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Abstract. In this article we use coincidence degree theory to study the existence of a
positive periodic solutions to the following bioeconomic model in fishery dynamics
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where the functions r, q, A, c and α are continuous positive T-periodic functions. This
is the model of a coastal fishery represented as a single site with n(t) is the fish stock
biomass, and E(t) is the fishing effort. Examples are given to strengthen our results.
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1 Introduction

In [17], Moussaoui and Auger introduced following system of three ordinary differential equa-
tion describing the fishery dynamics with price depending on supply and demand

dn
dτ = ε

(
rn
(
1 − n

K

)
− qnE

n+D

)
dE
dτ = ε

(
−cE + p qnE

n+D

)
dp
dτ = ϕp

(
P(p)− qnE

n+D

) (1.1)

n(t) is the fish stock biomass, E(t) is the fishing effort and (p(t) is the price per unit of the
resource at time t). Authors assumed that the price varies at a fast time scale τ, while fish
growth and investment in the fishery by boat owners occur at a slow time scale t = ετ, with
τ ≪ 1 being a small dimensionless parameter.

BCorresponding author. Email: satyamsrivastava983@gmail.com

https://doi.org/10.14232/ejqtde.2023.1.29
https://www.math.u-szeged.hu/ejqtde/


2 S. N. Srivastava, S. Padhi and A. Domoshnitsky

The study of existence, uniqueness and asymptotic behavior of solutions of mathematical
models can be found in all applied sciences in the recent years. Many of the mathemati-
cal models occur in terms of differential equations or a system of differential equations.The
increasing expansion of branches of system of differential equations has attracted many re-
searchers to study the dynamical nature of solutions, especially, on existence and uniqueness
of solutions. One of the models that attracts the attention of researchers in applied science is
the bioeconomic model, similar to classical bioeconomic models of fishery dynamics [1, 3].

Using regression [17], we can transform model (1.1) into the following system of two
differential equations. 

dn
dt = n

(
r
(
1 − n

K

)
− qE

n+D

)
dE
dt = E

(
Aq
α

n
n+D − q2

α
n2E

(n+D)2 − c
)

.
(1.2)

Since the variation of environment, in particular the periodic variation of the environment,
play an important role in many biological and ecological system, especially, in fish stock
biomass and fishing effort, it is natural to study the existence and asymptotic behavior of
periodic solutions of the model (1.2). From the application point of view, only positive periodic
solutions are important. Hence, it is realistic to assume the periodicity of the coefficient
functions in (1.2). Thus, assuming r, q, A, c, and α to be positive T-periodic functions, we have
the following nonautonomous model

dn
dt = n

(
r(t)

(
1 − n

K

)
− q(t)E

n+D

)
dE
dt = E

(
A(t)q(t)

α(t)
n

n+D − q2(t)
α(t)

n2E
(n+D)2 − c(t)

) (1.3)

where r, q, A, c, and α are continuous positive T-periodic functions with ecological meaning
as n the fish stock biomass, E the fishing effort, r fish growth rate, K carrying capacity, q
catchability per fishing effort unit, D half saturation level, A carrying capacity of the market
or maximum demand and α slope of the linear demand function decreasing with the price.

Setting

f (t, n, E) =
r(t)
K

n2 +
q(t)En
n + D

and

g(t, n, E) =
A(t)q(t)

α(t)
nE

n + D
− q2(t)

α(t)
n2E2

(n + D)2 ,

we can express (1.3) into the following systems of equations{
dn
dt = r(t)n(t)− f (t, n(t), E(t))
dE
dt = −c(t)E(t) + g(t, n(t), E(t)).

