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a b s t r a c t

Development of efficient tools for the representation of large datasets is a precondition
for the study of dynamics on networks. Generalizations of the Fourier transform on
graphs have been constructed through projections on the eigenvectors of graph matrices.
By exploring mappings of the spectrum of these matrices we show how to construct
more general transforms, in particular wavelet-like transforms on graphs. For time-series,
tomograms, a generalization of the Radon transforms to arbitrary pairs of non-commuting
operators, are positive bilinear transforms with a rigorous probabilistic interpretation
which provide a full characterization of the signals and are robust in the presence of noise.
Here the notion of tomogram is also extended to signals on arbitrary graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of evolving data on complex networks is an emerging topic of current interest in physics and many other
fields. Work in this field appears in several flavors. Some authors concern themselves with relations and connectedness,
that is, with the community structure, others with the role of particular network vertices. A topic of relevance is the impact
of network structure on the diffusion of information, imitation, failure propagation and all kinds of dynamical behaviors of
the system. Reference models like random graphs, Poisson graphs, scale free graphs, etc. are regularly used to quantify the
network characteristics, by using parameters which include clustering coefficients, path length, diameter and centralities.
Inference and learning from large network-based datasets is also a topic of current interest.

Prior to the description of dynamical systems defined on graphs, or the dynamics of the graph itself, is the construction
of efficient representations for these large datasets. Earlier works used spectral graph theory and the graph Laplacian [1]
to derive low-dimensional representations by projecting the data on low-dimensional subspaces associated to subsets of
the Laplacian eigenvectors. More recently some authors have proposed transforms for data indexed by graphs. In particular,
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generalizations of the Fourier transform have been proposed [2–4] which are used to extend to graphs many of the signal
processing concepts used for time series [5–7]. Typically, these transforms make a change of basis from the vertex space to
some other space of vectors which is then used to project the graph signal. They are the analog of linear transforms in time
series. So far as we know, the question ofmultiple feature characterization of graph signals, for example bilinear transforms,
has not been addressed in the past. For time series it is known that bilinear transforms, like Wigner–Ville, have serious
interpretation problems. However the recently developed tomographic framework [8–11] allows for a probabilistically
robust multiple feature characterization of time signals. The correct generalization of the notion of wavelet transforms to
graphs and the extension of the tomographic framework to graph signals are the main contributions of this paper.

In Section 2, to set notation, we review the notions of linear, bilinear and tomographic transforms for time signals.
In Section 3, transforms and tomograms for static and dynamical data on graphs are introduced and in Section 4 some
illustrative examples are worked out.

2. Signal transforms for time series: Linear, quasi-distributions and tomograms

The traditional field of signal processing deals mostly with the analysis of time series. Signal processing of time series
relies heavily on integral transforms [12,13]. Three types of transforms have been used: linear, bilinear and tomograms.
Among the linear transforms, Fourier and wavelets are the most popular. The Fourier transform extracts the frequency
components of the signal and the wavelets its multiscale nature. However, this is achieved at the expense of the time
information, in the sense that the time location of the frequency components and of the scale features is lost in the
process. This motivated the development of bilinear transforms like the time–frequency Wigner–Ville [14,15] or the
frequency–scale Bertrand [16,17] quasidistributions. The aimof theWigner–Ville transformwas to provide joint information
on the time–frequency plane, an important issue because, in many applications (biomedical, seismic, radar, etc.), the
nature of the signals may change on short time scales. However, the oscillating cross-terms in the Wigner–Ville and other
quasidistributions [18–20] render the interpretation of the transformed signals a difficult matter. Even when the average of
the cross-terms is small, their amplitude may be large in time–frequency regions that carry no physical information.

The difficulties with the physical interpretation of quasidistributions arise from the fact that time and frequency (or
frequency and scale) are noncommutative operator pairs. Hence, a joint probability density can never be defined. Even
in the case of positive quasiprobabilities like the Husimi–Kano function [21,22], an interpretation as a joint probability
distribution is also not possible because the two arguments in the function are not simultaneously measurable random
variables. More recently, a new type of strictly positive bilinear transform has been proposed [8–10], called a tomogram,
which is a generalization of the Radon transform [23] to arbitrary noncommutative pairs of operators. The Radon–Wigner
transform [24,25] is a particular case of the noncommutative tomography technique. Being strictly positive densities, the
tomograms provide a full characterization of the signal and are robust in the presence of noise.

A unified framework to characterize linear transforms, quasidistributions and tomograms was developed in Ref. [9]. In
finite dimensional spaces a signal f may be represented as a column vector and the scalar product as gT f , the transposed gT

being a row vector. However in infinite-dimensional spaces N and when f is not normalizable the notion of scalar product
loses its meaning and is better to use the notation |f ⟩ and ⟨g| to emphasize that g belongs to a smaller space (the dual N ∗

of N ). Then, the notation ⟨g | f ⟩, the value of the functional ⟨g| on the vector |f ⟩, generalizes the notion of scalar product
when the space of the ⟨g|’s and the |f ⟩’s cannot be identified. Also ⟨g|U |f ⟩ means the action of the operator U on |f ⟩ and
then the evaluation of the functional ⟨g| on the new vector [26].

