs within individual small
patches of a whole-slide H&E image. Using this
approach in a pan-cancer analysis revealed spatial clus-
tering features of TILs that associate with overall sur-
vival in some tumour types, including breast cancer and
melanoma, and identified variable enrichment of struc-
tural patterns across tumour types [15]. Another
approach seeks to detect individual cell nuclei and clas-
sify cell types within a whole-slide H&E image. One
such method is Spatially Constrained Convolutional
Neural Network (SCCNN) [38]. This was used to reveal
that intra-tumour heterogeneity in immune landscapes
has prognostic value. Facilitated by a machine-learning
pipeline for single-cell identification and classification in
H&E images, quantified geospatial features of lympho-
cytes in multiple tumour regions showed that lung ade-
nocarcinomas with more than one region characterised
by low lymphocyte infiltration hadworse prognosis [17].
As discussed earlier, and enabled by multiplex imaging
such as IMC and CODEX, higher-order spatial immune
cell neighbourhoods and interactions have been found to
associate with survival outcomes and therapy outcomes
in various tumour types, including cutaneous T cell

lymphomas [43], melanoma [44,45], colorectal
cancer [46], and brain tumours [47].

Concomitant with the discovery of clinically relevant
features based on digital pathology, experimental
evidence increasingly sheds light on how immune con-
texture emerges from complex and dynamic immune
cell behaviours. Combining immunostaining and
dynamic imaging of T cells showed that stromal ECM
density and orientation impacted T cell migration and
localisation [48].

Vascular features
Vascular systems play a fundamental role in the distri-
bution of oxygen and nutrients to sustain tumour growth,
as well as in the delivery of therapies. Disorganised
tumour vasculature is a hallmark of cancer [39].
Microvessel density and fractal dimension, which mea-
sure the complexity of microvessel networks, extracted
from CD34 immunochemistry images, were associated
with survival outcomes in clear cell renal cell
carcinomas [49]. More recently, quantitative morpho-
metric features based on CD31 immunohistochemistry
identified vascular features, including endothelial den-
sity and vascular arm numbers, associated with disease-
free survival in patients with clear cell renal cell
carcinomas [50]. In addition to these quantitative met-
rics, topological data analysis, a set of methods to
distil low-dimensional features from high-dimensional
data, is emerging as a powerful mathematical tool for
characterising vascular patterns. Multiscale topological
descriptors of vascular patterns based on intravital
images of mouse colorectal cancer quantitatively cap-
tured the dynamic changes in network architecture fol-
lowing anti-cancer therapies [51].

Fibroblast and matrix features
Fibroblasts plays a variety of important roles within the
TME, including deposition and organisation of ECM
and complex interactions with cancer cells and different
types of immune cell [52]. Imaging-based quantitative
analysis of the organisation of stromal fibroblasts and
matrix has led to the identification of features associated
with patient outcomes. By overlaying second harmonic
generation (SHG) images of collagen with H&E images,
Conklin et al [53] devised a metric called tumour-
associated collagen signature-3 (TACS-3) to describe a
pattern in which bundles of aligned collagen were ori-
ented perpendicular to the tumour boundary in breast
cancer. They found that a positive TACS-3 score was
correlated with unfavourable survival outcomes using a
Cox proportional hazards model. Beck et al [54]
extracted a rich set of quantitative features of epithelial
and stromal compartments in breast cancer and discov-
ered that stroma morphological features and their con-
textual relationships with cancer cells had prognostic
value for patient survival. Yuan et al [14] reported that
a quantitative score characterising the degree of spatial
clustering in contrast to the randomly scattered
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distribution of stromal cells based on H&E-stained
images was associated with poor outcomes for breast
cancer patients.