(1.4)

System of equations of the form (1.4) with general f and g have been studied by many
authors [2,11,14,20–25,28] using various types of fixed point theorems to study the existence of
positive T-periodic of (1.4) when f and g are positive continuous functions. Further, they were
applied to many mathematical models [11, 14, 20–25, 28] to study the existence of positive T-
periodic solutions. One may refer to [19] for applications of fixed point theorems [7,9,10,12] on
the existence of positive periodic solutions of mathematical models. As far as our knowledge
is concerned, there exist no results on the existence and uniqueness of positive T- periodic
solutions of (1.3). We have used Mawhin’s coincidence degree theory to study the existence of
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T-periodic solution of (1.3). Although there exist hundreds of research articles in the literature
on the use of Schauder’s fixed point theorem and Krasnosel’skii’s fixed point theorem, the use
of Mawhin’s coincidence degree theory to study the existence of positive T-periodic solutions
of (1.3) is relatively scarce in the literature. Previous papers based on Mawhin’s coincidence
degree theory for different biological models are [4–6, 8, 15, 26, 27, 29].

In order to obtain our results, we assume r(t), q(t), A(t), c(t) and α(t) in (1.3) are all
positive T-periodic functions. Further then we assume f and g are T-periodic functions with
respect to the first variable.

This work has been divided into four sections. Section 1 is Introduction. Basic theory and
Mawhin’s coincidence degree theory is given in Section 2. Section 3 contains the main results
of this paper. Examples are given to illustrate our results. Section 4 discusses the conclusion
of this article.

2 Preliminaries

Before presenting our results on the existence of periodic solution of system (1.3), We provide
the essentials of the coincidence degree theory. Let Z and W be the real Banach spaces, and Let
L : dom(L) ⊂ Z → W be Fredholm operator of index zero, If P : Z → Z and Q : W → W are
two continuous projectors such that Im(P) = Ker(L), Ker(Q) = Im(L), Z = Ker(L)⊕ Ker(P)
and W = Im(L)⊕ Im(Q), then the inverse operator of L|dom(L)∩Ker(P) : dom(L) ∩ Ker(P) →
Im(L) exists and is denoted by Kp (generalized inverse operator of L). If Ω is an open bounded
subset of Z such that dom(L) ∩ Ω ̸= 0, the mapping N : Z → W will be called L-compact
on Ω, if QN(Ω) is bounded and Kp(I − Q)N : Ω → Z is compact. The abstract equation
Lx = Nx is shown to be solvable in view of [16, Theorem 2.4 on p. 84].

Theorem 2.1 ([16]). Let L be a Fredholm operator of index zero and let N be the L-compact on Ω.
Assume the following conditions are satisfied:

1) Lx ̸= λNx for every (x, λ) ∈ [(dom(L)\Ker(L)) ∩ ∂Ω]× (0, 1);

2) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω;

3) deg(QN|Ker(L), Ker(L) ∩ Ω, 0) ̸= 0, where Q : W → W is a projector as above with Im(L) =
Ker(Q).

Then, the equation Lx = Nx has at least one solution in dom(L) ∩ Ω.

3 Existence of the periodic solution

For the sake of convenience and simplicity, we use the notations:

f = 1
T

∫ T
0 f (t)dt, f L = min

t∈[0,1]
f (t), f M = max

t∈[0,1]
f (t),

where f is a continuous t-Periodic function.
Set:

mϵ = AM(K + D) + ϵ, gϵ = K
(

1 − qMm0

DrL

)
− ϵ, hϵ =

αL

(qL)2

(
ALqLg0

αM(K + D)
− cM

)
− ϵ.

Also, there exist positive numbers Li (i = 1, 2, . . . , 4) such that L2 ≤ z1(t) ≤ L1, L4 ≤ z2(t) ≤
L3, where Li (i = 1, 2 . . . , 4) will be calculated as in the proof of following theorem.
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Theorem 3.1. Assume the following conditions hold:

(A1) qMm0 < DrL,

(A2) cMαM(K + D) < ALqLg0,

(A3) Aq − αK < α c < Aq + Dr q.

