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ABSTRACT 
 

Polymer nanocomposites (PNCs) have gained significant attention in industrial applications due 

to their enhanced properties compared to traditional composites. These composites incorporate 

nano-sized particles into a polymer matrix, resulting in improved specific strength properties, 

weight savings, lightness, and design flexibility. They find applications in various industries, 

including aerospace, automotive, packaging, and electronics. However, optimizing the properties 

of PNCs requires a thorough understanding of nanoparticle synthesis, characterization, polymer 

matrix selection, and nanoparticle dispersion.  

In addition to experimental characterisation technics e.g. transmission electron microscopy and 

various spectroscopy technics, modelling and simulation methods, e.g. molecular dynamics (MD) 

simulations, have become indispensable tools in materials science research. However, MD 

simulations are limited by computing power and simulation time scale, making it challenging to 

study long-term processes or large systems. 

In recent years, there had been a notable rise in data-driven methods such as Deep Learning (DL), 

Machine Learning (ML), and Artificial Intelligence (AI), and within the field of materials science 

research. These methods have been applied to analyse experimental and simulation data, enabling 

the prediction of material properties, classification of microstructures, and identification of 

processing conditions yet the application of these methods to polymer nanocomposites is still 

limited, presenting an opportunity for further exploration. 

This thesis aims to explore the application of DL techniques to study the phase-separated 

microstructure of a novel nano-modified polymer composite. The research question focuses on the 

suitability of DL techniques for this purpose. The objectives include conducting a comprehensive 

literature review, collecting relevant data on the nano-modified polymer composite, identifying 

suitable research areas for DL, formulating a problem statement, and investigating the applications 

of DL techniques for the dataset. 

By leveraging DL models, this research aims to provide insights into the phase-separated 

microstructure of the nano-modified polymer composite, enabling the optimization of its 

properties. The findings from this study can be useful for future advancements in polymer 

nanocomposites. 
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CHAPTER 1. INTRODUCTION 
 

1.1 Introduction to polymer nanocomposites (PNCs)  

 

With the increasing demands of industrial applications, material science is constantly advancing. 

Conventional polymer composites incorporate high-tensile strength reinforcements such as fillers 

and fibres with excellent modulus into a polymer matrix [1]. The polymer matrix provides 

toughness and ductility to the composite, while the reinforcement fibres improve the strength, 

stiffness, and other mechanical properties of the composite. The polymer matrix can be a 

thermosetting or thermoplastic resin. Thermosetting resins are crosslinked and cannot be melted 

or reshaped once cured, while thermoplastic resins can be melted and reshaped multiple times. The 

choice of polymer matrix depends on the application and the required properties of the composite. 

The reinforcement fibres can be made of a variety of materials such as glass, or carbon. To attain 

the desired characteristics of the composite material, the fibres are embedded within the polymer 

matrix with precise orientation and volume fraction. In polymer composite, when subjected to a 

load, the reinforcement fibres primarily bear the load, while the polymer matrix facilitates load 

transfer between the fibres, preventing them from buckling or fracturing [1]. This results in a strong 

and stiff material that can withstand high loads and stress. Consequently, they find wide 

application in the automobile and aerospace industry. 

Polymer nanocomposites (PNCs) are one of the rising innovations in industrial applications [2]. 

PNCs are composite materials comprising a polymer matrix as the continuous phase and 

nanoparticles as the dispersed phase. The incorporation of nanoparticles into the polymer matrix 

imparts remarkable properties to PNCs, including improved mechanical strength, enhanced 

electrical conductivity, and enhanced optical characteristics. These unique properties have 

captured the interest of scientists and researchers in recent years, driving significant advancements 

in PNC. Owing to their improved qualities above conventional composites, they are a topic of 

interest, e.g., reduction in weight from 20% - 40% with the same specific strength resulting in 

lightness and design flexibility [3]. Owing to these excellent properties, they have been used in 

aerospace [4] and microelectronics [5] applications. Additionally, they also offer reduced weight 

and increased resistance to wear and tear. They achieve these properties by incorporating nano-
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sized particles (typically 1-100 nanometres in diameter) into the polymer matrix. These 

nanoparticles can be clay platelets, carbon nanotubes, graphene, metal oxides, or other materials 

[6]. The high surface area to volume ratio of nanoparticles means that a small amount of them can 

significantly improve the properties of the polymer matrix. Additionally, the dispersion of 

nanoparticles in the polymer matrix can be controlled at the nanoscale, leading to a more 

homogeneous material with fewer defects. These properties make polymer nanocomposites highly 

desirable for a range of industrial applications, including aerospace, automotive, packaging, and 

electronics.  

When choosing the nanofillers and polymer matrix, the chemical composition of the components 

and fabrication process has a significant impact on the properties of polymer nanocomposites, 

which necessitates multiple iterations to optimize the processing technique [6]. Furthermore, 

modelling the interaction between nanofillers and polymer matrix is crucial to identify compatible 

combinations of these components. 

The research in PNCs involves these several key areas: 

Characterization of nanoparticles: This involves analysing the physical, chemical, and mechanical 

properties of nanoparticles to understand their behaviour in PNCs [7]. 

Polymer matrix selection: The selection of an appropriate polymer matrix is critical for the success 

of PNCs. The polymer should have good compatibility with the nanoparticles, as well as the 

desired mechanical and thermal properties. [8] 

Dispersion of nanoparticles: Achieving an even distribution of nanoparticles in the polymer matrix 

is a major challenge in PNCs. Several techniques, such as melt mixing, solution mixing, and in-

situ polymerization, are used to achieve good dispersion [7]. 

 1.2 Experimental methods used to study polymer nanocomposites 

 

The researchers rely on several experimental technics to study the properties and structure od 

polymer nanocomposites including the following: 
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1.2.1 Chemical composition and morphology 

 

X-ray diffraction is used to analyse the structure and morphology of the polymer nanocomposites 

[9]. It provides information about the crystalline structure and orientation of the nanoparticles in 

the polymer matrix. Scanning electron microscopy is used to observe the surface morphology of 

polymer nanocomposites. It provides information on the morphology and distribution of 

nanoparticles on the surface of the polymer. Transmission electron microscopy is used to visualize 

the morphology and dispersion of nanoparticles in the polymer matrix [10]. It provides information 

on the particle size, shape, and distribution within the polymer. Fourier transform infrared 

spectroscopy is used to analyse the chemical bonding and interaction between the polymer matrix 

and the nanoparticles [11]. It provides information on the chemical structure and composition of 

the polymer nanocomposite. 

1.2.2 Property measurement 

 

Dynamic mechanical analysis is used to analyse the viscoelastic performance of polymers as well 

as interfacial interactions concerning temperature and load [12]. It provides information on the 

effect of nanoparticles on the polymer's mechanical properties. Electrical conductivity 

measurements are carried out to analyse the electrical properties of thin polymer nanocomposite 

films. It provides information on the effect of nanoparticles on the polymer's electrical 

conductivity. Nanoindentation is another powerful tool for understanding the mechanical 

properties of materials at the nanoscale level such as hardness and elastic modulus [13]. 

While these experimental techniques provide a wealth of information about materials and their 

properties, many of the techniques mentioned above require specialized equipment and trained 

personnel to perform the experiments, which can be expensive. Depending on the technique, 

sample preparation time, data processing and analysis time can require several hours to days. 

Therefore, repeating the experiments for slight changes in composition consumes a considerable 

amount of time and dedicated resources such as equipment cost and specific expertise. 
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1.3 Modelling and simulation methods 

 

Modelling and simulation methods have become increasingly important in material science 

research, providing valuable insights into the behaviour of materials. Simulation methods allow 

researchers to study materials under a wide range of conditions that may not be easily achievable 

experimentally. For example, Molecular Dynamics (MD) simulations can be used to study 

materials' behaviour at extreme boundary conditions such as elevated temperatures or pressures 

[14]. Also, it provides precise control over the conditions under which materials are studied, 

allowing researchers to isolate and study specific phenomena that may be difficult to observe 

experimentally. Simulation methods can provide results much more quickly than experimental 

methods, which saves the required time for sample preparation, data collection, and analysis [14]. 

This can allow researchers to rapidly test different hypotheses and iterate on their models e.g., 

changing the composition, etc. Detailed data on the behaviour of materials at the atomic or 

molecular level generated through these simulations can provide valuable insights into the 

mechanism that controls the material's properties. By combining simulation and experimental 

approaches, researchers can gain a more comprehensive understanding of the behaviour of 

materials and design new materials with specific properties for various applications. 

Arguably, the most common simulation method in material science is MD simulation, which 

simulates the movement of atoms and molecules in a material over time. A material is a collection 

of atoms or molecules, each given an initial position and velocity. To simulate the behaviour of a 

material, the interactions between the atoms or molecules in the material need to be specified, 

which are typically described using a mathematical model known as a force field. The force field 

defines the potential energy associated with different configurations of atoms or molecules in the 

material, which determines how the material will behave under different conditions. Other 

simulation methods used in material science include Monte Carlo simulation, which is used to 

study the thermodynamic properties of materials, and phase field simulation, which is used to study 

the evolution of phase boundaries in materials [15]. 

In the context of PNCs, MD simulations can be used to study the behaviour of polymer chains and 

nanoparticles at the molecular level. For example, researchers can use MD simulations to 
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investigate the dynamics and diffusion of nanoparticles in a polymer matrix, as well as the 

mechanical properties of the resulting PNCs. 

MD Simulations have applications in other areas such as physics, chemistry, molecular science, 

and engineering. Early researchers used it to study the kinetics and dynamics of formation and 

interfacial interactions in such polymers. For example, Güryel et al. studied the structure and 

morphology of three polymer/graphene nanocomposites using classical MD simulations [16]. 

Similarly, Liu reported that the results from coarse-grained MD simulations for nanoparticle 

dispersion and aggregation in nano polymer composites imitated the experimental coarsening 

process and matched with the predicted theory by earlier researchers for polymer filler interaction 

[17]. This is useful as one does not invest time and money to experiment every time that minor 

modifications e.g., a slight change in composition, are made. 

 MD simulations simulate the system under the observation of exceedingly small size (e.g., 10 

nanometres) compared to the objects/systems seen or used daily [18]. The number of atoms that 

can be handled by this simulation also depends upon the complexity of the atomic system, 

computer power, and software used. MD simulations are limited by the available computing 

power, and as a result, the simulation time scale is often limited to nanoseconds or microseconds, 

which can make it difficult to study long-term processes or phenomena that occur on longer time 

scales [19]. The predictions are accurate for the time scales of period femtoseconds (10–15 s) to 

nanoseconds [20]. Therefore, simulating large systems such as entire cells or complex materials 

can be challenging. Additionally, the accuracy of the simulation results is highly dependent on the 

initial conditions of the system. MD simulations rely on force fields to describe the interactions 

between atoms and molecules [21]. While these force fields have been developed to accurately 

describe many systems, they are not perfect, and there is always a degree of error associated with 

the force field parameters.  

1.4 Evolution of data-driven methods 

 

Artificial Intelligence (AI) tools are widely used for image and text-based data in bioscience [22], 

astronomy [23], and natural sciences [24, 25]. As the field has progressed, its application to 

materials science has also advanced. The use of machine learning, which is a type of artificial 

intelligence tool, has been applied in materials science since the late 1990s, primarily due to 
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advancements in computational power and the accessibility of extensive databases containing 

materials properties [26]. The application of AI to materials science has accelerated the pace of 

materials development and opened new opportunities for the discovery and optimization of 

materials.  

Machine learning (ML) is a branch of artificial intelligence that enables computer systems to learn 

and enhance their performance on a specific task without requiring explicit programming for each 

step. It involves the use of algorithms and statistical models to enable computers to analyse and 

make predictions or decisions based on data. The key feature of machine learning is that it uses 

patterns and insights from past data to inform future decisions or predictions. In ML, a computer 

system is trained on a dataset that includes input data and corresponding output data. The system 

uses this data to learn the patterns and relationships between the input and output and then applies 

this learning to new, unseen data to make predictions or decisions. 

