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Abstract Data envelopment analysis (DEA) is com-

monly used to measure the relative efficiency of decision-

making units. Often, in a second stage, a regression model

is estimated to relate DEA efficiency scores to exogenous

factors. In this paper, we argue that the traditional linear or

tobit approaches to second-stage DEA analysis do not

constitute a reasonable data-generating process for DEA

scores. Under the assumption that DEA scores can be

treated as descriptive measures of the relative performance

of units in the sample, we show that using fractional

regression models is the most natural way of modeling

bounded, proportional response variables such as DEA

scores. We also propose generalizations of these models

and, given that DEA scores take frequently the value of

unity, examine the use of two-part models in this frame-

work. Several tests suitable for assessing the specification

of each alternative model are also discussed.

Keywords Second-stage DEA � Fractional data �
Specification tests � One outcomes � Two-part models
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1 Introduction

Data envelopment analysis (DEA) is a technique widely

used to evaluate the relative efficiency of individual deci-

sion-making units (DMUs). DEA efficiency scores (y) are

typically defined on the interval ]0,1], with, in general, few

values, if any, close to 0 but some values of unity. In order

to examine the effect on the efficiency of DMUs of factors

that are beyond their control (the so-called environmental,

contextual or non-discretionary variables), often, in a sec-

ond stage, a regression model is estimated for DEA scores.

The choice of regression model for the second stage of

DEA analysis is not a trivial econometric problem. The

standard linear model is not, in general, appropriate for

such analysis, since the predicted values of y may lie

outside the unit interval and the implied constant marginal

effects of the covariates on y are not compatible with both

the bounded nature of DEA scores and the existence of a

mass point at unity in their distribution. Moreover, the

standard approach of using a two-limit tobit model, with

limits at zero and unity, to model DEA scores (see the

references in Simar and Wilson 2007) is also questionable.

Indeed, the accumulation of observations at unity is a

natural consequence of the way DEA scores are defined

rather than the result of censoring. Furthermore, the

domain of the two-limit tobit model differs from that of

DEA scores because typically efficiency scores of zero are

not observed. This difference is particularly relevant

because application of the two-limit tobit model in this

context in fact amounts to estimation of a one-limit tobit

for y []-?, 1].

In the second-stage DEA literature, despite the

acknowledgement by authors such as Ruggiero (1998) that

misspecifying the second-stage regression model may

generate misleading results, only recently has this issue

been addressed. Given the bounded nature of DEA scores,

both Hoff (2007) and McDonald (2009) considered the use

of Papke and Wooldridge’s (1996) logit fractional regres-

sion model. However, both researchers conclude by rec-

ommending the use of the simpler linear regression model,

although McDonald (2009) acknowledges that there are
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Évora, Largo dos Colegiais, 7000-803 Évora, Portugal
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advantages in using Papke and Wooldridge’s (1996) model

for more refined analyses.

In this paper, we argue that any sensible description of

the data-generating process (DGP) for DEA scores defined

on ]0,1] requires the use of regression models that are

appropriate for dealing with fractional data in the second-

stage DEA analysis. In contrast to Hoff (2007) and

McDonald (2009), who considered only the logit fractional

regression model, we analyze several alternative functional

forms that may be more useful for dealing with the typical

asymmetric nature of DEA scores. In addition, we provide

examples to show clearly that both linear and tobit models

may produce outcomes that differ greatly from those of

fractional regression models (FRMs). Another advantage

of using FRMs is that they may be estimated by quasi-

maximum likelihood (QML). This is because, unlike tobit

models, FRMs do not require assumptions to be made

about the conditional distribution of DEA scores or heter-

oskedasticity patterns.

The relatively high proportion of efficient DMUs usu-

ally found in empirical studies raises another issue in the

description of the DGP for DEA scores: should the values

of unity be treated differently? In fact, there are two

options: (1) use a single-equation model to explain the

DEA scores of all DMUs, including those of the efficient

ones; or (2) use a two-equation model that explains sepa-

rately, first, why some DMUs are efficient while others are

not (y = 1 vs. y \ 1) and, second, the relative efficiency of

inefficient DMUs. To our knowledge, most researchers use

one-part models, an exception being Hoff (2007). In this

paper, we discuss two-part models that are more flexible

than those proposed by Hoff (2007). This greater flexibility

derives from our use of QML (rather than maximum

likelihood) for estimation of the second component of these

models, because QML enables one to avoid the distribu-

tional assumptions made by Hoff (2007).

The validity of the assumptions that underlie the models

used in the DEA second-stage regressions has been sys-

tematically overlooked in the DEA literature: most

empirical practitioners do not test the conditional mean

and/or the distributional assumptions implied by their

models. Because FRMs estimated by QML merely require

the correct specification of the conditional mean of the

DEA scores, in this paper we focus on this issue and survey

some general specification tests that can be applied in this

framework.

The paper is organized as follows. In Sect. 2, we establish

the framework of the paper. In Sect. 3, we examine alter-

native regression models for DEA scores, including the

traditional linear and tobit models and several alternative

one-part and two-part FRMs. In Sect. 4, we briefly describe

some specification tests suited to assessing the conditional

mean assumption made in FRMs. In Sect. 5, we use an

empirical example to compare and discuss the different

estimators and tests analyzed throughout the paper. In Sect.

6, we present concluding remarks. Throughout the paper, as

explained in Sect. 2, DEA scores are treated as descriptive

measures of the relative efficiency of the DMUs in the

sample.

2 Two-stage DEA regression analyses

There are a number of ways in which environmental

variables can be accommodated into DEA analysis. Since

its introduction by Ray (1991), the standard approach for

studying the influence of environmental factors on the

efficiency of DMUs is to use two-stage DEA analysis. This

involves first using DEA techniques to evaluate the relative

efficiency of DMUs and then regressing DEA efficiency

scores on appropriate covariates. See Simar and Wilson

(2007) for an extensive list of references to the use of this

approach, Coelli et al. (2005) and Daraio and Simar (2005)

for other approaches to incorporating the influence of

efficiency factors into DEA analysis, and Wang and

Schmidt (2002) for an explanation of why, in the frame-

work of stochastic frontier analysis, using a single-stage

procedure to estimate inefficiency and the impact of

environmental variables jointly is the appropriate approach

for productivity analysis.

