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Abstract. We are interested in nonhomogeneous problems with a nonlinearity that
changes sign and may possess a critical growth as follows{

−div
(
a(|∇u|p)|∇u|p−2∇u

)
= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤
q < N, q < r ≤ q∗, λ ∈ R and function W is a weight function which changes sign in
Ω. Using variational methods, we prove the existence of four solutions: two solutions
which do not change sign and two solutions which change sign exactly once in Ω.

Keywords: subcritical and critical exponents, p&q Laplacian operator, indefinite prob-
lems.
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1 Introduction

The goal of this paper is to find nontrivial solutions for the problem{
−div

(
a(|∇u|p)|∇u|p−2∇u

)
= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤ q < N,
q < r ≤ q∗ and λ ∈ R, where q∗ = Nq

N−q is the critical Sobolev exponent.
We introduce the hypotheses on the function a in the sequel.

(a1) Function a : [0, ∞) → R is of class C1 and there exist constants k1, k2 ≥ 0 such that

k1tp + tq ≤ a(tp)tp ≤ k2tp + tq, for all t > 0;
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(a2) Define, for t ≥ 0, A(t) =
∫ t

0 a(s)ds. The mapping t 7→ A(tp) is convex on (0, ∞);

(a3) The mapping t 7→ a(tp)
tq−p is nonincreasing on (0, ∞).

(a4) If 1 < p ≤ q ≤ 2 ≤ N, then the mapping t 7→ a(t) is nondecreasing for t > 0. If
2 ≤ p ≤ q < N, the mapping t 7→ a(t)tp−2 is nondecreasing for t > 0.

As a direct consequence of (a3), we obtain that the function a and its derivative a′ satisfy

a′(t)t ≤ (q − p)
p

a(t) for all t > 0. (1.1)

Now, if we define the function h(t) = a(t)t − q
p A(t), using (1.1) we can prove that function h

is nonincreasing. Then,
1
q

a(t)t ≤ 1
p

A(t), for all t ≥ 0. (1.2)

To illustrate the degree of generality of the kind of problems studied here, and with ad-
equate hypotheses on the functions a, which will be made clear shortly, we present some
examples of problems that are also interesting from a mathematical point of view and have a
wide range of applications in physics and related sciences.

Problem 1: Let a(t) = t
q−p

p . In this case we are studying problem as{
−∆qu = λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

and it is related to the main result showed in [6]. See also the work [7].

Problem 2: Let a(t) = 1 + t
q−p

p . In this case we are studying problem as{
−∆pu − ∆qu = λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.
(Pλ)

Problem 3: Let a(t) = 1 + 1

(1+t)
p−2

p
. In this case we are studying problem

−∆pu − div

(
|∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.

(Pλ)

Problem 4: Let a(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p
. In this case, we are studying problem

−∆pu − ∆qu − div

(
|∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
= λ|u|q−2u + W(x)|u|r−2u in Ω,

u = 0 on ∂Ω.

(Pλ)

Such class of problems arise from applications in physics and related sciences, such as
biophysics, plasma physics and chemical reactions (for instance, see [16, 17, 24]).

The interest in studying nonlinear partial differential equations with p&q operator has
increased because many applications arising in mathematical physics may be stated with an
operator in this form. We refer the reader to the works [9–11, 15], where the authors have
considered nonhomogeneous elliptic problems involving several type of function a.
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Problems involving indefinite nonlinearities, that is, signal changing nonlinearities, have
attracted the attention of many researchers over the past few decades, either because of their
application in population dynamics describing the stationary behavior of a population in
a heterogeneous environment (see [1, 19, 22, 23]) or because of their mathematical relevance.
Researchers have studied this type of problem using: variational methods (see [2,3,8,12,20,21]),
sub-supersolution method (see [12, 13, 20]) and Morse theory (see [2, 19]).

This paper deals with the class of problem (Pλ) that brings important characteristics, which
are the nonlinearities that change signal (see the hypotheses on W below) with subcritical or
critical growth and the generality of the operator that includes, for instance, p−Laplacian and
p&q−Laplacian operators. These characteristics provoke some behaviors in the geometry of
the energy functional associated to problem (Pλ) which make it difficult to find nontrivial
solutions. As far as we know, this is the only work that proves existence and multiplicity of
ground state solutions of problem (Pλ) under our assumptions.

Let us consider a weight function W : Ω → R which changes sign in Ω. More specifically,
function W satisfies

(W1) W ∈ L∞(Ω) and the set Ω+ := { x ∈ Ω : W(x) > 0} has positive measure.

It follows directly of (W1) that

λ∗ := inf


∫

Ω
|∇u|q dx∫

Ω
|u|q dx

: u ∈ W1,q
0 (Ω) \ {0} and

∫
Ω

W(x)|u|r dx ≥ 0

 < +∞. (1.3)

We are going to require another important hypothesis on W. For this, let λ1 be the first
eigenvalue of the operator (−∆q) on Ω, with zero Dirichlet boundary condition, and let φ1

be the first eigenfunction associated to λ1. The weight function W satisfies only one of the
following two hypotheses:

(W+
2 ) ∫

Ω
W(x)|φ1|r dx > 0.

(W−
2 ) ∫

Ω
W(x)|φ1|r dx < 0.

By the variational characterization of λ1, we have

i) If the weight function W satisfies (W1) and (W+
2 ), then λ∗ = λ1.

ii) If the weight function W satisfies (W1) and (W−
2 ), then λ∗ > λ1.

We are now ready to state our first main result concerning the subcritical case.