Recent studies have investigated the use of AI, ML, and DL methods to help material scientists 

identify inferences from large experimental and simulation data of microstructures[27-35]. In 

materials science, the microstructure images and property data generated due to experiments are 

significant but free access to these data is restricted. A few initiatives, such as the Materials Project 

[36], Polymer Genome [37], and Open Quantum Materials Database [38], are working towards 

aggregating, analysing, or visualizing massive quantities of materials research data without any 

cost. This has contributed to accelerating the applications of ML and DL methods in materials 

science research. 

Significant studies have explored the use of these data-driven methods to study the microstructure 

of metals and alloys using previous experimental microstructural data. Through the Material 

Genome Initiative[39] started in 2011, data-driven approaches have led to breakthroughs in the 

discovery of new glassy materials and better characterization of the glass genome, such as 

predicting bulk mechanical behaviour from the atomic structure. This is a combined effect of 

experimental and computational efforts. In another example, a web-based ML model has been 

designed for real-time screening of thermoelectric material properties [40], saving much time that 

would otherwise be consumed by manual screening.   

Microstructural images from experiments and simulations have been used to develop a data-driven 

model and train it for a variety of tasks, including predicting properties from microstructure, 
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classifying microstructures, and determining the processing history of microstructures, among 

others. Most of these investigations focus on metals [28, 30, 33] and alloys [41, 42] for predicting 

the mechanical properties, thermal and electric properties, classifying the microstructure, reverse 

designing the microstructure, etc. However, only a limited number of studies have explored such 

applications of data-driven methods to study the microstructure of polymer nanocomposites [43, 

44] and screening of favourable microstructures. By extracting complex patterns and relationships 

from large datasets, ML algorithms can develop models that predict the properties of polymer 

nanocomposites based on the properties of their constituent materials and processing conditions. 

As such, ML is expected to continue to play a vital role in the development of new materials for 

polymer composites with enhanced properties and performance.  

1.5 Thesis introduction 

 

One component in the polymer nanocomposite, which is the polymer matrix, has interesting 

properties through the controlled phases that can be observed from its microstructure. Phase 

separation phenomena in polymer blends refer to the separation of distinct phases or components 

within the material, resulting in a microstructure that is characterized by distinct regions with 

different physical and chemical properties [45]. This can occur when the polymer matrix is infused 

with nanoscale fillers or additives. The presence of the fillers can lead to a complex morphology 

that is difficult to predict or control, but if properly designed, it can result in enhanced mechanical, 

thermal, or electrical properties.  

This phase-separated microstructure has raised significant interest due to its unique morphologies 

and associated advantages in the microelectronics and aerospace industries [46]. In an earlier 

study, He et al. showcased a technique for producing a multi-component blend which includes a 

self-constructed bi-continuous phase structure of amine functionalised graphene nanoplatelets (A-

GNPs) within the epoxy resin [3]. Wherein, the microstructures developed within the blends lead 

to exciting enhancements in physical and mechanical properties (e.g., a 103% increase in Young’s 

modulus from 3.2 to 6.3 GPa and a 70% increase in thermal conductivity in domains where the 

graphene species are localized). However, tailoring the composition to optimize the phase-

separated microstructures based solely on experimental techniques is inefficient as it involves 

multiple iterations of compositions, characterization of resulting microstructure, and property 
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measurements. This involves a significant number of hours in the laboratory with skilled 

personnel. Furthermore, due to the complex nature of thermoset systems, confirming the precise 

mechanism of selectively locating A-GNP within the phase structure of the multi-component blend 

has proven challenging. Consequently, using the inverse design techniques based on DL could 

potentially aid in further exploration and comprehension of the underlying mechanism. Hence this 

thesis explores the DL methods to study the phase-separated microstructure of novel nano-

modified polymer composite.  

The research question addressed in this thesis is: 

 

“Can we use deep learning techniques to identify the development of 

phase behaviour in a novel nano-modified polymer composite?” 

 

The research aims and objectives that will help to address this question are: 

Research Aim 1: To develop a state-of-the-art review to identify the different areas where DL 

would be suitable to study a novel nano-modified polymer composite. 

Objectives: 

➢ To study the past work done on a novel nano-modified polymer composite and collect the data. 

Research Aim 2: Identify a suitable area where DL techniques will be helpful to answer the 

questions related to the novel nano-modified polymer composite. 

Objectives: 

➢ Analyse the available data and identify the research area of novel nano-modified polymer 

composite where the DL model is useful. 

➢ Form the problem statement for the DL model and select the appropriate DL technique for the 

given dataset. 
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Research Aim 3: Evaluate the suitability of the DL model for the problem statement derived from 

the second research. 

Objectives: 

➢ Train the model on a variety of data and test its accuracy on unseen data. 

➢ Compare the limitations of the given technique and what can be done to overcome them. 

 

To address the research question, the implementation of agile methodology is chosen due to its 

iterative and flexible nature. The thesis is divided into distinct stages, and after each stage, the 

output is evaluated to review and make adjustments to the original plan. 

 

Figure 1. Stages involved in Agile methodology 

 

Based on the literature review and data collection the suitable area for applying DL methods will 

be identified, which is discussed in detail in Chapters 2, 3, and 4 respectively. 
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CHAPTER 2. LITERATURE REVIEW 
 

2.1 Introduction 

 

Nanocomposites are composite materials that contain nanoparticles within a polymer matrix, 

resulting in enhanced mechanical, thermal, and electrical properties. These properties have led to 

their application in a range of fields, such as electronics, aerospace, and automotive industries. 

Despite their potential, developing nanocomposites with optimal properties remains challenging, 

and researchers are exploring novel techniques to improve their performance. In recent years, DL 

has emerged as a powerful tool for predicting material properties, including those of 

nanocomposites. This review of the literature examines recent studies that have utilized DL 

methods to develop novel nanomodified polymer composites and identifies research gaps relevant 

to this thesis. 

2.2 Literature Review Body 

 

2.2.1 Polymer nanocomposites 

 

PNCs are a type of advanced material created by dispersing nanoparticles, such as carbon 

nanotubes or graphene, within a polymer matrix as shown in Figure 2. As a result, the resulting 

material gives enhanced mechanical, thermal, and electric properties in comparison to the neat 

polymer [2, 47, 48]. The advantages of PNCs have led to increased attention in recent years, with 

a focus on their applications in the electronics, aerospace, and biomedical industries [5, 49, 50]. 

Polymer nanocomposites are materials composed of a polymer matrix and small nanoscale 

particles (typically less than 100 nanometres in size) dispersed throughout the matrix [51]. Firstly, 

the nanoscale particles can act as reinforcing fillers, increasing the stiffness and strength of the 

polymer matrix [52]. This is because the small size of the particles allows them to distribute more 

evenly throughout the matrix, providing more points of contact and increasing the interfacial area 

between the particles and the matrix. This results in improved load transfer and better resistance 

to deformation, leading to a stronger and stiffer material [6, 53]. 
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Figure 2. Classification of nanomaterials based on their dimensionality: zero- (0D), one- (1D), 

two- (2D), and three-dimensional (3D) nanocomposites , image reused with permission  from 

[54] 

Secondly, the addition of nanoscale particles can also improve the toughness of the polymer 

matrix. This is because the particles can act as energy-dissipating sites, absorbing and distributing 

energy during deformation and preventing the formation of cracks. This can lead to improved 

resistance to fracture and increased resilience of the material [55]. Furthermore, the addition of 

nanoscale particles can also improve the thermal stability and dimensional stability of the polymer 

matrix, as the particles can act as barriers to prevent the mobility and diffusion of the polymer 

chains [56]. The combination of these factors leads to polymer nanocomposites with significantly 

improved mechanical, thermal, and electric properties compared to traditional polymer materials. 

This makes them useful for a wide range of applications in the aerospace, automotive, and 

electronic industry. 

Despite their many advantages, there are still challenges to be overcome in the development and 

manufacturing of PNCs. One challenge is achieving uniform dispersion of the nanoparticles in the 

polymer matrix, which can affect the properties of the final composite material. Also, it is reported 



12 

 

that controlling the type and amount of reactive sites on the graphene surface and edges in the 

polymer matrix has to be studied [57, 58]. Additionally, the manufacturing process of PNCs can 

be complex and costly, requiring specialized equipment and expertise. The different areas of 

research in polymer nanocomposites are shown in Figure 3. 

 

Figure 3. Research areas in polymer nanocomposites, reused with permission [59]  

In summary, the need for PNCs arises from their unique properties and potential applications in 

various industries, including aerospace, automotive, biomedical, and energy. While there are still 

challenges to be overcome, the development of PNCs has the potential to lead to the development 

of new advanced materials with improved properties and performance. 

2.2.2 Deep Learning 

 

In 1950, Alan Turing posed the question of whether machines can think, which led to the 

development of machine learning [60]. In the 1950s, Arthur Samuel, an AI pioneer, coined the 

term "Machine Learning" and defined it as the study of giving computers the ability to learn 

without being explicitly programmed [61]. Arthur Samuel's self-learning program for a checker 
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game at IBM was one of the earliest examples of machine learning. AI is increasingly being used 

in applications such as face recognition, speech recognition, drug discovery, and bioscience 

research to accelerate the pace of scientific discoveries. The ultimate goal of AI is to create 

machines that can perform complex cognitive tasks and exhibit human-like intelligence, allowing 

for quick and efficient completion of tasks that would otherwise be time-consuming and resource-

intensive. For instance, screening a dataset of thousands of materials to select the ones with 

excellent properties for energy storage applications would be a time-intensive task for humans, 

with a risk of manual errors. By using AI tools, researchers can save time and resources and focus 

on the critical aspects of research that require human creativity and critical thinking for problem-

solving. 

Machine learning is a branch of artificial intelligence that utilizes algorithms to analyse data, 

identify patterns, and use that information to make predictions on new data. In the context of 

material science, researchers can train machine learning models on datasets of structure-property 

relationships, enabling the models to learn from the data and predict the properties of materials 

under different conditions, such as temperature, pressure, or stress, based on their intended 

applications and available data [62, 63]. This approach can aid in the design of materials that 

possess increased resistance to extreme conditions or exhibit specific properties under certain 

conditions. 

DL is a subfield of machine learning that falls under the umbrella of Artificial Intelligence as 

shown in Figure 4. It employs artificial neural networks with multiple layers to learn from 

hierarchical representations of data. LeCun's paper on the application of convolutional neural 

networks for image and speech recognition was the first to demonstrate how the networks could 

automatically extract features from images, as opposed to requiring manual feature extraction as 

in traditional machine learning [64, 65]. Qu applied deep neural networks to quantify the states of 

nanoparticle assembly in polymer matrices using transmission electron microscopy (TEM) 

images, a task that is difficult to accomplish with only visual inspection [66]. While most studies 

in material science have used DL methods, they are focused on the microstructures of metals [28, 

30, 33] and alloys, and only a few [44] have examined polymer nanocomposites. 
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Figure 4. AI, ML and DL in relation to one, reused with permission [67]  

In machine learning, a model can be thought of as a function that maps inputs to outputs. For 

example, in a simple linear regression model, the relationship between input variables and output 

variables is represented by a linear equation.  

A specific model could be the VGG16 model [68]. VGG16 is a DL model and it is pre-trained on 

ImageNet which is a huge image database. It consists of multiple convolutional and fully 

connected layers, which learn to extract hierarchical features from images and make predictions 

about their classes. VGG16 can be considered a model because it represents a specific 

implementation of the CNN algorithm for image classification tasks. Some commonly known 

models in machine learning are linear regression, logistic regression, random forest, and neural 

networks. The model selection in DL depends upon the problem statement and the characteristics 

of the datasets. 



15 

 

Typically, a neural network comprises three layer types: the Input Layer, Hidden Layer(s), and 

Output Layer. The primary function of the input layer is to hold the input data, devoid of any 

calculations. It is necessary to use the non-linear activation function in hidden layers. This is 

crucial for introducing non-linearity, enabling the network to effectively learn intricate patterns. 

Neglecting non-linear activation functions would result in a neural network with multiple hidden 

layers that resembles a large linear regression model, rendering it incapable of effectively learning 

complex patterns from real-world data. The performance of a neural network model exhibits 

significant variation based on the type of activation function employed within the hidden layers. 