Various tools have been developed to facilitate the
extraction of quantitative matrix features. A FIJI ImageJ
plugin called TWOMBLI was developed to extract a
diverse repertoire of quantitative metrics from
Picrosirius red or SHG images, including the number
of end points and branch points, high-density matrix,
curvature, alignment, and fractional dimension [20].
These metrics have shown clinical relevance, e.g. ECM
alignment in the metastatic potential of prostate
tumours [55] and collagen density and curvature in
bladder cancer progression [56]. The TWOMBLI tool
[20] can also be applied to extract features of blood
vessels. A fibre segmentation and extraction MATLAB
tool was developed that enabled quantitative analysis of
collagen architectural features in SHG images [21]. In
addition to fibre-level analysis, quantitative features
derived from gaps between fibres were shown to contain
biologically relevant architectural information [57].
Recently, a machine-learning approach was developed
to construct SHG-like representation of collagen directly
based on H&E images, which enabled non-destructive
extraction of quantitative matrix features such as fibre
orientation and alignment [58]. Overall, in contrast to
lymphocyte features, quantitative features of vascular or
matrix patterns are less developed and a consensual
quantitative metric that predicts clinical outcome has
not yet emerged.

High-order TME features
An increasing body of work also sought to extract
higher-order features from H&E-stained images that
describe the composition and spatial organisation
involving multiple TME components [14,59,60].
Enabled by an automated computational pipeline to seg-
ment and classify cell nuclei, a set of features was
engineered that describe the nuclear morphologies of
cancer cells, stromal cells, and lymphocytes, demon-
strating that integration of these histological features
with genomic features improved the prediction of sur-
vival of oestrogen receptor-negative breast cancer
patients [14]. An ecological diversity index to quantita-
tively characterise the spatial variation in the local com-
position of cancer cells, stromal cells, and lymphocytes
revealed that high microenvironmental heterogeneity
was linked with worse disease-free survival in breast
cancer patients [59]. Characterising patterns of spatial
cell–cell networks using a graph-based approach found
that a high extent of both stromal clustering and barrier
appeared to suppress lymphocyte infiltration into
tumours andwas associated with poor survival outcomes
in melanoma patients [60]. A set of cell-level and tissue-
level quantitative features of cancer cells and four TME
cell types identified from H&E images of multiple
tumour types indicated that these human-interpretable
features were able to predict clinically relevant molecu-
lar phenotypes, such as PD-1 expression [61].

With the recent advances of spatially resolvedmultiplex
imaging techniques, such as VECTRA Polaris,
MIBI-TOF, IMC, and Phenocycler (CODEX), an increas-
ing body of research has identified clinically relevant
higher-order quantitative features characteristic of spatial
cell communities andorganisationofTMEs [27,28,30,62].
Quantitative characterisation of co-occurrence,
interactions, and spatial enrichment of immune cell
populations in MIBI-TOF images of triple-negative
breast cancer revealed that spatially mixed, in contrast
to compartmentalised, tumour-immune organisations
were associated with poor survival outcomes [62].
Using IMC images of breast cancer, quantitative char-
acterisation of pairwise cell neighbourhoods and higher-
order cell communities showed that spatial multicellular
features had superior predictive power of overall sur-
vival in comparison to clinically defined subtypes [27].
In another study, cell population composition
transitioned at tissue interfaces in IMC images of breast
cancer and higher-order multicellular structures were
associated with genomic features and predictive of clin-
ical outcomes [28]. UsingCODEX images of advanced-
stage colorectal cancer, comprehensive analysis of the
organisation, functional state, and communication pat-
terns of cell neighbourhoods uncovered spatially
resolvedmulticellular features associated with effective
antitumour immunity and survival outcomes [30].
The future development of spatially resolved imaging,

such as 3D methods [63] and spatial high-plex profiling
of RNA and protein expression [64], combined with
advanced data analysis [65,66], is set to further provide
a refined depiction and understanding of the TME. As
hand-crafted feature engineering and machine learning
increasingly show utility in the discovery of TME pat-
terns associated with clinical outcomes, there remains a
largely unmet need – a promising opportunity for under-
standing better the mechanistic underpinning of such
patterns in pre-clinical laboratory research.

Deep learning to predict clinical outcomes and
beyond

Deep-learning approaches have emerged as a powerful
tool in digital pathology applications, such as tumour
diagnosis and the inference of genotypes, without the
need to explicitly engineer hand-crafted features. These
approaches commonly employ algorithms capable of
discovering relevant contextual patterns inherent in the
input data and often require only a minimum level of
human intelligence as input. Deep-learning approaches,
therefore, have the potential to achieve both clinically
relevant predictions and discovery of important features,
which can enable further biological and experimental
hypothesis generation. The development of deep-
learning biomedical applications requires a large amount
of data with clinical annotations and has benefited from
pan-cancer, multimodality datasets curated in landmark
programmes such as The Cancer Genome Atlas
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(TCGA). In the following sections, we discuss a variety
of digital pathology applications using deep learning.

