
CELLO: Compiler-Assisted Efficient Load-Load
Ordering in Data-Race-Free Regions

Sawan Singh∗, Josue Feliu†, Manuel E. Acacio∗, Alexandra Jimborean∗, Alberto Ros∗

∗Computer Engineering Department, University of Murcia, Murcia, Spain
†Computer Engineering Department, Universitat Politècnica de València, València, Spain

Email: singh.sawan@um.es, jfeliu@disca.upv.es, meacacio@um.es, alexandra.jimborean@um.es, aros@ditec.um.es

Abstract—Efficient Total Store Order (TSO) implementations
allow loads to execute speculatively out-of-order. To detect order
violations, the load queue (LQ) holds all the in-flight loads and is
searched on every invalidation and cache eviction. Moreover, in a
simultaneous multithreading processor (SMT), stores also search
the LQ when writing to cache. LQ searches entail considerable
energy consumption. Furthermore, the processor stalls upon
encountering the LQ full or when its ports are busy. Hence,
the LQ is a critical structure in terms of both energy and
performance.

In this work, we observe that the use of the LQ could
be dramatically optimized under the guarantees of the data-
race-free (DRF) property imposed by modern programming
languages. To leverage this observation, we propose CELLO, a
software-hardware co-design in which the compiler detects mem-
ory operations in DRF regions and the hardware optimizes their
execution by safely skipping LQ searches without violating the
TSO consistency model. Furthermore, CELLO allows removing
DRF loads from the LQ earlier, as they do not need to be searched
to detect consistency violations.

With minimal hardware overhead, we show that an 8-core 2-
way SMT processor with CELLO avoids almost all conservative
searches to the LQ and significantly reduces its occupancy.
CELLO allows i) to reduce the LQ energy expenditure by 33% on
average (up to 53%) while performing 2.8% better on average
(up to 18.6%) than the baseline system, and ii) to shrink the
LQ size from 192 to only 80 entries, reducing the LQ energy
expenditure as much as 69% while performing on par with a
mainstream LQ implementation.

I. INTRODUCTION

Sequential Consistency (SC) [29] is one of the strongest
memory consistency models. It preserves the program order
of all memory accesses and thus offers intuitive semantics
to programmers. On the other hand, exploiting memory level
parallelism (MLP), which relies on reordering instructions to
hide long-latency memory operations, is key for performance.
The Total Store Order (TSO) memory consistency model [51],
supported by Intel and AMD processors, achieves a good bal-
ance between programmability and performance by allowing
load instructions to be effectively reordered with respect to
store instructions. This way, latency of store operations is
hidden by allowing them to perform out of the processor’s
critical path, at the cost of relaxing the consistency model
semantics.

Despite TSO preserves the load-load order, in hardware,
loads are speculatively reordered with respect to each other
to improve MLP [20]. This speculative execution requires

0.0

0.5

1.0

1.5

2.0

0

50

100

150

200

LQ
 s

ea
rc

h
 p

o
rt

s

LQ
 s

iz
e

LQ size (left y-axis)
LQ search ports (right y-axis)

(a) LQ size and search ports

0

5

10

15

20

0.00

0.01

0.02

0.03

0.04

Le
ak

ag
e

p
o

w
er

 (
m

W
)

D
yn

am
ic

 e
n

er
gy

 (
n

J)

Dynamic energy (left y-axis)
Leakage power (right y-axis)

(b) Dynamic energy per search
and leakage power

Fig. 1: Evolution of LQ characteristics across different gener-
ations of Intel processors.

all loads to be placed in order in the load queue (LQ), a
content-addressable memory (CAM) structure that is searched
on certain events to prevent exposing speculative ordering
violations and is coupled with a mechanism to recover from
misspeculation when detected.

The LQ is one of the most critical structures in a processor,
in terms of performance and energy [19]. It needs to keep all
in-flight loads in order and support priority searches which,
for performance reasons, are done associatively. Furthermore,
it is searched frequently: each time a store executes, in order to
safeguard sequential semantics [36], and on any invalidation
or cache eviction, to enforce the load→load order [20]. In
addition to the high contention on its search (i.e. snoop)
ports, the LQ also stalls out-of-order (OoO) processors when it
becomes full. Consequently, as depicted in Figure 1a, both LQ
size and search ports have increased over the last few years.
For example, Intel processors have increased the LQ size from
48 entries in the Nehalem microarchitecture [25] to 192 in the
Alder Lake [46]. The number of search ports also grew in Ice
Lake [39], adding a second search port to the LQ.

However, the increase in LQ size and search ports comes
with a high energy cost. The LQ is a power-hungry and
latency-sensitive structure as it needs to support fast associa-
tive searches on addresses [19]. Figure 1b shows the rise in
energy consumption per search and leakage power as the LQ
size and search ports increase. The energy consumption of
the LQ is dominated by searches and almost quadrupled from
Skylake to Alder Lake. Similarly, leakage power quadrupled
across the same microarchitectures.

The simultaneous multithreading (SMT) paradigm, nowa-
days adopted by Intel, AMD, and IBM in their high-

TABLE I: LQ searches in non-SMT and SMT processors.
Event non-SMT SMT

Store computes its address Yes (D-spec search)
Store performs No Yes (M-spec search core)

Cache Inv. & Evictions Yes (M-spec search memory system)

performance processors, further exacerbates the criticality of
the LQ. SMT enables a core to execute multiple threads
simultaneously, while sharing most of the pipeline resources,
including the LQ. Moreover, SMT threads also share the
coherent state of the cachelines in the L1, requiring additional
LQ searches to prevent an SMT thread from exposing a
speculative load→load reordering to another thread co-running
in the same core [16]. Namely, on each store, a thread must
search the LQs of the co-running threads in the SMT core
when writing from the store queue (SQ) to the L1. This almost
doubles the energy consumption of the LQ and the search ports
contention since, in an SMT, every store needs to search the
LQ twice: when it executes and when it writes to the cache.

Since associative LQ searches are expensive and contention
in the LQ search ports can be high, previous proposals try
to reduce LQ searches either through software-hardware co-
designs [24] or pure hardware solutions [9], [22], [43], [47].
However, these approaches do not target consistency-related
searches [24], and increase the number of accesses to the L1
cache [9], [22], [47] or to the SQ [43].

In this work, we aim to reduce pressure on the LQ in SMT
processors by leveraging data-race-free (DRF) guarantees.
Data race freedom is a property that requires that all data
sharing among threads is properly guarded by synchronization
mechanisms. Most modern programming languages [1], [6],
[26] impose data race freedom and offer no correctness guar-
antees in the presence of data races. Thus, DRF programming
became a standard. Exposing the precise sharing of data to
the hardware represented a cornerstone for architectural and
micro-architectural optimizations, with a long history of DRF-
enabled hardware optimizations [4], [11], [23], [32], [41],
[53]. To the best of our knowledge, however, none of these
optimizations has tackled consistency searches in the LQ of
an SMT processor.

We exploit the DRF property and enable CELLO: Compiler-
assisted Efficient Load-Load Ordering in data-race-free re-
gions. CELLO broadens the compiler to delineate the DRF
regions of code exposing the synchronization operations (thus,
it does not require manual changes in the source code), and
transmits this information to the hardware using a dedicated
instruction. In hardware, CELLO implements a simple mech-
anism that filters unnecessary LQ searches, guaranteeing the
load-load ordering in a more efficient way. CELLO allows the
processor to i) virtually eliminate the LQ searches required to
detect consistency violations, and ii) reduce LQ occupancy by
removing loads that do not require searches.

Therefore, CELLO enables a more efficient utilization of
the LQ when running SC-for-DRF applications, such that:

• The number of LQ searches is almost halved, greatly
reducing the energy expenditure in one of the most

power-hungry structures of the processor. Simulation
results show that for an 8-core 2-way SMT processor,
CELLO filters 47% of the LQ searches, reducing LQ
energy expenditure by 33% on average (up to 53%)
and improving performance by 2.8% on average (up to
18.6%), without affecting consistency guarantees.