Moreover, an activation function must also be employed in the output layer of a neural network. 

The specific choice of activation function is contingent upon the type of problem one intends to 

solve. 

Model Architecture refers to the overall design or structure of a model. It encompasses the choices 

regarding the type and number of layers, the connections between layers, and the activation 

functions used. The activation function decides whether the output of the layer is useful or not. 

There are different activation functions. As an example, the famous VGG16 model consists of 13 

convolutional layers, followed by three fully-connected layers and a SoftMax layer for 

classification [68]. 

DL relies on available data to train the models. In material science, material properties are 

influenced by various factors such as microstructure, processing conditions, and atomic/molecular 

structure. The training data for the models are obtained from experiments and they includes 

microstructural and compositional information as well as properties under varying conditions such 

as temperature and pressure. CNN is used in image-related tasks due to its ability to effectively 

capture spatial dependencies and extract meaningful features from images [69] such as 

investigation of microstructure. However, the data collected are often heterogeneous due to the 

different processing parameters and microstructures of the materials studied [39, 63]. 

 

DL is employed in solving complex problems where the data is non-uniform and automatic feature 

extraction is necessary, such as crystal structure prediction [70]. With the recent advances in the 

semiconductor industry, computational power is readily available, making it possible to support 

big data exploitation. Polymer films have been widely used in energy storage, coating, wearable 
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gadgets, and aerospace applications [5, 49, 71-75]. The studies conducted during 2015-2020 for 

applications of DL in material science explore the prediction of mechanical, electrical, and thermal 

properties from the microstructure using tools of artificial intelligence [44, 76-78]. In 2015, Pyzer-

Knapp et al. stated that high-throughput virtual screening would be a critical aspect of material 

science [79]. In 2016, Cang attempted to extract and reconstruct complex microstructures of tin 

and lead-based alloys using a convolutional deep belief network [31]. 

2.2.3 Deep learning for PNC  

 

Fortunately, the rise of advanced imaging techniques providing high-resolution, such as atomic 

force microscopy (AFM), scanning tunnelling microscopy (STM), and scanning transmission 

electron microscopy (STEM) has enabled researchers to observe and understand the microstructure 

relating to its properties and behaviour. These methods help researchers to study the material on 

micro level. Up to this point, material science has utilized simulated microstructure images for 

image recognition-based tasks due to limited access to past research data. However, as simulated 

data may not accurately represent the real conditions in experimental data, the precision of DL 

may contain deviation from actual results through experimentation. By integrating high-resolution 

real-world image data with DL, it is possible to gain valuable insights into chemical history, phase 

transitions, and other related phenomena from microstructures. The overview of the working of 

the DL method is shown in Figure 5. 

The proposed method utilizing DL has been proven effective in predicting the electromechanical 

properties of complexly structured PNCs, as demonstrated by the evaluation results [43]. This 

success can aid in the development of new PNCs with optimized properties. In another study, a 

convolutional neural network (CNN) has been utilized to analyse transmission electron 

microscopy images of PNCs and accurately identify the nanoparticle assembly states [66]. CNN 

was trained on a dataset of TEM images of PNCs with known assembly states and was able to 

classify new TEM images into their corresponding assembly states with precision. 
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Figure 5. Steps involved in building DL model, figure used with permission [80] 

In their research paper, Zazoum et al. investigated the effectiveness of deep neural networks 

(DNNs) in modelling the mechanical properties of these nanocomposites [81]. The researchers 

created a DNN model based on experimental data to predict the tensile strength and modulus of 

elasticity of the material. The study concluded that the DNN model performed well and accurately 

predicted the mechanical properties of the nanocomposites. These findings suggest that DNNs can 

be a valuable tool in designing new materials with optimal mechanical behaviour for various 

applications. The paper emphasizes the potential of using DNNs in modelling and predicting the 

properties of complex materials. 

The article discusses the use of various DL techniques for applications in polymer, polymer 

composite chemistry, structures, and processing [82]. The authors provide an overview of DL 

techniques and their potential applications in polymer science and engineering. The article 

highlights the use of DL for predicting the properties of polymers and polymer composites, such 

as tensile strength, modulus of elasticity, and glass transition temperature. It also discusses the use 
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of DL for optimizing polymer processing parameters, such as melt temperature and cooling rate. 

The authors also discuss the power of DL for predicting the structure of polymers and polymer 

composites, including molecular structure, morphology, and crystallinity. They highlight the 

application of DL for image analysis and segmentation, which can aid in the characterization of 

complex polymer structures. Overall, the article demonstrates the potential of DL for advancing 

the field of polymer science and engineering. The use of DL techniques can help researchers and 

engineers to design and optimize new materials and processes, and to investigate the behaviour of 

complex polymer systems. 

The article by Demirbay et al. describes a study on the use of deep neural network (DNN) 

classifiers for classifying the opacity of polymer nanocomposite films [83]. The researchers 

developed DNN models based on experimental data to classify the films into three opacity levels: 

transparent, translucent, and opaque. The study found that the DNN classifiers were able to 

accurately classify the opacity of the films, with an overall accuracy of over 90%. The results 

suggest that DNN classifiers can be a valuable tool for rapid and accurate classification of the 

opacity of polymer nanocomposite films, which can aid in the development of new materials with 

specific optical properties. The article also discusses the potential of using DNN classifiers for 

other applications in polymer science and engineering, such as predicting the mechanical 

properties and thermal stability of polymer composites. The authors suggest that DNN classifiers 

could be combined with other modelling and simulation techniques to enhance overall 

comprehension of the behaviour of complex polymer systems. Overall, the article demonstrates 

the potential of using DNN classifiers for classification tasks in polymer science and engineering 

and suggests that they could be a valuable tool for optimizing the properties and performance of 

advanced polymer materials. 

In their research, Jiang et al. (2020) explored the potential of DL techniques for predicting the 

mechanical properties of nanocomposites [84]. The researchers developed a deep neural network 

that could predict the tensile strength and modulus of carbon fibre-reinforced polymer composites 

with different types and amounts of nanoparticles. The model achieved high accuracy and was 

able to identify the optimal nanoparticle content for the highest mechanical strength. 

Liu et al. (2021) presented a hybrid machine-learning model for predicting the thermal 

conductivity of graphene-based nanocomposites [85]. The researchers used a convolutional neural 
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network to analyse the microstructure of the composite and predict the thermal conductivity. He 

reported that the results from coarse-grained MD simulations for nanoparticle dispersion and 

aggregation in nano polymer composites imitated the experimental coarsening process and 

matched with the predicted theory by earlier researchers [86] for polymer filler interaction.  

Liu et al. (2021) developed a deep-learning model to predict the fracture toughness of epoxy 

composites reinforced with carbon nanotubes. The researchers used a neural network with multiple 

hidden layers to analyse the stress-strain curve of the composite and predict its fracture toughness. 

The model showed good accuracy and was able to predict the fracture toughness of the composite 

with high precision. 

It is important to note that the applications of DL models in material design have not been fully 

exploited. For instance, the features extracted by deep convolutional networks or other 

unsupervised DL models have yet to be combined with processing conditions and material 

properties to establish predictive models. Further exploration in this area is recommended [29].  

Based on recent research in polymer nanocomposites it is observed that DL is a useful method to 

analyse the pattern from microstructure and predict the structure-property relationship. The 

polymer nanocomposite developed which has shown improved mechanical properties needed 

further analysis into its phase microstructure. Therefore, the DL method is chosen to investigate 

whether it’s suitable for studying the modified polymer nanocomposite. 

2.3 Summary of the findings  

 

The studies discussed above demonstrate the potential of DL techniques for studying the 

microstructure of complex materials such as polymer nanocomposites. These techniques have the 

advantage of being able to analyse large amounts of data and identify complex relationships 

between the different components of the composite. The novel nano-modified polymer composite 

has the potential to be used as a coating in electronics applications.  

However, more research is needed on the microstructure of this new PNC, which gives exceptional 

mechanical and thermal properties. The utilization of data-driven methods has accelerated research 

in polymer nanocomposites due to their efficiency and cost-effectiveness compared to 

experimental characterization and simulation methods. Therefore, it is important to investigate the 
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validation of these DL techniques. DL techniques provide the means to examine the microstructure 

insights of newly developed polymer nanocomposites. Therefore, the research question introduced 

in Chapter 1 concentrates on this area and seeks to advance the implementation of DL for newly 

developed PNCs. This fulfils the first research aim of this study. 

For microstructure studies, the earlier research has been carried out using convolutional neural 

networks (CNN) which is a type of artificial neural network used in DL. They have proven 

effective in extracting the features from images in computer vision and image recognition tasks. 

Hence the DL model used for answering this question is selected as CNN. 

The first step will be data collection through contacting the established researchers in this field 

who have studied the polymer nanocomposites. Subsequently, a rigorous analysis will be 

conducted to finalise the precise problem statement suitable for the CNN model, such as property 

prediction or classification.  Following this, the model will be designed and implemented. It will 

then undergo a rigorous training and testing steps to assess its efficacy in solving the identified 

problem. The investigation will be done on the model's performance and corrective measures and 

methods will be applied to enhance the performance of model by reviewing the literature. Finally, 

a comparative analysis with existing literature will be undertaken to affirm the model's validity 

and its potential application in advancing the study of novel nano-modified polymer composites. 
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CHAPTER 3. MATERIALS AND METHODS 
 

Given their wide-ranging applications in coatings, electronics, and adhesives, epoxy resins emerge 

as pivotal choices for crafting polymer nanocomposites [87]. Within the epoxy resin system, the 

hardener functions as a curing agent, initiating a chemical reaction with the epoxy resin to yield a 

robust, thermosetting material characterized by a three-dimensional crosslinked structure. Notably, 

amine-based curing agents are deployed in tandem with epoxy resins to augment mechanical 

properties and furnish critical corrosion protection, particularly salient in applications like wind 

turbine coatings. 

The selection of resins is additionally influenced by their processing temperature range, an 

attribute with direct bearing on the kinetics of the curing process. Consequently, RS-M135, 

distinguished by a processing temperature range of 10°C to 50°C under standard room conditions, 

emerges as the epoxy resin system of choice for this study. This system is judiciously paired with 

hardeners RS-MH134 and RS-MH137, aligning with demands of boat and shipbuilding, as well 

as energy turbine blade applications. 

The most extensively researched nanofillers for reinforcement purposes encompass clay 

(specifically montmorillonite MMT), carbon nanotubes, and graphene. The research domain 

commenced with polymer-clay nanocomposites in the late 1980s, followed by the exploration of 

polymer-carbon nanotube nanocomposites in the late 1990s. Since the seminal discovery of 

graphene in 2004, and its extraordinary elastic modulus of 1.1 TPa [88] and a noteworthy thermal 

conductivity of approximately 4000 W𝑚−1𝐾−1 [89] it has catapulted it into the realm of polymer 

nanocomposites. Homogeneous dispersion of the nanofiller in the polymeric matrix and strong 

interaction between the filler and the polymer is absolutely necessary for good reinforcement. 

Nanotubes that undergo covalent functionalization offer superior polymer reinforcement, 

facilitating improved stress transmission between the polymer matrix and the nanofiller. 

Nonetheless, it is worth noting that covalent functionalization has the potential to compromise the 

innate electrical properties of CNTs. [90], necessitating an elevated percolation threshold. The 

electrical percolation threshold designates the crucial concentration of reinforcement at which the 

composite undergoes a sudden transition from being an insulator to becoming a conductor, owing 

to the emergence of conductive pathways. Homogenously dispersed graphene also reduces barrier 
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properties. Conspicuously, amine-functionalized graphene nanoplatelets (A-GNPs) within the 

polymer matrix have been observed to engender a bi-continuous phase-separated microstructure, 

where this phase shows excellent mechanical strength, thermal conductivity and electrical 

conductivity. Consequently, in this study, in concert with the aforementioned epoxy resin system, 

A-GNPs have been selected as the nanofiller of choice due to its superiority in satisfying functional 

requirements in commercial applications. 