Convolutional neural networks
CNNs are the most widely applied deep-learningmethod
in digital histopathology applications (Table 2). Digital
pathology applications of CNNs, and deep learning in
general, benefit from the success of transfer learning,
namely reuse of neural network models extensively
trained for image classification problems with abundant
training data, without the need to retrain all layers. CNNs
have been extensively used to predict patient outcomes
in recent years and demonstrate model performance that
is comparable or superior to human experts, as discussed
earlier and below. Despite the ‘black-box’ nature,
researchers have developed methods to visualise
domains within images associated with model prediction
and therefore inform the clinically relevant tumour and
microenvironmental features.
Campanella et al [11] developed a deep-learning

framework that performed well without pixel-level
annotation of tumour areas in the diagnosis of prostate
cancer, basal cell carcinoma, and breast cancer based on

whole-slide H&E images. Courtiol et al [67] developed
a CNN model predicting patient outcomes based on
whole-slide H&E images of mesothelioma and found
that histological stromal features were associated with
poor survival outcomes. Kather et al [68] trained CNN
models to form internal representations of different tis-
sue classes based on histological images of colorectal
cancer and showed that a ‘deep stroma score’ related to
the representation of the stromal compartment was asso-
ciated with survival outcomes.

In addition to the classification of clinical outcomes,
multiple studies have shown that CNNs are also capable
of predicting genomic alternations in various cancer
contexts. A CNN model was able to classify subtypes
of non-small cell lung cancer (NSCLC) and predict the
mutational status of six of 10 most frequently mutated
genes from histological images [69], although as
discussed later, not with the precision seen using next-
generation sequencing. CNN models were also able to
predict the status of microsatellite instability in colorec-
tal cancer based on H&E images [70]. Two concomi-
tantly published studies by Kather et al [71] and
Fu et al [72] showed that CNN-based deep-learning
algorithms could predict diverse molecular alterations,
including gene mutations and transcriptional profiles,
directly from histology in a pan-cancer context. Both
studies also found an association of TME features with
CNN prediction of genomic alterations. Kather et al [71]
also reported that the enrichment of stroma was associ-
ated with CNN prediction of consensus molecular
subtype 4 (CMS4) in colorectal cancers. Another CNN
model accurately classified CMS based on H&E images
of rectal cancer [81]. Image-based CMS, associated the
predictions of molecularly determined classes with his-
tological features of TME organisation, such as lympho-
cytic infiltrates and desmoplastic stromal reaction, and
demonstrated value in investigating intratumoural tran-
scriptional heterogeneity. Overall, it remains unclear in
these studies to what extent TME features were associ-
ated with CNN predictions of genomic alterations.
Although these methods innovatively demonstrated the
feasibility of predicting genomic alternations based on
digital pathology images, the current precision is inferior
to detection using next-generation sequencing, as
discussed later. Further improvements are required to
enable clinical translation.

Recent studies also sought to apply CNN models to
image data beyond H&E slides, concomitant with the
advances of spatially resolved imaging. By combining
matched H&E staining and spatial transcriptomics data
for model training, He et al [73] developed a CNN-based
algorithm to predict expression profiles of 250 genes in a
proof-of-concept study based on a dataset of 23 patients
with breast cancer. Using IMC images as training data,
Sorin et al [29] developed a CNN-based framework that
processes and integrates information of individual
marker stains of IMC images – this is outlined in detail
later but an important finding was that a combination of
five markers could predict survival outcomes of patients
with NSCLC.

Table 2. Types of deep-learning model.

Type of
model

Brief description Examples

CNNs In its core part, a CNN applies a
mathematical operation called a
convolution to pixel intensities within an
input image and is hierarchically
structured with layers of operations to
represent features at varying scales
within the image.

Variants of the basic CNN, including
Inception-V3 and ResNet, are among the
best models in digital pathology
applications.

[11,29,67–73]

AMs An important feature of AMs, compared to
CNNs, is the explicit representation of a
non-uniform contribution of
information in different parts of the
input data as a trainable property of the
neural network. Therefore, AMs make
biological interpretation convenient, e.g.
by outputting the relative importance of
subdomains within the input image(s)
for predicting patient outcomes.