Theorem 1.1. Let r < q∗, a satisfying (a1)–(a4) and the weight function W satisfying (W1), (W+
2 )

or (W−
2 ). Then,

i) if λ < λ1 and u is a nontrivial solution of (Pλ), then∫
Ω

W(x)|u|rdx > 0;
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ii) if λ ∈ (−∞, λ∗), then problem (Pλ) has two least energy solutions which do not change sign in
Ω. Moreover, if λ < λ1, these two solutions are ground state solutions;

iii) if λ ∈ (−∞, λ∗), then problem (Pλ) has two least energy nodal solutions which change sign
exactly once in Ω. Moreover, if λ < λ1, these two nodal solutions are nodal ground state
solutions.

Item (i) of Theorem 1.1 provides some interesting qualitative properties on nontrivial
solutions of problem (Pλ). For example:

1) If Ω0 := { x ∈ Ω : W(x) = 0} ⊂ Ω is a domain with smooth boundary and u is a
nontrivial solution of (Pλ), then u ̸= 0 a.e in Ω \ Ω0;

2) If Ω+ := { x ∈ Ω : W(x) > 0} and Ω− := { x ∈ Ω : W(x) < 0} have positive measure,
and u is a nontrivial solution of (Pλ), then u must “belong" more to Ω+ than Ω−, that is,∫

Ω+

W(x)|u|rdx > −
∫

Ω−
W(x)|u|rdx > 0;

3) If Ω is a symmetric set and W ∈ C(Ω) is an odd function, then a nontrivial solution u
of (Pλ) can be neither an even nor an odd function. In fact, otherwise∫

Ω
W(x)|u|rdx =

∫
Ω+

W(x)|u|rdx +
∫

Ω−
W(x)|u|rdx = 0;

To illustrate this, consider Ω =
{

x ∈ RN : |x| < 2π
}

and W : RN → R given by W(x) =
cos(|x|).

To show the existence of solutions to the problem in the critical case, we will need to add
a new hypothesis on the weight function W. The new hypothesis is as follows.

(W3) There exists an open set Ω∗ ⊂⊂ Ω+ such that |Ω−| > |Ω∗|. Moreover, there exist positive
numbers W1 and W2 such that

W1 ≥ W(x) ≥ W2 > ∥W−∥∞, ∀ x ∈ Ω∗.

The above hypothesis is fundamental to overcome the lack of compactness generated by
the critical exponent r = q∗. It is important to highlight that, up to our knowledge, (W3) is a
new hypothesis in the literature, which makes it one of the relevant points of this work.

To provide an example of a function that satisfies hypothesis (W3), just consider Ω = {x ∈
RN : 0 ≤ |x| ≤ 2π}, Ω∗ =

{
x ∈ RN : π

4 ≤ |x| ≤ 3π
4

}
and W : Ω → R, given by

W(x) =


sin(|x|), |x| ≤ π,

sin(|x|)
2
√

2
, π ≤ |x| ≤ 2π.

Now, let S > 0 be the best constant of the Sobolev embedding W1,q
0 (Ω) ↪→ Lq∗(Ω). Our

second main result, concerning the critical case, is the following.
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Theorem 1.2. Consider r = q∗ and λ < λ1. Let a satisfy (a1)–(a4) and the weight function W satisfy
(W1), (W3) and

∫
Ω

W(x)|φ1|q
∗

dx <

1
N

(W2 − ∥W−∥∞)

(
S
W1

) N
q

k2

k1 p
+

1
N

.

Then, there are two nontrivial solutions for problem (Pλ).

The paper is organized as follows: in Section 2, we will prove technical results and the first
part of Theorem 1.1. In Section 3, we will demonstrate the second part of Theorem 1.1, namely,
the existence of least energy solutions that do not change sign. Finally, in Section 4, we will
establish the last part of Theorem 1.1, that is, the existence of least energy nodal solutions that
change sign exactly once.

2 Variational framework and preliminary results

The natural space to look for weak solutions to problem (Pλ) is the Sobolev space W1,q
0 (Ω)

with the associated norm

∥u∥ =

( ∫
RN

|∇u|qdx
) 1

q

, for u ∈ W1,q
0 (Ω).

Since the approach is variational, consider the energy functional associated Jλ : W1,q
0 (Ω) → R

given by

Jλ(u) :=
1
p

∫
Ω

A (|∇u|p) dx − λ

q

∫
Ω
|u|q dx − 1

r

∫
Ω

W(x)|u|r dx.

We know that Jλ is differentiable on W1,q
0 (Ω) and, for all u, v ∈ W1,q

0 (Ω),

J′λ(u)v :=
∫

Ω
a (|∇u|p) |∇u|p−2∇u∇v dx − λ

∫
Ω
|u|q−2uv dx −

∫
Ω

W(x)|u|r−2uv dx.

Thus, u ∈ W1,q
0 (Ω) is a critical point of Jλ if, and only if, u is a weak solution of problem (Pλ).

Moreover, let us define the Nehari manifold

Nλ :=
{

u ∈ W1,q
0 (Ω) : J′λ(u)u = 0

}
(2.1)

and the nodal Nehari set

N±
λ :=

{
u ∈ W1,q

0 (Ω) : u± ̸= 0 and J′λ(u)u = 0
}

, (2.2)

where
u+(x) := max {u(x), 0} and u−(x) := min {u(x), 0} .

Notice that u = u+ + u− and N±
λ ⊂ Nλ.