Consider now a signal f (t) as a vector |f ⟩ in a subspaceN of a Hilbert spaceH , a family of unitary operatorsU (α) = eiB(α)

and a reference vector h in the dual N ∗ of N . A linear transform like Fourier or wavelet is

W (h)
f (α) = ⟨U (α) h | f ⟩ (1)

and a quasidistribution is

Qf (α) = ⟨U (α) f | f ⟩. (2)

To define the tomogram let, in the unitary operator U (α) = eiB(α), B (α) have the spectral decomposition B (α) =
XP (X) dX , where P (X) denotes the projector on the (generalized) eigenvector ⟨X | ∈ N ∗ of B (α). The tomogram is

M(B)
f (X) = ⟨f | P (X) |f ⟩ = |⟨X | f ⟩|2 . (3)

The tomogram M(B)
f (X) is the squared amplitude of the projection of the signal |f ⟩ ∈ N on the eigenvector ⟨X | ∈ N ∗ of

the operator B (α). Therefore it is positive. For normalized |f ⟩,

⟨f | f ⟩ = 1

the tomogram is normalized
M(B)

f (X) dX = 1 (4)
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and may be interpreted as a probability distribution on the set of generalized eigenvalues of B (α), that is as the probability
distribution for the variable X corresponding to the observable defined by the operator B (α).

For example, if the unitary U (α) is generated by BF (α) = α1t + iα2
d
dt and h is a (generalized) eigenvector of the time-

translation operator, the linear transformW (h)
f (α) is the Fourier transform. For the same BF (α), the quasi-distributionQf (α)

is the ambiguity function and theWigner–Ville transform [14,15] is the quasi-distributionQf (α) for the following B-operator

B(WV )(α1, α2) = −i2α1
d
dt

− 2α2t +

π

t2 −

d2

dt2
− 1


2

. (5)

The wavelet transform is the linear transform W (h)
f (α) for BW (α) = α1D + iα2

d
dt , D being the dilation operator

D = −
1
2


it d

dt + i d
dt t

. The wavelets hs, τ (t) are kernel functions generated from a basic wavelet h(τ ) by means of a

translation and a rescaling (−∞ < τ < ∞, s > 0):

hs, τ (t) =
1

√
s
h

t − τ

s


(6)

using the operator

U (A)(τ , s) = exp


−τ
d
dt


exp(i log sD), (7)

hs,τ (t) = U (A)Ď(τ , s)h(t). (8)

The Bertrand transform [16,17] is the quasi-distribution Qf (α) for BW . Linear, bilinear and tomogram transforms are
related to one another [9].

As stated before, tomograms are obtained from projections on the eigenstates of the B operators. These operators may
be linear combinations of different (commuting or noncommuting) operators O1 and O2,

B = µO1 + νO2 (9)

meaning that the tomogram explores the signal along lines in the plane (O1,O2). For example for

B (µ, ν) = µt + νω = µt + iν
d
dt

(10)

(ω = i d
dt ) the tomogram is the expectation value of a projection operator with support on the line in the time–frequency

plane

X = µt + νω. (11)

Therefore, M(S)
f (X, µ, ν) is the marginal distribution of the variable X along this line in the time–frequency plane. The line

is rotated and rescaled when one changes the parameters µ and ν. In this way, the whole time–frequency plane is sampled
and the tomographic transform contains all the information on the signal. The probabilistic nature of the tomogram implies
that, in contrast with quasi-distributions, the information thus obtained is robust and unambiguous.

Tomograms associated to linear combinations of time with the generators of the conformal group (i d
dt ; i


t d
dt +

1
2


;

i

t2 d

dt + t

) and several other known operators have been explored [10]. By providing a robust extraction of compound

signal features, tomograms have been useful in denoising, component separation and structure identification [11,27–31].
Notice that the notion of tomogram provides a probabilistic robust characterization of any number of signal

characteristics. For example, instead of a linear combination of two operators as in (9), we may project on the eigenvectors
of a linear (or nonlinear) combination of any number of operators. For a detailed theory of the tomogram transforms and, in
particular, their mathematical status as operator symbols we refer to Refs. [9,10].

3. Signal transforms and tomograms on graphs

From the graph point of view a time series is a signal on a one-dimensional directed graph with vertices labeled by the
times (t0, t1, t2, . . .) and the edges connecting tk+1 to tk. That is, the adjacency matrix A of a time series is, in general

A =


0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

...
...