• DRF loads can safely exit the LQ earlier, before commit-
ting, without exposing consistency violations. This allows
shrinking the LQ size from 192 to 80 entries, reducing
the LQ energy consumption and area by 69% and 56%,
respectively, while still performing on par with a state-
of-the-art design.

Overall, CELLO maintains hardware simplicity by requiring
minimal modifications of the processor, while greatly reducing
the energy consumption of the LQ and improving performance
under the same consistency guarantees.

II. BACKGROUND

In this section, we first describe how (non-SMT) proces-
sors guarantee sequential semantics and correctness under the
speculative out-of-order execution of loads. Next, we briefly
introduce the SMT paradigm and discuss the additional LQ
searches they require to prevent exposing speculative load-load
reorderings. Table I summarizes the LQ searches performed by
non-SMT and SMT processors. Finally, we present the SC-for-
DRF consistency model.

A. Sequential semantics

Sequential semantics restrict reordering memory accesses
to the same memory location (dependencies) within a single
thread and must be respected by any program to offer an intu-
itive behavior. Although TSO allows a store to perform after
a younger load in program order, when both of them target
the same memory location, in order to preserve sequential
semantics, the load should read the value generated by the
store if no other thread wrote that location in the interim [12],
[36]. To this end, every load searches the SQ1 in parallel with
the memory access. On a hit, the store forwards the value to
the load.

Yet, when loads execute, the target address of older stores
may be unknown. These loads can execute speculatively
(dependency-speculative or simply D-speculative [40]). To
detect speculative executions that break sequential semantics,
when stores resolve their address, they search the LQ looking
for any matching younger D-speculative load. If found, the
load and the subsequent instructions are squashed and re-
executed. A load executes non-D-speculatively when all older
stores have already computed their addresses.

B. Speculative load-load reordering

Executing load instructions in program order severely limits
MLP, and hence, performance. To address this limitation,
at the same time that the load-load program order appears
to be respected, as required by a TSO consistency model,

1In this work, we refer to SQ as a unified store queue and store buffer.

out-of-order cores allow loads to execute speculatively out-
of-order [20]. In this scenario, a load-load re-ordering can
occur, for example, when an older load misses in the cache
while a younger load hits. The younger load is therefore
speculative (M-speculative following the terminology of Duan
et al. [14]) when an older load has not yet performed and
remains speculative until the older load performs. If the load-
load reordering is detected by another core, e.g., a remote store
to the same address performs in the interim, the speculative
load and subsequent instructions are squashed and re-executed.

The LQ plays an essential role to guarantee correctness
under speculatively out-of-order execution by allowing store
operations to detect M-speculative loads to the same ad-
dress in other cores. In particular, when a core receives an
invalidation, generated by a remote store operation, for an
address that matches a speculative load in the LQ, the load is
squashed. This matching is detected by associatively searching
the LQ. In addition to invalidation requests, cache evictions
also cause loads to be squashed because after evicting a
cacheline, subsequent invalidations for that line would not be
received. Therefore, on each received invalidation and local
cache eviction, the core searches its LQ for any speculative
load that retrieved data from the invalidated/evicted cacheline.

C. SMT and extensions for speculative load-load reordering

SMT enables a core to issue instructions from different
threads in the same cycle [56]. Exploiting thread-level par-
allelism makes SMT cores very efficient to hide the stalls of
a thread by executing instructions from a different co-running
thread. This way, SMT improves the throughput of the core.
To minimize the overhead of implementing SMT, the core’s
resources are shared as much as possible. For instance, the
front-end stages typically operate on a single thread and are
time-shared among threads. Only resources that are critical
for performance are replicated. Back-end resources, including
the issue queue, the reorder buffer (ROB), the LQ, and the SQ
are shared among threads. Its significant performance benefits,
along with its low hardware overhead, have led the major
manufacturers to implement SMT in their high-performance
processors.

As discussed earlier, a speculative reordering that violates
the load→load order in a thread could be exposed by stores
performed by a different thread. In an SMT processor, both
threads can run in the same SMT core, sharing the coherent
state of the cachelines in the L1. This means that a thread will
not receive a coherence invalidation from a store performed by
a co-running thread (in the same SMT core). Without such an
invalidation, no LQ search is triggered to check for potential
load→load order violations.

To address this issue, in an SMT core, each store that writes
from the SQ to the L1 triggers a search in the core’s LQ
looking for matching speculative loads from the co-running
threads. In order to avoid increasing the write latency, this LQ
search is typically performed in parallel with the cache write.
Nevertheless, this solution exacerbates contention at the LQ
search ports. While stores from threads running in different

cores are greatly filtered by the coherence protocol (a core only
sees these writes when it holds the corresponding cacheline in
any of its private cache levels), there is no filtering for cache
writes performed by threads co-running in the SMT core. In
practice, this means that in an SMT core, each store needs to
search the LQ twice: when it executes, to squash D-speculative
loads from the same thread, and when it writes to the L1, to
squash M-speculative loads from the other threads.

Since many LQ searches are triggered conservatively, Hilton
and Roth [22] proposed filtering the unnecessary ones. Their
solution adds a bit-vector to each cacheline in the L1, called
SMT-directory, to keep track of which threads have read
each cacheline. When a store in the SQ is ready to write, it
checks the SMT-directory: If a different thread, running in the
same SMT core, has read the cacheline, performing the write
requires searching the core’s LQ; otherwise, the LQ search is
skipped. This approach greatly filters the LQ searches when
stores write, as many cachelines are not shared among threads.
However, it has a hardware overhead of N bits per cacheline,
with N equal to the number of SMT threads per core.
Furthermore, it complicates the write logic, which is on the
critical path. The SMT-directory should be retrieved from the
L1 when performing the write and should be checked before
the write can actually be performed. If another thread has read
the cacheline, an LQ search is needed and the write needs
to be squashed and issued again along with the LQ search.
Writing to the L1 before the LQ search completes could
expose load→load order violations. Consequently, writes that
require an LQ search double their latency.

D. The SC-for-DRF consistency model

SC is a strong memory model that offers the most intu-
itive behavior for a shared-memory multithreaded program.
However, it is also the most restrictive, yielding significant
performance penalties compared to more relaxed memory
models. Prior work [2] and processor manufacturers [5] have
opted for weaker memory models, as they offer greater perfor-
mance potential, but at the cost of programming complexity.
To address this shortcoming, SC-for-DRF [2], [17] redefines
the weak ordering providing sequential consistency guarantees
for DRF software. Interestingly, widely used programming
languages such as Java, C, and C++ adhere to the SC-for-
DRF model and demand DRF programs to guarantee SC. In
contrast, in the presence of data races, most programming
languages have undefined semantics (e.g., C++) or, at best,
provide weak guarantees.

The SC-for-DRF consistency model [2] is weaker than SC,
as it provides the SC guarantees only for DRF software,
but it enables powerful optimizations, both in software at
compile-time or in hardware during execution. Additionally,
the hardware can be greatly simplified and optimized for
software complying with the SC-for-DRF consistency model.

In SC-for-DRF, potentially racy accesses must be guarded
by synchronization, entailing that they will execute sequen-
tially. The regions of code delimited by synchronization opera-
tions, denoted in this work as DRF regions, offer the guarantee

53.7% 67.3% 78.2%

0%

5%

10%

15%
Sy

n
c.

 in
st

ru
ct

io
n

s
Loads Stores

Fig. 2: Percentage of load and store operations found in
synchronization code (sync) at runtime.