Now we introduce some important subsets of Nλ. Consider

Mλ :=
{

u ∈ W1,q
0 (Ω) : u ∈ Nλ and

∫
Ω

W(x)|u|r dx > 0
}

(2.3)
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and

M±
λ :=

{
u ∈ W1,q

0 (Ω) : u± ∈ Nλ and
∫

Ω
W(x)|u±|r dx > 0

}
. (2.4)

Since we want to use the method of minimization, we begin to study the behavior of the
functional Jλ on Nλ.

Proposition 2.1. Assume that the function a satisfies (a1)–(a3). Then, there exist positive constants
K1, K2 and K3 such that the following properties hold:

(i) Jλ(u) ≥ K1
(λ1−λ

λ1

)
∥u∥q, for all u ∈ Nλ.

(ii) ∥u∥ ≥ K2
(λ1−λ

λ1

) 1
r−q , for all u ∈ Nλ.

(iii)
∫

Ω W(x)|u|r dx ≥ K3
(λ1−λ

λ1

) r
r−q , for all u ∈ Nλ.

Proof. For every u ∈ Nλ, by (1.2), we have

Jλ(u) = Jλ(u)−
1
r

J′λ(u)u

=
1
p

∫
Ω

A(|∇u|p)dx − 1
r

∫
Ω

a (|∇u|p) |∇u|pdx − λ

(
1
q
− 1

r

) ∫
Ω
|u|qdx

≥
(

1
q
− 1

r

) ∫
Ω

a (|∇u|p) |∇u|p dx − λ

(
1
q
− 1

r

) ∫
Ω
|u|qdx.

Hence, by (a1) and the Poincaré inequality,

Jλ(u) ≥
(

r − q
qr

)(
λ1 − λ

λ1

)(∫
Ω
|∇u|qdx

)
. (2.5)

Then item (i) follows.
We now prove item (ii). Taking u ∈ Nλ, by (a1) and the Poincaré inequality, one has∫

Ω
|∇u|q dx ≤

∫
Ω

a (|∇u|p) |∇u|p dx = λ
∫

Ω
|u|q dx +

∫
Ω

W(x)|u|r dx

≤ λ

λ1

∫
Ω
|∇u|q dx +

∫
Ω

W(x)|u|r dx.

Hence,

(
1 − λ

λ1

) ∫
Ω
|∇u|q dx ≤

∫
Ω

W(x)|u|r dx. (2.6)

Finally, using that W ∈ L∞(Ω), the Sobolev embeddings and (2.6), there exists a positive
constant C1 such that (

1 − λ

λ1

)
∥u∥q ≤ C1∥u∥r.

This inequality proves item (ii).
Item (iii) follows directly from inequality contained in item (ii) and by (2.6). In fact,

K2

(
1 − λ

λ1

)
≤
∫

Ω
W(x)|u|r dx.
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The next result is a direct consequence of Proposition (2.1).

Corollary 2.2. If λ < λ1, then Nλ = Mλ and N±
λ = M±

λ .

Proof. By definition of Nλ and Mλ, we get Mλ ⊂ Nλ and M±
λ ⊂ N±

λ . The other inclusions
follow from item (iii) of previous proposition.

By the same arguments of Proposition 2.1, but using the definition of λ∗ instead of Poincaré
inequality, the next result follows.

Proposition 2.3. Assume that function a satisfies (a1)–(a3). Then, there exist positive constants
K1, K2 and K3 such that the following properties hold:

(i) Jλ(u) ≥ K1
(

λ∗−λ
λ∗
)
∥u∥q, for all u ∈ Mλ.

(ii) ∥u∥ ≥ K2
(

λ∗−λ
λ∗
) 1

r−q , for all u ∈ Mλ.

(iii)
∫

Ω W(x)|u|r dx ≥ K3
(

λ∗−λ
λ∗
) r

r−q , for all u ∈ Mλ.

Therefore, from Proposition 2.1 and Proposition 2.3, the following real numbers are well
defined:

cλ = inf
Nλ

Jλ, dλ = inf
N±

λ

Jλ, c̃λ = inf
Mλ

Jλ and d̃λ = inf
M±

λ

Jλ. (2.7)

Moreover, if λ1 > λ, notice that Corollary 2.2 allows us called a solution of (Pλ) which is a
minimizer of Mλ (or M±

λ ) of ground state solution (or nodal ground state solution).

Lemma 2.4. Consider u ∈ W1,q
0 (Ω) \ {0} such that

∫
Ω W(x)|u|r dx > 0. Then, there exists a unique

tu > 0 satisfying
Jλ(tuu) := max

t≥0
Jλ(tu) > 0.

Moreover, if J′λ(u)u < 0, then tu ∈ (0, 1].

Proof. Let u ∈ W1,q
0 (Ω)\{0} and t ∈ (0,+∞). So, by (a1), we obtain

Jλ(tu) ≤ k2
tp

p

∫
Ω
|∇u|p dx +

tq

q

(∫
Ω
|∇u|q dx − λ

∫
Ω
|u|q dx

)
− tr

r

∫
Ω

W(x)|u|r dx (2.8)

and

Jλ(tu) ≥ k1
tp

p

∫
Ω
|∇u|p dx +

tq

q

(∫
Ω
|∇u|q dx − λ

∫
Ω
|u|q dx

)
− tr

r

∫
Ω

W(x)|u|r dx. (2.9)

Therefore,

lim sup
t→0+

Jλ(tu)
tp > 0 and lim sup

t→+∞

Jλ(tu)
tr = −1

r

∫
Ω

W(x)|u|r dx. (2.10)

Thus, since
∫

Ω W(x)|u|r dx > 0, we ensure the existence of tu ∈ (0,+∞) such that

Jλ(tuu) := max
t≥0

Jλ(tu) > 0.

