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Abstract

Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clustering
coefficient and the characteristic path length have been used in the past for a qualitative characterization of these networks.
Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts-£Stnogiatdz a coupled
map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behavior of the
ergodic invariants of the dynamics.
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1. Introduction Regular lattices and random graphs [1] have been
studied for a long time. More recently [2,3] small-
Networks are prevalent in all domains of life and world networks became the object of growing atten-
science. Social, economic and political networks are tion and were identified in many different fields. They
the backbone of human society. The internet is a seem to be the underlying structure for some impor-
network. The metabolic processes of living beings tant phenomena like the rapid spread of diseases [4],
are a network with the substrates as nodes that aresocial networks, cooperative behavior between com-
linked together whenever they patrticipate in the same peting agents [5], problem solving organizations and
biochemical reaction. Protein—protein as well as gene communication networks.
expression and regulation are biological networks, etc. ~ Topologically, small-world (SW) networks are
identified by the values of two statistical properties:
Ef’ggﬁgﬁgﬂgﬂ:&’;ﬂ;g@i seq.ut.pt (T. Aratio), — theclustering coefficien(CC) that measures the

vilela@cii.fc.ul.pt (R. Vilela Mendes), seixas@fisica.ist.utl.pt average probability for two agents, having a com-
(J. Seixas). mon neighbor, to be themselves connected and
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— the characteristipath length(PL), that is, the of the 8 = 0 structure and, with probabilitg, replac-
average length of the shortest path connecting ing this connection by a new random one [3].
each pair of agents. On each one of theg-networks, a dynamical
system is defined, with a map at each node and
Regular lattices have long path lengths and high convex-coupling interactions defined by the network
clustering, whereas random graphs have short pathconnections
lengths but low clustering. SW networks exhibit short N
PL's and, at the same time, high CC’s. xi(t+1) = Z Wi f(x; (D), (1)
In many model networks, the simultaneous occur-

rence of high CC and low PL is observed over an in- =

terval, between order and randomness, which is called where

the SW phase. However, this phenomenon can only be 1-— %c if i =j,

defined as a phase, in the statistical mechanics sense, iV;; = 5 if i # j andi is connected tg,
order parameters are found to characterize the regular- 0 otherwise

to-SW and the SW-to-random phase transitions. Al- 2)

ternately, the SW region might simply be a crossover ,, (;) is the number of agents connected &ndc is a
phenomenon between regular and random graphs [6]. control parameter.

Further information on the SW phenomenon has For the agent dynamics we choose
been obtained in the past from the study of several

quantities. Farkas et al. [7] studied the spectral density /(*) =ax mod1 3)
of the adjacency matrix, with increasing randomness, Typically o = 2.

plies the existence of a large number of triangles in the

SW network. Monasson [8], on the other hand, studied o ;
the spectral properties o[f Ehe Laplacian operator, that holk) = Iog{a(l —et v Z Cos(ﬂk)) } @)
characterizes the time evolution of a diffusive field and /=t

localization properties on the graph. with 6, = 2LN’< k=0,...,.N —1.Inthe N - o0

In this Letter a dynamical systems approach is limit, the Lyapunov spectrum is a continuous smooth
used to characterize the small-world phenomenon. function, as illustrated in the upper plot of Fig. 1.
Using the Watts—Strogatg-model [3], we study a  As we will shortly see, the random rewiring of the
coupled map system on the network, with interactions network induces shifts on the Lyapunov spectrum.
defined by the network connections. The SW phase For simplicity ¢ is chosen in such a way that, for
is related to the behavior of the ergodic invariants of g8 = 0, the lowest Lyapunov exponent is zero. As
the dynamics. Entrance to the SW phase is related increases, the matrices of the tangent map cease to be
to the Lyapunov spectrum and exit from the SW regularly organized, the Lyapunov spectrum develops
phase corresponds to the region where “entropy” and gaps and some of the exponents become negative. This
“conditional exponents entropy” [9,10] split apart. is illustrated in the lower plot of Fig. 1 fov = 800
and 2 =6.

It is also the appearance of random long range
connections that is responsible for the reduction of the
path length in SW networks. Therefore it is natural to
consider the modifications in the Lyapunov spectrum

Consider ag-family of models, each one witiv as the dynamical signature of the onset of the SW
agents on a circle and periodic boundary conditions. phase. Of particular dynamical significance is the shift
For 8 =0, each agent in the model is connected to its of part of the spectrum towards negative values. That
2v nearest neighbors. F@r=£ 0, the network structure  is, in this model, the randomness arising from the
is obtained by looking at each one of the connections rewiring leads to an effective reduction on the number

2. The dynamical model
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Fig. 1. Lyapunov spectrum fg8 = 0 and for a typical network at
B =02 (N =800, 2 =6).

of dynamical degrees of freedom. We defig
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to quantify this effect. To characterize the modifica-
tions of the Lyapunov spectrum, another possibility
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Fig. 2. TheDg parameter (“SW order parameter”) averaged over
100 sample networks\ = 100, ..., 800, 2 = 6).

Barthélémy and Amaral [6] have studied the aver-
age path lengthL for this model as a function of the
network sizeV. They findL to be a scaling function of
N/N*, N* being a crossover size, function of the de-
gree of disordetN* ~ =2/3). This would imply the
small-world (SW) effect to be not a phase transition,

would be to measure the singular part of the spectrum put a crossover phenomenon. An alternative point of
associated to the gaps. However, the natural intervalsview would be that SW is indeed a phase but thas

in the spectrum, that arise from the finitenessiof
make this measurement less reliable.