...
... · · ·

 (12)
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or, for a time-periodic signal

A =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

... 0 0
0 0 0 0 1 0

 . (13)

As discussed before, linear signal transforms for a time series are projections on the set of eigenvectors of a linear operator.
These operators are not arbitrary, but chosen to extract particular features of the signal that is being analyzed. The Fourier
transform looks for periodic features, wavelets for multiscale features, etc. Likewise, useful information from signals on
arbitrary graphs may be obtained from projections on sets of vectors associated to suitably chosen linear operators. For
the time-periodic signal, it is easy to see that the discrete Fourier transform is the projection on the eigenvectors of the
adjacency matrix (13). Therefore one may generalize the notion of Fourier transform for graphs as the projection on the
eigenvectors (or on the generalized eigenvectors of the Jordan decomposition) of the adjacency matrix. This was the point
of view taken by some authors [4–6] to develop a theory of discrete signal processing on graphs. However this choice is not
unique because, for the time series network other matrices have the same spectrum, for example the Laplacian matrix

L = D − A

D being the degree matrix, which for the time series is the identity. Hence, the graph Fourier transform might as well be
defined as a projection on the generalized eigenvectors of the Laplacianmatrix [2,3,7,32]. This operator point of view allows
not only to generalize the notion of transforms but also the notions of filtering and other general linear operations on graph
signals.

Now a generalization of the notions of linear transform and tomogram, for signals on graphs, will be developed.
Generalization of the notion of bilinear transform will not be dealt with because, already for time series, it leads to difficult
interpretation problems.

3.1. Graph transforms

Let G = (V,A) be a graph, with V = {v0, . . . , vN−1} the set of vertices and A the weighted adjacency matrix. Each
matrix element An,m is the weight of a directed edge from vm to vn which can take arbitrary real or complex values.
Nn = {m | An,m ≠ 0} is the neighborhood of vn and a graph signal is a map f = {fn} from the set V of vertices into
the set of complex numbers C, each element fn being indexed by the vertex vn.

Other useful graph matrices are:

– The degree matrix D: a diagonal matrix listing the degree of the vertices
– The symmetrically normalized Laplacian matrix: L′

= D−
1
2 LD−

1
2

– The random walk matrix: W = AD−1

– The lazy random walk matrix: W′
=

I + AD−1 /2

– The incidence matrix E: is the Ne × N matrix (Ne = no. edges, N = no. of vertices) given by

Ee,ν =

 1 if e = (v, w) and v < w
−1 if e = (v, w) and v > w
0 otherwise .

– The edge adjacency matrix: is a Ne × Ne matrix determined by the adjacencies of edges

eAi,j =


1 if edges i and j are adjacent
0 otherwise.

These matrices have been used in the past mostly to characterize the topological structure of networks, for vertex
clustering, for the detection of communities, etc. [1,33–37]. Here they will be considered as operators which generate a
set of (generalized) eigenvectors to project the signals on graphs.

3.1.1. Fourier-like transforms
Denote any one of the N × N graph matrices byM. The matricesM act on the space of graph signals by

fn →fn =


m

Mn,mfm =


m∈Nn

Mn,mfm. (14)

When the matrix M is the adjacency matrix this operation generalizes the notion of time shift, when time sequences are
looked at as forward-connected graphs.
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For many real-world datasets the matricesM are not diagonalizable. In those cases, to obtain a suitable set of expansion
vectors one may either use the symmetric combinations MMT and MTM to generate an expansion basis or, alternatively,
use the block-diagonal Jordan decomposition ofM.

M = VJV−1 (15)

J =

JR0,0(λ0)

. . .

JRM−1,DM−1
(λM−1)

 (16)

with Jordan blocks associated to the eigenvalues ofM

Jrm,d(λm) =


λm 1

λm
. . .

. . . 1
λm

 . (17)

The columns of the matrix V, that bringsM to its Jordan normal form, are the eigenvectors

(M − λmI)vm,d,0 = 0 (18)

and the generalized eigenvectors of the Jordan chain

(M − λmI)vm,d,r = vm,d,r−1 (19)

of M. These vectors may then be used to project the signals on the graph and, considering the graph signal f as a column
vector, theM-transform isf = V−1f (20)

with inverse transform

f = Vf. (21)

As stated before, when M is either the adjacency or the Laplacian matrix, the transforms so obtained correspond to
the graph generalization of the Fourier transform as proposed by several authors [2–7,32]. When the matrices are not
symmetric, the problem with these transforms lies in the fact that in general the set of generalized eigenvectors do not
form an orthogonal basis. Therefore it is sometimesmore convenient to useMMT andMTM to generate the expansion basis,
leading to what we will call theMMT - orMTM-transform.