Then, system (1.3) has at least one positive T-periodic solution

Proof. Firstly, we make a change of variables.
Consider

z1(t) = ln n(t) ⇒ n(t) = ez1(t),

z2(t) = ln E(t) ⇒ E(t) = ez2(t),

then system (1.3) becomes
dz1
dt = r(t)

(
1 − ez1(t)

K

)
− q(t)ez2(t)

ez1(t)+D
,

dz2
dt = A(t)q(t)

α(t)
ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2 − c(t).
(3.1)

Define Z = W = {z = (z1, z2) ∈ (R, R2)|z(t + T) = z(t)}, Z, W are both Banach spaces
with the norm ∥ · ∥ as follows:

∥z∥ = max
t∈[0,T]

2

∑
i=1

|zi|, z = (z1, z2) ∈ Z or W.

For any z = (z1, z2) ∈ Z, the periodicity of system (3.1) implies

r(t)

(
1 − ez1(t)

K

)
− q(t)ez2(t)

ez1(t) + D
= Γ1(z, t),

A(t)q(t)
α(t)

ez1(t)

ez1(t) + D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t) + D)2
− c(t) = Γ2(z, t),

are T-periodic functions. In fact

Γ1(z(t + T), t + T) = r(t)

(
1 − ez1(t)

K

)
− q(t)ez2(t)

ez1(t) + D
.

Obviously, Γ2(z, t) is also periodic function by similar way.
Define operators L, P, Q as follows, respectively

L : dom(L) ∩ Z → W, Lz =

(
dz1

dt
,

dz2

dt

)
,

P
(

z1

z2

)
= Q

(
z1

z2

)
=

(
1
T

∫ T
0 z1(t)dt

1
T

∫ T
0 z2(t)dt

)
,

(
z1

z2

)
∈ Z = W,

where dom(L) = {z ∈ Z : z(t) ∈ C1(R, R2)}.
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Define N : Z × [0, 1] → W

N
(

z1

z2

)
=

(
Γ1(z, t)
Γ2(z, t)

)
.

It is easy to see that
Ker(L) = {z ∈ Z | z = c0, c0 ∈ R2},

and

Im(L) =
{

z ∈ W
∣∣∣ ∫ T

0
z(t)dt = 0

}
is closed in W. Furthermore, both P, Q are continuous projections satisfying

Im(P) = Ker(L), Im(L) = Ker(Q) = Im(I − Q).

For any z ∈ W, let z1 = z − Qz, we can obtain that∫ T

0
z1dp =

∫ T

0
z(p)dp −

∫ T

0

1
T

∫ T

0
z(t)dtdp = 0,

so z1 ∈ Im(L). It follows that W = Im(L) + Im(Q) = Im(L) + R2. Since Im(L) ∪ R2 = 0, we
conclude that W = Im(L)⊕ R3, which means dim Ker(L) = codim Im(L) = dim (R2) = 2.
Thus, L is a Fredholm operator of index zero, which implies that L has a unique generalized
inverse operator.

Next we show that N is L-compact. Define the inverse of L as KP : Im(L) → Ker(P) ∩
dom(L) and is given by

KP(z) =
∫ t

0
z(s)ds − 1

T

∫ T

0

∫ t

0
z(s)dsdt.

Therefore, for any z(t) ∈ Z, we have

QN
(

z1

z2

)
=

(
1
T

∫ T
0 Γ1(z, t)dt

1
T

∫ T
0 Γ2(z, t)dt

)
,

and

KP(I − Q)Nz =
∫ t

0
Nz(s)ds − 1

T

∫ T

0

∫ t

0
Nz(s)dsdt − 1

T

∫ t

0

∫ T

0
QNz(s)dtds

+
1

T2

∫ T

0

∫ t

0

∫ T

0
QNz(s)dtdsdt

=
∫ t

0
Nz(s)ds − 1

T

∫ T

0

∫ t

0
Nz(s)dsdt −

(
t
T
− 1

2

) ∫ T

0
QNz(s)ds.

Clearly, QN and KP(I − Q)N are continuous. Due to Z is Banach space, using the Arzelà–
Ascoli theorem, we have that N is L-compact on U for any open bounded set U ⊂ Z. Next,
in order to apply the coincidence degree theory, we need to construct an appropriate open
bounded subset U. Therefore, the operator equation is defined by Lz = λNz, λ ∈ (0, 1), that
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is, 
dz1
dt = λ