In the upper plot of Fig. 2 we show the average
values ofDg taken over 100 different samples for each
B (with N =800 and 6 as the average degree of the
network). A good fit to all the data shown in the log—
log lower plot of Fig. 2 is

Dg=cN(B—Bc)™,

with 8., <107°andn; = 1.01+ 0.06.
In practice it is only after8 ~ 103 that small-
world effects (andDg values) become appreciable.

(6)

not the appropriate order parameter. Widp we find

no evidence for a crossover. Notice that in Fig. 2 part
of the data consistent with Eq. (6) is obtained for net-
work sizes belowV* (as determined by the authors of
Ref. [6]).

To characterize the exit from the SW phase, we use
the notion ofconditional Lyapunov exponentEhey
were introduced by Pecora and Carroll in their study
of the synchronization of chaotic systems [12]. Like
the Lyapunov exponents, the conditional exponents
are well-defined ergodic invariants [9]. The idea is that
the conditions that in Oseledec’s theorem insure the

Nevertheless, the fact that the data is consistent with existence of the Lyapunov exponents also establish

Be, = 0implies that, usin% Dg as an order parameter
for the small-world phase, this phase startg at 0,
the regular phase being only the isolated pgint O.
This is consistent with the analysis in Ref. [11].

1 For otherc values we would define

Dg = fz(kﬂmm(ﬁzow(xi — Amin(B = 0)).

the existence of characteristic exponents formed by
subblocks of the tangent map matrix. For details
on the role of the conditional exponents as ergodic
invariants characterizing self-organization in multi-

agent systems, we refer to [10].

Here, for each agerit we consider a subblock of
dimensiond; x d; formed by himself and those that
are connected to it. The positive conditional exponents
AZ(j) associated to each subblock are computed
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and a dimension-weighed sum is performed over all ° () N=100 *
subblocks. This gives a version of what elsewhere @ N=200
oy (0) N=400
[9,10] has been calleda@nditional exponents entropy PR 0
(*) N=800 ¥
10" )
N 1 2v=6
m=2(F S0 ORI
i=1 "' 5>0 ¢
10° BB PRI T N { ®
Subtractingql’g from the sum of the positive Lyapunov
. - . ®
e.xponentsh,g =2 _s~018()), we define the coeffi-
cient »
L]
h - h 10° 10* 10° . 10? 10" 10°
BB Fig. 3. TheCy parameter (“SW exit”) averaged over 100 sample

networks (v =100,...,800, & = 6).
which is also an ergodic invariant.

This coefficient has the following dynamical inter-
pretation: the Lyapunov exponents measure the rate of
information production or, from an alternative point of
view, they define the dynamical freedom of the system,
in the sense that they control the amount of change
that is needed today to have an effect on the future.
In this sense the larger a Lyapunov exponent is, the

freer the system is in that particular direction, because
y P puted from the network parameters. It means that each

a very small change in the present state will induce a agent may have exact information on the global behav-
large change in the future. The conditional exponents . g y 9

have a similar interpretation concerning the dynam- tor from observatu_)n of his own ne|ght_)orhood. When
ics as seen from the point of view of each agent and B increases the difference changes sign and becomes

his neighborhood [10]. However, the actual informa- very large, meaning th"."t the .neigh.borhooq informa-
tion production rate is given by the sum of the positive tion has ceas_ed to provide rehable_m_formauon on the
Lyapunov exponents, not by the sum of the conditional global dynamics of the ngtwork. Thisis the Qynamlcal
exponents. Therefore, the quanty — i is a mea- correlate of the decreasing cluster properties and al-
sure of apparent dynamical freedom (or apparent rate lows us to deflne the transition at the divergence point
of information production). As self-organization in a Pe, 0f Cp. We find
system concerns the dynamical relation of the whole
to its parts, this quantity may also be looked at as a 8., ~ 0.04. 9)
measure of dynamical self-organization.

Cp involves the ratio of differences between local Near the transition region
and global rates of entropy production. Notice how-
ever that, whereas in the numerator neighborhoods are
local in the Jacobian matrix, in the denominator, be-
cause of the random rewiring, neighborhoods involve
very different sites. Therefore one should not expect
Cp to be a simple function.

In Fig. 3 we show the average values O}
taken over 100 different samples for eagh(with 2 The apparentN-dependence neafc, is due to numerical
6 as the average degree of the network avd= imprecisions near the point wheté — /4 changes sign.

100, 200, 400, 600, 800). Notice theV-independence

of Cg which follows from the fact that, in Eq. (8) it

is defined as a ratio of two quantities with the same
N-dependence. For smadl values the difference be-
tween the entropy and the conditional exponents en-
tropy is a small quantity, that may be easily com-

Cp~1B—Be,I ™,

with n2 >~ 1.14 below the transition ang, ~ 0.93
above it.
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3. Remarksand conclusions SW phenomenon. On the range that was explored, the
transition point ofCg was found to be 2-independent.

(1) The ergodic invariants (Lyapunov spectrum As for Dg, although it has a weak dependencedar

and conditional exponents) provide a link between the large 8, for small 8 its behavior is always consistent

topological properties of SW networks and the dynam- with a transition ajg8 ~ 0 and slopex 1.

ical behavior of a coupled map system modelled on

the network. In addition, the power laws obeyed by

these invariants provide a framework to identify the References
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