Despite the popularity of two-stage DEA analysis, there

has recently been some controversy over applying this

approach to examining how a set of environmental factors

determines technical efficiency; see Grosskopf (1996) for

an early criticism of this approach. Indeed, as pointed out

by Simar and Wilson (2007), none of the many studies

cited in their paper describes the DGP underlying their

two-stage approaches. In order to provide a rationale for

second-stage DEA regressions, two distinct justifications

have recently been put forward. These justifications depend

crucially on the interpretation given to the DEA score used

as the dependent variable in the second-stage regression

analysis. As discussed by McDonald (2009, Section 11), at

stage two, DEA scores may be interpreted either as

observed measures of DMU efficiency or as estimates of

‘true’, but unobserved, efficiency scores.

In the first of these approaches, which is adopted by, in

McDonald’s (2009) terminology, ‘instrumentalists’, DEA

scores are treated as descriptive measures of the relative

technical efficiency of the sampled DMUs. Given this

interpretation, the frontier can be viewed as a (within-

sample) observed best-practice construct and, therefore, in

stage two, the DEA scores can be treated like any other

dependent variable in regression analysis. Hence, parame-

ter estimation and inference in the second stage may be

carried out using standard procedures. In this framework,
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the main issue is choosing an appropriate DGP for the DEA

scores, which requires essentially selecting a suitable

functional form for the regression model that relates these

scores to the environmental variables. In most empirical

studies, linear specifications or, because of the bounded

nature of DEA scores, tobit models are used. However, as

stressed by Simar and Wilson (2007), no coherent account

of why a model suitable for censored data should be used in

this setting has been provided.

Although the instrumentalist approach may appear

simplistic and naive, it reflects the common practice in

economics of dealing with dependent variables that are

based on the extremely complex measurements of eco-

nomic aggregates. As McDonald (2009) argues, although

the values of such dependent variables should be treated as

estimates rather than as actual measures, this is not nor-

mally done because ‘it is thought it would lead to consid-

erable complexity and perhaps only minor changes in

inference’. See McDonald (2009) for more arguments that

justify the instrumentalist approach, which has been

implicitly adopted for most two-stage DEA empirical

studies.

By contrast, in the so-called ‘conventionalist’ approach

(McDonald 2009), DEA scores measure efficiency relative

to an estimated frontier (the true value of which is unob-

served). This implies that estimates of efficiency from DEA

models are subject to uncertainty because of sampling

variation. As shown by Kneip et al. (1998), although DEA

scores are consistent estimators of true efficiency, they

converge slowly. Moreover, they are biased downwards.

Using DEA scores in the second-stage regression analysis

leads to two additional problems: (1) the input and output

factors used to estimate the DEA scores may be correlated

with the explanatory variables in the second stage; and (2)

under the DEA methodology, DEA scores are dependent

on each other and, hence, making the assumption of within-

sample independence, which is required for regression

analysis, inappropriate. Consequently, the estimated effects

of the environmental variables on DMU efficiency may be

inconsistent and standard inferential approaches are not

valid.

Under the conventionalist framework, a coherent DGP

for the DEA scores must include not only a specification

for the regression model used in the second stage but also a

description of how the variables used in the first and second

stage are related. In this context, Simar and Wilson (2007)

and Banker and Natarajan (2008) were the first to describe

a coherent DGP and to develop appropriate estimation

procedures for two-stage DEA analysis.

Simar and Wilson (2007) provide a set of assumptions

under which the consistency of the second-stage regression

parameters is not affected by the use of estimates rather

than true efficiency scores. To make inferences about those

parameters, they propose two alternative bootstrap methods

that take into account the sampling variability of DEA

scores. Two of the assumptions made by Simar and Wilson

(2007) are particularly relevant. First, they assume that a

separability condition, which allows environmental vari-

ables to affect the efficiency scores but not the frontier,

holds. Second, they assume that the true efficiency scores

follow a truncated normal distribution. See inter alia

Zelenyuk and Zheka (2006), Latruffe et al. (2008) and

Kravtsova (2008) for recent applications of this approach.

Banker and Natarajan (2008) provide a formal statistical

foundation for two-stage DEA analyses, deriving condi-

tions under which two-stage procedures yield consistent

estimators at stage two. One of their specifications implies

a linear relationship between the log of efficiency scores

and the environmental variables. This has the favorable

implication that the parameters of interest in second-stage

DEA analysis can be estimated consistently by using

ordinary least squares. The DGP proposed by Banker and

Natarajan (2008) is less restrictive than that suggested by

Simar and Wilson (2007) (see endnote 1 in the former

paper for details). However, they considered only param-

eter estimation, do not discussing how to testing hypothe-

ses about the parameters estimated in stage two. Moreover,

because the dependent variable in the regression model is

the log (rather than the level) of the DEA score, reesti-

mating efficiency scores or quantifying the marginal effects

requires distributional assumptions about the error term of

the second-stage regression.1

From our discussion, it is clear that one important issue

in both the instrumentalist and conventionalist approaches

is the choice of model used in the regression stage. If the

specification is incorrect, any of the procedures discussed

above will produce inconsistent estimates of the parameters

of interest. However, to our knowledge, no one has tested

the suitability of the regression model used in second-stage

DEA analysis. In this paper, we propose several alternative

regression models of efficiency scores (defined on ]0,1]) on

environmental variables, and we show how such specifi-

cations may be assessed using simple statistical tests. For

simplicity, we adopt the instrumentalist approach and treat

DEA scores as observed measures of technical efficiency.

This strategy allow us to focus exclusively on two key

points the paper: (1) any sensible DGP for DEA scores

requires the use of FRMs (or their two-part extensions); and

(2) because there are many alternative FRM specifications,

which may generate different results, it is fundamental to

test the specification chosen for the regression model.

Thus, while papers such as Simar and Wilson (2007)

focus on incorporating into the second-stage the variability

1 See Duan (1983) for a seminal paper on the consequences for

prediction of using logged dependent variables.
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induced by estimation in the first stage, and assume that the

parametric model of DEA scores is correctly specified, we

examine the effects of misspecifying this model in a

framework in which such variability is assumed to be

absent. Note that misspecification of the functional form is

a more serious problem than ignoring the sampling vari-

ability of DEA scores: only the former is expected to cause

inconsistent estimation of the second-stage parameters of

interest. In the final section of this paper, we briefly discuss

the implications of using our methodology under the con-

ventionalist approach.