0%

20%

40%

60%

80%

100%

LQ
 s

ea
rc

h
es

M-searches (core) M-searches (memory system) D-searches

Fig. 3: Percentage of LQ searches due to memory consistency
events and memory dependencies.

that writes do not target the same memory location as other
concurrent memory accesses (see Fig. 4). Consequently, the
memory operations performed by a thread during a DRF
region remain ”invisible” to the other threads until the end
of the DRF region. This guarantee allows performing memory
accesses in any order during DRF regions as long as sequential
semantics are respected. DRF region boundaries ensure that
memory accesses perform and become visible to the other
threads at the end of the region. Thus, boundaries include not
only synchronization operations but also fences, which prevent
the reordering of memory operations across them.

We do not advocate for weakening the TSO model, but for
minimally extending the x86 ISA to optimize the LQ usage
for improving the performance of DRF programs. To this end,
CELLO selectively filters LQ searches for DRF software, and
provides the same consistency guarantees as TSO. For legacy
software not compiled with our compiler, CELLO simply
disables the optimizations and provides TSO guarantees, as
described in Section V-B.

III. MOTIVATION

Although many applications are DRF by design, most pro-
cessors (e.g. Intel and AMD) do not exploit this property and
implement a stronger consistency model, such as TSO, leaving
significant performance potential untapped when executing
DRF applications. Our goal is to exploit DRF properties in
the processor design. First, we show that DRF accesses prevail
in parallel applications. To identify DRF loads and stores, the
compiler delineates DRF and synchronization regions of code,
the latter being regions of code that contain synchronization
operations (see Section IV-A for details about the delineation).
Then, we show that almost half of the LQ searches are
triggered to prevent consistency violations. Exploiting the DRF
property of both loads and stores, the vast majority of these
LQ searches can be avoided, greatly reducing the LQ energy
consumption without negatively impacting performance.

The dynamic percentage of load and store operations that
are part of synchronization code (non-DRF) for the applica-
tions evaluated in this work on an 8-core 2-way SMT processor
(see Section VI for details about the methodology) is shown in
Figure 2. Generally, the percentage of sync stores is virtually 0.
Only in some applications, such as fluidanimate and radiosity
and the synchronization-intensive pc, sps, and tatp, more than
2% of the stores belong to sync regions. On average, only
1.2% of the stores belong to sync regions, yielding almost
all LQ searches when stores write unnecessary. Similarly, the
percentage of sync loads is small in most applications. Only
three synchronization-intensive workloads (cq, rb, and tatp)
show a much larger percentage because threads frequently spin
on locks trying to acquire them. Despite these three workloads,
the percentage of loads that belong to sync regions is 10.2%
(and only 3.9% without these three workloads).

Figure 3 shows the percentage of LQ searches that are
required either to maintain the correct load-load ordering
(labeled as M-searches, as they target M-speculative loads)
or to enforce memory dependencies (labeled as D-searches,
as they target D-speculative loads). M-searches are further
divided depending on their source: M-searches (Memory sys-
tem) are triggered after invalidations or evictions that reach
the private caches, while M-searches (Core) are triggered on
the core’s LQ when stores write from the SQ to the L1. M-
searches range from 37% (rb) to 57% (ocean ncp) depending
on the application and, on average, represent 49% of the LQ
searches. Since i) most stores are DRF and ii) frequently the
LQ contains just DRF loads, an overwhelming majority of
the LQ M-searches are superfluous and can be avoided by
conveying the DRF information to the processor. Alleviating
these searches turns to lower LQ energy consumption and
search port contention.

IV. CELLO: EFFICIENT LOAD-LOAD ORDERING

Given that most modern programming languages demand
DRF programs to guarantee SC, nowadays software usually
adheres to the SC-for-DRF consistency model. Most proces-
sors, however, do not leverage this property, missing out on
enormous optimization potential. To exploit this property, we
propose CELLO, a software-hardware co-designed approach
to efficiently guarantee the load→load order in data-race-free
regions. The CELLO compiler classifies memory accesses
within synchronization regions (denoted as sync regions) and
synchronization-free regions (denoted as DRF regions), per-
forming a region-based classification of accesses [27] rather
than a data-based classification [54]. The collected informa-
tion is transmitted to the hardware through a new dedicated
instruction. With (minimal) hardware extensions and based on
the DRF status of the memory operations involved in each LQ
search, CELLO allows loads to i) execute out of order while
safely skipping superfluous LQ searches, and ii) exit the LQ
early when they do not need to be checked against consistency
violations.

Next, we explain how the compiler delineates DRF regions,
detail the hardware modifications required by CELLO, and

pragma omp parallel for
for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;
lock(mtx);

counter ++;
b += a[i];

unlock(mtx);
c[i] = c[i] + 5;

}

DRF (runs concurrently)

DRF (runs sequentially)

DRF (runs concurrently)

Sync

Sync

setDRF 0

setDRF 1

setDRF 0

setDRF 1

Fig. 4: Example of code showing a parallel SC-for-DRF
program and the delineated DRF regions and sync operations.

describe how the compiler conveys the DRF information to
the hardware. Finally, we discuss how CELLO enables a more
efficient load-load ordering during DRF regions.

A. Compiler support to delineate DRF regions

The CELLO compiler support is implemented as an LLVM
pass [30] to expose the synchronization operations as sync re-
gions, which effectively delineates the DRF code regions [27].
It expects as input code that meets the SC-for-DRF seman-
tics, as required by most modern programming languages
standards. Figure 4 shows an example of an SC-for-DRF
program with the delineated DRF and sync regions. DRF
regions can either be part of the parallel code regions and
thus run concurrently, or part of the synchronized code regions
and thus run sequentially. Note that the synchronized code
regions, in contrast to synchronization operations, are DRF by
definition, since they are executed by one thread at a time.

The compiler marks the delineated regions with a dedi-
cated instruction (setDRF val), as shown in Figure 4. The
operand val is a single bit that indicates the beginning of a
DRF region (val = 1) or a sync region (val = 0) for the
thread executing the instruction. Processors that do not support
the setDRF instruction can simply treat it as a nop operation.

The compiler identifies synchronization operations that cor-
respond to the standard mechanisms supported in widely used
libraries. In particular, we offer support for pthreads [37] and
OpenMP libraries [38], but CELLO, as an LLVM pass, can be
easily extended to recognize new synchronization mechanisms.
The memory operations residing in the sync regions must be
executed in-order to ensure correctness and to preserve the
TSO guarantees. During the execution of DRF regions, in
contrast, memory operations can be performed out of order
while inherently preserving the TSO guarantees since no other
threads can concurrently perform loads or stores to the same
address if at least one thread performs a write (by the DRF
definition). Thus, thanks to the SC-for-DRF guarantees, both
private and shared variables (i.e. local and global accesses) are
treated equally, which greatly simplifies the static analysis and
increases its accuracy.

B. CELLO hardware overview

Besides the compiler, CELLO also requires (small) changes
within the processor core. Figure 5 shows an overview of the
CELLO hardware on top of an SMT core, with the additional
structures and flags marked in yellow. Each hardware thread

has a region flag and a num-sync counter. The region flag is
set by the dedicated setDRF instruction. Memory instructions
read the flag to keep it in the mode (M) bit augmented
to the SQ and LQ entries, and loads increase the num-sync
counter of its thread if the mode is sync. When committing
sync loads, the counter is decreased. Store writes, and cache
invalidations and evictions check the store-DRF and load-DRF
filters, respectively, and only search the LQ when it is essential
to guarantee that no load→load ordering violation is exposed.
Overall, in a 2-way SMT core with a 192-entry LQ and a
128-entry SQ, CELLO hardware overhead amounts to 40 bytes
(320 mode bits and two 1-bit region flags), two 8-bit counters,
and simple additional logic per core.
C. The setDRF instruction implementation

The processor requires minor modifications to support the
setDRF instruction. When the setDRF instruction is allo-
cated, a dedicated per-thread processor flag, called region flag
(1 bit), is set or unset respectively, to mirror the value of
the setDRF instruction’s operand. An SMT core requires as
many region flags as hardware threads it supports. The region
flag is updated at allocation time, leveraging that instructions
are allocated in order, and hence preserving the compile-
time delineation of regions. If a thread’s flag is 0, all the
following memory instructions of that thread are considered
to be part of a sync region. Similarly, if the flag is 1, the
next memory instructions of the thread are DRF. The region
flag is set by default to 0 (sync mode), which boils down to
handling all memory operations conservatively, disabling our
optimizations. Consequently, applications that have not been
compiled with the CELLO compiler and do not include the
regions delineations (e.g., legacy code) naturally preserve the
TSO semantics and guarantees.