[74–76]

GNNs GNNs work on graphs constructed based on
pre-processed biological landmarks,
such as different types of cell, in contrast
to pixel intensities.

Therefore, GNNs can explicitly build in the
structure of multicellular communities
and cell–cell communications.

[31,77]

MMs MMs integrates, as streams of model input,
multiple modalities of data, such as
digital pathology images, genomic
sequencing data and clinical
annotations, such as tumour grade.

MMs can enable the assessment of the
relative contribution of input modalities
to predictions.

[78–80]
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Attention-based models
Attention-based models (AMs) have transformed other
machine-learning fields, such as language translation,
and, recently, have started to have footprints in digital
histopathology applications to cancer research (Table 2).
AMs achieved good performance in the subtyping of
renal cell carcinomas and NSCLC and were able to
highlight characteristic morphological features on the
whole-slide images [74]. In a follow-up study, an
AM-based framework was developed that could simul-
taneously predict whether a tumour is a primary or
metastasis and the site of its origin across multiple
tumour types [75]. More recently, an AMwas developed
that predicted prognosis and therapy response in colo-
rectal cancer based on immunohistochemistry images of
four immune cell markers and explained the relative
importance of markers via the built-in attention
module [76].

Graph neural networks
Graph neural networks (GNNs) have been widely
applied in other biological research fields, such as pro-
tein structure predictions [82]. Recent methodology
developments led to promising applications to digital
histopathology images in cancer research (Table 2). In
application to imaging data, GNNs are commonly
applied to graphs constructed based on pre-processed
biological landmarks, such as different types of cells,
in contrast to pixel intensities.

Applying a GNN to a spatial graph connecting seg-
mented cells from H&E images of tissue microarrays of
prostate cancer showed that the algorithm was able to
classify Gleason scores [77]. A GNN based on CODEX
images of head and neck and colorectal cancers demon-
strated that the model was able to predict survival out-
comes and identify disease-relevant cellular communities,
such as compartmentalisation of granulocytes [31].

Multimodal models
In addition to approaches based on digital histopathol-
ogy images alone, multimodal models (MMs) that inte-
grate multiple modalities of data as streams of model
input are emerging to become an exciting avenue of
deep-learning application. Mobadersany et al [78]
developed a MM framework integrating both histopa-
thology images and genomic markers and achieved
superior prediction of overall survival of glioma
patients. They further showed that the model linked
higher risk with histological features, including micro-
vascular proliferation and high tumour cell density.
Esteva et al [79] developed a MM based on both histo-
pathology images and clinical variables such as Gleason
score and tumour stage and showed that the model
improved prognostication of patients with prostate
cancer in randomised clinical trials with long-term
follow-up. In a recent pan-cancer study, Chen et al [80]
developed a multimodal AM that integrates digital his-
topathology and molecular profile data to predict patient

outcomes across 14 cancer types. Their approach led to
the identification of prognostic morphological and
molecular features correlated with outcomes. They also
found that their MM attributed attention to areas of
tumour-associated stroma in high-risk cases of pancre-
atic adenocarcinoma, suggesting a role for TME features
in the model prediction of survival outcomes.

Other deep-learning approaches
A variety of exciting deep-learning applications have
focused on other biologically and clinically important
research areas, including real-time AI to assist in
intraoperative diagnosis [83–85], biologically inspired
AI to improve interpretability [86], efficient search of
archival histopathology images to facilitate decision-
making [87,88] and federated learning to encourage
cross-centre collaboration and protect data privacy [89].

Challenges for the implementation of digital image
AI – clinical and methodological

What can digital pathology advanced analytics
achieve in the clinic?
An important clinical question is: what can AI algo-
rithms as biomarkers realistically achieve to improve
patient care? Biomarkers are typically thought of as
diagnostic, prognostic or predictive of response to any
specific therapy. Predictive biomarkers are particularly
useful to direct personalised therapy choices but to date
have been challenging to develop robustly and are infre-
quently available.