To guarantee that the value tu > 0 is unique, let us prove that the equation J′λ(su)su = 0 is
satisfied only for s = tu. Indeed, this equation is equivalent to

sr−q
∫

Ω
W(x)|u|r dx + λ

∫
Ω
|u|q dx =

∫
Ω

a (|∇(su)|p)
|∇(su)|q−p |∇u|q dx.
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By (a3), the right-hand side of the equation above is a nonincreasing function on s > 0, while
the left side, an increasing function on s > 0 provided r > q and

∫
Ω W(x)|u|r dx > 0. This

shows the uniqueness of the value tu > 0. With the same arguments, we obtain that tu > 1
implies J′λ(u)u ≥ 0, and the proof of the lemma follows.

Lemma 2.5. If q < r < q∗ and W : Ω → R satisfies (W1), then M±
λ ̸= ∅ for all λ ∈ R.

Consequently, Mλ ̸= ∅ for all λ ∈ R.

Proof. From (W1), we may consider two open balls B1 and B2 contained in Ω such that

B1 ∩ B2 = ∅, |B1 ∩ Ω+| > 0 and |B2 ∩ Ω+| > 0.

Arguing as in [6, Lemma 2.3], we have two negative solutions u1 ∈ C∞
0 (B1) and u2 ∈ C∞

0 (B2)

such that ∫
Ω

W(x)|u1|r dx > 0 and
∫

Ω
W(x)|u2|r dx > 0.

Then, by Lemma 2.4, there are t1, t2 > 0 such that J′λ(t1u1)t1u1 = 0 and J′λ(t2u2)t2u2 = 0.
Using B1 ∩ B2 = ∅, we have that

J′λ(t1u1 + t2u2)(t1u1 + t2u2) = J′λ(t1u1)t1u1 + J′λ(t2u2)t2u2 = 0.

Hence (t1u1 + t2u2) ∈ M±
λ , which implies M±

λ ̸= ∅. Since M±
λ ⊂ Mλ, we have Mλ ̸= ∅.

Proof of item (i) of Theorem 1.1

Proof. The proof follows directly from item (iii) of Proposition 2.1.

3 Existence of two least energy solutions which do not change sign

In this section, we are going to show that c̃λ is attained by some function which is a solution
of problem (Pλ). For our purposes, we write

Jλ(u) = Φλ(u)− I(u), ∀ u ∈ W1,q
0 (Ω),

where the functionals Φλ, I ∈ C1(W1,q
0 (Ω), R) are given by

Φλ(u) :=
1
p

∫
Ω

A(|∇u|p) dx − λ

q

∫
Ω
|u|q dx and I(u) :=

1
r

∫
Ω

W(x)|u|r dx.

Let us consider the set Y :=
{

u ∈ W1,q
0 (Ω) :

∫
Ω W(x)|u|r dx > 0

}
which is an open cone of

W1,q
0 (Ω), that is, tu ∈ Y for every t > 0 and u ∈ Y.

We now present some properties of the functionals Φλ and I when λ < λ∗.

Lemma 3.1. If λ < λ∗, then the following properties hold:

(i) Φλ and u 7→ Φ′
λ(u)u are weakly lower semicontinuous and I′(un) → I′(u) in W1,q′

0 (Ω) if
un ⇀ u in W1,q

0 (Ω).

(ii) There exists C1 > 0 such that Φ′
λ(u)u ≥ C1∥u∥q for every u ∈ Y and I′(u) = o(∥u∥q−1) as

u → 0 in Y.
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(iii) I(u) = I′(u)u = 0 for every u ∈ ∂Y.

(iv) t 7→ Φ′
λ(tu)u
tq−1 and t 7→ I′(tu)u

tq−1 are nonincreasing and increasing, respectively, in (0,+∞) and for
every u ∈ Y. Moreover,

lim sup
t→+∞

Φλ(tu)
tq < lim sup

t→+∞

I(tu)
tq = +∞.

(v) If λ < λ1, then I ′(u)u ≤ 0 < Φ′
λ(u)u for all u ∈ W1,q(Ω) \ (Y ∪ {0}).

Proof. To prove (i), let us consider (un) ⊂ W1,q′
0 (Ω) such that un ⇀ u in W1,q′

0 (Ω). From (a2),
it follows that ∫

Ω
A(|∇u|p) dx ≤ lim inf

n→+∞

∫
Ω

A(|∇un|p) dx. (3.1)∫
Ω

a(|∇u|p)|∇u|p dx ≤ lim inf
n→+∞

∫
Ω

a(|∇un|p)|∇u|p dx, (3.2)

Moreover, by Sobolev embeddings, (W1) and, up to a subsequence, we get∫
Ω
|u|q dx = lim

n→+∞

∫
Ω
|un|q dx and

∫
Ω

W(x)|u|r dx = lim
n→+∞

∫
Ω

W(x)|un|r dx. (3.3)

Hence, by (3.1), (3.2) and (3.3), the first item is proved.
To prove (ii), arguing as Proposition 2.3, we have

Φλ(u) ≥
(

λ∗ − λ

λ∗

)
∥u∥q, ∀ u ∈ W1,q

0 (Ω). (3.4)

On the other hand, by (W1),

|I′(u)v| ≤ ∥W∥∞

(∫
Ω
|v|r dx

) 1
r
(∫

Ω
|u|r dx

) r−1
r

,

and then, by Sobolev embeddings,

I′(u)
∥u∥q−1 ≤ C∥u∥r−q, u ̸= 0. (3.5)