3 Alternative regression models for efficiency scores

Consider a random sample of i = 1, …, N DMUs. Let y be

the variable of interest (the DEA efficiency score),

0 \ y B 1, and let x be a vector of k environmental factors.

Let f(y|x, h) denote the conditional distribution of y, which

may be known or unknown, and let h be the vector of

parameters to be estimated. In this section, we first discuss

the main characteristics of the traditional regression models

employed in the second stage of DEA efficiency analysis.

Then, we present the (one- and two-part) FRMs.

3.1 Traditional approaches: linear and tobit models

Some DEA analyses have used linear conditional mean

models, given by

EðyjxÞ ¼ xh; ð1Þ

to explain efficiency scores. However, the linearity

assumption is unlikely to hold in the DEA framework,

for two main reasons. First, the conceptual requirement that

the predicted values of y lie in the interval ]0,1] is not

satisfied. Second, in a linear model, the marginal effect on

the DEA score of a unitary change in covariate xj,

oEðyjxÞ
oxj

¼ hj;

is constant over the entire range of y, which is not com-

patible with either the bounded nature of DEA scores or the

existence of a mass point at unity in their distribution.

The traditional approach to explaining DEA scores is to

use a two-limit tobit model on data censored at 0 and 1; see

the references in Simar and Wilson (2007). This model

assumes that there is a latent variable of interest, y*, -?
\ y* \ ??, which is not fully observed. Instead of

observing y*, we observe y, which is defined as follows:

y = 0 if y* B 0, y = y* if 0 \ y* \ 1, and y = 1 if y* C

1. It is also assumed that there exists a linear relationship

between y* and the covariates, E(y*|x) = xh, which implies

that the conditional mean of the observed fractional

response variable is given by

EðyjxÞ ¼ U
1� xh

r

� �
� U �xh

r

� �� �
xh

� r /
1� xh

r

� �
� / �xh

r

� �� �
þ 1

� U
1� xh

r

� �
: ð2Þ

The partial effects of a unitary change in xj on y are given

by

oEðyjxÞ
oxj

¼ hj U
1� xh

r

� �
� U �xh

r

� �� �
; ð3Þ

where Uð�Þ and /(�) denote the standard normal distribu-

tion and density functions, respectively, and r is the stan-

dard deviation of the error term u = y* - E(y*|x); see inter

alia Hoff (2007).

Researchers such as Simar and Wilson (2007) and

McDonald (2009) criticize this approach on the grounds

that the concentration of observed DEA scores at unity is a

product of the way the scores are defined rather than the

result of a censoring mechanism, as implied by the tobit

model. Indeed, whereas with censored data one is typically

interested in inferring the effects of a change in xj on y*,

which is given simply by hj, in the DEA framework, one is

interested in the partial effects on the observable variable y,

given in (3); see Wooldridge (2002) pp. 517–521 for dis-

cussion of these issues. However, some DEA researchers

mistakenly focus on the potential marginal effects, given

by hj, rather than on the actual partial effects (3); see, e.g.,

Chilingerian (1995) and Gillespie et al. (1997).

As pointed out by Wooldridge (2002), provided that the

focus of the research is changed from y* to y, tobit and

other regression models originally devised for censored

dependent variables may also be used for response vari-

ables that are by nature limited from above and/or below

(so-called ‘corner solution’ variables). According to this

view, the tobit model described by Eq. (2) is a plausible

specification for the conditional mean of a variable defined

on the interval [0,1]. However, in the DEA framework,

efficiency scores do not generally take on values of zero. In

the absence of observations for y = 0, the first term of the

log-likelihood function of the two-limit tobit model,

LLi ¼ I yi¼0ð Þ log U �xih
r

� �
þ I 0\yi\1ð Þ log

1

r
/

yi � xih
r

� �

þ I yi¼1ð Þ log 1� U
1� xih

r

� �� �
;

ð4Þ

disappears. This means that, in practice, estimation is based

on a one-limit tobit model for y [ ] -?, 1]. Although the
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consequences of this are not usually serious, it is obvious

that the DGP that underpins this tobit model is not the one

that governs the variable of interest.

3.2 Fractional regression models

A model that avoids the problems associated with using

linear and tobit models in the DEA framework is the FRM.

This model was proposed by Papke and Wooldridge (1996)

to deal with dependent variables defined on the unit

interval, irrespective of whether boundary values are

observed. In fact, given that DEA scores are relative

measures of efficiency, they can be seen as the result of a

normalizing DGP in which the efficiency measures are

mapped onto the interval ]0,1]; see McDonald (2009).

The FRM only requires the assumption of a functional

form for y that imposes the desired constraints on the

conditional mean of the dependent variable, as follows:

EðyjxÞ ¼ GðxhÞ; ð5Þ

where G(�) is some nonlinear function satisfying 0 B G(�)
B 1. The model defined by (5) may be consistently esti-

mated by QML as suggested by Papke and Wooldridge

(1996). Alternatively, nonlinear least squares or maximum

likelihood estimation may be used, but the former is less

efficient than QML estimation, and the latter requires the

specification of the conditional distribution of y given x

(for which the beta distribution is commonly chosen).

Papke and Wooldridge (1996) propose estimating FRMs

by QML based on the Bernoulli log-likelihood function,

which is given by

LLiðhÞ ¼ yi log GðxihÞ½ � þ ð1� yiÞ log 1� G xihð Þ½ �: ð6Þ

Given that the Bernoulli distribution is a member of the

linear exponential family, the QML estimator of h, defined

by

ĥ � arg max
h

XN

i¼1

LLi hð Þ; ð7Þ

is consistent and asymptotically normal, regardless of the

true distribution of y conditional on x, provided that

E(y|x) in (5) is indeed correctly specified (see Gourieroux

et al. 1984 for details). Moreover, as Papke and

Wooldridge (1996) point out, there are cases in which

this QML estimator is efficient within the class of

estimators containing all linear exponential family-based

QML and weighted nonlinear least squares estimators.