Stores and loads keep the region information individually in
a Mode bit added to each entry of the SQ and LQ. The Mode
bit is required because both DRF and sync memory operations
can co-exist in the LQ and SQ. A series of instructions from
a thread with the Mode bit set to 1 represents a DRF region,
while the Mode bit set to 0 indicates a sync region. All the
stores and loads entering the SQ and LQ, respectively, copy
its thread region flag to their Mode bit. This step classifies the
memory operation either as a DRF or a sync memory access.

Upon a misspeculation, a squash of the in-flight instructions
is initiated. If the region flag has been modified by any
squashed instruction, it needs to be restored. To enable fast
recovery, we set the value of the region flag to the mode of the
older instruction that is squashed, which restores the correct
DRF/sync state.
D. Efficient out-of-order execution of loads

CELLO enables more efficient execution of DRF stores and
loads by leveraging precise information from the compiler with
two simple hardware optimizations.

1) Reducing LQ searches: Since DRF stores are guaranteed
to be executed in the absence of concurrent loads to the
same address in other threads, they cannot expose consistency
violations (e.g., load→load). Therefore, it is not necessary

LD
LD

Fetch Decode Rename Allocate Issue Execute

SQ/SB
LQ

Search

M M M M

Th 0

M M M M M M M M

M M M M

Th 1

Store write

Invalidation

Eviction

Load-DRF filter

Check num-sync and filter

if all loads are DRF

Store-DRF filter

Check the Mode bit of the

store and filter if DRF

Region flags

Num-sync

LQ
Th 1

+

setDRF

Th_0 Th_1
–

ST

ST

LD

read

CommitMemory

Th 0

Th_0 Th_1set

Fig. 5: Pipeline overview for CELLO on top of an SMT core. The structures / flags in yellow and the DRF-based filters are
the additions required to support CELLO.

to perform any search in the same core LQ (to squash M-
spec loads from other SMT threads) when a DRF store
writes. Store writes can also cause invalidations that reach
other cores private caches. An invalidation request caused
by the write of a DRF store cannot expose a consistency
violation either. Thus, at a first glance, we could skip its
corresponding LQ search. However, after the cacheline is
invalidated, the core would not detect forthcoming store writes
to the same cacheline, potentially from non-DRF stores, which
could expose a load→load reordering. Therefore, despite only
sync stores can expose consistency violations in other threads,
we can only skip safely the LQ searches associated to DRF
store writes when they are performed by a thread running in
the same SMT core.

Likewise, DRF loads are also guaranteed to be executed in
the absence of concurrent stores to the same address in other
threads and thus, they cannot expose consistency violations
while being executed out of order. Therefore, no LQ search is
required on store writes, and cache invalidations and evictions
when the LQ contains only DRF loads, as they execute non-
M-speculatively by definition. On the contrary, consistency
violations are possible for racy loads, which may execute M-
speculatively and, therefore, based solely on the DRF status
of loads, LQ searches are required to prevent exposing any
consistency violation.

Summing up, CELLO proposes to avoid the LQ search
when i) it is caused by the write of a DRF store from a thread
running in the same SMT core, or ii) there are no sync loads in
the LQ. Since DRF memory operations are far more frequent
than non-DRF ones, most LQ searches can be safely avoided,
reducing energy consumption in the LQ and contention in its
search ports. The implementation for reducing LQ searches
is fairly simple. We implement two DRF-based filters: Store-
DRF filter and load-DRF filter.

The store-DRF filter is based on the DRF status of stores.
When the core performs a write, it checks the Mode bit on
the corresponding SQ entry. A Mode bit set to 1 implies
that the store belongs to a DRF region. Therefore, it cannot
conflict with concurrent same-address loads in other threads
and, consequently, it does not require any LQ search in the
same core.

The load-DRF filter is based on the DRF status of the
loads. We use a counter per SMT thread in a core, called

num-sync, that holds the number of sync loads for a particular
thread in the LQ. The counter is set to 0 by default indicating
that there are no sync loads in the LQ, is incremented by
1 once a sync load from the thread enters the LQ, and is
decremented by 1 when a sync load from the thread leaves
the LQ. When performing a cache invalidation or eviction,
the memory system first checks the num-sync counters of the
core. If all the counters are 0, the LQ search does not take
place, as the pipeline contains no M-speculative loads. When
one of the counters is not 0, it indicates the presence of a sync
load in the LQ, and thus, the memory system performs the LQ
search. Similarly, when the core performs a write, the load-
DRF filter checks the num-sync counters of the other threads
co-running in the core. (It does not need to check the num-
sync counter of the thread performing the write since this LQ
search targets M-spec loads from the other threads running in
the SMT core.) If all these counters are 0, the LQ search does
not take place.

2) Early removal of loads from the LQ: Having an unre-
solved load at the head of the LQ is common, as long latency
loads are the main culprits for processor stalls. While loads
are not resolved, they are the source of M-speculation for
subsequent loads [40]. In a standard TSO implementation,
loads remain at the LQ head until they commit and are
squashed if there is a match in an LQ search.

In CELLO, we aim to remove the loads from the LQ as
soon as they do not need to be searched. Removing loads from
the LQ helps reduce LQ occupancy, which either i) eliminates
LQ-induced stalls and thus improves performance or ii) allows
shrinking the LQ and thus reduces its energy consumption and
area. Three conditions need to be satisfied in order to remove
a load from the LQ:

1) The load is at the head of the LQ. Since the LQ is
a circular buffer, occupancy reduction is only effective
when removing the load at the head.

2) The load is DRF. The compiler guarantees that DRF
loads do not conflict with stores from other threads and
therefore they are non M-speculative by default.

3) All stores older than the DRF load at the head have
already resolved their address and searched the LQ. The
load becomes, then, non D-speculative.

The first two conditions are checked using the head pointer
in the LQ and the Mode bit attached to each load in the

LQ. For the D-speculative condition, CELLO leverages a bit
per entry in the SQ that indicates if the store has executed
(commonly found in current implementations). This bit tracks
resolved/unresolved store addresses. The default value is 0,
indicating that the store address is still unresolved. When
the store executes, the bit is set. The load simply performs
a bitwise OR operation between the Execute bits and a
bitmask that identifies the stores older than the load in the
SQ with the corresponding bit set to 0. Such a bitmask can
be generated with a range decoder, which sets to 0 and 1
the bit corresponding to each store depending on whether it is
older or younger than the load, respectively. An AND operation
is performed on all the resulting bits. If the result is 1, it
means that no unresolved older store addresses exist, and the
load can be considered non-D-speculative. Note that since this
operation only acts on a single bit per entry in the SQ, it is
simpler than an SQ search, which requires a priority decoder
and full address comparison.

V. DISCUSSION

A. Context switching

Context switches take place whenever one task (application,
thread, etc.) waives its control of the processor to the next
task in the system. Traditionally, when the OS dictates a
context switch, the processor’s registers and flags of the current
process are saved before the OS kernel code is executed. With
CELLO, on a context switch, the region flag is saved along
with the other processor flags. Unless the OS code is annotated
to mark DRF and sync regions, all instructions from the OS
kernel are conservatively handled as sync instructions. Once
the process resumes, its context is restored together with the
previously saved region flag.

B. Non SC-for-DRF programs and debugging

In CELLO, legacy software executes all loads and stores in
sync mode since it does not contain DRF annotations inserted
by the compiler. Alternatively, tools such as data race detectors
(e.g., ThreadSanitizer [49], Fast&Furious [42]) that operate
either at the compiler level or directly on the binary could be
used to analyze legacy code and annotate safe regions.