[
r(t)

(
1 − ez1(t)

K

)
− q(t)ez2(t)

ez1(t)+D

]
,

dz2
dt = λ

[
A(t)q(t)

α(t)
ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2 − c(t)
]

.
(3.2)

We assume that z ∈ (z1, z2)T ∈ Z is a T-periodic solution of system (3.1) for any fixed λ ∈
(0, 1). Now, integrating system (3.1) from 0 to T leads to

r̄T =
∫ T

0

[
r(t)ez1(t)

K + q(t)ez2

ez1+D

]
dt,

c̄T =
∫ T

0

[
A(t)q(t)

α(t)
ez1(t)

ez1(t)+D
− q2(t)

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2

]
dt.

(3.3)

Since (z1, z2) ∈ Z, there exist ηi, ξi ∈ [0, T] such that

zi(ηi) = max
t∈[0,T]

zi(t), zi(ξi) = min
t∈[0,T]

zi(t), i = 1, 2.

Through simple analysis, we have,

ż1(η1) = ż1(ξ1) = 0, ż2(η2) = ż2(ξ2) = 0.

If we apply previous to (3.2), we obtain

r(η1)

(
1 − ez1(η1)

K

)
− q(η1)ez2(η1)

ez1(η1) + D
= 0, (3.4)

− c(η2) +
A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
− q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
= 0, (3.5)

and

r(ξ1)

(
1 − ez1(ξ1)

K

)
− q(ξ1)ez2(ξ1)

ez1(ξ1) + D
= 0, (3.6)

− c(ξ2) +
A(ξ2)q(ξ2)

α(ξ2)

ez1(ξ2)

ez1(ξ2) + D
− q2(ξ2)

α(ξ2)

e2z1(ξ2)ez2(ξ2)

(ez1(ξ2) + D)2
= 0. (3.7)

From (3.4), we obtain

r(η1)−
r(η1)ez1(η1)

K
> 0,

which implies that
z1(η1) < ln(K) = L1. (3.8)

Considering (3.5) and (3.8), we get

q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
+ c(η2) =

A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
.

So, we can obtain
q2(η2)

α(η2)

e2z1(η2)ez2(η2)

(ez1(η2) + D)2
<

A(η2)q(η2)

α(η2)

ez1(η2)

ez1(η2) + D
,
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or
qez1(η2)ez2(η2)

ez1(η2) + D
< A(η2),

or
ez2(η2) < AM(ez1(η2) + D),

or
ez2(η2) < AM(K + D),

which gives
z2(η2) < ln(AM(K + D)) = ln m0 = L3. (3.9)

From (3.6) and (3.9), we can obtain

r(ξ1)−
r(ξ1)ez1(ξ1)

K
− q(ξ1)m0

D
< 0,

then,
ez1(ξ!)

K
> 1 − qMm0

DrL

which implies that

z1(ξ1) > ln
(

K
(

1 − qMm0

DrL

))
= ln(g0) = L2. (3.10)

In view of (3.7) and (3.10), we have

q2(ξ2)

α(ξ2)

e2z1(ξ2)ez2(ξ2)

(ez1(ξ2) + D)2
=

A(ξ2)q(ξ2)

α(ξ2)

ez1(ξ2)

ez1(ξ2) + D
− c(ξ2).