The asymptotic distribution of the QML estimator is

given by

ffiffiffiffi
N
p

ĥ� h0

� �
!d N 0;Vð Þ; ð8Þ

where V = A-1BA-1, with A ¼ E �rhh0LL hð Þ½ � and B ¼
E rhLL hð Þrh0LL hð Þ½ �. Consistent estimators for A and B

are given by Â ¼ N�1
PN

i¼1 ĝ2
i x0ixi Ĝi 1� Ĝi

	 
� ��1
and B̂ ¼

N�1
PN

i¼1 û2
i ĝ2

i x0ixi Ĝi 1� Ĝi

	 
� ��2
, respectively, where

Ĝi � G xiĥ
� �

; g xihð Þ ¼ oG xihð Þ=o xihð Þ; ĝi � g xiĥ
� �

and

ûi ¼ yi � Ĝi.

3.2.1 Standard models

Papke and Wooldridge (1996) suggest as possible specifi-

cations for G(�) any cumulative distribution function, such

as those commonly used to model binary data. The most

widely used functions are undoubtedly the logit and probit

functional forms, where GðxhÞ ¼ exh=ð1þ exhÞ and

GðxhÞ ¼ U xhð Þ, respectively. However, there exist alter-

natives such as the loglog and complementary loglog

(hereafter cloglog) specifications, where G xhð Þ ¼ ee�xh
and

G xhð Þ ¼ 1� e�exh
, respectively. In all cases the partial

effects are given by

oEðyjxÞ
oxj

¼ hjg xhð Þ: ð9Þ

Figure 1 illustrates the four alternative functional forms

for G(xh) referred to, as well as the corresponding g(xh)

functions that appear in (9). While the symmetric logit and

probit models approach zero and unity at the same rate, the

asymmetric cloglog (loglog) model increases slowly

(sharply) at small values of G(�) and sharply (slowly)

when G(�) is near unity. On the other hand, the maximum

partial effects produced by the symmetric models are

achieved at E(y|x) = 0.5 and are identical for values of x

that yield values of E(y|x) that are symmetric around that

point: e.g., the effect of xj on E(y|x) is the same for E(y|x) =

0.05 and E(y|x) = 0.95. By contrast, in the cloglog (loglog)

model, the greatest impact of a change in xj occurs on

DMUs with E(y|x) [ 0.5 (E(y|x) \ 0.5).

3.2.2 Generalized models

The models analyzed in the previous section impose a pri-

ori the condition that DMUs with a given efficiency score

(e.g., 0.5 in symmetric models), say ya, are the most sen-

sitive to changes in the explanatory variables. However, if

DMUs with efficiency scores other than ya are the ones that

are most sensitive to such changes, then the assumed model

is misspecified and leads to biased inferences about the

marginal effect of any independent variable. In this section,

we discuss some alternative FRMs in which ya is not set

a priori but is instead determined by the actual patterns

observed in the data.
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The new models that we propose for DEA regressions

are based on two alternative generalizations of the speci-

fications analyzed in the previous section, both of which

use an additional parameter, a, to modify the form of the

response curves illustrated in Fig. 1. The first generaliza-

tion (generalized type I model) consists simply of raising to

a any functional form G(xh) appropriate for dealing with

fractional response variables,

EðyjxÞ ¼ G xhð Þa: ð10Þ

The second generalization, based on the asymmetry of a

complementary form (generalized type II model), is given

by

E yjxð Þ ¼ 1� 1� G xhð Þ½ �a; ð11Þ

where a[ 0 such that 0 \ E(y|x) \ 1. Both generalizations

reduce to G(xh) for a = 1 and have already been considered

by Ramalho et al. (2010) to derive score tests for the ade-

quacy of the nested functional form G(xh). However, these

regression models have not been used to analyze fractional

response variables. For binary logit models, similar (but not

identical) generalizations have already been considered; see

inter alia Poirier (1980), Smith (1989) and Nagler (1994).

For other generalizations commonly employed with binary

models, which can, however, only be applied to specific

functional forms, usually the logit, see inter alia Prentice

(1976), Pregibon (1980), Aranda-Ordaz (1981), Whitemore

(1983), Stukel (1988) and Czado (1994).

The generalized models for E(y|x) in (10) and (11)

describe a wide variety of asymmetric patterns, giving rise

to flexible regression models. The forms of asymmetry

created by the introduction of a into the functional form of

E(y|x) are illustrated in Fig. 2 (first column) for logit models

(similar patterns would be obtained for other models).

Clearly, the value of a determines the magnitude and the

direction of the shift in the standard logit curve. In partic-

ular, for both generalizations, the magnitude of the shift is

larger the farther is a from unity, with the generalization

(10) ((11)) shifting the original logit curve to the right for

a[ 1(0 \ a\ 1) and to the left for 0 \ a\ 1 (a[ 1), with

a more substantial impact on the left (right) tail.

The partial effects of a unitary change in xj in models

(10) and (11) are now given by

oEðyjxÞ
oxj

¼ hjg xhð ÞaG xhð Þa�1 ð12Þ

and

oEðyjxÞ
oxj

¼ hjg xhð Þa 1� G xhð Þ½ �a�1; ð13Þ

respectively. These partial effects are illustrated in Fig. 2

(second column) for the logit case. Again, it is clear that a
governs both the magnitude and the asymmetric shape of

the curves of the partial effects. It is also clear that an

infinite variety of asymmetric shapes can be generated.

Moreover, the value of ya also depends on a, which implies

that the greatest impact of a change in xj is allowed to occur

for any efficiency score. In model (10) ((11)), when more

efficient DMUs are more sensitive to changes in xj, the

value of a should be high (low); when less efficient DMUs

are more sensitive to changes in xj, the value of a should be

low (high).

Despite their clear advantages in terms of flexibility, the

two generalized FRMs we propose should be used with care
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Fig. 1 Standard fractional regression models
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in applied work, particularly when estimation is based on

small samples. Indeed, the addition of the extra parameter a
is expected to increase substantially the variance of the

estimates in many cases. For example, Taylor (1988) ana-

lyzed the two generalized binary-response regression

models proposed by Aranda-Ordaz (1981), which are also

based on the incorporation of an additional parameter.

Using Monte Carlo methods, Taylor (1988) found that the

cost of adding that parameter in terms of variance inflation

is 50% on average, although it can be appreciably larger or

smaller. In our empirical application, we sometimes

encountered a similar problem. Thus, particularly with

small samples, we recommend using the proposed gener-

alizations only when all the standard specifications dis-

cussed in the previous section prove to be inadequate.