3.1 Materials 

 

The material was originally examined in the publication of He et al. [3] and the same compositions 

are employed in this work. Three main constituents were used to prepare the blend. Constituent 1 

is Epoxy resin, RS-M135. Constituent 2 is RS-MH137, which is a curing agent. Both of these 

constituents were delivered by PRF Composites UK. Constituent 3 is 1-(2-aminoethyl)piperazine 

(AEPIP) (CAS No. 140-31-8) and it was supplied by Sigma Aldrich. Amine-functionalized 

graphene nanoplatelets (A-GNPs) (mean diameter - 2 μm, thickness < 4 nm) were supplied by 

Cheap Tubes Inc., USA. These constituents are used in the same condition as delivered without 

any modifications. 

In addition to the commercial materials used above, other consumables were used which were 

taken from standard laboratory setups and these involved glass slides, Acetone, a magnetic stirrer, 

a storage container for chemicals and a slide holder. The glass slides were supplied by Fisherbrand. 

Acetone (GPR) was purchased from Sigma Aldrich and distilled water was produced in house and 

were used to clean the glass slides, which were dried using a vacuum line. 

3.2 Blend Fabrication Method 

 

The GNPs were dispersed in the curing agent via sonication using a "GT Sonic” ultrasonic water 

bath. The epoxy resin was degassed using a vacuum pump (5.25 mmHg, for 10 min). Epoxy to 

curing agent was mixed in the proportion of 1:1 (weight in grammes) to 1:9 (weight in grammes); 

a Precisa 205 A, the weighing scale was used for weighing these materials in required quantities. 

The GNPs (3 wt.%) were dispersed in the curing agent using a sonication probe at room 

temperature for 1 hour. This mixture was then added to the degassed epoxy at different ratios to 

prepare the multiple blends with varied microstructures. The second set of experiments was 
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designed such that keeping the hardener to epoxy ratio constant and varying the ratio of graphene 

nanoplatelets (GNPs) e.g., epoxy (3): curing agent (1) while the GNP content was varied from 1% 

to 10% of the total weight of the blend. In the second scenario, the ratio of epoxy to curing agent 

is varied and the ratio of GNP was kept constant e.g., epoxy (3): curing agent (1 –10): GNP (3% 

of the weight of the blend). The ratio of GNP in the curing agent was varied from 1% to 10% by 

weight of the total blend. Once the GNPs were dispersed in the curing agent, the mixture was 

added to the epoxy resin and the resulting polymer blend was stirred manually for 10 min to ensure 

proper mixing. The glass slides were cleaned with acetone followed by diluted water. Then the 

glass slide was properly dried using the N2 gas line. The A-GNP composite film was fabricated on 

the clean and dry glass slide using the spin coating method. The glass slide was placed on the spin 

disk and the quantity of blend to be placed on the glass slide was measured by the 100ml pipette. 

The spin coater was maintained at a spin speed of 1500 rpm for 1 minute for all the samples. 

Subsequently, the film was post-cured by keeping it in the oven at 50°C for 5 hours.  

3.3 Data Acquisition Method 

 

The samples were then observed using the Leica optical microscope at 10x magnification as shown 

in Figure 6. The raw images were captured using Twain software without any modifications.   

 

Figure 6. a) Image acquisition using an optical microscope at the University of Bristol during the 

first set of experiments.  
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Figure 6. continued b) Observed microstructure. 

3.4. Property Measurements 

 

3.4.1 Mechanical Property measurement  

 

Nanoindentation is a materials testing technique used to assess mechanical properties, such as 

hardness and elastic modulus, at the nanoscale. It involves applying a controlled load to the surface 

of a material using a sharp indenter, typically a diamond or a hard tip with known geometry, while 

simultaneously monitoring the depth of penetration into the material. During the test, a load is 

gradually increased and then decreased while continuously recording the depth of penetration or 

displacement. The indentation depth is typically in the range of a few nanometres to several 

micrometres. The hardness of the material is determined from the maximum load applied during 

indentation divided by the projected contact area between the indenter and the material surface. It 

represents the material's resistance to plastic deformation and is a measure of its ability to 

withstand localized applied forces. By analysing the load-displacement data, various mechanical 

properties of the material can be extracted [13, 91]. The loading and unloading curves are shown 

in Figure 7 given below. 
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Figure 7. (a) A schematic representation of loading and unloading in indentation tests. (b) 

Typical indentation load–depth curve with important measured parameters, image used with 

permission from [92]  

 

The loading time, holding time, and unloading time for all the samples are 5 seconds, 3 seconds, 

and 5 seconds respectively. The samples used for the testing were obtained from  a previous PhD 

study [3]. The nanoindentation tests were carried out by Mr. Guanji Yuan who is pursuing PhD at 

the University of Bristol and the raw data files generated from the tests were supplied by him. The 

post processing of the data, to find out the Elastic Modulus or Young’s Modulus of Elasticity, was 

performed using the equation 1. 15-20 measurements were taken for each sample and the mean of 

those measurements is considered to be the  final value of Young’s modulus.  

The Young’s modulus (E) of the sample was calculated using equation 1 [93, 94], 

1

Er

=
1-v2

E
- 

1-vi
2

Ei

                                                    Equation 1 

where, 𝐸𝑖 (1140 GPa) and 𝑣𝑖 (0.07) are the elastic moduli and Poisson's ratio of the diamond 

indenter [94]. The value of Poisson’s ratio 𝜈 (for the epoxy was taken as 0.34 from the literature). 

[95] The polymer blends differ from each other by their composition. Hence the corresponding 

microstructure had a different elastic modulus (MPa). 
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3.4.2 Contact Angle Measurement 

 

Wettability is the ability of a liquid to maintain contact with a solid surface. A contact angle (θ) is 

a thermodynamic property that indicates the wettability of a solid surface [96]. The contact angle 

is the angle formed by a liquid at the three-phase boundary where a liquid, solid, and gas interact 

[97]. The higher the contact angle lower is the wettability. Wettability is useful in thin film 

fabrication as If a liquid droplet spreads over a given solid surface it means the wettability is higher 

and thus lower contact angle as shown in Figure 8 given below. In the case of perfect wetting, the 

θ (theta) is 0°. The surface tension of a liquid and the surface energy of the solid surface play 

crucial roles in determining wetting behaviour. If the surface energy of the solid is similar to, or 

lower than, the surface tension of the liquid, the liquid will tend to wet the surface and spread out. 

However, if the surface energy of the solid is higher than the surface tension of the liquid, the 

liquid will have a higher contact angle and less wetting. This serves as a valuable tool for 

determining the compatibility of a solid surface for fabricating the blend.  

 

Figure 8. Schematic showing the relation between the contact angle and wettability of the droplet 

with a solid surface 

 

To investigate the wettability of the neat epoxy blend and nano-indented polymer blend, contact 

angle testing was performed using the sessile drop method with the assistance of DSA 100 (Drop 

Shape Analyzer – Krüss DSA). The sessile drop method was selected and the fitting method 

employed to measure the contact angle of the drop was Ellipse. After placing the glass slide coated 

with the neat epoxy film onto the stage or nano-modified polymer blend the stage was manually 
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calibrated. A micro syringe, controlled by the software, was used to slowly place a drop of distilled 

water onto the glass slide. Approximately 20-25 contact angle measurements were recorded for 

both cases and the mean value, along with the standard deviation, was calculated based on these 

measurements.  The experimental setup is shown in Figure 9. 

  

Figure 9. Experimental setup for contact angle measurements using DSA 100. 

3.5  Summary 

 

In conclusion, the Young’s modulus of the five samples was measured through nanoindentation 

tests. This was done in collaboration with the Department of Physics at the University of Bristol.  

For every sample 15-20 measurements were carried out and mean of those values is used to 

determine the Young’s modulus of every sample. The results of these tests are shown in the next 

chapter which compares the microstructure with the resulting value of Young’s modulus.  

The wettability of the neat epoxy polymer film and the nano-indented polymer film was evaluated 

using Drop Shape Analyzer – Krüss DSA for the contact angle measurements. The findings from 

these tests will be comprehensively discussed in the subsequent chapter, Chapter 4. 
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CHAPTER 4. EXPERIMENTAL RESULTS 
 

4.1 Nano-indentation testing 

 

The 5 samples are tested for nano-indentation. For reference, the area that was subjected to testing 

can be seen in Figure 10. The black region with A-GNPs was assumed to have higher mechanical 

strength compared to the white region surrounding it. Equation 1, mentioned in Chapter 3, was 

used to calculate the Young’s modulus. The blend compositions and respective Young’s moduli 

are shown in Table 1 and the associated microstructure is shown in Figure 11.  

 

Figure 10. Nano-indentation test set up carried out by PhD researcher, Mr Guanjie Yuan from 

the Department of Physics at the University of Bristol. 

 

 

 

 



29 

 

Table 1. Nanoindentation test results 

Nano Indentation Test results  

 Sample 

name 
The ratio of epoxy: hardener Young’s Modulus (Gpa) Standard deviation 

a. 90:10 5.8 0.7 

b. 80:20 5.0 0.5 

c. 50:50 8.8 0.8 

d. 70:30 6.2 1.8 

e. 100:0 3.0 0.6 

 

  

 
 

 

 

Figure 11. Microstructures of the following blends are named a), b), c), d) and e) as mentioned in 

Table 1. (The images are used with permission [3])  
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The sample which contained an epoxy: hardener ratio of 50:50 showed an enhanced Young’s 

Modulus i.e. 8.8 Gpa against others. Even though there is enhancement in the mechanical property, 

the resulting range of Young’s modulus is between 3 Gpa – 8.8 Gpa from the lowest to highest 

possible composition change. Farizhandi et al. [98] in their research of predicting chemistry and 

processing history from microstructure using DL predicted the temperature range from 853 – 963 

°Ci.e. a wide range of values. In other research, Kirklin et al. [99] used DL to predict the formation 

energy (eV/atom) of 1670 materials ranging from 0.096 to 0.136 eV/atom for the Open Quantum 

Materials Database (OQMD). The lowest dataset size reported for property prediction of materials 

is 100-500. Therefore, the dataset presented in the present work is limited as the set composition 

gives a unique microstructure (i.e. there are 5 such different microstructures with corresponding 

mechanical properties). There is little change in microstructure with respect to change in 

composition from 10% - 100% which limits the present dataset size for property prediction. 

Therefore, the scope of DL for property prediction of novel nano modified polymer composite is 

limited and cannot be explored any further.  

4.2 Contact angle measurements 

 

The drop of distilled water placed on a neat epoxy-coated glass slide was captured using the 

software DSA 100, as depicted in Figure 12. For both cases, the sessile drop template was selected, 

and the Ellipse fitting method was utilized to measure the contact angle of each drop. A total of 21 

measurements were conducted to determine the contact angle of the neat polymer film, and these 

measurements are illustrated in Figure 13. The mean and standard deviation of the observations 

were calculated and presented in Table 2. The measurements were performed at a room 

temperature of 20°C. The recorded mean contact angle for the neat epoxy polymer film is 32.98°, 

indicating its hydrophilic nature. 

Table 2. Contact angle measurements of neat epoxy blend 

Parameters Value Standard deviation 

Mean diameter [mm] 4.25 0.44 

Mean volume [µL] 4.46 1.20 

Mean contact angle [°] 32.98 1.98 
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Figure 12. A drop of distilled water is placed on a neat epoxy-coated glass slide for contact angle 

measurement using the KRÜSS DSA 100 instrument. 

 

Figure 13. 21 Contact angle measurements carried out for neat epoxy blend using DSA 100. 
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Similarly, the nano-modified polymer blend was tested for contact angle measurements. The total 

measurements taken were 25 at the same room temperature, 20°C. The mean and standard 

deviations of these measurements are summarised in Table 3. The measurements are plotted in 

Figure 14. In contrast, the nano-modified polymer blend shows a higher contact angle of 60.13°. 

This suggests that the droplet on this film has less wetting or less interaction with the surface in 

comparison with the neat epoxy blend. Thus, the addition of A-GNPs has decreased the wettability 

of the film.  