Progress in the use of AI in diagnostics and
prognostication
In terms of diagnostic AI algorithms it is clear that in
specific tumours, e.g. prostate cancer, there has been
considerable progress in diagnosis, some of which are
now available for diagnostic clinical use [10,11].
Cancers of unknown primary are tumours where it is
difficult to define the primary site of origin. Tumour
Origin Assessment via Deep Learning (TOAD) is a
recently published high-throughput interpretable deep
learning-based solution that uses H&E whole-slide
images to predict whether a tumour is primary or meta-
static and to ascribe a differential diagnosis for the pri-
mary site of origin [75]. Transfer learning and weakly
supervised multitask learning were combined to train a
unified predictive model. In addition, attention-based
learning located slide regions of particular diagnostic
relevance, which were validated by pathologists. On an
external test cohort of cancer of unknown primary,
TOAD showed an accuracy of 79.9% in diagnosing a
primary site of origin. For distinguishing between a
metastasis and a primary tumour, the model had an
impressive area under the curve (AUC) of 0.919 in the
external test cohort. TOAD illustrates how AI
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algorithms using inexpensive routinely available diag-
nostic tissue can help pathologists with complex diag-
nostic decisions and reduce diagnostic workup times.
In terms of prognostic biomarkers, once again AI

algorithms based on digital AI images have already
shown impressive results. The Gleason score in prostate
cancer is a measure of glandular differentiation and a
well-established prognostic factor that is subject to inter-
pathologist variation in scoring [90]. In recent years,
several AI algorithms have been described using H&E
images that attribute the Gleason score with an accuracy
equivalent to that of specialist pathologists [91,92].
A further important growth in AI approaches to progno-
sis has been in extracting clinically relevant spatial rela-
tionships between different TME features from highly
multiplex immunofluorescence images. Sorin et al [29]
recently used IMC with 35 markers on 1 mm tissue
microarray cores and a pre-trained neural network model
that combined routine clinical parameters plus spatial
cell information, including measures of cellular TME
communities, to predict recurrence following lung can-
cer surgery. Intriguingly, the deep-learning model sub-
stantially improved in predictive ability with the specific
incorporation of spatial information, but not with just
cell frequencies, and achieved 95.9% accuracy in
predicting recurrence in stage I NSCLC. The size of
tissue used in this study corresponds well to the small
diagnostic biopsies available in the clinic. Furthermore,
the authors were able to reduce the number of markers
and still achieve a predictive accuracy of 90.8% using
CD14, CD16, CD94, αSMA, and CD117, suggesting
that more clinically practical lower plex methods involv-
ing important TME targets add clinical benefit.
Despite the promise of AI algorithms in diagnosis and

prognostication, potential risks of widespread incorpo-
ration into clinical practice include the deskilling of
pathologists, e.g. in the detection of less common
tumour patterns. Furthermore, it is not yet clear how
well digital pathology-based AI algorithms perform in
the detection of atypical tumour variants, e.g. prostate
sarcoma rather than adenocarcinoma. In specific cases,
pathologists will decide to section deeper and perform
additional tests in the face of diagnostic uncertainty; it is
possible that AI algorithms are unable to recommend the
optimal management of such ambiguous cases.

Limitations in the use of AI for therapy selection
AI algorithms based on digital images to predict benefit
from a specific therapy have not yet achieved the same
accuracy as the previously described diagnostic and
prognostic AI biomarkers. This is partly because detec-
tion of a specific genetic aberration is often required
from digital images. Here, AI models provide little
added value if the key information can be obtained by
sequencing, except potentially reducing cost in some
contexts. Using CNNs based on modified inception v3
architecture and whole-slide images of H&E-stained
NSCLC from the TCGA lung cohort, the authors
trained a model to identify 10 commonly mutated genes

in adenocarcinoma of the lung, which they compared
with next-generation sequencing data [69]. The resulting
AUC values for the detection of mutations in
serine/threonine protein kinase 11 (STK11), EGFR,
FAT atypical cadherin 1 (FAT1), SET binding protein 1
(SETBP1), KRAS, and TP53 were between 0.733 and
0.856. Testing these predictivemodels in an independent
dataset showed an AUC of 0.687 (CI 0.554–0.811), with
a higher AUC (0.75; CI 0.500–0.966) in samples vali-
dated by sequencing than in those tested by immunohis-
tochemistry (AUC 0.659; CI 0.485–0.826). These AUC
values are similar to those seen in prostate cancer, where
a deep learning-based predictive model was able to
identify SPOP mutations with an AUC of 0.71 [93].
The above results are important, not least because
KRAS and EGFR have specific drug candidates in the
clinic. At present the accuracy of these models is not
sufficient to guide the choice of therapy, but emerging
larger datasets will improve model training and poten-
tially reach a precision that is acceptable for clinical use.
As discussed later, the deep-learning AI methodology
used in these studies means it is difficult to ascertain how
much the TME informs the eventual decision regarding
mutation status.