3.1.2. Wavelet-like transforms
The definition of wavelet-like transforms for graphs requires a more elaborate construction. For time series the affine

wavelets use, in Eq. (1), an operator U (α) consisting of the product of a translation and a scale transformation which act on
a fixed reference signal (the mother wavelet h0 (t)), namely

hs,a (t) = U (s, a) h0 (t) = elogs

t d
dt +

1
2


ea

d
dt h0 (t)

=
√
sh0 (st + a) . (22)

Translation in the graph is easily generalized but it is not obvious how to generalize scale transformations. This becomes
clearer if we rewrite the wavelet transform in frequency space,

f (a, s) =


dth∗

s,a (t) f (t)

=


dt

elogs


t d
dt +

1
2


ea

d
dt h∗

0 (t)

f (t)

=


dω

e−i ωs a

√
s
h0

∗
ω

s

f (ω) (23)

h0 andf denoting the Fourier transforms of the mother wavelet and of the signal. One sees that the wavelet transform is
represented as a sum over the Fourier spectrum Ω with the (frequency) argument of the mother wavelet shifted from ω to
ω
s . Themappingω ∈ Ω →

ω
s ∈ Ω is a one-to-one ontomapping of the Fourier spectrumΩ into itself. Therefore the natural

generalization of the wavelet transform for graphs may be defined as a similar sum, with the spectrum label shift being one
of the possible one-to-one onto mappings of the spectrum of the adjacency matrix (or of the Laplacian matrix).
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Writing the Fourier-like transform on graphs and its inverse asf (η) =


i

χη (i) f (i)

f (i) =


η

f (η) χη (i) (24)

where χη (i) is an eigenvector of A or L (or a generalized eigenvector or an eigenvector of ATA or LTL) and η denotes the
spectral label in the spectrum Ω of the matrices. With a localized ‘‘mother wavelet’’

h(k) (i) = δk,i (25)

the wavelet-like transform on graphs would be

f (a,s) =


η

χs(η) (k + a)f (η) . (26)

The mappings (η) is not η →
η

s because in general η

s is not in Ω .s is a mapping in the set S of the possible one-to-one onto
mappings of Ω ,s ∈ S.

The inverse wavelet transform is

f (η) =
1
#S


a,s χs(η) (a) f


a, s̃

. (27)

#S denoting the cardinality of S.
Hammond, Vandergheynst and Gribonval [38] have also attempted to generalize the notion of wavelet transform to

graph signals. However, instead of the sum with the shifted arguments in the spectrum, their construction corresponds to
the introduction of a η-dependent weight on the sum of the 2nd equation in (24), with both the signal componentf (η) and
the eigenvector χη associated to the same spectral value η. Therefore their construction is more in the spirit of a Fourier
deformation of the signal rather than of a wavelet transform.

An even more general transform would be

f (a, C) =


η,η′

C

η, η′


χη′ (a)f (η) . (28)

For comparison with the time series case, this last construction would be similar to the case of ‘‘conformal wavelets’’

generated by eα

t2 d

dt +t

ea

d
dt h0 (t).

In time series, times are labels on the data, therefore it is natural to frame time series as graphs, times being the vertices of
the graph. The time-series-as-graph analogy was also the one used by previous authors in their generalization of the Fourier
transform. However, the construction could as well start from the notions used to describemultidimensional spatial signals.
But whatever starting point is used, the formulation of the general theory of graph signal processingmight (and should) also
have an impact on the classical treatment of spatial signals. For example, some algorithms in image processing convert the
image to a linear signal, thus neglecting the global metric relations of the adjacency matrix. Also, transforms much more
general than the 2D Fourier transform are easier to construct on a graph-based setting.

3.2. Graph tomograms

So far, signals on graphs have been described either as vectors on vertex space or as projections of these vectors on the
generalized eigenvectors of a particular matrix M. Each particular matrix emphasizes a specific topological property of the
graph. As in time series, tomograms for graphs are designed to obtain information about more than one signal feature by
projecting on the generalized eigenvectors of a matrix that interpolates between two distinct matrices M1 and M2. This
parallels what for time series is achieved, for example, by the time–frequency tomogram.

In a time series the successive times t1, t2 . . . tn are the eigenvalues of the time operator t that appears in BF (α) =

α1t + iα2
d
dt , the BF (α) operator that generates the time–frequency tomogram. For a graph the corresponding notion is the

vertex operator. For a graph with N vertices the vertex operator is

T =



1 0 0
... 0

0 ei
2π
N 0

... 0

0 0 ei
2π
N ×2

... 0

· · · · · · · · ·
. . .

...

0 0 0 · · · ei
2π
N ×(N−1)


(29)
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and the vertex signal f = {fn} corresponds to a projection of the signal f on the eigenvectors of this operator. Therefore, the
construction of a tomogram for graph signals would amount to finding an operator that interpolates between T and one of
the matricesM listed before. A possible solution would be

Bα = (1 − α) T + αM (30)
with α varying between 0 and 1, the tomogram being obtained by the projections of the signal f on the eigenvectors of Bα . If
M is the adjacency matrix A, this construction, interpolating between A and the vertex operator T is, for graphs, the analog
of the time–frequency tomogram.