Thus,
q2(ξ2)ez2(ξ2)

α(ξ2)
>

ALqLg0

αM(K + D)
− cM,

or

ez2(ξ2) >
αL

(q2)L

(
ALqLg0

αM(K + D)
− cM

)
,

that is

z2(ξ2) > ln
(

αL

(q2)L

(
ALqLg0

αM(K + D)
− cM

))
= ln(h0) = L4. (3.11)

Finally, from (3.8), (3.9), (3.10), (3.11), we get

|z1(t)| < max{|L1|, |L2|} = Λ1,

|z2(t)| < max{|L3|, |L4|} = Λ2.

where Λ1, Λ2 is independent of λ. Denote Λ = Λ1 + Λ2 + Λ3 where Λ3 is taken sufficiently
large such that each solution (z∗1 , z∗2) of following system

r − r
K ez1(t) − qez2(t)

ez1(t)+D
= 0,

Aq
α(t)

ez1(t)

ez1(t)+D
− ez1(t) + q2

α(t)
e2z1(t)ez2(t)

(ez1(t)+D)2 − c = 0,
(3.12)
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satisfies |z∗1 |+ |z∗2 | < Λ. Now we consider Ω = {(z1, z2)T ∈ Z : ∥(z1, z2)∥ < Λ} then it is clear
that Ω satisfies the first condition of Theorem 2.1.

For the second condition of Theorem 2.1, we prove that QN(z1, z2)T ̸= (0, 0)T for each
(z1, z2) ∈ ∂Ω ∩ Ker(L). When (z1, z2)T ∈ ∂Ω ∩ Ker(L) = ∂Ω ∩ R2, (z1, z2)T is a constant
vector in R2 and |z1|+ |z2| = Λ. If the system (3.12) has a solution, then

QN
(

z1

z2

)
=

 r − r
K ez1(t) − qez2(t)

ez1(t)+D
Aq
α

ez1(t)

ez1(t)+D
− ez1(t) + q2

α
e2z1(t)ez2(t)

(ez1(t)+D)2 − c

 ̸=
(

0
0

)
.

Since, (3.12) does not have solution then, it is evident that QN(z1, z2)T ̸= 0, thus the second
condition of Theorem 2.1 is satisfied. Finally, we prove that the last condition of Theorem 2.1
is satisfied, to do so, we define the following mapping Ψµ : dom(L)× [0, 1] → Z

Ψµ

(
z1

z2

)
=

 r − r
K ez1(t) − qez2(t)

µez1(t)+D
Aq
α

ez1(t)

ez1(t)+µD
− ez1(t) + q2

α
e2z1(t)ez2(t)

(ez1(t)+µD)2 − c

 .

By using the invariance property of homotopy in topological degree theory, we get,

deg(QN(z1, z2)
T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, 1)T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, µ)T, Ω ∩ Ker(L), (0, 0)T)

= deg(Ψ(z1, z2, 0)T, Ω ∩ Ker(L), (0, 0)T)

= deg

(
r − r

K
ez1(t) − qez2(t)

D
,

Aq
α

− ez1(t) +
q2

α
ez2(t) − c, Ω ∩ Ker(L), (0, 0)T

)

Furthermore, the system of algebraic equationr − r
K x − qy

D = 0,

Aq
α − x + q2

α y − c = 0,
(3.13)

has a unique solution (x∗, y∗), where x∗ = r
(
1 − αK+αc−Aq

αK+Drq

)
> 0 and y∗ = Dr(αK+αc−Aq)

q(αK+Drq) > 0.
Thus,

deg{QN(z1, z2)
T, Ω ∩ Ker(L), (0, 0)T} =

∣∣∣∣∣− r
K

x∗ − q
D y∗

−1 q2

α y∗

∣∣∣∣∣
= sgn

[
−q
(

qrx∗y∗

αK
− y∗

D

)]
= −1 ̸= 0.

Now, all the conditions in Theorem 2.1 have been verified. This implies that system (3.1) has at
least one T-periodic solution. Consequently, system (1.3) has at least one positive T-periodic
solution. The theorem is proved.