Still, although nowadays most programming languages re-
quire data race freedom, buggy code (which includes data
races) may create issues both on CELLO and on conventional
hardware. For debugging purposes, CELLO can simply turn
off the DRF markings, thus executing the code as if it was
running in a baseline TSO. This enables the programmer
to debug the code with traditional methods. We argue that
CELLO, in fact, can help programmers expose bugs, and then,
track them. While it is the programmer’s responsibility to track
and fix data races, should the input code contain any such
races, the “undefined” behavior can appear on CELLO the
same as on platforms that provide TSO consistency.

VI. SIMULATION ENVIRONMENT

Our simulation infrastructure consists of a detailed in-house,
out-of-order, simultaneous multithreading processor model. It

TABLE II: System parameters

Processor

Cores and threads 8-core 2-way SMT
Fetch Width 6 instructions
Issue/Commit Width 12 instructions
Reorder Buffer 512 entries
Load queue 192 entries, 3 write, 2 search ports
Store queue 128 entries, 2 write, 3 search ports
Branch predictor TAGE-SC-L [52]
Mem. dep. predictor StoreSet [12]

Memory

Private L1I cache 32KB, 8 ways, 4 hit cycles, pipelined
Private L1D cache 48KB, 12 ways, 5 hit cycles, pipelined,

IP-stride prefetcher
Private L2 cache 1MB, 8 ways, 12 hit cycles
Shared L3 cache 4MB per bank, 16 ways, 35 hit cycles
Directory 8 ways, 200% coverage of L2
Memory access time 160 cycles
Network Topology 2D Mesh

employs Sniper [10] to feed the processor model with the
instructions to execute, GEMS [35] to model the memory
hierarchy and cache coherence, with a standard invalidation-
based directory protocol, and GARNET [3] to model the in-
terconnect. We model the LQ and SQ faithfully, including the
searches for the speculative support for memory ordering. We
simulate a multi-core processor, with eight 2-way SMT cores,
providing a TSO consistency model. The processor parame-
ters, shown in Table II, are chosen after nowadays processors
and resemble the Intel Alder Lake micro-architecture [46].
Following Intel’s SMT implementations [13], the ROB, LQ,
and SQ are statically partitioned among the threads, assigning
a fraction of the structures to each thread, while the execution
units are dynamically shared. Since we observed that CELLO
reduces the number of misspeculated loads we conservatively
replicate the memory dependence predictor to avoid that
thread interference in this resource skews our results. We
use CACTI-P [31] to model the energy consumption of the
LQ using a 22nm technology, the minimum technology node
allowed by the latest CACTI version. The LQ is modeled
as a CAM and uses the high-performance (hp) model. The
energy consumption per search, write, and read is 0.0391nJ ,
0.0079nJ , and 0.0017nJ , respectively.

We analyze five different configurations: Base, ST–DRF
filtering, ST+LD–DRF filtering, CELLO, and SMT-directory.
Base is our baseline, a TSO-like SMT system that issues
loads speculatively out-of-order, searching the core’s LQ on
each store write and on each invalidation and cache eviction.
ST–DRF filtering and ST+LD–DRF filtering are baseline-like
systems with the addition of the ST-DRF filter and both ST-
DRF and LD-DRF filters, respectively. CELLO is our final
proposal and combines the two DRF filters with the early
removal of loads from the LQ. Finally, SMT-directory is the
state-of-the-art mechanism to filter LQ searches in SMTs [22],
discussed in Section II-C. It stores a bit-vector per cacheline to
keep track of which SMT threads have read it and determine
if an LQ search is needed. Our implementation of the SMT-
directory stores the bitvectors only in the L1 cache to reduce

0%
20%
40%
60%
80%

100%

LQ
 s

ea
rc

h
es

M-searches (core) M-searches (memory system) D-searches

ST
+L
D-

D
R

F
fi

lt
ST

-D
R

F
fi

ltBa
se

Fig. 6: Percentage of LQ searches performed with the baseline, ST–DRF filtering, and the ST+LD–DRF filtering configurations
compared to the baseline. ST+LD–DRF filtering avoids 47% of the LQ searches.

the hardware overhead. In a 2-way SMT core with a 48-KB
L1 data cache, its hardware overhead amounts to 1.5 KB per
core. Adding bitvectors to the L2 cache increases the hardware
overhead to 33.5 KB per core and provides minor performance
benefits (the highest benefit is 0.7% in cq but the average
across all workloads is only 0.1%).

We evaluate parallel workloads from the Splash-3 [48]
and PARSEC 3.0 [7] benchmark suites, as well as, six fine-
grain synchronization-intensive benchmarks [21], [28]. All
the applications comply with the C/C++ standard, and thus,
enforce SC-for-DRF. Results correspond to the parallel regions
of the applications.

VII. EXPERIMENTAL EVALUATION

The number of memory operations executed in DRF regions
is dominating (Figure 2). In what follows, we analyze the
benefits of leveraging this property in hardware when execut-
ing DRF software. First, we analyze how CELLO reduces the
number of LQ searches and how that impacts energy expen-
diture and performance. After that, we present a sensitivity
study on how CELLO allows reducing the LQ size without
negatively impacting performance.

A. LQ search filtering

Figure 6 presents the LQ searches in the baseline 8-core 2-
way SMT processor and in the same processor with only the
ST-DRF filter and combining the ST-DRF and LD-DRF filters,
normalized to the number of LQ searches in the baseline.2 M-
searches (core) and M-Searches (memory system) represent
the LQ M-searches triggered when stores write and after
invalidations and evictions, respectively, to prevent consistency
violations. Our DRF-based filters aim at filtering, from these
searches, all the ones where the DRF properties guarantee that
are not required to prevent exposing a consistency violation. D-
Search represents LQ searches triggered when stores compute
their address to squash matching misspeculated loads. Our
DRF-based filters do not target these LQ searches.

M-searches (Core) represent 46% of the LQ searches in the
baseline system. However, since very few stores are non-DRF,
most of them are not required to prevent consistency viola-
tions. Consequently, the ST-DRF filter eliminates virtually all
these LQ M-searches, reducing them to only 0.8%. Adding

2Compared to the ST+LD–DRF filtering, CELLO adds the early removal
of loads from the LQ. However, this feature does not affect the LQ search
filtering. Thus, for the sake of clarity, we omit the CELLO setup in this figure.

0%
20%
40%
60%
80%

100%

LQ
 e

n
er

gy

Search Write ReadBa
se

ST
+L
D-

D
R

F
fi

lt

Fig. 7: LQ energy expenditure of the baseline and ST+LD–
DRF filtering configurations normalized to the baseline.

the LD-DRF filter on top of the ST-DRF one cannot greatly
improve the filtering since, basically, almost all searches are
already filtered. Nevertheless, it has a slightly higher impact
in a few benchmarks such as fluidanimate or tatp, where it
is more frequent that non-DRF stores write while the co-
running thread has only DRF loads in the LQ. In these two
benchmarks, the LD-DRF filter helps skip, respectively, an
additional 3.4% and 1.0% of LQ searches on top of the ST-
DRF filter.

M-searches (memory system) represent a significantly lower
fraction of the LQ searches (only 3% on average). This is
not surprising as store writes are far more frequent than
invalidations and evictions. Still, they exceed 10% of the LQ
searches in benchmarks such as canneal, ocean ncp, and pc.
The LD-DRF filter avoids M-searches to the LQ caused by
cache invalidations or evictions when the LQ only contains
DRF loads, which reduces the LQ M-searches by 10.7% in
ocean ncp, 8.5% in ocean cp, and 6.7% in radix. However,
since i) evictions are not frequent (thanks to the large caches
of modern systems), and ii) the LQ often contains non-DRF
loads, adding the LD-DRF filter does not have a big impact
on most workloads. On average, LQ M-searches are reduced
from 3.0% to 1.5% when adding the LD-DRF filter.