In other personalised therapy contexts, there is no
gene mutation to guide treatment selection but better
predictive biomarkers are still urgently needed. The
selection of patients who might benefit from immuno-
therapy is a relevant example where TME constituents
play an important role in driving the response or resis-
tance to the immunotherapy. A second example is the
prediction of which patients with localised prostate can-
cer need additional androgen deprivation therapy along-
side radical radiotherapy. Encouragingly, an AI-based
marker has recently shown promise in filling this gap.
Using self-supervised learning, a Resnet-50 feature
extraction model was trained on image patches from
H&E images of prostate biopsies from 5,000 patients
recruited to five phase III randomised trials of radiother-
apy plus or minus androgen deprivation therapy [94].
When applied to the validation or test set of 1,594
patients, there was a significantly positive biomarker
treatment test for interaction (p-interaction = 0.01).
These results require further validation, and it is relevant
that the size of the datasets were small compared with AI
studies outside of oncology, e.g. those used in animal
recognition. Nonetheless, the findings are exciting
because the test is the first predictive marker generated
in this context. In addition, H&E images are practically
easier and less expensive to acquire than the gene expres-
sion signatures currently used as prognostic biomarkers in
localised prostate cancer [95].

Linking digital pathology-based advanced analytics
with clinical imaging modalities
A further largely unexplored research opportunity with
the potential to enhance clinical decision-making is
linking digital pathology-based advanced analytics
with routinely used clinical imaging modalities, such as
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ultrasound, CT, and MRI. AI approaches using
CNNs to link radiomics data from CT and MRI
with clinical outcomes, e.g. in the diagnosis of liver
metastasis from colorectal tumours, have recently
expanded [96,97]. Chen et al [98] demonstrated the
utility of CNN in predicting the methylation status of
the O6-methylguanine methyltransferase (MGMT) gene
promoter in glioblastoma multiforme, a prognostic bio-
marker, based on fluid-attenuated inversion recovery
(FLAIR) MRI images. Furthermore, the relationship
between digital pathology-based TME features, such as
collagen morphology and mammographic features, is
well established [99]. Beyond this, there is considerable
scope to linkmore complex digital imaging features with
widely available clinical images. AI algorithms have the
computational capacity to overcome the challenges in
combining such diverse data types using MMs. In addi-
tion, clinical images often visualise an entire tumour
longitudinally, which enables detailed mapping of tem-
poral and spatial heterogeneity in the TME.

Challenges of validation and qualification
Robust statistical validation and qualification is essential
for novel AI algorithms based on digital pathology to
translate to the clinic. The Reporting recommendations
for Tumour MARKer prognostic studies (REMARK)
guidelines were developed following the observation
that ‘…despite years of research and hundreds of reports
on tumour biomarkers in oncology, the number of
markers that have emerged as clinically useful is pitifully
small…’ [100–102]. The REMARK recommendations
include adjustment for multiple testing and use of ade-
quate measures of discrimination and calibration of any
novel biomarker, which is particularly relevant in
predicting prognosis. Both AUC and the concordance
index (c-index) are useful measures of discrimination
and an important judge of clinical utility is the improve-
ment in AUC or c-index seen with the addition of the
novel biomarker to standard clinical factors versus such
factors alone [103,104].