3.3 Two-part models

All models discussed so far assume that the same envi-

ronmental variables affect efficient and inefficient DMUs

in the same way. However, when the probability of

observing a DEA score of unity is relatively large, one may

suspect that the sources of DMU efficiency may differ from

those of DEA inefficiency. For example, a given environ-

mental factor may have a significant effect on the proba-

bility of observing an efficient DMU (y = 1) but may not

explain the degree of inefficiency of DMUs for which

y \ 1.

In such a case, a two-part model should be used for

modeling DEA scores. The first part of such a model

comprises a standard binary choice model that governs the

probability of observing an efficient DMU. Let z be a

binary indicator that takes the values of zero and unity for

inefficient and efficient DMUs, respectively, as follows:

z ¼ 1 for y ¼ 1

0 for 0\y\1:



ð14Þ

Assume also that the conditional probability of observing

an efficient DMU is

Pr z ¼ 1jxð Þ ¼ E zjxð Þ ¼ F xb1Pð Þ; ð15Þ

where b1P is a vector of variable coefficients and F(�) is a

cumulative distribution function, typically one of those

discussed in Sect. 3.2.1 for FRMs, although the generalized

specifications in (10) and (11) may also be used. Equation

(15) may be estimated by maximum likelihood using the

whole sample.

The second part of the model is estimated using only the

sub-sample of inefficient DMUs and governs the magni-

tude of the DEA scores on the interval ]0,1[:

E yjx; y 2 0; 1� ½ð Þ ¼ M xb2Pð Þ; ð16Þ
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Fig. 2 Generalized logit fractional regression models
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where M(�) may be any of the specifications considered for

E(y|x) in the previous section and b2P is another vector of

coefficients.

The partial effects of a covariate xj over the probability

of observing an efficient DMU and the conditional mean

DEA score for an inefficient DMU are given by,

respectively,

o Pr z ¼ 1jxð Þ
oxj

¼ oF xb1Pð Þ
oxj

¼ b1Pf xb1Pð Þ ð17Þ

and

oE yjx; y 2 0; 1� ½ð Þ
oxj

¼ oM xb2Pð Þ
oxj

¼ b2Pm xb2Pð Þ; ð18Þ

where f(xb1P) and m(xb2P) are the partial derivatives of F(�)
and M(�) with respect to xb1P and xb2P, respectively. For

simplicity, we assume that the same regressors appear in

both parts of the model, but this assumption can relaxed

and, in fact, should be if there are obvious exclusion

restrictions.

The overall conditional mean and the partial effects of xj

on y can be written as

EðyjxÞ ¼ E yjx; y 2 0; 1� ½ð Þ � Pr y 2 0; 1� ½jx½ � þ E yjx; y ¼ 1ð Þ
� Pr y ¼ 1jxð Þ
¼ E yjx; y 2 0; 1� ½ð Þ � Pr y 2 0; 1� ½jx½ � þ Pr y ¼ 1jxð Þ
¼ M xb2Pð Þ � 1� F xb1Pð Þ½ � þ F xb1Pð Þ

ð19Þ

and

oEðyjxÞ
oxj

¼ oM xb2Pð Þ
oxj

1� F xb1Pð Þ½ �

�M xb2Pð ÞoF xb1Pð Þ
oxj

þ oF xb1Pð Þ
oxj

¼ b2Pm xb2Pð Þ 1� F xb1Pð Þ½ �
þ b1Pf xb1Pð Þ 1�M xb2Pð Þ½ �:

ð20Þ

Thus, the total change in y can be disaggregated in two

parts: (1) the change in the DEA scores of inefficient

DMUs, weighted by the probability of observing such

DMUs; and (2) the change in the probability of observing

an efficient DMU, weighted by one minus the expected

efficiency score of an inefficient DMU. This decomposition

is similar to that used by McDonald and Moffitt (1980) for

the tobit model but does not constrain b1P and b2P to be

identical or require F(�) and M(� ) to be based on normal

distribution functions.

To illustrate the rich variety of partial effects that may

be produced by two-part models, we consider in Fig. 3

some specific cases. Given that the partial effects (20) may

be expressed as a function of both Pr y ¼ 1jxð Þ and

E yjx; y 2 0; 1� ½ð Þ, in Fig. 3, we set the former at 0.2 or 0.8

and examine how the partial effects change as the latter

increases from zero to unity. Of the many potential two-

part models that can be constructed, in Fig. 3, we consider

only eight variants, all of which use a logit model in the

first or second part of the model. As a reference, we also

consider the one-part logit model. Fig. 3 clearly illustrates

that one can obtain results that differ substantially from

those from the simple logit model.

The two-part model considered by Hoff (2007), termed

the unit inflated beta model, is much more restrictive than

the one we propose. Indeed, Hoff (2007) assumes a logit

specification for Pr z ¼ 1jxð Þ in (15), whereas we allow for

many other alternative specifications, the adequacy of each

of which is easily tested. Moreover, Hoff (2007) also uses a

logit specification for E yjx; y 2 0; 1� ½ð Þ and assumes a beta

distribution for the DEA scores of inefficient DMUs. By

contrast, in our model, we need only specify the condi-

tional mean DEA score, for which we also consider many

alternative (and easily testable) functional forms.

4 Specification tests

As our exposition suggests, the main practical difference

between the alternative one-part and two-part regression

models discussed in the previous section relates to the

functional form assumed for E(y|x): see (5), (10), (11) and

(19). In fact, for any of those regression models, correctly

formalizing E(y|x) is critical for consistent estimation of the

parameters of interest. However, despite the availability of

a number of tests that can be used for testing conditional

mean assumptions, such tests have not been applied in

empirical studies on second-stage DEA.

The correct specification of the functional form of the

conditional mean E(y|x) requires that a correct model must

be specified for G(xh) and for both F(xb1P) and M(xb2P) in

the one- and two-part models, respectively. Moreover, the

data must be governed by the one-part or two-part mech-

anisms assumed. The reason for this is that even if the

covariates of the first and second parts of the model coin-

cide, in general, one-part models are not appropriate for

data governed by two-part models, and vice versa. There-

fore, in this section, we discuss general tests to assess these

two aspects.