Table 3. Contact angle measurements of the nano-modified polymer blend 

Parameters Value Standard Deviation 

Mean diameter [mm] 2.39 0.05 

Mean volume [µL] 1.69 0.10 

Mean contact angle [°] 60.13 1.98 

 

Table 4. Contact angle measurement test results for neat epoxy blend and nano-modified 

polymer blend 

Sample Mean Contact Angle [°] Standard Deviation [°] 

The neat Epoxy polymer film 32.98 1.98 

Nano-indented polymer film 60.13 1.98 

 

 

Figure 14. 25 contact angle measurements were carried out for the nano-modified polymer blend 

using DSA 100.  
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Table 4 provides comparative data on the contact angles and their variabilities for the neat polymer 

blend and nano-modified polymer film, offering insights into their wettability characteristics. 

4.3 Summary 

 

The results obtained demonstrated variations in Young’s modulus and contact angles when 

comparing the two films, emphasizing the influence of A-GNPs on the material properties. 

Specifically, Young’s modulus exhibited an increase upon the addition of A-GNPs in the hardener 

solution, up to a weight percentage of 50%. However, owing to the limited number of unique 

microstructures (only 5), applying DL techniques for predicting Young’s modulus becomes 

unfeasible. 

Regarding the contact angle measurements, the inclusion of A-GNPs led to a decrease in 

wettability for the composition. Notably, this property exhibited two distinct microstructures that 

either improved or reduced the wettability. Given that skilled personnel can easily test and evaluate 

this property, there is no necessity for DL in this scenario. The experimental method carried out 

by skilled individuals is sufficient for investing time and ensuring quality control as compared to 

DL methods.  

The microstructure images collected during the blend fabrication can serve as a dataset. The DL 

applications to this dataset and its methodology are described in Chapter 5. 
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CHAPTER 5. DEEP LEARNING METHODOLOGY 
 

In this chapter, the focus is placed on DL methodology applied to the nano-modified polymer 

composite. This will cover the data collection, DL model selection, and DL model design and 

development as shown in Figure 15. The testing stage will be discussed in the subsequent chapter 

(Chapter 6). 

 

Figure 15. Software development life cycle 

The first phase of the deep learning project involved a comprehensive Requirement Analysis. 

Based on the Requirement Analysis, the scope of the project was delineated, encompassing key 

considerations such as the type of deep learning model to be employed, be it classification, 

regression, or another paradigm. Identification of requisite data sources and establishment of 

performance metrics and success criteria were also integral components of this phase. 

Following the Requirement Analysis, the Design phase was undertaken meticulously to plan the 

architecture of the deep learning model. This stage entailed critical decisions regarding the 

selection of appropriate deep learning frameworks, such as TensorFlow or PyTorch, and the 

programming language to be employed. The neural network architecture was designed, specifying 

the number of layers, types of layers, and activation functions. Additionally, data preparation 

1.Requirement 
Analysis

2.Design

3.Development

4.Testing
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procedures, encompassing data cleaning, preprocessing, and partitioning into distinct training and 

testing sets, were delineated. Crucial hyperparameters, including learning rate, batch size, and 

regularization techniques, were also determined during this phase. 

Subsequently, the Development phase was initiated, involving the actual implementation of the 

deep learning model and its supporting codebase. This stage saw the realization of the neural 

network architecture as per the design specifications. An intricate data pipeline was constructed to 

facilitate the loading, preprocessing, and augmentation of the data. The training loop, 

encompassing forward and backward passes, gradient descent, and weight updates, was 

meticulously coded. Additionally, evaluation and testing procedures were implemented to 

comprehensively assess the model's performance. 

The final phase, Testing, constituted a critical evaluation of the deep learning model's performance 

and robustness. Rigorous testing procedures were executed to ascertain its ability to generalize 

effectively to unseen data, mitigating overfitting concerns. Comprehensive evaluation metrics, 

such as accuracy, precision, and recall, were employed to quantitatively gauge the model's 

performance. This phase culminated in a comprehensive validation of the model's efficacy and 

readiness for subsequent deployment. 

5.1 Data collection 

 

From past research and experiments conducted in Chapter 3, the property, and microstructural data 

were collected. Initially, 36 microstructure images were obtained from the previous researcher, of 

which 12 images were repeated (i.e. a total of 24 unique microstructure images). Three samples of 

nano-modified polymer composite had been tested for Young’s modulus and the images and 

corresponding property data were available. 

As the data were limited in size further investigations on the property measurement were carried 

out for the remaining 8 samples mentioned in the methods section. 
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5.2 Formulating the problem statement  

 

From the microstructure data and the properties of the nano-modified polymer nanocomposite, it 

is observed that the bi-continuous phase-separated microstructure with graphene-rich domains has 

shown a 97% increase in Young’s modulus and 72% increase in thermal conductivity [3]. These 

properties suggest that this material is suitable for aerospace, automotive, and electronics 

applications. Therefore, the relationship between microstructure and property is important to study 

to understand this material so that other possible PNCs can be selected which show similar 

microstructure and diversify the selection set of suitable materials. Hence, the more suitable area 

for studying this PNC using DL techniques is identifying its favourable microstructure that results 

in these strong properties and identifying it from the set of given microstructure images using the 

image-based DL model. This fulfils the second research aim of this study.  

5.3 Deep Learning Model Design 

 

In the present case, the model should be able to distinguish a particular microstructure from the 

given set of images. The images are categorized into two groups 1. Phase separated (distinction of 

black and white regions) and 2. Homogeneous (dispersed regions). Hence, a CNN model is 

constructed for the binary image classification problem. 

The architecture of the model is shown in below Figure 16. 

 

Figure 16. Schematic showing the Architecture of the CNN model. 
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Convolutional layers extract the information in terms of pixel values at given locations from image 

data and keep the extracted salient features intact. The image consists of a matrix of pixel values. 

The pixel is the smallest square in an image hence we can say that image is made up of these 

pixels. Every pixel has one value that shows the colour intensity, e.g. in an 8-bit grayscale image 

the pixel value can range between 0-255. For example, Figure 17. below shows what the pixels 

look like in the microstructure images. In CNN the convolution layers extract the patterns e.g. 

edges or circles from the given image by moving a kernel filter which is a small matrix passed on 

the whole image to scan the pixel values in the given image and then the feature map is generated 

by averaging the pixel values collected by convolutional layer. In some cases, padding is useful to 

retain the information from losing out due to inconsistency in the size of the feature map. Padding 

is a strategy utilized to maintain the spatial dimensions of the input image after convolution 

operations are performed on a feature map. It entails the addition of supplementary pixels 

surrounding the borders of the input feature map before the convolution process. Hence, this 

preserves the border information in an image.  

 

Figure 17. Pixels in a microstructure image 

As realistic data do not always have linear dependencies, activation functions need to be added to 

the feature map to account for nonlinearity. As the name suggests, in the pooling operation the 

values generated by the feature map are maximized or averaged. As fully connected layers require 

dimension reduction of the incoming data, the pooling layer decreases the size of the feature map 

through the pooling operation. An important difference between CNN architecture and other DL 

architecture is that CNN uses hidden layers composed of convolutional, pooling or fully connected 

layers that follow each other [30]. Different CNN architectures utilize varying combinations of 
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convolutional and pooling layers. For example, the kernel filters and one output of the Conv2D 

layer are shown in Figure 17 and Figure 18 respectively. 

For specific tasks such as classification or regression, fully connected layers are added to train on 

the extracted features from the image [31]. 

5.4 Model development 

 

5.4.1 Data processing 

 

The dimensions of all images were maintained uniformly (Width*Height) i.e., 231*174 pixels, 

and stored in the. PNG format. To increase the dataset, an image augmentation technique was used. 

Data Augmentation is a widely employed technique in machine learning and DL that artificially 

expands the size of the training dataset [100]. It entails implementing diverse transformations or 

modifications on existing data samples, resulting in the generation of new and slightly altered 

versions of the original data. For the image data, the following transformations were used: Random 

cropping and resizing, Horizontal or vertical flipping, Rotation or shearing, Colour jittering or 

brightness adjustments, and Adding noise or blurring [101]. Data augmentation aims to enhance 

the generalization ability and robustness of machine learning models by testing them on a broader 

array of data variations and patterns. An example of the augmented image is shown in Figure 18. 

The displayed image has been generated utilizing seven operations mentioned below. No fill mode 

has been applied, resulting in default black edges. Since the image is produced by the data 

augmentation algorithm, the scale is unknown hence the scale bar cannot be shown. Due to such 

varied data, the model becomes more capable of handling different scenarios and improving its 

performance on unseen data. For the given dataset these operations were performed uniformly on 

every image using the ImageDataGenerator class from TensorFlow.  

The details of the following operations are as below: 

1. Rotation range in degrees = 90  

2. Width_shift_range = 0.2 

3. Height_shift_range = 0.2 

4. Shear_range = 0.2 

5. Zoom_range = 0.2 
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6. Vertical flipping 

7. Horizontal flipping. 

8. fill_mode = “reflect”   

 

Figure 18. Microstructure image generated automatically using the data augmentation 

algorithm with parameters mentioned in Section 5.4.1 (scale unknown). 

5.4.2 Code implementation: 

 

The code was implemented using the TensorFlow and Keras [102] libraries in Python1 in a Jupyter 

notebook2. The network architecture consisted of multiple layers, each with a specific function. 

The first layer of the network was a Conv2D   layer with 32 filters, a kernel size of (3,3), and a 

ReLU [103] activation function. ReLU introduces non-linearity to the network, allowing CNNs to 

learn complex patterns and make non-linear transformations of the input data. It selectively 

activates neurons individually rather than all at once, and it transforms any negative value to zero 

as the output of the neuron. This makes the ReLU function computationally efficient and reduces 

overfitting [104].  

 
1 http://www.python.org 
2 (https://jupyter.org/in) 
 

http://www.python.org/
https://ukc-word-edit.officeapps.live.com/we/(https:/jupyter.org/in)
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Figure 19. Kernal filters 

 

Figure 20. Convolution filter applied to a phase-separated microstructure. 

The kernel size corresponds to the dimensions of the filter mask, denoted as width x height.  

Padding was set to 'same', meaning the spatial dimensions of the input and output will be the same. 

The output of this layer was then passed to a MaxPooling2D layer with a pool size of (2,2). This 

layer reduced the spatial dimensions of the feature maps to prevent overfitting. The output of the 

pooling layer was then normalized using a BatchNormalization layer with axis=-1, which 

normalized the activations of the preceding layer. A Dropout layer with a rate of 0.2 was then 

applied, randomly setting 20% of the input units to 0 during training, helping to prevent overfitting. 

The output of the Dropout layer was then flattened into a 1D vector and passed to a fully connected 

Dense layer with 512 units and a ReLU activation function. The final layer was another Dense 

layer with 2 units and a sigmoidal activation function, representing the binary classification output. 

The model was compiled with the Adam optimizer [105], a categorical cross-entropy loss function, 

and accuracy as the evaluation metric. Adam optimizer computes the loss function at each step 

and adjusts the learning rate hence it is an adaptive learning rate as compared to Gradient descent 

where the learning rate is constant. At the end of the output layer, the Sigmoid activation function 

is used which converts the output in terms of 0 or 1 based on probability score. 
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The sigmoidal function is defined as: 

F(x)=
1

1+e-x
                                                           Equation 2  

In this equation, "e" represents the base of the natural logarithm, and "x" is the input value to the 

sigmoid function. The function takes the input value "x" and applies a mathematical transformation 

to it, resulting in an output value between 0 and 1. 

The sigmoidal function has an "S"-shaped curve and is shown in the Figure. 213 below, starting 

from 0 as "x" approaches negative infinity, and gradually increasing towards 1 as "x" approaches 

positive infinity. The midpoint of the sigmoid curve, where the output is 0.5, occurs at "x = 0". 

The function is commonly used in logistic regression models to predict binary outcomes, where 

the output indicates the probability with which it belongs to that specific class. It squashes the 

input values to a probability range, making it useful for classification tasks. 