Even if the ordering of the vertices is arbitrary, the vertex operator is always a meaningful entity in the sense that if, for
example, the tomogram is used for clustering purposes, it is the T operator that allows to identify which vertices belong to
each cluster. In addition some additional information may be introduced into T by using for example geographical ordering
of the nodes, or some other property.

Tomograms may also be constructed by using two of the listedMmatrices
Bα = (1 − α)M1 + αM2

which may be used to refine the analysis beyond the information obtained from the T,M-tomogram.
As discussed before, the reason why time and frequency cannot be simultaneously specified is because they correspond

to a pair of non-commuting operators. This is the reason why bilinear transforms, like Wigner–Ville, are unreliable and
it is also the main motivation for using tomogram transforms. In graphs, the vertex description and the adjacency matrix
projection are also incompatible specifications, because in general the T and A (or L) matrices do not commute. It is in this
sense, that, as recently stated [32,39], there is an uncertainty principle for graphs, that is, a fundamental trade-off between
a signal localization on the graph and on its spectral domain.

3.3. Tomograms and dynamics

The graph tomogram, as defined above, is appropriate for the study of a static network signal.1 If during the time evolution
the graph structure stays the same, the time series associated to each vertex may simply be projected on the (generalized)
eigenvectors as in the scalar case. However if the graph itself changes in time a more general framework must be used.

Consider a graph signal that evolves in (discrete) time. The corresponding graphwould be, for each time t , a regular graph
and each one of these graphs is forward-connected to the graph of the subsequent time. A vertex νn (t) at time t connects
to the vertex νn (t + 1) at time t + 1. This construction accommodates the possible disappearance of vertices. In that case
such vertex νn (t) would not have any forward edges. The connection of the vertices at time t to those at time t + 1 and the
signals fn (t) and fn (t + 1) code for the dynamics of the signal, whereas the relation between the adjacency matrices A (t)
and A (t + 1) codes for the dynamics of the graph itself.

The construction of the M-transforms and the graph tomograms will then proceed as before for the global adjacency
matrix. To have a feeling for the kind of eigenvectors obtained for such adjacency matrices, consider a simple case of a
finite-vertex circle graph with N vertices symmetrically connected to nearest-neighbors and forward connected in periodic
time with τ time steps. Then, at each time t , the adjacency matrix A (t) is

A (t) =



0 1 0 0
... 1

1 0 1 0
... 0

0 1 0 1
... 0

0 0 1 0
... 0

· · · · · · · · · · · ·
. . .

...
0 0 0 · · · 1 0


. (31)

Let, for definiteness and notational simplicity, N = τ = 3. Then the global 9 × 9 adjacency matrix is

A =



0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


. (32)

1 Likewise, the usual time–frequency tomogram may be looked upon as a static description of the whole time history of the system.
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This matrix is

A =


I3 ⊗

0 1 1
1 0 1
0 1 0


⊕

0 0 1
1 0 0
0 1 0


⊗ I3


with eigenvalues

0,
3 ±

√
5

2
,
−3 ± i

√
3

2
,
−5 ± i

√
3

2
,
5 ± i

√
3

2
.

The ‘‘Fourier’’ transform of the dynamical graph signal will be the projection on the corresponding 9-dimensional
eigenvectors.

For the construction of the tomogram, the vertex operator T, as in (29), is

T =

T(3) 0 0
0 T(3) 0
0 0 T(3)


where T(3) is the 3 × 3 matrix

1 0 0

0 ei
2π
3 0

0 0 ei
2π
3 ×2

.

This general framework, where one takes into account both the network edges and the time links, allows for a unified
treatment of both the dynamics over graphs and the dynamics associated to a time changing topology.

4. Illustrative examples

In this section we present some examples of the use of graph transforms and graph tomograms. The detailed economic
and biological implications of the examples are beyond the scope of this paper andwill be reported elsewhere. The examples
are included as an illustration of the concepts and also as a guide on how the graph formulation may be a powerful tool
to analyze multivariate time series, in particular to detect weak correlations which might be undetectable by traditional
clustering techniques.

4.1. A market network

An important problem in the design of portfolios or ETF’s (Exchange Traded Funds) is the classification of the dynamical
behavior of the trading values of market products. Identifying clusters of products with similar dynamical behavior allows
the design of simpler portfolios, by the selection of representative elements in each cluster. Here we analyze the daily
closing equity prices of 301 companies in the SP500 (Standard & Poors index) throughout the 250 trading days of 2012.
For the purpose of the calculations the companies are ordered by sectors. For the benefit of the reader interested on detailed
information on the companies used in this example their ticker symbols and GICS (Global Industry Classification Standard)
sector codes are listed in the Appendix.