One way of assessing whether the specification of E(y|x)

is correct is to use tests appropriate for detecting general

functional form misspecifications, such as the well-known

RESET test. Indeed, using standard approximation results

for polynomials, it can be shown that any index model of

the form E(y|x) = L(xh), for unknown L(�), can be arbi-

trarily well approximated by S xhþ
PJ

j¼1 cj xhð Þjþ1
� �

for J

large enough, where S(�), which in our setting typically

represents a cumulative distribution function, is assumed to
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be invertible; see Pagan and Vella (1989).2 Therefore,

testing the hypothesis E(y|x) = S(xh) is equivalent to test-

ing c = 0 in the augmented model Eðyjx; zÞ ¼ Sðxhþ zcÞ,

where z ¼ xĥ
� �2

; . . .; xĥ
� �Jþ1

� �
. The first few terms in

the expansion are the most important, and, in practice, only

the quadratic and cubic terms are usually considered. Note

that the RESET test cannot be directly applied to assess

(19), the functional form assumed for two-part models.

Instead, it has to be separately applied to their two com-

ponents, given by (15) and (16).

Alternatively, because all competing specifications for

E(y|x) are non-nested, we may apply standard tests for non-

nested hypotheses, where the alternative competing speci-

fications for E(y|x) are tested against each other. An

example of this type of test is the P test proposed by

Davidson and MacKinnon (1981), which is probably the

simplest way of comparing nonlinear regression models;

see inter alia Gourieroux and Monfort (1994) for other

alternatives. To our knowledge, the P test has not been

applied either in empirical DEA studies or for choosing

between linear, tobit and FRMs; however, Ramalho et al.

(2010) use the P test for discriminating between alternative

one-part and two-part FRMs.

Suppose that H(xa) and T(xg) are competing functional

forms for E(y|x). As shown by Davidson and MacKinnon

(1981), testing H0 : H xað Þ against H1:T(xg) (i.e., checking

whether H(xa) is an appropriate specification for E(y|x)

after taking into account the information provided by the

alternative model) is equivalent to testing the null

hypothesis H0:d2 = 0 in the following auxiliary regression:

y� Ĥ
	 


¼ ĥxd1 þ d2 T̂ � Ĥ
	 


þ error; ð21Þ

where h ¼ oH xað Þ=o xað Þ; d2 is a scalar parameter and �̂
denotes evaluation at the estimators â or ĝ, obtained by

separately estimating the models defined by H �ð Þ and T(�),
respectively. To test H0 : T xgð Þ against H1 : H xhð Þ, we

need to use another P statistic, which is calculated using a

similar auxiliary regression to (21) but with the roles of the

two models interchanged. As is standard with tests of non-

nested hypotheses, three outcomes are possible: one may

reject one model and accept the other, accept both models

or reject both.

The P test based on (21) may be used for choosing

between: (1) various possible specifications for one-part

models, i.e., those given in (1), (2), (5), (10) and (11); (2)

one-part and two-part models, i.e., (1), (2), (5), (10) or (11)
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Fig. 3 Partial effects for two-part models

2 Note that, under the assumption that S(�) is an invertible function,

we may write L xhð Þ ¼ S S�1 L xhð Þ½ �
� �

, where S�1 L xhð Þ½ � is a nonlin-

ear function of xh that can be approximated by a polynomial.
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vs. (19); and (3) alternative specifications for two-part

models, i.e., (19). In addition, H xað Þ and T(xg) may

represent alternative functional forms for Prðz ¼ 1jxÞ or

E(y|x, y [ [0, 1[), in which case, the P test may be used to

select between competing specifications for the first or the

second component of a two-part model, respectively.

One may also apply the GOFF-I and GOFF-II tests pro-

posed by Ramalho et al. (2010) to determine, respectively,

whether the Type I or Type II generalizations are indeed

necessary or, instead, the corresponding simpler standard

FRM is adequate. Moreover, as the conditional variance of y

is in general a function of its conditional mean, because the

former must change as the latter approaches either bound-

ary, heteroskedasticity-robust versions must be computed in

all cases. In the empirical application that follows, we

compute robust LM versions of all tests, which have the

advantage of not requiring the estimation of any alternative

model; see Papke and Wooldridge (1996) and Ramalho

et al. (2010) for details of the computation of those statistics.

Robust Wald statistics may also be easily obtained using

statistical packages such as Stata.

5 Empirical application

In this section, we apply the techniques described so far to

the regression analysis of DEA efficiency scores of Por-

tuguese farms. First, we provide a brief description of the

data used in the analysis. Then, we illustrate the usefulness

of the specification tests discussed in Sect. 4 for selecting

appropriate regression models for DEA scores. Finally, we

compare the regression results of linear, tobit and some

FRMs in the following respects: (1) the significance and

sign of the estimated parameters of interest; (2) the mag-

nitude of the partial effects; and (3) the prediction of DEA

efficiency scores.

5.1 Data

The data set used in this study is based on individual farm

account records collected by the Portuguese Ministry of

Agriculture for the year 2004. Our sample comprises a total

of 266 farms located in the Portuguese region of Alentejo.

In the first stage of DEA analysis, we considered a single

output, performed an input-oriented study and assumed

variable returns to scale and weak free disposability of

inputs. For each farm, output was measured as the gross

value of production and for inputs we considered two

classes of capital, two categories of labor and two cate-

gories of land.

According to this DEA analysis, 117 (44%) of the

sampled farms produced on the efficiency frontier, which

makes this case study particularly relevant for comparing

the alternative second-stage DEA models discussed in this

paper. The average DEA score is 0.781, and the quartiles of

its distribution are 0.585, 0.867 and 1. The lowest score is

0.213.

In the illustrative second stage of DEA analysis that

follows, the efficiency scores were related to the follow-

ing factors: land ownership, farm specialization, economic

size, farm subsidies and geographical location. Land

ownership is represented by a dummy variable, LAND-

LORD, which takes the value of unity if the farmer owns

the land and 0 otherwise. Farm specialization is repre-

sented by two dummy variables, LIVESTOCK and

CROP, which take the value of unity if the farm spe-

cializes in livestock or crops, respectively, and zero

otherwise. Size (SIZE) is measured as the farm’s volume

of sales. Farm subsidies (SUBSIDIES) are measured as

the proportion of subsidies in the farm’s total revenue. In

addition, because Alentejo is usually divided into four

Nut III regions—Alto Alentejo, Alentejo Central, Baixo

Alentejo and Alentejo Litoral—we used the dummy

variables ALTO, CENTRAL and BAIXO, which take the

value of unity if the farm is located in the corresponding

region and zero otherwise. These factors were used as

explanatory variables in all regression models, including

the two components of the two-part models.