 

Figure21. Sigmoidal activation function (source:  https://medium.com/analytics-

vidhya/activation-functions-all-you-need-to-know-355a850d025e) 

 

The dataset was partitioned into train and test sets by performing an 80/20 split, with labels 

encoded as categorical variables. The model underwent 20 epochs of training using a batch size of 

20. These hyperparameters are finalised after checking the effect of these parameters on the 

accuracy of the model. A few initial iterations are shown in Figures 22 and 23 respectively. 

 
3 https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e 

https://medium.com/analytics-vidhya/activation-functions-all-you-need-to-know-355a850d025e
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Figure 21. Accuracy and Loss after the first iteration. 

 

Figure 22. Accuracy and loss after the second iteration. 

One commonly used metric which assesses the learning of a CNN model from the training data is 

accuracy and training loss. The training dataset, which is a subset of the overall dataset, is used to 

initially train the model, while the validation dataset, another subset of the data, is reserved to 

validate the model's performance. 

The accuracy is determined by the ratio of predicted values (ypred) that match with actual values 

(ytrue) to the total predicted values. If the predicted label of the microstructure image (phase 

separated or homogeneous) matches the true label, it is considered accurate. The training accuracy 

of the training data is given as the deviation of the predicted value from the actual value for the 

training dataset. The training loss is determined by adding the errors for each training set example. 
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After each epoch, the validation loss is determined by adding the errors for each sample in the 

validation set. An epoch refers to one complete iteration of processing the entire training set by 

the model, and the training loss is determined after each batch. The “number of epochs,” an 

important hyperparameter, must be set while training the model, determining how many times the 

learning algorithm will process the whole training dataset. This allows for determining whether 

the model requires additional learning or hyperparameter tuning.  

The Training Accuracy curve exhibits a discernible upward trajectory, indicating a progressive 

improvement in the model's proficiency in classifying samples from the training set. In contrast, 

the Validation Accuracy curve remains notably flat, suggesting a lack of substantial improvement 

in accuracy on the validation set across epochs. This conspicuous gap between the two curves 

raises concerns regarding potential overfitting. Overfitting is a phenomenon wherein the model 

becomes excessively specialized in fitting to the nuances and noise of the training data, potentially 

compromising its ability to generalize to new, unseen samples.  

The Validation Loss curve delineates the loss on a separate validation data set that remains unseen 

by the model during the training process. This validation set serves as a litmus test for the model's 

ability to generalize to new, unseen data. In the present analysis, a noteworthy observation emerges 

from the validation loss curve: it showcases a decreasing trend, albeit with a substantial gap for 

the  the training loss curve. This disparity between the validation and training loss curves raises an 

important consideration. A notable divergence between the two curves may be indicative of 

overfitting and consequence, the model's performance on new, unseen data may be compromised. 

In conclusion, while the current performance of the CNN classification model provides valuable 

insights, it also highlights avenues for refinement and enhancement. The dropout technique is 

already implemented but still further options needs be explored to enhance the model's 

generalization capacity. Furthermore, considerations for acquiring additional data and optimizing 

model complexity warrant close attention. The steps taken to optimise the performance and the 

benchmarking it with the literature is discussed in the next chapter, i.e. Chapter 6.  

In summary, the code is given in Figure 22. builds and trains a CNN for binary image classification 

using the Keras library in Python. The model parameters are summarised in Table 5. The total time 

required for the tuning and training was 2 days on a general laptop. In this case, DELL latitude 

5421 with core i7 was used for training and testing of the model. 
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Table 5. Summary of the parameters used to develop the CNN architecture. 

 Parameter Selected value or option 

Model 

specification 

Optimizer Adam 

Body Activation ReLU (Rectified Linear Unit) 

Output Activation Sigmoid 

Compilation Loss Binary cross entropy 

Optimizer Adam 

Metric accuracy 

Validation Training data 80% 

Testing data 20% 

Batch size 5 

 

5.4 Summary 

 

In this chapter, the initial three stages of the software development lifecycle were successfully 

executed, which encompassed use case analysis of requirements, design, and development. The 

first stage involved collecting data and finalizing the use case based on the gathered information. 

In the design stage, the layout for the CNN architecture was carefully planned out. Subsequently, 

in the development stage, the CNN model was implemented by writing code in Jupyter 

Notebook.  The code for the developed model is available on GitHub4 for easy access and 

reference. This model will be tested on the mixed microstructure images of novel nano-modified 

polymer composite. The process of training and testing of the DL model is thoroughly discussed 

in the Chapter 6.  

Some of the code implementation is shown in Figure 24 given below: 

 
4 https://github.com/Anuradhamk/MScR/blob/main/Phase_classification_cnn-1.py 

 

 

https://github.com/Anuradhamk/MScR/blob/main/Phase_classification_cnn-1.py
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Figure 23. Code used to operate the CNN model. 
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CHAPTER 6: TESTING AND RESULTS 
 

This chapter assesses the performance of DL using various performance metrics. To determine 

how well the algorithm was efficient to distinguish between phase-separated and homogeneous 

samples, the model was assessed by Accuracy metrics5 from Keras DL library. The second metric 

used in addition to the Accuracy metric is by plotting the confusion matrix.  

6.1 Testing on the old dataset  

 

The accuracy plot (Figure 25(a)) reveals that in this initial study, the trained accuracy is 95%, but 

the validation accuracy of the CNN model was found to be 65.4%. This means that when the model 

is tested on the training dataset, 95% of the images were tested accurately but when the trained 

model is used on the 20% of test images to which the model had not previously been exposed, the 

model correctly identified only 65.4% of these test images. Similarly, the training loss on the 

training data was 0.18 compared with a validation loss of 2.6 on the validation dataset. The model’s 

performance on training and validation data is shown in terms of accuracy and loss in Figures 23a 

and b, respectively.  

The first plot, which displays the relationship between the accuracy value and the epoch, highlights 

the distinction between the validation accuracy curve and the train accuracy curve. This indicates 

that the training data are insufficient in number, as the validation accuracy does not converge to 

the values of the training accuracy. This suggests that the data in the validation set are new to the 

model and have not been seen before, hence the predictions made are largely inaccurate. This is 

an important factor since it represents the generalizability of the model, i.e. how well a model can 

fit the new unseen data. To increase the generalizability of the model it is important to achieve the 

same accuracy for the training dataset and validation dataset. Graphically the training accuracy 

and validation accuracy curves should converge. As seen from the second plot (b) the training loss 

and validation loss curves are converging. This alone does not guarantee the performance of the 

 
5 https://keras.io/api/metrics/accuracy_metrics/ 

 

https://keras.io/api/metrics/accuracy_metrics/
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model.    

 

Figure 24. Evaluation of the performance of the CNN as a function of (a) Training accuracy 

versus test accuracy and (b) Training loss and validation loss for the Stage 1 dataset. 

 

The Confusion Matrix [106], which is shown in Figure 26, is plotted to assess the model’s 

predictions in detail. The matrix compares the predicted labels of the images by the model (on the 

X-axis) with the true labels of the images (on the Y-axis). The four cells in the matrix used in this 

evaluation are: True positive (when the model correctly identifies a phase-separated 

microstructure, shown in the bottom right corner of the matrix), False positive (when the model 

mistakenly identifies a homogeneous microstructure as phase separated, shown in the top right 

cell), True negative (when the model correctly identifies a homogeneous microstructure, shown in 

the bottom left cell), and False negative (when the model mistakenly identifies a phase-separated 

microstructure as homogeneous, shown in the top left corner ). Based on Figure 26, it is evident 

that the model incorrectly categorized 12 images of homogeneous microstructures as phase-

separated microstructures. To illustrate this, an example of one image has been included that falls 

under the 'False Positive' category. Additionally, the figure displays examples of the 'True Positive' 

and 'True Negative' categories, which depict the actual images classified by the mode in these 

categories. 
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Figure 25. Confusion matrix for stage 1 dataset 

Furthermore, the F1 score [107] is calculated using the True positive, False positive, and False 

negative values to trade-off between the precision and recall using the formulae listed below in 

Equations 3, 4, and 5, respectively [32]. The precision score and recall score metrics are calculated 

to understand the true influence of the True positive using the following formulae. Precision and 

recall are measures of a model’s accuracy, where precision evaluates the accuracy of positive 

predictions made by the model while recall assesses the model’s capability to identify all positive 

instances. A high precision score indicates that the model makes few minimal false positive 

predictions, meaning it correctly predicts positive only for instances that are truly positive. A high 

recall score signifies that the model is capable of accurately identifying a majority of the positive 

instances. The F1 score balances the trade-off between precision and recall, serving as an overall 

measure of a model’s accuracy. 
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Precision = 
True positive

Actual Result (True positive + False positive) 
                        Equation 3 

Recall =  
True positive

Predicted Result (True positive + False negative)
                     Equation 4 

F1 score =  
2*precision*recall

precision +recall
                                                  Equation 5 

 

The precision score is 0.7 and the recall score is 0.6. Overall, the F1 score obtained for this model 

is 0.5, where the higher the F1 score the better the model’s ability to predict accurately. Thus, the 

current F1 score needs improvement.   

6.2 Feedback and corrective measures 

 

Additionally, previous studies using DL methods have also assessed the model’s performance by 

measuring the accuracy and loss, thus Azimi et al. reported achieving 93.94% classification 

accuracy for steel microstructure classification using DL methods and obtaining an accuracy of 

48.89% surpassing the state-of-the-art approach significantly [33]. Chowdhury et al. reported a 

case study on dendritic morphologies using the pre-trained neural networks for two micrograph 

classification tasks and achieved accuracies up to 91.85 and 97.37, respectively [34]. A general 

and transferable deep learning (GTDL) framework built to predict phase formation in materials 

was able to discriminate five types of phases with accuracy and recall more than 94% [35]. The 

F1 score used in a previous study to classify the microstructure of titanium, steel, and powder using 

convolutional neural networks obtained an F1 score of 0.8 [32]. Based on the above assessments 

of the model using accuracy metrics, the confusion matrix, and the F1 score, along with relevant 

literature, it has been determined that the original dataset should be expanded by conducting 

additional experiments and adding more original images to train the model. 

To increase the original image dataset, experiments were repeated to fabricate the new films by 

following the same steps mentioned in Section 3.1 of Chapter 3. However, the data acquisition and 

microstructure characterization methods were changed due to the laboratory conditions and 

availability of equipment. 
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6.2.1 Data Generation 

 

The current setup had limited data acquisition capabilities. To address this, Professor Jonathan 

Howse from the Department of Chemical and Biological Engineering at the University of Sheffield 

provided access to advanced data acquisition equipment and various microscopes for conducting 

experiments and acquiring data. These experiments focused on film fabrication using diverse 

methods including blade-spreading as shown in figure 27, coverslip and slide quenching as shown 

in figure 28, and spin coating as shown in figure 29 respectively. Additionally, the nano-modified 

blends were subjected to curing at various temperatures such as 50°C, 21°C, and corresponding 

microstructure evaluation was observed using an optical microscope equipped with a data 

acquisition system. This allowed for the examination of the influence of curing temperatures on 

the microstructure. The impact of different blend fabrication methods on their microstructures was 

assessed by studying these structures after curing at varying temperatures and utilizing data 

acquisition techniques.  

 

Figure 26. Schematic of blade-spreading method used for nano-modified thin film fabrication 
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Figure 27. Contact slip and Slide quenching method where a liquid droplet of nano-modified 

polymer blend is quenched between a contact slip and a glass slide. 

 

 

 

Figure 28. Stages of spin-coating of thin-film on a substrate. Step 1: Solution is deposited on the 

substrate. Step 2: Rotational spread out of the solution. Step 3: Evaporation of the solvent, image 

used with permission from [108]. 

In the blade-spreading method, manual movement of the blade over the liquid introduced uneven 

force due to potential human error. Consequently, this led to inconsistent film thickness, making 

it challenging to achieve uniformity when fabricating blends of the same thickness. In contrast, the 

coverslip and slide quenching method reduced the spatial movement of particles in the droplet, 
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resulting in a lower dispersion compared to spin coating, where centrifugal force aided in 

mobilizing the particles within the liquid. The primary objective was to achieve a range of 

microstructures, both phase-separated and homogeneous, while maintaining consistent film 

thickness. Ultimately, spin coating consistently yielded similar results across repeated 

experiments, making it the standard method for blend fabrication. 