Overall, the ST+LD–DRF filtering eliminates 47% of the
LQ searches (virtually all M-searches) performed by the base-
line system. Although the LD-DRF filter does not significantly
reduce the LQ searches on average, we recommend enabling it
as it provides non-negligible filtering in several workloads and
the hardware overhead is minimal (only a num-sync counter
per hardware thread).

B. Impact on energy

Filtering LQ searches directly turns into energy savings in
the LQ. Figure 7 shows the energy consumed by the LQ for

the baseline and ST+LD–DRF filtering setups normalized to
the baseline processor.3 We compute energy consumption as
the sum of the energy spent on an LQ search, write, and read
multiplied by the number of accesses of each type to the LQ.
The energy expenditure of the LQ is clearly dominated by the
LQ searches, which represent 65% of the energy consumed
by the LQ. Even though LQ searches are less frequent than
reads and writes, their high energy consumption outweighs
their lower count.

The ST+LD–DRF filtering setup filters unnecessary LQ
searches, reducing the LQ energy consumption, on average,
by 33%. The energy savings are relatively similar across the
workloads, ranging from 23% in fluidanimate to 45% in radix,
with the only exceptions of barnes (53%) and streamcluster
(7%). Nevertheless, as expected, workloads with a smaller
ratio of stores per load search the LQ less frequently, with
streamcluster as the most obvious example, which results in
smaller energy savings.

C. Impact on performance

Filtering LQ searches does not only provide important
energy savings in the LQ but also has a positive impact on
performance. Figure 8 reports performance normalized to the
baseline system for the SMT-directory, ST+LD–DRF filtering,
and CELLO setups. By filtering almost all M-searches to the
LQ, the ST+LD–DRF filtering setup improves the performance
of the baseline by 2.8%, on average, with minimal hardware
overhead. Furthermore, it is particularly high in workloads
such as barnes (18.6%), water nsq (11.9%), blackscholes
(10.5%), and lu ncb (7.2%). The CELLO setup adds the early
removal of loads from the LQ to the two DRF-based filters. It
only provides a small performance benefit in workloads such
as cq or streamcluster, which clearly indicates that the LQ size
is not a major performance bottleneck in this design. On the
contrary, we observe that it degrades performance in lu ncb
and volrend. In both cases, the reason is a combination of
two effects. First, a slightly higher memory contention, since
the early removal of loads allows younger loads to enter the
LQ and execute earlier. Second, barrier-based synchronization,
which requires all threads to wait for the slowest thread to
reach the barrier and hides the performance benefit that some
of them achieve with CELLO.

The first reason why filtering LQ searches improves perfor-
mance is because it allows stores to execute earlier, avoid-
ing virtually all stalls suffered by them when they require
searching the LQ but no LQ search port is available. Many
of these stalls are on the critical path, particularly when they
are related to synchronization operations. However, avoiding
other stalls does not reduce execution time if, for example,
it immediately exposes stalls in other resources or if, despite
the LQ-search ports stalls, stores can still be executed under
the shadow of the execution of older instructions. Furthermore,
SMT can also effectively hide the stalls suffered by one thread

3Since the LQ energy consumption LQ is dominated by searches, the energy
savings difference between CELLO and the ST+LD–DRF filtering setup is
negligible. Thus, for the sake of clarity, we omit CELLO in this figure.

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce SMT-directory ST+LD-DRF CELLO

Fig. 8: Normalized performance for the SMT-directory,
ST+LD–DRF filtering, and CELLO setups compared to the
baseline system.

0.0

0.2

0.4

0.6

0.8

Sq
u

as
h

ed
 u

o
p

s
p

er
 c

yc
le Base CELLO

Fig. 9: Squashed uops per cycle due to load misspeculations
in the baseline and CELLO setups.

executing instructions from the other threads running in the
core. Consequently, it is hard to establish a direct connection
between the avoided stalls and the performance benefit.

Instead, we observed that executing stores earlier allows for
reducing load misspeculations significantly, particularly, in the
workloads that achieve the highest performance benefit. When
a load misspeculation is detected, the load and all younger
instructions from the thread are squashed and re-executed.
Such an event, therefore, causes a significant performance
penalty. Figure 9 shows the number of uops squashed due
to load misspeculations per cycle for the baseline and CELLO
setups. On average, CELLO reduces the number of squashed
uops per cycle from 0.11 in the baseline to 0.04. More
importantly, the applications on which CELLO achieves the
highest performance benefit (i.e., barnes, blackscholes, lu ncb,
swaptions, water nsq, and water spa) are the applications on
which the number of squashed uops per cycle reduces the
most. This observation demonstrates that load misspeculations
have a direct impact on performance. CELLO filters most
M-searches to the LQ, reducing LQ search port contention,
and allowing stores to execute earlier. This way, CELLO
reduces the processor dependence on the memory dependence
predictor to avoid load misspeculations, resulting in fewer
squashes and, consequently, superior performance.

Finally, Figure 8 also compares CELLO against SMT-
directory [22]. The SMT-directory also filters virtually all M-
searches to the LQ.4 However, it suffers double the write
latency when the LQ search is needed. Consequently, it
performs worse than CELLO in synchronization-intensive
workloads (e.g., cq, pc, sps, tatp, and tpcc), where sharing
cachelines, particularly in synchronization operations, is more
frequent. As synchronization is on the critical execution path
of the applications (e.g., a thread cannot progress until it

4Due to space constraints, we omitted the SMT-directory setup in Figure 6,
but on average, it filters 46% of the LQ searches.

acquires a lock), the longer write latency easily turns into
performance loss. In addition to these benchmarks, CELLO
also widely outperforms the SMT-directory in lu ncb. The
reason that explains this performance difference is twofold.
First, in lu ncb, the DRF-based filters are effectively avoiding
M-searches to the LQ caused by the memory system. However,
the SMT-directory finds that there is at least a thread that read
the cacheline. This makes the LQ search required, even if
the load that read the cacheline already committed and left
the LQ. Second, these LQ searches cause unnecessary load
re-executions due to false sharing because invalidations and
evictions search the LQ for the entire cacheline. Compared
to the baseline, Sthe MT-directory improves performance on
average by 2.1%, while CELLO achieves a 2.8% performance
benefit with lower hardware overhead.

D. LQ size sensitivity analysis

Larger LQs do not automatically guarantee performance
improvements as searches become more costly. If the trends
towards a higher processor clock, wider pipelines, and more
execution units continue, the latency of searching in the LQ
will become critical for performance. Along with increasing
the search latency, a larger LQ also increases energy ex-
penditure and area. In contrast, smaller LQ structures bring
numerous benefits, such as lower energy expenditure and area,
but they can affect the overall performance due to the LQ
stalls. In what follows, we present a sensitivity study on the
LQ sizes and their impact on performance, energy, and area.

Our analysis shows that CELLO can actually achieve low
energy expenditure without degrading performance, when run-
ning DRF software, thanks to a better utilization of smaller
LQs. Figure 10a shows the performance of the baseline,
ST+LD–DRF filtering, and CELLO setups when reducing the
LQ size from 192 to 32 entries compared to the baseline
system with a 192-entry LQ. The performance of the base-
line system starts to shrink faster from a 96-entry LQ (2%
performance degradation) and grows up to 16% when the
LQ size drops to 32 entries. The ST+LD–DRF filtering setup
starts with a performance benefit of 2.8% with a 192-entry
LQ compared to the baseline with the same LQ size, but
its benefits start to diminish quickly from a 112-entry LQ,
performing only marginally better than the baseline with LQs
of 64 and 32 entries. On the contrary, the early removal of
loads from the LQ allows CELLO to make more efficient use
of the LQ entries and clearly outperforms the previous two
setups. With LQs of 64 and 32 entries, CELLO performs 4.3%
and 9.5% better than the baseline with the same LQ size. More
importantly, with an LQ of only 80 entries, CELLO performs
on par with the baseline system with a 192-entry LQ, providing
huge energy and area savings in the LQ, as we discuss next.