Previous reporting guidelines including Standard
Protocol Items: Recommendations for Interventional
Trials (SPIRIT) [105] and Consolidated Standards of
Reporting Trials (CONSORT) [106] are not readily appli-
cable to clinical trials based on AI systems. Recently,
SPIRIT-AI [107–109] and CONSORT-AI [110–112]
have been developed to provide standards for designing
and conducting clinical trials based on AI systems [113].
These guidelines provide AI-specific items in addition to
the core items described in SPIRIT and CONSORT.
Alternative guidelines are currently being developed
[114,115]. Independently, SPIRIT-Path is another
guideline extending from SPIRIT to recommend items
on reporting of cellular and molecular pathology
content [116]. With the proposal of multiple guidelines
for the implementation of AI-facilitated clinical trials, a
challenge emerges in the choice of which guideline to
apply in specific clinical settings. A further challenge is
how to enable the ongoing training and thus improvement

in AI algorithms versus needing to ‘lock’ an AI algorithm
at a defined point in time prior to approvals for clinical use.
The explainability of AI applications is an important

consideration for clinical use and there is ongoing debate
about whether inherently interpretable machine-learning
models should be advocated more than black-box
models assisted by post hoc explanation [117,118].
Some of the core discussion points in the debate include
whether black-box models necessarily have superior
predictive performance and whether post hoc explana-
tion of black-box models, such as saliency maps in
CNNs or attention maps in AMs, may be misleading or
insufficient. Future AI applications will need to encour-
age attempts to develop biologically inspired interpret-
able machine-learning models [86], as well as critically
assessing the biological/clinical relevance of post hoc
explanations of black-box models.
A further challenge for the clinical implementation of

digital pathology-based AI algorithms is the need for
prospective evaluation [119]. For predictive biomarkers,
the gold standard is a prospective randomised controlled
trial where patients are randomised according to the
current standard of care or the novel biomarker
score [119]. This expensive and lengthy prospective
qualification is rarely carried out and, in reality, gene
expression profiling signatures, e.g. Oncotype DX in
breast cancer, have often entered routine clinical use
following repeated retrospective validation and before
prospective qualification is complete [120,121]. Digital
pathology-based AI algorithms have almost entirely
been evaluated retrospectively and, to our knowledge,
have yet to be reported in a prospective setting. Unless this
is addressed, there is the danger of a growing misfit
between AI methodology and the well-established rigour
of clinical trials. Equally, traditional randomised con-
trolled trial methodology is not always suitable for the
evaluation of AI technology; addressing a potential misfit
requires clinical trialists to identify novel approaches to
trial design that can accelerate approval of clinically ben-
eficial digital pathology-based AI algorithms.
Prostate cancer diagnosis in a prospective setting is

being tested in an ongoing multidisciplinary study called
ARTICULATE PRO by integrating pathologists’ deci-
sions with the use of Paige Prostate. Arguably, one
critical element of successful AI implementations in
prospective, in contrast to retrospective, settings is the
human–AI interaction, as experts need to conduct live
appraisal of recommendations by AI algorithms and
make decisions on clinical practice. Guidelines like
DECIDE-AI [122–124] have been developed to provide
standards for reporting on the evaluation of AI systems
in live clinical settings of patient care.

Summary and conclusions

The combination of highly multiplex platforms to profile
the TME and increasing powerful computational models
means there is exciting potential for enhanced clinical
decision-making using digital pathology-based advanced
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analytical methods. In order to realise this potential, rele-
vant studies need to incorporate meaningful measures of
‘added value’ to the current standard of care, incorporate
prospective validation and meet the high standards of
reliability and robustness set out in guidelines such as
REMARK [100].
Engineering hand-crafted features combined with

conventional machine-learning approaches has the
advantage of delivering clear interpretability in terms
of which key features correlate with clinical outcomes.
However, these approaches are often less successful than
deep-learning methods, partly because the set of hand-
crafted features can under-represent the complexity in
digital histopathology. Therefore, there is a trade-off
between model performance and interpretability.
Deep-learning models have achieved good performance
in the prediction of patient outcomes and demonstrated
promising results in predicting genotypes from digital
pathology images. However, there remains a need for
interpretation, led by pathologists, of biological patterns
within the input image captured by the model.
Of note, in both types of model framework and digital

pathology application, interpretability remains largely
limited from the perspective of mechanistic principles
underpinning the formation of clinically relevant pat-
terns. Whereas model interpretation sheds light on what
kinds of TME organisation inform clinical outcomes,
understanding why, and how, such patterns underlie
disease progression will require pre-clinical mechanistic
laboratory research. Integration of experimental insights
into the analysis of histopathology images during model
development will be an exciting avenue for the future
progress of AI applications.
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