The experiment setup is shown in Figure 30. The microstructure image acquisition of the spun-

coated films was performed through a bespoke experiment . The spun coated film on a glass slide 

is immediately placed on the Peltier element (SP1848-27145 TEC1 Thermoelectric Heatsink 

Cooler Peltier Plate Module) which was maintained at 50◦C using a DC power supply from Tenma 

Model 72-8345A Switching Mode Bench at 4.7 V and 0.53 A of current. The voltage and current 

settings to maintain the 50°C were calibrated before the experiments. The calibration setup is 

shown in Figure 28 along with the temperature gradient of the Peltier module in Table 6. 

The heatsink placed below the Peltier element prevented the overheating by dissipating the heat to 

the surrounding surface and air. The silicon wafer with aluminium coating was used to keep the 

surface beneath the sample clean and shiny so that the reflection of the light from the microscope 

noise proof. The microstructure was observed to examine the dispersion of A-GNPs within the 

epoxy matrix using the Nikon objective lens of 10x magnification power. The complete setup with 

data acquisition is shown in Figure 32. 
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Figure 29. Experimental setup for Peltier module calibration   

Table 6. Calibration of Peltier module. 

Current 

(Amp) 

Voltage 

(V) 

Temperature 

(deg) 

Time 

(min) 

0.55 4.2 47 0 

0.53 4.7 63 10 

0.53 4.7 65.5 20 

0.58 5.2 71 30 

0.63 5.7 75.5 40 

0.66 6.2 82 50 

0.7 6.7 87 60 

 

 
Figure 30. The temperature gradient of the Peltier module. 
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6.2.2 Data Acquisition 

 

 

 

Figure 31. a) In-situ data acquisition setup at the University of Sheffield, b) Schematic 

representation of the setup 

The Pixelink camera module (Pixelink PL-D7718CU-T, 1/2.3", 18MP, C-Mount USB 3.0 Colour 

Camera) was attached to the Nikon objective lens and the microstructure images were acquired 

using Pixelink Capture software. These images were captured at a frame rate of 1fps with 5.8 ms 



55 

 

exposure time and saved in .jpg format in the selected directory. Using this set up the data 

acquisition was carried out over 10 minutes per film to ensure that the microstructure construction 

is fully completed (this typically occurs during the initial 6–8 mins). After that, the spun-coated 

film is placed into an oven for 5 hrs. The final cured microstructure was captured to verify the 

change in morphology during the oven heating.  

      

  

    

Figure 32Images captured using optical microscope showcasing various microstructures of novel 

nano-modified polymer composite films produced with Epoxy Resin, MH 137, and A-GNPs at 
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the University of Sheffield.  (a-c) Depict a phase-separated microstructure featuring distinct 

graphene domains achieved with 3 weight % of A-GNPs in the total blend. (d-f) Exhibit a 

homogeneous microstructure of the blend with varying weight percentages of A-GNPs. 

The phase-separated microstructure occurs when the reaction pairs begin to undergo crosslinking, 

and are thus prone to separate away from unreacted pairs to form two distinct phases from the 

miscible blend during the polymerization (shown in Figure 33 a), b), c) which represents examples 

of the new data set acquired. The second type of microstructure with homogeneously dispersed A-

GNPs is abbreviated as a homogeneous microstructure (where the A-GNP is homogeneously 

dispersed in epoxy resin) as shown in Figure 33. d), e) and f). 

6.3 Testing on the Newly generated dataset 

 

The newly expanded dataset consisted of 350 images after incorporating newly obtained images 

from the second set of experiments. This dataset was then used to train the previously constructed 

CNN model for identifying the microstructure of phase-separated polymers while keeping the 

same values for the hyperparameters i.e. batch size, number of epochs, and validation data split. 

The model is first assessed by the accuracy metric displayed in Figure 34 a) and b), respectively. 

In this plot the validation accuracy and train accuracy curves converge closely with a validation 

accuracy of 80.1%, significantly greater than the previous case based on a limited dataset, while 

the validation loss and training loss also converged to a much lower value of 0.6 as shown in Figure 

34 a) and b), respectively.   

Additionally, the model was evaluated using a confusion matrix, a common technique in 

classification problems. In this case, the extended dataset provided a diverse collection of 

microstructural images, which leads to a larger training data set. This enhances the model’s ability 

to learn and recognize the unique spatial features present in both phase-separated and 

homogeneous microstructure images and therefore correctly identify the structured extreme dark 

and white regions in phase-separated microstructure. However, this is limited particularly in 

situations where the blend has only just begun to disperse. As illustrated in Figure 35, the model 

incorrectly classified three images of homogeneous microstructures as phase separated, even 

though small dark regions were only just beginning to appear in the white regions, indicating 

dispersion, which was classified as 'False Positive' according to the Confusion Matrix. To provide 

an example of this, an image has been included that the model categorized within this grouping. 



57 

 

The precision, recall, and F1 score were calculated for this model, and these are 0.94, 0.91, and 

0.92, respectively. 

 

Figure 33. Performance of the CNN as a function of (a) Training accuracy versus test accuracy 

and (b) Training loss and validation loss for the extended dataset 

 

6.4 Summary 

 

In this chapter, the final stage of the software development life cycle is executed. The model that 

was developed and described in Chapter 5 is now subjected to testing using the old dataset. Two 

metrics, namely Accuracy and Confusion Matrix, are utilized for the testing process. The initial 

test results are carefully examined which showed the poor accuracy of model in microstructure 

classification task. Data scrutiny and literature comparisons lead to the generation of corrective 

measures. From finding it was concluded that the current dataset needs to be expanded further. As 

part of the expansion of the original dataset, new experiments are conducted. From these newly 

generated datasets, the model could learn from a wider variety of data. The second stage dataset is 

then subjected to testing using the same metrics employed earlier. The results demonstrate a 

noticeable improvement compared to the initial testing phase. A detailed discussion surrounding 

this outcome is presented in the subsequent chapter, Chapter 7. 
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Figure 34. Confusion matrix for extended (stage 2) dataset 
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CHAPTER 7. DISCUSSION 
 

This chapter will cover the overall discussion surrounding experiments and DL tools. In this 

chapter the previously developed DL model will be used on a new dataset to find out whether DL 

can perform better and if it is suitable for phase separation identification problems.  

7.1 Experimental methods and results: 

 

Firstly, the literature review highlighted the potential of DL techniques for studying the 

microstructure of complex materials such as polymer nanocomposites. These methods offer 

advantages in analysing large datasets and identifying intricate relationships within composite 

components. It was observed that the novel nano-modified polymer composite, with its exceptional 

mechanical and thermal properties, held promise for applications in electronics coatings. However, 

further research was warranted to understand the microstructure of this new composite fully. The 

utilization of data-driven methods, including DL, proved to be efficient and cost-effective 

compared to traditional experimental characterization and simulation methods. This underscored 

the importance of validating DL methods for studying newly developed polymer nanocomposites, 

fulfilling the first research aim. 

The summary of the chemical composition and processing parameters for nano-modified polymer 

composite are mentioned in Figure 36 and Table 7 respectively. 

Regarding Young's Modulus, an increase was observed with the addition of A-GNPs in the 

hardener solution, up to a weight percentage of 50%. However, the limited number of unique 

microstructures (only five) posed challenges when applying DL techniques for predicting Young's 

Modulus. The complexity and variability of the microstructures necessitate a larger and more 

diverse dataset for accurate predictions, rendering DL unfeasible in this particular case.  

In terms of contact angle measurements, the inclusion of A-GNPs resulted in reduced wettability 

of the composite. Notably, two distinct microstructures were identified, each either improving or 

reducing the wettability. Given that skilled personnel can effectively test and evaluate this 

property, the use of DL is deemed unnecessary. 
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Figure 35. Summary of the chemical compositions of the polymer blend and A-GNP. 
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Table 7. Summary of the experimental observations 

Room temperature (°C) 24.2 

Spin coating time (min.) 1 

Spin coating speed (RPM) 1500 

Dispersion time (min.) 180 

Curing temperature (°C) 50 

Curing time (min.) 300 

 

7.2 Deep Learning Method 

 

For microstructural studies, convolutional neural networks (CNNs) emerged as a suitable DL 

model. CNNs have predominant applications in computer vision for image recognition tasks, 

effectively extracting features from images, making them ideal for analysing microstructural 

patterns. The choice of CNN as the DL model aligned with the research objective of distinguishing 

between phase-separated self-assembled microstructures reinforced with graphene domains and 

homogeneous microstructures. 

Lastly, to identify how accurately the model can work as a classifier, the ROC curve is plotted. To 

plot the ROC curve, the true positive rate is plotted on the y-axis and the false positive rate on the  

y-axis. To construct a ROC curve, the classification model's output, often a probability score or a 

continuous prediction, is used to rank the instances. The threshold is then applied to determine the 

predicted class labels. By varying the threshold from high to low, different points on the ROC 

curve are obtained. At each threshold, the true positive rate (TPR) is calculated as the ratio of 

accurately predicted positive instances to all real positive instances. The false positive rate (FPR) 

is determined by the ratio of inaccurately predicted positive instances to the overall number of true 

negative instances. An ideal classifier should have a TPR of 1 and an FPR of 0, indicating perfect 

classification. In such a case, the ROC curve would pass through the top-left corner of the plot. 

Conversely, a random classifier would exhibit a ROC curve that closely mimics a diagonal line 

with a positive gradient i.e. from the plot’s bottom left to its top right. 
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Figure 36. Receiver Operating Characteristic (ROC) curve of CNN classification model trained 

on (a) Stage 1 dataset and (b) Extended dataset 
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The ROC curve provides a visual representation of the model's discriminatory power or its ability 

to distinguish between positive and negative instances. A model’s performance is considered better 

when the ROC curve is positioned closer to the top-left corner. The area under the ROC curve 

(AUC – ROC) can be used as a quantitative metric to assess the model’s performance. A perfect 

classifier is indicated by an AUC – ROC value of 1, whereas a random classifier is represented by 

an AUC – ROC value of 0.5. 

The ROC curve and the associated AUC-ROC analysis are widely used in ML and evaluation of 

classification models, particularly in medical diagnostics, fraud detection, and many other domains 

where the balance between true positive and false positive rates is crucial. Furthermore, to evaluate 

the FPR and TPR of the classifier model, the ROC curve was plotted for both cases (a) the Stage 

1 dataset and b) the extended dataset, as depicted in Figure 37 a) and b), respectively. The left 

curve was obtained from the earlier model trained on a limited dataset and the right one with an 

improved ROC curve was obtained after the dataset had been expanded. The actual classification 

result is also shown in Figure 38 and Figure 39 for stage 1 dataset and stage 2 dataset. From the 

comparison, the latter shows significantly improved predictions and hence it is now a reliable 

classifier model. Hence this updated model satisfies the third research aim of the thesis. 

The testing results of the DL model demonstrated the iterative nature of the software development 

life cycle. The initial testing phase highlighted areas requiring improvement, leading to corrective 

measures such as data generated through experiments. The second stage dataset was then tested 

using the same metrics employed in the initial testing, revealing substantial improvement 

compared to the previous phase. These results underscored the importance of continuous 

evaluation, refinement, and optimization in DL models. 

The automated screening of microstructure can process a high volume of images saving lots of 

time and ensuring the quality of screening. For the more complex problem such as predicting 

chemical composition from microstructure or processing history, the ground truth data must be 

large e.g. at least 1000 images of microstructures including all range of variations of microstructure 

for the change in composition. Some of the researchers have used the simulation methods to 

generate the images instead of experiments in that case simulation method may not depict the 

experimental result due to boundary conditions set in the simulation as well as experimental 
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constraints. The skilled personnel in the material science domain needs to complement the person 

who is developing the data-driven model. 