5.2 Model selection

For the second stage of the DEA analysis, we have avail-

able a large set of alternative specifications: traditional

models (linear and tobit), one-part standard and generalized

FRMs, which may be based on logit, probit, loglog or

cloglog functional forms, and two-part models that, in each

part, use any of the previous (standard or generalized)

functional forms (plus a linear one in the second part).

Given the large set of models that can be estimated, for the

one-part models and for the two components of the two-

part models, we start our empirical analysis by applying to

each alternative formalization the following tests: the

RESET test (based on one fitted power of the response

index); the P test, considering, one by one, all the other

possible specifications as the alternative hypothesis; and,

when applicable, Ramalho et al. (2010) GOFF-I and

GOFF-II tests.

Table 1 summarizes the results obtained for the one-part

models. These results clearly indicate that only a few

specifications are admissible. Indeed, only the cloglog

model and its type I generalization are never rejected at the

10% level. Moreover, almost all of the other specifications

are rejected when the P test uses one of the acceptable

models as the alternative hypothesis. Given that the GOFF-

I test does not reject the correct specification of the

248 J Prod Anal (2010) 34:239–255
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standard cloglog model and given that the size of our

sample is relatively small, we select the cloglog model as

the most suitable one-part model. In fact, given that the

distribution of efficiency scores in our example is clearly

asymmetric and given that the number of one outcomes is

large, a cloglog functional form would be our preferred

choice of one-part model.

As shown in Table 2, we choose also a cloglog speci-

fication for explaining the probability of a farm producing

on the efficiency frontier. In contrast, as Table 3 shows, all

tests fail to reject any of the 13 models estimated for the

second component of the two-part models, including

the linear model. This suggests that the main issue in the

regression analysis of DEA scores is not so much their

bounded nature as the existence of a mass-point at unity in

their distribution. Because the GOFF tests do not reject any

of the simpler functional forms, we proceed by considering

five alternative two-part models, which use a cloglog

specification in the first part and a linear, logit, probit,

loglog or cloglog model in the second part.

We also applied versions of the P test that enable testing

of the selected cloglog one-part model against the full

specification of the five selected two-part models, and vice

versa, and testing of the selected full specification of the

two-part models, with each being tested against the others.

In no case were we able to reject any of the tested

specifications.3

5.3 Regression results

In Table 4, we report the estimation results obtained from

the selected models and compare them with those from the

linear, tobit and the most commonly used FRM, the logit

model. For each explanatory variable, we report the value

of the associated estimated coefficient and its standard

error. For each model, we report also the percentage of

predictions outside the unit interval and the R2, which was

calculated as the square of the correlation between the

actual and predicted efficiency scores and, thus, is com-

parable across models and over estimation methods.

Although most of the R2 values are similar, they provide

further evidence that the selected models fit the data at least

as well as the competing models. Indeed, the highest R2s

among the one-part models and the first component of the

Table 2 Specification tests for the first component of two-part models (p values)

FRM GFRM-I GFRM-II

Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

RESET test 0.145 0.326 0.397 0.105 0.034** 0.046** 0.408 0.036** 0.000*** 0.186 0.054** 0.024**

GOFF-I test 0.102 0.410 – 0.251 – – – – – – – –

GOFF-II test 0.299 0.256 0.365 – – – – – – – – –

P test

H1: FRM-Logit – 0.067* 0.014** 0.849 0.003*** 0.032* 0.020** 0.039** 0.012** 0.137 0.003*** 0.629

H1: FRM-Probit 0.931 – 0.125 0.964 0.004*** 0.037** 0.161 0.039** 0.023** 0.150 0.033** 0.626

H1: FRM-Loglog 0.432 0.830 – 0.657 0.003*** 0.013** 0.791 0.039** 0.002*** 0.716 0.000*** 0.683

H1: FRM-Cloglog 0.182 0.024** 0.011** – 0.005*** 0.016** 0.015** 0.039** 0.002*** 0.018** 0.002*** 0.709

H1: GFRM-I-Logit 0.057* 0.013** 0.005*** 0.132 – 0.031** 0.007*** 0.039** 0.000*** 0.009*** 0.001*** 0.053**

H1: GFRM-I-Probit 0.812 0.398 0.113 0.988 0.004*** – 0.145 0.039** 0.019** 0.463 0.030** 0.547

H1: GFRM-I-

Loglog

0.432 0.830 0.726 0.657 0.003*** 0.013** – 0.039** 0.002*** 0.716 0.000*** 0.683

H1: GFRM-I-

Cloglog

0.070* 0.019** 0.006*** 0.227 0.009*** 0.036** 0.008*** – 0.000*** 0.013** 0.001*** 0.095*

H1: GFRM-II-Logit 0.344 0.998 0.002*** 0.884 0.013** 0.044** 0.003** 0.039** – 0.749 0.000*** 0.692

H1: GFRM-II-

Probit

0.634 0.154 0.082* 0.872 0.004*** 0.037** 0.114 0.039** 0.025** – 0.026** 0.532

H1: GFRM-II-

Loglog

0.278 0.444 0.012** 0.842 0.010*** 0.046** 0.021** 0.039** 0.017** 0.366 – 0.649

H1: GFRM-II-

Cloglog

0.182 0.024** 0.011** 0.139 0.005*** 0.016** 0.015** 0.039** 0.002*** 0.018** 0.002*** –

***, ** and * denote test statistics which are significant at 1, 5 or 10%, respectively; FRM fractional regression model, GFRM-I generalized

FRM-type I, GFRM-II generalized FRM-type II

3 Full results are available from the authors on request.
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two-part models are for the selected cloglog models. On

the other hand, the R2s of the alternative specifications

considered for the second stage of the two-part models are

virtually identical, which further confirms that when farms

on the frontier are excluded from the regression analysis,

most functional forms are in general adequate for modeling

DEA scores. However, note that even in this case, for a few

cases, the linear model yields predicted outcomes that

exceed unity.

