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Motivation: Lightweight Structures
2
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• Increasing use of advanced composites in aerospace structures

• Mass efficiency is a key design driver 

• Larger payload capacity

• Lower fuel burn

• New economic opportunities 
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Context: Fiber-Steered Composites
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• Steering of composite material tapes produces non-constant fiber angle across a ply 

• In-plane shearing of material tows by Continuous Tow Shearing (CTS) process
along curvilinear reference eliminates potential defects and allows tessellation

• CTS process exhibits nonlinear orientation-thickness coupling (𝑡 = 𝑡0 sec 𝜃) and 
allows periodic fiber steering 

[2]

Fiber Steering for Mass-Efficient Thin Plate 

Structures

11th October 2023

[2] European Space Agency. (2022, May 31). Rapid tow shearing. Retrieved from https://www.esa.int/ESA_Multimedia/Images/2022/06/Rapid_tow_shearing
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Method: Finite Element Model
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• Finite Element Method employed in commercial solver (ABAQUS)

• Element-wise angle and thickness algorithm for computation of unique composite sections

• Continuum shell elements (SC8R) necessary for application of simple support conditions to curved mid-plane

• Example discretization of ±90 0|70 1
𝑠,

𝑥
∅

𝑇1 = 70°
𝑥′

∅
𝑥′

∅
𝑥′

𝑇1 = 70°

𝑇0 = 0°



Objective: Design Problem
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• Application

• Simply supported square aspect ratio panel 

𝒍𝒙 = 𝒍𝒚 = 𝟎. 𝟐𝟓𝒎 under uniaxial compression

• Hypothesis

• Constraints

• Design load

• Minimum load-carrying capacity

• Tsai-Wu failure criterion

• Solution stability assurance

• Balanced and symmetric layups

Applied loading as uniform 
end-shortening 

Measured reaction force
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Method: Elastic Tailoring Potential by Orthotropic Materials
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Traditional Angles Angle Ply Thickness-Tailored Angle Ply Fiber-Steered

𝑧

Tailoring Method Ply Angles 𝜃𝑘 Ply Thickness 𝑡𝑘

Traditional Angles 0°, ±45°, 90° 𝑡0

Angle Ply 0°, 1°, 2°, … , 90° 𝑡0

Thickness-Tailored Angle Ply 0°, 1°, 2°, … , 90° 𝑡0sec(𝜗𝑘)

Fiber-Steered 𝑓(𝑥, 𝑦) 𝑡0sec(𝜃𝑘(𝑥, 𝑦))
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Method: Nonlinear Performance Evaluation
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Linear Buckling Step

Linear Static Step

Nonlinear Riks Step

Load Carrying Capacity 
Estimation

Stiffness Evaluation

Fitness Evaluation

𝐹, 𝑢, 𝐼𝐹(𝑥, 𝑦)

𝑃𝑐𝑟

𝑚, 𝜆𝑢, Φ(𝑥, 𝑦)

𝐹3600𝜇𝜀

𝑘𝑥
𝑝𝑟𝑒

, 𝑘𝑥
𝑝𝑜𝑠𝑡

Structural Stability 𝑛−𝜆
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min
𝛼

𝑚(𝛼) ∙ max 1, ൗ𝐹𝑅

𝐹3600𝜇𝜀

1

∙ max 1,  max 𝐼𝐹 𝑥, 𝑦
1

∙ max 1,  1 + 𝑛−𝜆
1



Method: Optimization Process
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Results: Key Findings
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1. Mass efficiency achievable by elastic tailoring with orthotropic materials

2. Mass penalty when fiber steering by CTS process is high (up to ~3 ×)

3. Fiber steering can result in structural mass efficiency but is not a catch-all design method

4. Significant potential for programmable ply thicknesses by CTS process
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−6%

Results: Square Aspect Ratio, 𝑭𝑹 = 𝟎. 𝟓𝒌𝑵/𝒎𝒎
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Optimization Mass 𝐠

TA 360

AP 360

AP-TT 345

CTS 339

902/012 𝑠

902/010/±45 𝑠

902/010/±72 𝑠

±15 63|35 2/∓7 −37| − 2 2/∓72 −48| − 63 1/∓7 −17| − 21 1/∓28 −26| − 29 2
𝑠

• Dataset extreme value identification as 𝐼𝐹 max(𝐹𝑅) , max(𝐹𝑅) and min 𝐼𝐹 , 𝐹𝑅(min 𝐼𝐹 )

• Several coincident extreme values due to layered optimization methodology 



Results: Square Aspect Ratio, 𝑭𝑹 = 𝟎. 𝟓𝒌𝑵/𝒎𝒎
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𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐞𝐝 𝐋𝐚𝐲𝐮𝐩

TA 902/012 𝑠

AP 902/012 𝑠

AP_TT ±69/±5/±19/±3 𝑠, 𝑡0 sec 44 2/ 𝑡0 sec 70 2/ 𝑡0 sec 10 2/ 𝑡0 sec 44 2 𝑠

CTS ±15 63|35 2/∓7 −37| − 2 2/∓72 −48| − 63 1/∓7 −17| − 21 1/∓28 −26| − 29 2
𝑠
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Results: Square Aspect Ratio, 𝑭𝑹 = 𝟎. 𝟓𝒌𝑵/𝒎𝒎
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𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐦 (𝒈) 𝑵𝒑𝒍𝒚𝒔 𝒌𝒙
𝒑𝒓𝒆 𝑮𝑵

𝒎
𝒌𝒙

𝒑𝒐𝒔𝒕 𝑮𝑵

𝒎
𝑷𝒄𝒓(𝒌𝑵) 𝐦𝐚𝐱 𝑰𝑭

𝟑𝟔𝟎𝟎𝝁𝜺
𝒙, 𝒚 𝑭𝟑𝟔𝟎𝟎𝝁𝜺/𝑭𝑹

TA 360 28 0.97 0.26 32.4 0.99 1.13

AP 360 28 0.97 0.26 32.4 0.99 1.13

AP_TT 345 16 0.83 0.23 33.4 0.96 1.02

CTS 339 20 0.72 0.23 36.0 0.89 1.01

𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐞𝐝 𝐋𝐚𝐲𝐮𝐩

TA 902/012 𝑠

AP 902/012 𝑠

AP_TT ±69/±5/±19/±3 𝑠, 𝑡0 sec 44 2/ 𝑡0 sec 70 2/ 𝑡0 sec 10 2/ 𝑡0 sec 44 2 𝑠

CTS ±15 63|35 2/∓7 −37| − 2 2/∓72 −48| − 63 1/∓7 −17| − 21 1/∓28 −26| − 29 2
𝑠
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Results: Square Aspect Ratio, 𝑭𝑹 = 𝟎. 𝟓𝒌𝑵/𝒎𝒎
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• Load-displacement history (L) and equilibrium curve (R) of optimized structural configurations



Conclusions & Future Work
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• Mass efficiency achievable by elastic tailoring with 
orthotropic materials

• Mass penalty when fiber steering by CTS process is 
high (up to 3x)

• Fiber steering can result in structural mass efficiency 

• Significant potential for programmable ply 
thicknesses by CTS process

• Aspect ratio change

• Increased minimum load carrying capacity 
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