From (3.4) and (3.5) the item (ii) holds. Since ∂Y = {0}, this shows that the item (iii) holds.
Now let us prove item (iv). Since q < r and u ∈ Y, we obtain

d
dt

[
I′(tu)u

tq−1

]
= (r − q)tr−q−1

∫
Ω

W(x)|u|r dx > 0, ∀ t ∈ (0,+∞),

which implies that t 7→ I′(tu)u
tq−1 is increasing in (0,+∞) and for every u ∈ Y. Moreover,

lim sup
t→+∞

I(tu)
tq = lim sup

t→+∞

tr−q

r

∫
Ω

W(x)|u|r dx = +∞ (3.6)

On the other hand, note that

Φ′
λ(tu)u
tq−1 =

∫
Ω

a(|∇tu|p)
|∇tu|q−p |∇u|q dx − λ

∫
Ω
|u|q dx
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is a nonincreasing function by (a3). Moreover, we also have

lim sup
t→+∞

Φλ(tu)
tq−1 ≤ 1

q

(∫
Ω
|∇u|q dx − λ

∫
Ω
|u|q dx

)
. (3.7)

Then, by (3.6) and (3.7), we conclude the proof of item (iv).

To finish, if u ∈ W1,q(Ω) \ (Y ∪ {0}), then
∫

Ω
W(x)|u|r dx ≤ 0. Hence, by (a1) and λ < λ1,

I′(u)u =
∫

Ω
W(x)|u|r dx ≤ 0 <

∫
Ω

a(|∇un|p)|∇u|p dx − λ
∫

Ω
|u|q dx = Φ′

λ(u)u

and the proof of the last item of the proposition is complete.

Using the previous lemma and [14, Corollary 3.1], we obtain the next result.

Corollary 3.2. If λ < λ∗, then there exists vλ ∈ Mλ such that

Jλ(vλ) = c̃λ := inf
u∈Mλ

Jλ(u).

We now show that problem (Pλ) has two least energy solutions when λ < λ∗.

Proposition 3.3. If λ < λ∗, then there exists a nontrivial function vλ which is a least energy solution
of (Pλ), and ṽλ := −vλ is also a least energy solution of (Pλ). Moreover, if λ < λ1 these solutions are
ground state solutions.

Proof. Let vλ be the solution found in Corollary 3.2 and let us assume by contradiction that
v±λ ̸= 0. Since vλ is a critical point of functional Jλ and the intersection of the support of the
functions v±λ is empty, we have that v±λ ∈ Nλ. Hence,

cλ ≤ Jλ(v±λ ). (3.8)

Since Proposition 2.3 holds, then either∫
Ω

W(x)|v+λ |
r dx > 0 or

∫
Ω

W(x)|v−λ |
r dx > 0.

Without loss of generality, we can assume that
∫

Ω
W(x)|v+λ |

r dx > 0. Then, v+λ ∈ Mλ and,

hence,
c̃λ ≤ Jλ(v+λ ). (3.9)

Therefore, by (3.8) and (3.9),

cλ + c̃λ ≤ Jλ(v+λ ) + Jλ(v−λ ) = Jλ(vλ) = c̃λ.

This contradiction proves that the least energy solution does not change sign.
We may assume that vλ is nonnegative. Then, setting ṽλ = −vλ, we have that

c̃λ = Jλ(vλ) =
1
p

∫
Ω

A (|∇(−vλ)|p) dx − λ

q

∫
Ω
|(−vλ)|q dx − 1

r

∫
Ω

W(x)|(−vλ)|r dx = Jλ(ṽλ).

Moreover, using that vλ is a critical point of Jλ, we have for all φ ∈ W1,q
0 (Ω),∫

Ω
a(|∇(−vλ)|p)|∇(−vλ)|p−2∇(−vλ)∇φ dx = λ

∫
Ω
|(−vλ)|q−2(−vλ)φ dx

+
∫

Ω
W(x)|(−vλ)|r−2(−vλ)φ dx.

Thus, ṽλ is a critical point of Jλ. Therefore, problem (Pλ) has a nonpositive solution and a
nonnegative solution. Furthermore, when λ < λ1, by Corollary 2.2, Mλ = Nλ. Thus, these
solutions are ground state solutions of (Pλ).
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3.1 Proof of item (ii) of Theorem 1.1

Proof. The proof follows directly from Corollary 3.2 and Proposition 3.3.

4 Existence of two nodal solutions

We begin this section by showing that d̃λ is attained by some function which is a least energy
nodal solution of problem (Pλ).

Proposition 4.1. If λ < λ∗, then there exists w̃λ ∈ M±
λ such that

dλ := Jλ(w̃λ).

Proof. Let (wn) ⊂ M±
λ be a minimizing sequence, that is, a sequence satisfying

(wn) ⊂ M±
λ and Iλ(wn) = dλ + on(1). (4.1)

By item (i) of Lemma 2.1, we obtain that functional Jλ is coercive on M±
λ , and hence (wn) is

bounded in W1,q
0 (Ω). Then, by Sobolev embeddings and the continuity of the maps w 7→ w+

and w 7→ w− are continuous from Lr(RN) in Lr(RN) (for details, see [4, Lemma 2.3] with
suitable adaptations), there exists wλ ∈ W1,q

0 (Ω) such that, up to a subsequence, we have
w±

n ⇀ w±
λ in W1,q

0 (Ω),

w±
n → w±

λ a.e. in Ω,

w±
n → w±

λ in Ls(Ω), 1 ≤ s < q∗.