From the daily returns

r (t) = log S (t) − log S (t − 1) (33)

S (t) being the closing price at day t , one computes a dynamical distance between the company stocks i and j by

dij =

 250
t=1


ri (t) − rj (t)

2 (34)

ri and rj being the return of companies i and j and the sum is over the 250 trading days in 2012.
Now one computes the smallest non-zero dij (dmin) and an adjacency matrix A with matrix elements Aij may be defined

either by

A#
ij =

dmin

dij


1 − δij


(35)

or

A(β)

ij =

1 − δij


exp


−β


dij − dmin


. (36)

The second form is sometimes the most convenient one because, by varying β , one obtains a multiscale analysis of the
dynamical similarities of the companies. In Figs. 1 and 2 we show the color-coded adjacencymatrices A# and A(β=2) that are
obtained. One sees that the A(β=2)-adjacency matrix provides a more detailed picture of the nature of correlations between
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Fig. 1. Color-coded adjacency matrix A# for the 301 companies. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Color-coded adjacency matrix A(β) , β = 2, for the 301 companies. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the return behavior of these equities. From inspection of thismatrix one already sees that although the strongest correlations
are on the ‘‘utilities’’ sector (GICS code 55), many other inter-sector correlations do exist. The main purpose of the analysis
is precisely to identify sets of companies with similar return behavior.

For the remaining of our calculations we will use the A(β=2) $ A as the adjacency matrix.
Now consider, as the signal on the graph, the yearly compound return

Ri =

250
t=1

(1 + ri (t)) . (37)
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Fig. 3. The compound returns Ri and the absolute values of the projection of Ri − ⟨Ri⟩ on the eigenvectors of the adjacency and Laplacian matrices.

In Fig. 3 we compare the compound return Ri of the companies with the absolute value of the projections of Ri − ⟨Ri⟩ on the
eigenvectors of the adjacency A and of the Laplacian L = D − A matrices. ⟨Ri⟩ is the mean value of the compound returns,
which in this case was 1.1003.

One sees that the projection on the A-eigenvectors (the A-transform) is the one that provides a better information
compression by selecting a smaller number of dominant eigenvectors.

For the purpose of comparison of the tomogram analysis, to be performed below, with a standard clustering technique,
we consider the RatioCut technique [33]. This is a spectral technique which looks at the lowest non-zero eigenvalues in
the spectrum of the Laplacian matrix, the corresponding eigenvectors leading (by K -means) to a division into clusters that
minimizes the RatioCut

RatioCut (C1, . . . , CK ) =
1
2

K
k=1

W

Ck, Ck


|Ck|

whereW

Ck, Ck


=


i∈Ck,j∈Ck
Aij, Ck is the complement of the cluster Ck and |Ck| is the number of elements in Ck.

From Fig. 4, where we have plotted the eigenvalues of the Laplacian matrix, one sees that in this case this criterion does
not provide clear information on the cluster properties of the market network.

How the companies organize themselves into groups with similar return behavior is better understood by the
examination of the T,A-tomogram (Fig. 5). Notice that here the vertex matrix T in addition to labeling the nodes also
contains some more information, the companies being ordered by sectors. Fig. 5 is a contour plot of the absolute value
of the projections of the compound return (Eq. (37)) on the eigenvectors of Bα = (1 − α) T + αA(2).

One sees how, starting from the compound return signal at α = 0, the contributions of the companies organize
themselves into clusters on theway to the final projection on the A-eigenvectors (at α = 1). The selection of clustersmay be
done by cutting the tomogram at diverse levels and reconstructing the components of the signal. All the signal information
is contained at each α level. Therefore the signal components (dynamical clusters) are reconstructed by linear combinations
of the eigenvectors around each peak with the coefficients taken from the tomogram. As an example Fig. 6 shows the cut at
α = 0.85 and Fig. 7 the reconstruction of the signal components around three of its peaks. The axis labeling corresponding
to the ordered companies, clusters are simply identified by the strongest contributions.

One sees how these distinct dynamical clusters have important contributions from very different sectors. For example
the last peak (components 298–300) is dominated by companies both in the utilities and the energy sector.

Comparing with the results of the RatioCut technique (Fig. 4) it seems that the tomographic analysis performs better at
identifying clusters than the spectral technique. However, cluster identification here is simply based on the separation of
the intensity peaks in the tomogram and we still lack an independent metric to analyze the fidelity of the detected clusters.
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Fig. 4. Eigenvalues of the Laplacian matrix.

Fig. 5. The T,A-tomogram.

4.2. A trophic network

In this example, to be studied in more detail elsewhere, we analyze a biological network for which two types of
information are available. It concerns 12 fish species of the North Sea for which we have information both on their trophic
relations [40] and on their biomass evolution in the period 1976–2013, available at International Council for the Exploration
of the Seas [41]. These specieswere selected for the availability of a relatively long biomass time series. The trophic relations,
obtained from averaged stomach sampling are displayed in Fig. 8 and in the color-coded adjacency matrix Atroph of Fig. 9.

The ordered 12 species are: 1 = Cod adult; 2 = Whiting adult; 3 = Haddock adult; 4 = Saithe adult; 5 = Norway
pout; 6 = Herring adult; 7 = Sprat; 8 = Sandeels; 9 = Plaice; 10 = Flounder; 11 = Sole; 12 = Lemon Sole.