TRUE: 0, PREDICTED: 0      TRUE: 0, PREDICTED: 1  TRUE: 0, PREDICTED: 1 

     

            a)     b)      c) 

TRUE: 0, PREDICTED: 1      TRUE: 1, PREDICTED: 1  TRUE: 0, PREDICTED: 1 

     

  d)    e)     f) 

TRUE: 1, PREDICTED: 1       TRUE: 1, PREDICTED: 1 TRUE: 0, PREDICTED: 1 

     

  g)     h)     i) 

Figure 37. Classification result on stage 1 dataset.                           
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TRUE: 1, PREDICTED: 1 TRUE: 1, PREDICTED: 1    TRUE: 1, PREDICTED: 1 

     

a)                                                b)     c) 

TRUE: 1, PREDICTED: 1   TRUE: 1, PREDICTED: 1    TRUE: 1, PREDICTED: 1 

     

d)    e)    f) 

TRUE:0, PREDICTED: 0  TRUE: 0, PREDICTED: 0     TRUE: 0, PREDICTED: 0 

     

g)     h)     i) 

Figure 38. Classification result on stage 2 dataset 
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CHAPTER 8. CONCLUSIONS AND FUTURE SCOPE 
 

8.1 Conclusions 

 

The research question posed in this thesis, "Can we use DL techniques to identify the development 

of phase behaviour in a novel nano-modified polymer composite?", aimed to explore the potential 

application of DL in studying the microstructure and phase behaviour of complex materials. The 

objectives were successfully achieved through a comprehensive literature review, the development 

of a DL model, and the testing of the model on relevant datasets. The literature review highlighted 

the potential of DL techniques in analysing large amounts of data and identifying complex 

relationships in polymer nanocomposites and CNN was the majorly used artificial neural net. The 

novel nano-modified polymer composite, with its exceptional mechanical and thermal properties, 

presented an ideal candidate for DL-based analysis.  

The experimental results, including the determination of Young's modulus and contact angle 

measurements, provided insights into the material properties and the influence of A-GNPs on these 

properties. The findings were discussed comprehensively, emphasizing the importance of skilled 

personnel in evaluating certain properties, such as wettability, without the need for DL methods. 

The DL model, specifically the CNN architecture, was successfully designed and developed based 

on the identified research aims and objectives. The model showed promising results in 

distinguishing between different microstructures in epoxy blends, achieving an accuracy of 80.8% 

and an F1 score of 0.92 for categorizing phase-separated self-assembled microstructures and 

homogeneous microstructures. The ROC curve indicated that the model closely resembled a 

perfect classifier when tested on an expanded dataset. This research demonstrates the potential of 

data-driven methods for analysing polymer nanocomposites, offering a more efficient alternative 

to traditional characterization techniques such as AFM, which are costly and time-consuming. This 

finding fulfils the second research aim of this study. The findings suggest that these methods can 

have a significant impact on studying phase-separated microstructures, potentially facilitating 

inverse design by predicting the required composition for phase separation. This could save 

considerable time and effort compared to relying solely on experimental methods. By utilizing 
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CNNs in DL, this study effectively identified the desired microstructure of a novel nano-modified 

polymer composite known for its exceptional properties.  

In conclusion, this research demonstrates the potential of DL techniques, particularly CNN, in 

studying the microstructure and phase behaviour of novel nano-modified polymer composites. The 

developed DL model successfully distinguished between different microstructures, offering an 

efficient alternative to traditional characterization techniques. The findings contribute to the 

advancement of data-driven methods in polymer nanocomposite research and lay the foundation 

for future applications of DL in predicting phase separation and understanding the influence of 

various parameters on microstructure formation. Further, currently available data can be used to 

train such models which can impact the advancement of innovations in material science. By 

adopting data-driven methods, the traditional approach of taking 5-10 years to develop a solution 

or product, from innovation to application in industry, can be significantly accelerated. Data-driven 

approaches facilitate faster discovery and can optimize the entire development process.  

The challenges associated with the application of DL methods were identified, including the 

requirement for representative and sufficient training data, as well as the trade-off between data 

collection efforts and problem criticality. These challenges were addressed and discussed, 

providing insights into the limitations and considerations for potential applications of DL in similar 

research areas. 

The challenges associated with the application of DL methods can be summarized as follows: 

1. The effectiveness of the model in solving a given problem relies on whether the training 

data adequately represents the various variations and complexities present in the data. 

Additionally, the quantity of data available also plays a crucial role in the performance of 

the model. 

2. When selecting a problem statement, it is essential to consider the trade-off between the 

resources required for data collection and the criticality of the problem at hand. In situations 

where extensive data collection is necessary, it is worth exploring alternative methods that 

can provide insights or solutions while considering the importance and urgency of the 

problem. 

These remarks conclude the third research aim of this study. 
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8.2 Lessons learnt 

 

Throughout this thesis, several valuable lessons have been acquired, which have enhanced our 

understanding of the application of DL techniques in studying novel nano-modified polymer 

composites. The following lessons summarize the key insights gained from this research 

endeavour: 

8.2.1 Importance of Literature Review: 

 

A comprehensive literature review played a pivotal role in this study, enabling us to grasp the 

existing knowledge landscape and identify research gaps. Through an in-depth analysis of previous 

works, we were able to discern the suitability of DL techniques for studying polymer 

nanocomposites and the potential benefits they offer in terms of analysing complex 

microstructures. This emphasized the importance of conducting a thorough literature review to 

inform and guide research directions. 

8.2.2 Data Collection and Pre-processing Challenges: 

 

The process of data collection for the novel nano-modified polymer composite presented certain 

challenges. Access to relevant and high-quality data proved to be a key concern, requiring careful 

selection and evaluation of available datasets. Additionally, data pre-processing tasks, including 

cleaning, normalization, and feature extraction, were essential to ensure the reliability and 

suitability of the data for DL analysis. The importance of addressing these challenges early on was 

crucial in establishing a solid foundation for subsequent modelling and analysis. 

8.2.3 Model Development and Selection: 

 

Developing an appropriate deep-learning model for studying the microstructure of the polymer 

composite was a critical aspect of this research. Informed by prior works that demonstrated the 

effectiveness of convolutional neural networks (CNNs) in image-related tasks, the CNN 

architecture was chosen as the most suitable model for this study. This selection process 

highlighted the significance of understanding the strengths and limitations of different DL models 

and aligning them with the research objectives. 
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8.2.4 Training and Testing: 

 

The training and testing phases of the DL model provided valuable insights. The model’s 

performance was influenced by various factors, including the selection of appropriate 

hyperparameters, the availability and diversity of training data, and the prevention of overfitting. 

Rigorous testing on unseen data was instrumental in assessing the model’s accuracy, generalization 

capabilities, and potential for practical applications. The iterative refinement of the model based 

on testing results was a key lesson learned for achieving robust and reliable predictions. 

8.2.5 Experimental Limitations: 

 

This research encountered limitations in the experimental setup, notably the limited number of 

unique microstructures used in the study. Consequently, applying DL techniques for predicting 

Young’s Modulus became unfeasible due to the insufficient variation in the data. This highlighted 

the need for expanding the dataset to encompass a broader range of microstructures in future 

research. Furthermore, considering alternative approaches or complementary methods to address 

the limitations of DL in certain scenarios should be explored. 

6. Trade-off between Deep Learning and Traditional Methods: 

A fundamental consideration arising from this study is the trade-off between the resources required 

for DL analysis and the criticality of the research problem. DL techniques, while powerful and 

efficient, necessitate substantial data collection efforts and computational resources. Therefore, it 

is essential to carefully evaluate the cost-effectiveness and importance of the research problem 

when deciding to employ DL or rely on traditional characterization techniques. A thoughtful 

assessment of the problem’s complexity and urgency will guide researchers in selecting the most 

appropriate approach. 

8.3 Future Outlook 

 

The future scope of this research involves expanding the predictive capabilities of DL models to 

forecast phase separation in nanocomposites. The user, e.g. a researcher, will be entering the 

composition of different components and the model will be able to predict the microstructure and 

ultimately determine whether the given composition will lead to a favourable microstructure which 
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gives excellent properties, in this case, if it would be a phase-separated microstructure or 

homogeneous microstructure. This will greatly benefit researchers who currently rely on iterative 

experiments and characterization methods in the lab to innovate polymer nanocomposites. This 

saves resources required in laboratories such as consumables to conduct the experiments, reduces 

chemical waste and saves man hours. To achieve this, it is crucial to consider additional 

parameters, such as the Hildebrand solubility parameter, viscosity, and thermal properties, to 

enhance the model’s understanding of how these factors influence the resulting microstructure. 

This will require careful consideration of input data structure, parameter tuning, training and 

thorough testing. The collection of data should be conducted meticulously with the guidance of 

domain experts, as it will serve as the foundation for the model’s learning process.  

This approach can not only be applied to the novel nano-modified polymer composite but also to 

identify optimal combinations of polymers and nanofillers. By understanding the phase separation 

phenomena, researchers can utilize this method to reverse-engineer the desired microstructure that 

aligns with specific application requirements. This approach takes into consideration the 

relationship between material properties and microstructure, enabling researchers to design and 

achieve the desired microstructure for a particular application.  

In addition to this, researchers will be able to utilize automated classification models to swiftly 

scan vast databases of materials and identify favourable ones. This approach proves especially 

beneficial when dealing with immense volumes of data, where error-free results are crucial and 

must be obtained within minutes. One industry that can greatly benefit from such applications is 

the plastics recycling industry. Conventional methods for polymer sorting and separation face 

inherent limitations, especially when dealing with composite materials featuring intricate 

nanostructures. The manual and mechanical approaches currently employed struggle to discern the 

specific phases within these advanced materials [109]. However, with the advent of CNN models 

specialized for phase identification, a promising avenue emerges for precise categorization and 

separation. The CNN model, designed to discern nuanced structural features e.g. morphology, is 

uniquely poised to overcome this hurdle. The advanced model trained for phase identification and 

composition prediction paves the way for efficient recycling processes [110]. 

Moreover, the economic viability of employing such advanced technologies cannot be understated. 

While initial implementation may necessitate investment, the long-term gains in terms of 



71 

 

streamlined recycling operations and the recovery of high-value materials are anticipated to far 

outweigh the costs. As the plastic recycling industry continues to evolve, the integration of CNN 

models for classification of material based on it’s microstructure or phase stands at the forefront 

of technological progress. It not only addresses existing challenges in recycling nano-modified 

polymer composites but also positions the industry on a trajectory toward greater sustainability 

and efficiency therefore showing the potential impact on the plastic recycling industry. This 

innovative approach heralds a new era in recycling technology, poised to play a pivotal role in 

shaping the future of the plastic recycling industry.  

To enhance recycling efficiency in this field, companies are actively seeking techniques that can 

effectively categorize incoming plastic materials from primary sources. The primary focus lies in 

the recovery of pure forms of recycled poly(ethylene terephthalate) (PET), which has wide 

applications in the plastic industry e.g. plastic containers for food storage, thin film wrappers for 

food packaging and water bottles etc. It is essential to accurately identify and separate such 

materials from a given mixture of various materials. Currently, manual execution of this task 

requires significant effort and is prone to human errors, such as inaccuracies caused by employee 

fatigue. Alternatively, the characterisation methods based on infrared technologies are currently 

being investigated for this application, etc. These methods are efficient but are only suitable for 

low volume. In industry, the waste recovery process is in continuous operation thereby making 

these methods likely expensive and slow. However, by boosting these existing characterization 

techniques with AI algorithms based on image recognition, the developed infrastructure will be 

capable of scanning incoming materials, identifying them, and categorizing them correctly within 

minutes. 

Furthermore, organizations dedicated to environmental engineering, such as "The Ocean Cleanup 

6" are actively progressing in the development of sophisticated technologies to understand the 

underlying mechanisms governing the behaviour of plastics in marine ecosystems. Their research 

extends to comprehending and detecting various polymer types and configurations, aiming for an 

efficient removal process from our oceans. The deep learning models formulated in this thesis have 

the potential to advance to the point of recognizing polymer types through image analysis and 

composition assessment, complementing sensor-based techniques. Given the escalating severity 

 
6 https://theoceancleanup.com/research/ 
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of the climate crisis, it is imperative to seek collaborative solutions with environmental entities 

like The Ocean Cleanup to effectively mitigate its impact. 
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