(4.2)

We claim that w±
λ ̸= 0 and

∫
Ω

W(x)|w±
λ |

r dx > 0. Indeed, using that W ∈ L∞(Ω) and item

(iii) of Lemma 2.1, we obtain∫
Ω
|w±

λ |
r dx = lim

n→∞

∫
Ω
|w±

n |r dx ≥ K3

∥W∥∞
> 0, (4.3)

and ∫
Ω

W(x)|w±
λ |

r dx = lim
n→∞

∫
Ω

W(x)|w±
n |r dx ≥ K3 > 0, (4.4)

that proves our claim. Therefore, by Lemma 2.4, there exists t±λ ∈ (0,+∞) such that t±λ w±
λ ∈

Mλ.
We claim that t±λ ∈ (0, 1). In fact, by Fatou’s Lemma and (4.2), we have

∫
Ω

a(|w±
λ |

p)|w±
λ |

p dx ≤ lim inf
n→+∞

∫
Ω

a(|w±
n |p)|w±

n |p dx

= lim
n→+∞

(
λ
∫

Ω
|w±

n |q dx +
∫

Ω
W(x)|w±

n |r dx
)

= λ
∫

Ω
|w±

λ |
q dx +

∫
Ω

W(x)|w±
λ |

r dx,

that is, J′λ(w
±
λ )w

±
λ ≤ 0. Hence, by Lemma 2.4, the claim follows.

Similarly, with the same arguments of Proposition 3.2, we obtain
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Jλ(t±λ w±
λ ) = Jλ(t±λ w±

λ )−
1
q

J′λ(t
±
λ w±

λ )t
±
λ w±

λ

=
∫

Ω

[
1
p

A(|∇(t±λ w±
λ )|

p)− 1
q

a(|∇(t±λ w±
λ )|

p)|∇(t±λ w±
λ )|

p
]

dx

+

(
1
q
− 1

r

) ∫
Ω

W(x)|t±λ w±
λ |

r dx

≤
∫

Ω

[
1
p

A(|∇w±
λ |

p)− 1
q

a(|∇u±
λ |

p)|∇w±
λ |

p
]

dx (4.5)

+

(
1
q
− 1

r

) ∫
Ω

W(x)|w±
λ |

r dx

≤ lim inf
n→+∞

[
Jλ(w±

n )−
1
q

J′λ(w
±
n )w

±
n

]
= Jλ(w±

n ) + on(1).

Then, setting w̃λ = t−λ w−
λ + t+λ w+

λ , from (4.4),

∫
Ω

W(x)|w̃λ|r dx =
∫

Ω
W(x)|t−λ w−

λ |
r dx +

∫
Ω

W(x)|t+λ w+
λ |

r dx ≥ 2K3 > 0,

that is, w̃λ ∈ M±
λ . Hence, using (4.5), we can conclude

dλ = Jλ(w̃λ) = Jλ(t−λ w−
λ ) + Jλ(t+λ w+

λ )

≤ Jλ(w−
n ) + Jλ(w+

n ) + on(1) = Jλ(wn) + on(1) = dλ.

Thus, the level dλ is attained by the function w̃λ ∈ M±
λ .

Corollary 4.2. Let w̃λ be a minimizer found in Propositions 4.1. Then, w̃λ is a critical point of Jλ and
has exactly two nodal domains.

Proof. The proof that w̃λ ∈ M±
λ is a critical point of Jλ is done using a suitable quantitative

deformation lemma and Brouwer’s topological degree properties. It is done, with suitable
modifications, as in [5, Lemma 4.3] and [5, Theorem 1.1]. To show that the nodal solution w̃λ

has exactly two nodal domains, or in other words it changes sign exactly once, see for instance
[5, pages 1230-1232] .

Using the same arguments as in Proposition 3.3 one can immediately prove the following
result.

Corollary 4.3. If λ < λ∗, then there exists a function w̃λ which is a nodal least energy solution of
(Pλ), and wλ := −w̃λ is also a nodal least energy solution of (Pλ). Moreover, if λ < λ1, then these
solutions are ground state solutions of (Pλ).

4.1 Proof of item (iii) of Theorem 1.1.

Proof. It follows directly from Corollaries 4.2 and 4.3.
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5 A nontrivial solution for the indefinite critical problem

In this section we consider the following critical problem{
−div

(
a(|∇u|p)|∇u|p−2∇u

)
= λ|u|q−2u + W(x)|u|q∗−2u in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥ 2, 1 < p ≤ q < N and
λ ∈ R, where q∗ = Nq

N−q is the critical Sobolev exponent. Here, we consider the associated

functional Iλ ∈ C1(W1,q
0 (Ω), R) given by

Iλ(u) :=
1
p

∫
Ω

A (|∇u|p) dx − λ

q

∫
Ω
|u|q dx − 1

r

∫
Ω

W(x)|u|q∗ dx.

Let us show that the associated functional to the indefinite critical problem has a mountain
pass geometry.

Proposition 5.1. The functional Iλ : W1,q
0 (Ω) → R satisfies the following properties:

i) There exist positive numbers α and ρ such that

Iλ(u) ≥ ρ, for all ∥u∥ = ρ.

ii) There exists a function e ∈ W1,q
0 (Ω) such that ∥e∥ ≥ ρ and

Iλ(e) < 0.

Proof. By (a1) and the Poincaré inequality,

Iλ(u) ≥
k1

p

∫
Ω
|∇u|p dx +

1
q

∫
Ω
|∇u|q dx − λ

q

∫
Ω
|u|q dx −

∫
Ω

W(x)|u|q∗ dx

≥ 1
q

(
λ1 − λ

λ1

) ∫
Ω
|∇u|q dx −

∫
Ω

W(x)|u|q∗ dx.