Notice that in the Atroph matrix the lines do not sum up to one, because other species enter in the stomach data beyond
the 12 considered here.
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Fig. 6. The T,A-tomogram cut at α = 0.85.

Fig. 7. The compound return and the absolute value of Ri − ⟨Ri⟩ for three different clusters in the tomogram.

For the analysis of the biomass time series b (t), we consider the population growth rate as themost relevant variable [42]

r (t) = log


b (t)
b (t − 1)


(38)

and define the ∆-delay distance function as

d(∆)
ij =

 38
t=∆


ri (t) − rj (t − ∆)

2
. (39)

The reason we consider time-delays for the growth rate distances is because in a trophic network the biomass is related to
the other species offspring of previous years.
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Fig. 8. North Sea Foodweb 12 species, directed and weighted.

Fig. 9. Color-code trophic adjacency matrix Atroph for the 12 fish species. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

For each distance matrix, with elements d(∆)
ij , we find the smallest nonzero element (d(∆)

min) and define biomass delayed
adjacency matrices as

A(∆)
ij =

d(∆)
min

d(∆)
ij

. (40)

Fig. 10 displays the color-code one-year delayed biomass adjacency matrix.
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Fig. 10. Color-code one-year delayed biomass adjacency matrix. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. Trophic versus growth rate adjacency matrices.

A simple inspection of Figs. 9 and 10 shows that the trophic and the biomass data do not contain the same information,
which is to be expected since the biomass growth rate depends in many other factors besides predation. This is better seen
in Fig. 11 where we have normalized to one each column in the trophic matrix, and then compared the 28 nonzero elements
with the corresponding elements in the A(∆)

ij matrices (also normalized to one).
Although some partial trends might be similar, the general conclusion is that the biomass growth rate evolution seems

to depend on many other factors, different from the trophic relations of these 12 species.
In the remaining of this subsection we will use the one-year delayed biomass growth rate and the tomographic analysis

to exhibit some of the interspecies correlations. Fig. 12 shows a contour plot of the tomogram corresponding to the operator
B = (1 − α) T+αA(1)A(1)T . The signal that is projected on the eigenvectors of this operator is Ri−⟨Ri⟩, Ri being the compound
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Fig. 12. The tomogram corresponding to the operator B = (1 − α) T + αA(1)A(1)T .

growth rate over 36 years

Ri =

36
t=1

(1 + ri (t)) .

The breaks that are observed in the contour plot result from the automatic ordering of the eigenvectors by ascending
eigenvalue values. They are of no practical consequence, full information on the signal being kept at all α-levels. One sees
how, for α ≠ 0 the signal information is compressed in a small number of eigenvectors.

As in the market network example, cutting the tomogram at intermediate α levels, clustering dependency of the species
will be obtained. However, before doing it and for the purpose of comparison, we have attempted to apply the RatioCut
technique. Because the one-year delayed matrices are not symmetric, we have plotted (Fig. 13) the eigenvalues of LLT . One
sees that except for the last eigenvalue they are all very small, suggesting non-existent or veryweak correlations. Essentially,
each time series would be a cluster by itself.

Nevertheless, the tomographic technique seems to be able to unravel some correlations, although admittedly weak. The
upper plot in Fig. 14 shows a cut of the tomogram at α = 0.5. One has a dominant peak at X = 8 and a smaller one at
X = 4. Notice that these coordinates X do not correspond to the labeling of the species. It would be so only at α = 0. To see
what these correlations mean, one looks at the components of the eigenvectors of B = (1 − α) T + αA(1)A(1)T at α = 0.5
corresponding to these X values (the two lower plots in Fig. 14). The conclusion is that the dominant peak implies a (weak)
correlation of species 4 (Saithe adult) with species 9 (Plaice) and the peak at X = 4 a correlation between species 3 (Haddock
adult) and species 4 (Saithe adult).

5. Conclusions

1 —The growing set of big data associated to network phenomena motivates the development of new signal processing
tools suited to the analysis of static and dynamical signals on graphs.

2 —Among the new tools, transforms like the generalization of Fourier transform have been developed. Other transforms
may also be useful and, in this paper, a correct generalization of the wavelet transform has been constructed.

3 —For amultiple feature characterization of the signals a new graph tomographic transform is developedwhich, as in case
of time series signals, is probabilistically robust.

4 —Two application examples are worked out where, in particular, tomograms are used for cluster identification. As far as
internal correlations are concerned the two examples are of a very different nature. In the market data of SP500 there
are strong correlations. This is well known and is at the basis of the construction of portfolios. The most interesting fact
is that, as highlighted in the paper, these correlations most times involve companies in quite different sectors.

In the second example, for the fish populations, the correlations areweak, butwhereas other classicalmethods (RatioCut,
etc.) are unable to detect them, the tomographic technique may nevertheless identify some relevant ones.