Corollary 3.1. If qA(K + D) < Dr, cα(K + D) < AqK
(
1 − qA(K+D)

Dr

)
, and Aq − αK < αc <
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Aq + Drq holds, then the system (1.2) has a positive T-periodic solution.

Example 3.1. By Corollary 3.1, the system of equations
dn
dt = n

(
8
(
1 − n

1

)
− E

n+1/2

)
dE
dt = E

(
1.5×1

1.5
n

n+1/2 −
12

1.5
n2E

(n+1/2)2 − 1
4

)
.

(3.14)

has a positive periodic solution.

Example 3.2. Consider the system
dn
dt = n

(
(21 + cos t)

(
1 − n

1.1

)
− (1.15+ 1

10 cos t)E
n+ 1

4

)
dE
dt = E

(
(1.7+ 1

10 sin t)(1.15+ 1
10 cost)

(1.5+ 1
10 cos t)

n
n+ 1

4
− (1.15+ 1

10 cos t)2

(1.5+ 1
10 cos t)

n2E
(n+ 1

4 )
2 − ( 1

4 +
1

10 sin t)
) (3.15)

It is easy to obtain q = 1.15, r = 21, A = 1.7, α = 1.5, c = 0.25, D = 0.25, K = 1.1, qL =

1.05, qM = 1.25, rL = 20, AL = 1.6, AM = 1.8, αM = 1.6, cM = 0.35, m0 = 1.8(1.1 + 0.25) =
2.43, g0 = 1.1

(
1 − 1.25×2.43

0.25×20

)
= 0.43175. Consequently, we obtain

qMm0 = 3.0375 < DrL = 5,

cMαM(K + D) = 0.7 < ALqLg0 = 0.72534,

and
Aq = 0.305 < αc = 0.525 < Aq + Drq = 7.9925.

It is clear that assumptions (A1), (A2), (A3) are satisfied. Hence, according to Theorem 3.1,
system (3.15) has at least one positive T-periodic solution.

4 Conclusion

Using Mawhin’s coincidence degree theory, we have established sufficient conditions for the
existence of positive periodic solutions of the model (1.3). By formulating the model as a
system of differential equations and introducing appropriate transformations, we were able to
apply the coincidence degree theory and obtain our main results. The conditions (A1), (A2),
and (A3) played a crucial role in establishing the existence of periodic solutions.

Set r(t) ≡ r, q(t) ≡ q, A(t) ≡ A, α(t) ≡ α and c(t) ≡ c be constants; then (1.3) reduces to
dn
dt = n

(
r
(
1 − n

K

)
− qE

n+D

)
dE
dt = E

(
Aq
α

n
n+D − q2

α
n2E

(n+D)2 − c
)

.
(4.1)

In a recent paper, Moussaoui and Auger [17], studied the equilibrium points of (4.1). They
proved that if

Aq < αc, (4.2)

then the system (4.1) has no positive equilibrium point provided that

D < K,
α

q
<

K
2

(4.3)
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holds. It is worth noting that our conditions (A1), (A2), and (A3) are different from the
condition (4.2). By Theorem 3.1, the system (4.1) has positive T-periodic solution. We note
that the condition (4.3) can be satisfied for large K. On the other hand, by Theorem 1 b) of [17],
the system (4.1) has a unique positive equilibrium, which is a positive T-periodic solution of
(4.1). Our Theorem 3.1 strengthens this observation.

While this research paper has successfully addressed the existence of positive periodic
solutions for the bioeconomic fishery model, there are several avenues for further exploration.
It would be interesting to study global attractivity and uniqueness of the solution for the
system investigated in this paper. Another promising direction is to examine problem (1.3)
by introducing a delay in the system, such as incorporating a time lag in fish stock biomass.
Conducting further investigations in these areas have potential implications for understanding
and managing fisheries dynamics.
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