Thus, by Sobolev embeddings and W ∈ L∞(Ω), there exists a positive constant C such that

Iλ(u) ≥
1
q

(
λ1 − λ

λ1

)
∥u∥q − C∥u∥q∗ = ∥u∥q

[
1
q

(
λ1 − λ

λ1

)
− C∥u∥q∗−q

]
.

Therefore, since λ < λ1, we can choose ∥u∥ = ρ small enough such that there exists α > 0
satisfying

Iλ(u) ≥ ρ, for all ∥u∥ = ρ.

To prove item (ii), let us consider a nontrivial function w ∈ C∞
0 (Ω+) \ {0} and t > 0. Then,

by (a1),

Iλ(tw) ≤ k2

p

∫
Ω
|∇(tw)|p dx +

1
q

∫
Ω
|∇(tw)|q dx − λ

q

∫
Ω
|tw|q dx −

∫
Ω

W(x)|tw|q∗ dx

< tq∗
[

tp−q∗ k2

p

∫
Ω
|∇w|p dx +

tq−q∗

q

∫
Ω
|∇w|q dx −

∫
Ω

W(x)|w|q∗ dx
]

.

Hence, letting t → +∞,
lim sup

t→∞
Iλ(tw) ≤ −∞.
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Recall that, if E is a Banach space, Φ ∈ C1(E, R) and c ∈ R we say that Φ satisfies the
Palais-Smale condition at level c (shortly: Φ satisfies (PS)c) if every sequence (un) ∈ E such
that Φ(un) → c in R and Φ′(un) → 0 in E′, as n → ∞, admits a subsequence that converges
for a critical point of Φ. This sequence is called a (PS)c sequence for Φ.

Notice that Lemma 5.1 ensures us the existence of a (PS)cλ
sequence for the functional

Iλ : W1,q
0 (Ω) → R, where

cλ = inf
η∈Γ

max
t∈[0,1]

Iλ(η(t)) > 0,

and
Γ := {η ∈ C([0, 1], X) : η(0) = 0, Iλ(η(1)) < 0}.

Lemma 5.2. If λ < λ1 and (un) ⊂ W1,q
0 (Ω) is a (PS)c sequence for Iλ, then (un) is bounded in

W1,q
0 (Ω).

Proof. Let (un) ⊂ W1,q
0 (Ω) be a (PS)c sequence for Iλ. Then, by (a1) and Poincaré inequality

for W1,q
0 (Ω),

c + on(1)∥un∥ = Iλ(un)−
1
q∗

I′λ(un)un

=
1
p

∫
Ω

A(|∇un|p) dx − 1
q∗

∫
Ω

a(|∇un|p)|∇un|p dx − λ

(
1
q
− 1

q∗

) ∫
Ω
|un|q dx

≥
(

1
q
− 1

q∗

)(
k2

∫
Ω
|∇un|p dx +

∫
Ω
|∇un|q dx

)
− λ

λ1

(
1
q
− 1

q∗

) ∫
Ω
|∇un|q dx.

Hence,

c + on(1)∥un∥ ≥
(

1 − λ

λ1

)(
1
q
− 1

q∗

)
∥un∥q,

which implies that (un) is bounded in W1,q
0 (Ω).

Lemma 5.3. If λ < λ1, then

i)
∫

Ω W(x)|φ1|q
∗

dx > 0.

ii) cλ <
( k2

k1 p +
1
N

) ∫
Ω W(x)|φ1|q

∗
dx

Proof. Using Lemma 5.1, let us consider tα > 0 such that Jλ(tα φ1) = maxt≥0 Iλ(tφ1). Then, by
(a1),

tq∗
α

∫
Ω

W(x)|φ1|q
∗

dx =
∫

Ω
a(|∇(tp

α φ1)|p)|∇(tp
α φ1)|p dx − λtq

α

∫
Ω
|φ1|q dx

≥ k1tp
α

∫
Ω
|∇φ1|p dx + tq

α (λ1 − λ)
∫

Ω
|φ1|q dx > 0.

(5.1)

This shows the first item. Moreover, with the same argument as in Lemma 2.4,

1 ≥ tα ≥

 k1

∫
Ω
|∇φ1|p dx∫

Ω
W(x)|φ1|q

∗
dx


1

q∗−q

> 0.
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Therefore, by (a1) and (5.1),

cλ ≤ Iλ(tα φ1)

≤ k2
tp
α

p

∫
Ω
|∇φ1|p dx +

tq
α

q
(λ1 − λ)

∫
Ω
|φ1|q dx − tq∗

α

q∗

∫
Ω

W(x)|φ1|q
∗

dx

≤
(

k2

k1 p
+

1
q
− 1

q∗

)
tq∗
α

∫
Ω

W(x)|φ1|q
∗

dx

<

(
k2

k1 p
+

1
N

) ∫
Ω

W(x)|φ1|q
∗

dx.

(5.2)

The proof of the theorem is complete.

Proposition 5.4. If λ < λ1 and

∫
Ω

W(x)|φ1|q
∗

dx <

1
N

(W2 − ∥W−∥∞)

(
S
W1

) N
q

k2

k1 p
+

1
N

, (5.3)

where W1, W2 are positive constants given by (W3), then Iλ has a nontrivial critical point.