In any case the examples are merely illustrative and the core of the paper is the set of robust analyzing techniques that
are developed, which may be useful for network phenomena in many fields.
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Fig. 13. Eigenvalues of LLT .

Fig. 14. Cut of the tomogram at α = 0.5 (upper plot) and the eigenvector components corresponding to the peaks at X = 8 and X = 4.

Appendix. Ticker symbols and GICS sector codes of the SP500 companies used in the example of 4.1

APA(10); APC(10); BHI(10); CHK(10); CNX(10); COG(10); COP(10); CVX(10); DNR(10); DO(10); DVN(10); FTI(10);
HAL(10); HES(10); HP(10); MRO(10); NBL(10); NOV(10); OXY(10); PXD(10); RDC(10); SLB(10); SWN(10); VLO(10);
WMB(10); XOM(10); AA(15); APD(15); ARG(15); ATI(15); BLL(15); BMY(15); CAM(15); CF(15); CLF(15); DD(15); DOW(15);
ECL(15); EMN(15); IFF(15); IP(15); MON(15); MUR(15); NEM(15); NUE(15); PPG(15); PX(15); SEE(15); VMC(15); X(15);
APH(20); AVY(20); BA(20); CAT(20); CMI(20); CSX(20); DE(20); DHR(20); DNB(20); DOV(20); EFX(20); EMR(20); ETN(20);
FDX(20); FLR(20); FLS(20); GD(20); GE(20); GWW(20); HON(20); IR(20); IRM(20); ITW(20); LLL(20); LMT(20); LUV(20);
MAS(20); MMM(20); NOC(20); NSC(20); PBI(20); PH(20); PLL(20); R(20); RHI(20); ROK(20); RTN(20); TYC(20); UNP(20);
UTX(20); AN(25); AZO(25); BBY(25); BIG(25); CCE(25); COH(25); DFS(25); DIS(25); DRI(25); F(25); FDO(25); GCI(25);
GPC(25); GPS(25); HAR(25); HD(25); HOG(25); HOT(25); HRB(25); IGT(25); IPG(25); JCI(25); JCP(25); JWN(25); KMX(25);
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LEG(25); LEN(25); LOW(25); LTD(25); MCD(25); MHP(25); NKE(25); NWL(25); OMC(25); PCP(25); SHW(25); SNA(25);
SWK(25); TGT(25); TIF(25); TJX(25); VFC(25); WHR(25); ADM(30); AVP(30); BFb(30); CAG(30); CCL(30); CL(30); CLX(30);
CPB(30); CVS(30); DF(30); DPS(30); EL(30); GIS(30); HNZ(30); HRL(30); HSY(30); JEC(30); K(30); KMB(30); KO(30); KR(30);
LO(30); M(30); MJN(30); MO(30); PEP(30); PG(30); PM(30); SJM(30); STZ(30); SWY(30); SYY(30); TAP(30); TSO(30);
WAG(30); WMT(30); WPO(30); ABC(35); ABT(35); AET(35); AGN(35); BAX(35); BCR(35); BDX(35); BMS(35); BSX(35);
CAH(35); CFN(35); CI(35); CVH(35); DGX(35); DVA(35); FRX(35); HSP(35); HUM(35); JNJ(35); LH(35); LLY(35); MCK(35);
MDT(35); MKC(35); MRK(35); PFE(35); PKI(35); STJ(35); SYK(35); THC(35); TMO(35); UNH(35); VAR(35); WAT(35);
WLP(35); AFL(40); AIG(40); AIZ(40); ALL(40); AXP(40); BAC(40); BBT(40); BEN(40); BK(40); BTU(40); C(40); CB(40);
CBG(40); CMA(40); COF(40); FHN(40); GNW(40); GS(40); HIG(40); JPM(40); KEY(40); L(40); LM(40); LNC(40); LUK(40);
MET(40); MMC(40); MTB(40); NBR(40); NYX(40); PGR(40); PNC(40); RF(40); SCHW(40); STI(40); STT(40); TMK(40);
TRV(40); TSN(40); UNM(40); USB(40); WFC(40); WM(40); XL(40); A(45); AMD(45); CSC(45); EMC(45); FCX(45); FIS(45);
GLW(45); GME(45); HPQ(45); HRS(45); IBM(45); JBL(45); JNPR(45); MA(45); MWV(45); TER(45); TSS(45); XRX(45);
PCS(50); S(50); T(50); VZ(50); AEE(55); AEP(55); AES(55); CMS(55); CNP(55); D(55); DTE(55); DUK(55); ED(55); EIX(55);
EQT(55); ETR(55); EXC(55); FE(55); GAS(55); NEE(55); NI(55); NU(55); PCG(55); PEG(55); PNW(55); POM(55); PPL(55);
SCG(55); SRE(55); TE(55); TEG(55); TXT(55); WEC(55); XEL(55).
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