Reducing the size of the LQ greatly reduces its energy ex-
penditure. Figure 10b shows the average energy consumption
of the LQ with CELLO when reducing the LQ size normalized
to the energy consumption of the baseline system with a 192-
entry LQ. With the same LQ size, thanks to filtering almost
all M-searches, CELLO reduces the LQ energy consumption

0.8

0.9

1.0

1.1

N
o

rm
al

iz
ed

 p
e

rf
o

rm
an

ce

LQ size

Base ST+LD-DRF filtering CELLO

(a) Performance

0%

20%

40%

60%

80%

100%

LQ
 e

n
er

gy

LQ size

Search Write Read

(b) Energy

Fig. 10: Sensitivity study when reducing the LQ size. (a) Per-
formance of the baseline, ST+LD–DRF filtering, and CELLO
setups. (b) Energy consumption of CELLO. All results are
normalized with respect to the baseline with a 192-entry LQ.

by 33%. When reducing the number of entries in the LQ,
searches, writes, and to a lesser extent reads, require less
energy to be performed. Therefore, the energy expenditure of
the LQ reduces. Focusing on an 80-entry LQ, where CELLO
performs on par with the baseline system, the LQ energy
consumption with CELLO reduces by 69% compared to the
baseline. Finally, shrinking the number of entries of the LQ
from 192 to 80 also reduces its area by 56%.

In the context of a growing demand for low power and
high performance, CELLO becomes particularly attractive for
systems dedicated to run mostly modern DRF software, as it
allows to significantly reduce the LQ energy and area expen-
ditures, with minimal modifications to the baseline system and
without negatively impacting the performance nor the memory
consistency guarantees.

VIII. RELATED WORK

Relaxed consistency models [2], [5], [34] or speculative
support to strong models [15], [20], [44], [57] are widely
adopted to reach high performance. The LQ is a key struc-
ture to enforce not only the load→load order required by
strong consistency implementations [20] but also sequential
semantics enforced by weak consistency models [5], [36]. This
section discusses first hardware-only optimizations for the LQ,
and then, software-hardware co-designs.

Hardware-only solutions. Previous work has proposed
value-based speculation to eliminate LQ searches by delaying
the detection of conflicts between a store and a load until the
load commits. At commit, the load is replayed and the new
loaded value is rechecked. This idea was first proposed by
Gharachorloo et al. [20] but was put aside as the replays added
tremendous pressure on L1. Cain and Lipasti [9] addressed this
issue by filtering the loads that do not need to be replayed,
if there are no unresolved stores or any invalidation between
their issue and commit time. Roth et al. [47] introduced a Store
Vulnerability Window (SVW) for more accurately filtering
out the loads. Despite these improvements, there remains
a sizeable fraction of loads that need to be re-executed at
commit. Ros and Kaxiras [43] recently proposed to eliminate
the LQ and the replays accessing the coherent memory system
(e.g., the L1 cache) completely. Loads instead replay on the
SQ, where stores are delayed until the loads that bypassed

them replay and commit. Their solution requires however non-
obvious modifications to the cache coherence protocol and
adds pressure to the SQ ports.

Leaving aside value-based speculation, Sethumadhavan et
al. [50] propose to use a Bloom filter in order to reduce
the frequency and number of LQ searches of local stores.
Bloom filters, however, are not precise and add extra latency
to the LQ search. Ros et al. [40] allow the loads to execute
speculatively out-of-order and hide the load-load reordering
by the coherence protocol. This allows them to commit the
reordered loads out-of-order without waiting for the loads
to become non-speculative. However, the proposed design
requires important changes in the coherence protocol. Finally,
Garg et al. [18] target the store→load order and propose
replacing age-ordered LQs with address-indexed hash tables,
allowing late allocation into the LQ. However, this mechanism
adds an extra number of replays mostly due to different data
access widths and table pollution. In contrast, CELLO targets
a more efficient load→load order and does not change the
behavior of out-of-order loads nor the coherence protocol.

Related work focusing on SMT processors is scarce. Only,
Hilton and Roth [22], discussed above, proposed a mechanism
seeking to filter the LQ searches using a bit-vector to deter-
mine which threads have read each cacheline. Recently, Feliu
et al. [16] proposed inter-thread store-to-load forwarding in
SMTs and combine the LQ searches when stores execute and
write into a single one, triggered when the store becomes non-
speculative. The proposal, however, does not filter LQ searches
after cache invalidations and evictions, and it is significantly
more complex than CELLO, since it requires tracking the
speculative state of stores.

Software-hardware co-designs. Huang et al. [24] propose
a software-hardware co-design such that selected memory
operations can bypass the hardware memory disambiguation.
The selection is based on a binary analysis that identifies loads
guaranteed not to overlap with older in-flight stores. The static
analysis with binary parsing is limited to identifying read-only
loads and the relation between loads and stores within loops
with regular array-based accesses. Thus, it is complemented by
a dynamic approach to identify other safe loads with hardware
support. In contrast, using a region-based classification, our
compiler is more accurate and does not require additional
hardware support for regions disambiguation.

Focusing on stores, Singh et al. [54] propose a design in
which the compiler marks the stores that can be reordered.
Stores to the same memory address are forced to be placed in
a so-called unsafe SQ in order, while safe stores are placed
in a different unordered SQ. The solution adds extra hardware
overhead and can lead to under-utilization and stalls in the
SQs. In addition, it does not exploit the DRF semantics and the
data-based classification limits the number of stores that can
be reordered. Addressing both issues, ROOW [55] proposes
a compiler that identifies regions within which stores can be
shuffled while still delivering the same observable behavior as
if they performed in program order and a store buffer design
that can switch between out-of-order and in-order execution

modes within the safe and unsafe regions, respectively. Unlike
these proposals, CELLO focuses on efficiently maintaining
the load-load ordering by filtering unnecessary LQ searches
and is the only proposal that leverages the DRF guarantees
to filter the LQ searches triggered in SMT processors when
stores write. Furthermore, its simpler design and the minimum
hardware extensions relative to mainstream implementations
make CELLO a more appealing solution to enable efficient
load reordering.

DRF interface. Conflict Exceptions (CE) [33] proposes to
treat data races as precise hardware exceptions, thus simpli-
fying debugging parallel programs. Although the employed
software-hardware interface is similar to CELLO, they lever-
age that interface for optimizing the cache coherence protocol.
Biswas et al. [8] propose a practical implementation of CE,
called CE+, that reduces the number of memory accesses
by means of an on-chip metadata cache. Finally, Ros et
al. [45] introduce forward self-invalidation (FSI), a technique
to improve the performance of cache coherence protocols
based on self-invalidation [11], [41] at the end of DRF regions.
All these proposals target cache coherence protocols.

IX. CONCLUSION

In this paper we introduce CELLO, a software-hardware co-
designed approach that uses compiler support to reduce the LQ
pressure with minor hardware modifications. CELLO filters
LQ searches, triggered to detect potential consistency viola-
tions, for regions that are indicated as safe by the compiler.
Since these regions are predominant, CELLO skips 47% of the
LQ searches, reducing the total LQ energy expenditure by 33%
on average (up to 53%) compared to a baseline SMT system.
At the same time, CELLO improves the baseline performance
by 2.8% on average (up to 18.6%), a noticeable benefit given
CELLO’s minimal hardware overhead: 40 bytes (a 1-bit flag in
the LQ and SQ entries), two 8-bit counters, and simple logic
to check the flags and counters. Furthermore, by allowing the
non-speculative loads to exit the LQ early, CELLO enables
shrinking the LQ size from 192 to 80, achieving energy
and area savings of 69% and 56%, respectively, without
performance penalties compared to the 192-entry LQ baseline
system.