Proof. By Proposition 5.1, let (un) ⊂ W1,q
0 (Ω) be a (PS)cλ

-sequence for functional Iλ which is
bounded in W1,q

0 (Ω) by Lemma 5.2. Then, up to a subsequence,
un ⇀ u weakly in W1,q

0 (Ω),

un → u strongly in Ls(Ω) for any 1 ≤ s < q∗,

un(x) → u(x) for a.e. x ∈ Ω,

(5.4)

for some u ∈ W1,q
0 (Ω). From the Sobolev embeddings, we can conclude that u is a critical

point of Iλ.
Now we are going to show that u is nontrivial. Suppose, by contradiction, that u = 0 in

Ω∗ ⊂⊂ Ω+, where Ω∗ is a open set given by (W3). Since (un) is bounded in W1,q
0 (Ω) and

using the Lions’s Concentration Compactness Principle [18], we may suppose that

|∇un|q ⇀ µ and |un|q
∗
⇀ ν,

for some measures µ and ν. Hence, we obtain an at most countable index set Γ, sequences
(xi) ⊂ Ω∗ and (µi), (νi) ⊂ (0, ∞) such that

µ ≥ |∇u|q + ∑
i∈Γ

µiδxi, ν = |u|q∗ + ∑
i∈Γ

νiδxi and Sν
q/q∗

i ≤ µi, (5.5)

for all i ∈ Γ, where δxi is the Dirac mass at xi ∈ Ω∗ and S > 0 is the best constant of the
Sobolev embedding W1,q

0 (Ω) ↪→ Lq∗(Ω). Thus it is sufficient to show that {xi}i∈Γ ∩ Ω∗ = ∅.
Then we suppose, by contradiction, that xi ∈ Ω∗ for some i ∈ Γ. Consider R > 0 and the
function ψR(x) := ψ(xi − x), where ψ ∈ C∞

0 (Ω∗, [0, 1]) is such that ψ = 1 on BR(xi), ψ = 0
on Ω\B2R(xi) and |∇ψ|∞ ≤ 2. We suppose also that R > 0 is chosen in such way that
I′µ(un)ψRun = on(1), we obtain∫

Ω
ψR a(|∇un|p)|∇un|p dx = −

∫
Ω

una(|∇un|p)|∇un|p−2∇un · ∇ψR dx

+ λ
∫

Ω
|un|qψR dx +

∫
Ω

W(x)|un|q
∗
ψRdx + on(1).
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One gets from the weakly convergence un ⇀ u = 0 that∫
Ω

una(|∇un|p)|∇un|p−2∇un · ∇ψR dx = 0 and lim
n→∞

λ
∫

Ω
|un|qψR dx = 0.

Consequently, by (5) and (a1), as n → +∞,∫
Ω
|∇un|qψR dx ≤

∫
Ω

a(|∇un|p)|∇un|pψR dx =
∫

Ω
W(x)|un|q

∗
ψRdx + on(1).

Since ψR has compact support, taking n → ∞ in the above expression, we have∫
Ω

ψRdµ ≤
∫

Ω
ψRW(x)dν,

which implies that
µi ≤ W1νi,

where W1 ≥ W(x) ≥ W2 > 0 for all x ∈ Ω∗ ⊂⊂ Ω+. Since µi > 0, then xi ∈ Ω∗. Therefore,
from (5.5), we get (

S
W1

) q∗
q∗−q

≤ νi. (5.6)

On the other hand, (un) is a (PS)cλ
-sequence for functional Iλ then, arguing as Proposition

2.3, we have ∫
Ω

W(x)|un|q
∗
dx + on(1) > 0. (5.7)

Since sequence un ⇀ u = 0 weakly in W1,q
0 (Ω), ψR ∈ C∞

0 (Ω∗; [0, 1]) and |Ω−| ≥ |Ω∗|, we
obtain

cλ = Iλ(un)−
1
q

I′λ(un)unψR + on(1)

=

(
1
q
− 1

q∗

) ∫
Ω

W(x)|un|q
∗
dx + on(1)

=
1
N

[ ∫
Ω+

W(x)|un|q
∗
dx +

∫
Ω−

W(x)|un|q
∗
dx
]
+ on(1)

≥ 1
N

[ ∫
Ω∗

W(x)|un|q
∗
dx − ∥W−∥∞

∫
Ω−

|un|q
∗
dx
]
+ on(1)

≥ 1
N
(
W2 − ∥W−∥∞

) ∫
Ω∗

|un|q
∗
dx + on(1)

≥ 1
N
(
W2 − ∥W−∥∞

) ∫
Ω∗

ψR|un|q
∗
dx + on(1).

Therefore, using (5.5) and (5.6), we get

cλ ≥ 1
N
(
W2 − ∥W−∥∞

)
∑
i∈Γ

ψR(xi)νi

=
1
N
(
W2 − ∥W−∥∞

)
νi

≥ 1
N
(
W2 − ∥W−∥∞

) ( S
W1

) N
q

.

Since (5.3) holds, we obtain a contradiction by Lemma 5.3. Hence, u ∈ W1,q
0 (Ω) is a

nontrivial solution.
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5.1 Proof of Theorem 1.2.

Proof. If λ < λ1, by Proposition 5.1 and Lemma 5.2, we have that there exists a critical point
uλ of Iλ. Thus, if

∫
Ω

W(x)|φ1|q
∗

dx <

1
N

(W2 − ∥W−∥∞)

(
S
W1

) N
q

k2

k1 p
+

1
N

,

then, by Proposition 5.4, uλ is nontrivial solution. Moreover, using the same arguments as in
Proposition 3.3, one can immediately shows that −uλ is also a nontrivial solution.
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