ACKNOWLEDGMENT

This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No
819134), from the MCIN/AEI/10.13039/501100011033/ and
the “ERDF A way of making Europe”, EU (grant PID2022-
136315OB-I00), from the European Union’s Horizon
2021 research and innovation program (grant agreement
No 101070374 under HORIZON-CL4-2021-DIGITAL-
EMERGING-01) and RYC2018-025200-I, and from the
MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR (grants TED2021-130233B-
C33/C32 and RYC2021-030862-I).

REFERENCES

[1] S. V. Adve and H.-J. Boehm, “Memory models: A case for rethinking
parallel languages and hardware,” Communications of the ACM, vol. 53,
no. 8, pp. 90–101, Aug. 2010.

[2] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Apr. 2009,
pp. 33–42.

[4] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A flexible interface
for efficient heterogeneous coherence,” in 45th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2018, pp. 261–274.

[5] ARM, ARM Architecture Reference Manual ARMv8-A, 2015.
[6] K. Arnold, J. Gosling, and D. Holmes, The Java programming language.

Addison Wesley Professional, 2005.
[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark

suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[8] S. Biswas, R. Zhang, M. D. Bond, and B. Lucia, “Rethinking support
for region conflict exceptions,” in 33rd Int’l Parallel and Distributed
Processing Symp. (IPDPS), May 2019, pp. 1095–1106.

[9] H. W. Cain and M. H. Lipasti, “Memory ordering: A value-based
approach,” in 31st Int’l Symp. on Computer Architecture (ISCA), Jun.
2004, pp. 90–101.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in Conf. on Supercomputing (SC), Nov. 2011, pp. 52:1–52:12.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp. 155–166.

[12] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Int’l Symp. on Computer Architecture (ISCA), Jun.
1998, pp. 142–153.

[13] M. Dixon, P. Hammarlund, S. Jourdan, and R. Singhal, “The next-
generation Intel core microarchitecture,” Intel Technology Journal,
vol. 14, no. 3, pp. 8–28, Mar. 2010.

[14] Y. Duan, D. Koufaty, and J. Torrellas, “Scsafe: Logging sequential
consistency violations continuously and precisely,” in 22nd Int’l Symp.
on High-Performance Computer Architecture (HPCA), Mar. 2016, pp.
249–260.

[15] Y. Duan, A. Muzahid, and J. Torrellas, “Weefence: Toward making
fences free in tso,” in 41st ACM SIGARCH Computer Architecture News,
Jun. 2013, p. 213–224.

[16] J. Feliu, A. Ros, M. E. Acacio, and S. Kaxiras, “ITSLF: Inter-Thread
Store-to-Load Forwarding in Simultaneous Multithreading,” in 54th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Oct. 2021, pp.
1296–1308.

[17] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic
race detection,” in 2009 Conf. on Programming Language Design and
Implementation (PLDI), Jun. 2009, pp. 121–133.

[18] A. Garg, F. Castro, M. Huang, D. Chaver, L. Piñuel, and M. Prieto,
“Substituting associative load queue with simple hash tables in out-
of-order microprocessors,” in Proceedings of the 2006 International
Symposium on Low Power Electronics and Design, ser. ISLPED ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
268–273.

[19] A. Garg, C. Fernando, H. Michael, D. Chaver, L. Pinuel, and M. Prieto,
“Substituting associative load queue with simple hash tables in out-
of-order microprocessors,” in Proceedings of the 2006 international
symposium on Low power electronics and design, Oct. 2006, pp. 268–
273.

[20] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in 20th Int’l
Conf. on Parallel Processing (ICPP), Aug. 1991, pp. 355–364.

[21] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in 45th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2018, pp. 46–61.

[22] A. D. Hilton and A. Roth, “SMT-directory: Efficient load-load ordering
for SMT,” IEEE Computer Architecture Letters, vol. 9, no. 1, pp. 25–28,
Jan. 2010.

[23] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-
free memory models,” in 14th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Mar. 2014,
pp. 427–440.

[24] R. Huang, A. Garg, and M. C. Huang, “Software-hardware cooperative
memory disambiguation,” in 12th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2006, pp. 244–253.

[25] First the Tick, Now the Tock: Next Generation Intel Microarchitecture
(Nehalem), Intel Corporation, White paper, Apr. 2009.

[26] ISO, ISO/IEC 14882:2015 Information technology — Programming
languages — C++. International Organization for Standardization,
2015.

[27] A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros, “Automatic
detection of extended data-race-free regions,” in 15th Int’l Symp. on
Code Generation and Optimization (CGO), Feb. 2017, pp. 14–26.

[28] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
44th Int’l Symp. on Computer Architecture (ISCA), Jun. 2017, pp. 481–
493.

[29] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computers
(TC), vol. 28, no. 9, pp. 690–691, Sep. 1979.

[30] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in 2nd Int’l Symp. on Code
Generation and Optimization (CGO), Mar. 2004, pp. 75–88.

[31] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 Int’l Conf. on Computer-Aided
Design (ICCAD), Nov. 2011, pp. 694–701.

[32] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 231–240.

[33] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races,” in 37th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2010, pp. 210–221.

[34] L. Maranget, S. Sarkar, and P. Sewell, “A tutorial introduction to the
arm and power relaxed memory models,” INRIA and University of
Cambridge, Tech. Rep., Oct. 2012.

[35] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[36] A. Moshovos and G. S. Sohi, “Streamlining inter-operation memory
communication via data dependence prediction,” in 30th IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), Dec. 1997, pp. 235–245.

[37] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 1996.

[38] OpenMP Architecture Review Board, “OpenMP application
program interface version 3.0,” May 2008. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[39] I. E. Papazian, “New 3rd gen Intel Xeon Scalable processor (codename:
Ice Lake-SP),” in 32nd HotChips Symp., Aug. 2020, pp. 1–22.

[40] A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-speculative
load-load reordering in tso,” in 44th Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2017, pp. 187–200.

[41] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[42] ——, “Fast&furious: A tool for detecting covert racing,” in 6th Work-
shop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures (PARMA) and 4th Workshop on Design
Tools and Architectures for Multicore Embedded Computing Platforms
(DITAM), Jan. 2015, pp. 1–6.

[43] ——, “The superfluous load queue,” in 51st IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Oct. 2018, pp. 95–107.

[44] ——, “Speculative enforcement of store atomicity,” in 53rd IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Oct. 2020, pp. 555–567.

[45] A. Ros, C. Leonardsson, C. Sakalis, and S. Kaxiras, “Efficient self-
invalidation/self-downgrade for critical sections with relaxed semantics,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 28,
no. 12, pp. 3413–3425, Dec. 2017.

[46] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat,
A. Gihon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger, M. Gupta,
and A. Yasin, “Intel Alder Lake CPU architectures,” IEEE Micro,
vol. 42, no. 3, pp. 13–19, Mar. 2022.

[47] A. Roth, “Store vulnerability window (SVW): Re-execution filtering
for enhanced load optimization,” in 32nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 2005, pp. 458–468.

[48] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr. 2016, pp. 101–111.

[49] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detec-
tion in practice,” in Workshop on Binary Instrumentation and Applica-
tions (WBIA), Dec. 2009, pp. 62–71.

[50] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable hardware memory disambiguation for high ilp pro-
cessors,” in 36thIEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
ser. MICRO 36. USA: IEEE Computer Society, 2003, p. 399.

[51] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[52] A. Seznec, “TAGE-SC-L branch predictors,” in JILP - Championship
Branch Prediction, Jun. 2014, pp. 1–8.

[53] M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing away rats: Semantics
and evaluation for relaxed atomics on heterogeneous systems,” in 44th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2017, pp. 161–174.

[54] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[55] S. Singh, A. Jimborean, and A. Ros, “Regional out-of-order writes in
total store order,” in 29th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2020, pp. 205–216.

[56] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in 22nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 1995, pp. 392–403.

[57] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” in 34th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2007, pp. 266–277.