The first striking point to emerge from the analysis of

the regression coefficients displayed in Table 4 is that

while all estimators produce the same conclusions in terms

of their sign and significance in the two-part models, the

same does not happen with one-part models. Indeed, in the

latter case, there are some explanatory variables that have

significant coefficients in some models but not in others.

Note in particular the clear differences between the tobit

and the selected cloglog models: there are three (one)

coefficients that are significant at the 10% level in the tobit

(cloglog) model but not in the cloglog (tobit). Again, these

differences seem to be a consequence of the difficulty that

most one-part models have in dealing with a large pro-

portion of DMUs taking the value of unity.

Another interesting point is that the number of signifi-

cant coefficients is much larger in the two-part models.

That is, analyzing separately, first, why some farms are on

the efficiency frontier and others are not, and, second, the

distance to the frontier of the inefficient farms, seems to be

a better way of uncovering the real effect of each covariate

on the DEA score. An example is the case of the variable

LIVESTOCK. According to the one-part models, special-

izing in livestock does not significantly affect a farm’s

efficiency. However, the two-part models show clearly that

farms specializing in livestock or crops are more likely to

be on the efficiency frontier. On the other hand, in the sub-

sample of only inefficient farms, specializing in livestock

lowers the DEA score.

In Table 5, we report for each model the partial effects

estimated for each covariate, which were calculated as the

mean of the partial effects computed for each farm in the

sample. These results confirm that the functional form

chosen for the second stage of the two-part models hardly

affects the results. By contrast, choosing the wrong model

for the first stage may seriously bias the estimation of the

partial effects. For example, if instead of using the cloglog

model selected by the specification tests, we had decided to

use the commonly adopted logit model, the bias is over

10% for several covariates (LANDLORD, SIZE, SUBSI-

DIES and ALTO), assuming that the cloglog is indeed the

correct model. On the other hand, in the one-part models,

the differences between the various alternative specifica-

tions may be substantial. For example, among the linear,

tobit and logit regression coefficients, the maximum dif-

ferences relative to the coefficients of the selected cloglog

Table 3 Specification tests for the second component of two-part models (p values)

Linear FRM GFRM-I GFRM-II

Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

RESET test 0.593 0.736 0.705 0.924 0.516 0.960 0.516 0.821 0.392 0.913 0.718 0.930 0.523

GOFF-I test – 0.819 0.676 – 0.502 – – – – – – – –

GOFF-II test – 0.708 0.746 0.984 – – – – – – – – –

P test

H1: FRM-Linear – 0.423 0.402 0.698 0.337 0.414 0.593 0.666 0.335 0.699 0.386 0.640 0.326

H1: FRM-Logit 0.358 – 0.421 0.886 0.439 0.292 0.273 0.955 0.441 0.896 0.468 0.882 0.444

H1: FRM-Probit 0.372 0.460 – 0.988 0.485 0.381 0.358 0.920 0.499 0.989 0.747 0.956 0.491

H1: FRM-Loglog 0.437 0.818 0.663 – 0.444 0.983 0.326 0.258 0.432 0.263 0.671 0.952 0.450

H1: FRM-Cloglog 0.347 0.710 0.729 0.997 – 0.692 0.901 0.946 0.876 0.936 0.731 0.973 0.193

H1: GFRM-I-Logit 0.703 0.447 0.990 0.988 0.669 – 0.876 0.907 0.730 0.721 0.871 0.928 0.661

H1: GFRM-I-Probit 0.284 0.611 0.758 0.892 0.585 0.446 – 0.955 0.575 0.788 0.842 0.897 0.584

H1: GFRM-I-Loglog 0.437 0.818 0.663 0.443 0.444 0.983 0.326 – 0.432 0.263 0.671 0.952 0.450

H1: GFRM-I-Cloglog 0.374 0.334 0.363 0.604 0.112 0.183 0.983 0.630 – 0.446 0.320 0.509 0.112

H1: GFRM-II-Logit 0.404 0.709 0.586 0.205 0.420 0.890 0.295 0.189 0.407 – 0.598 0.521 0.426

H1: GFRM-II-Probit 0.365 0.504 0.744 0.992 0.486 0.424 0.374 0.924 0.502 0.981 – 0.960 0.492

H1: GFRM-II-Loglog 0.430 0.865 0.669 0.986 0.453 0.863 0.324 0.906 0.444 0.660 0.677 – 0.459

H1: GFRM-II-Cloglog 0.347 0.710 0.729 0.997 0.890 0.692 0.901 0.946 0.876 0.936 0.731 0.973 –

***, ** and * denote test statistics which are significant at 1, 5 or 10%, respectively; FRM fractional regression model, GFRM-I generalized

FRM-type I, GFRM-II generalized FRM-type II
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model are 42% (SIZE), 52% (LIVESTOCK) and 41%

(SUBSIDIES), respectively. A comparison of the partial

effects implied by the one- and two-part models suggests

that even the models selected by the specification tests may

generate very different results.

In Fig. 4, for specific models, we report partial effects

and predicted DEA scores as a function of SIZE, with the

other covariates set at their mean values (SUBSIDIES) or

at their modes (the dummy variables). In this representa-

tion, for SIZE, we consider 1000 equally spaced values

between the 0.01 and 0.99 quantiles of its sample distri-

bution. The first graph of Fig. 4 clearly illustrates that

linearity, which is assumed in many existing second-stage

DEA analyses and which implies constant partial effects,

may provide conclusions that differ substantially from

those implied by the models selected by the specifica-

tion tests (and, in fact, from all the other non-linear

specifications considered in this paper). Indeed, all the

other models indicate that the effect of SIZE on the farm’s

efficiency is much larger for smaller farms. Regarding the

prediction of DEA scores, which is useful, for example, for

computing the extent of managerial inefficiency not caused

by external factors (e.g. Ray 1991), the differences between

the various competing models are not major. Note, how-

ever, that both the tobit model and particularly the linear

model underestimate the efficiency scores for most values

of SIZE.

6 Concluding remarks

In this paper, we considered various alternative approaches

to second-stage DEA regressions. We argued that the DGP

that governs DEA scores is not appropriately represented

Table 5 Sample averages of partial effects

One-part models Two-part models

Linear Tobit Logit Cloglog Logit (1st part)? Cloglog (1st part)?

Linear Logit Probit Loglog Cloglog Linear Logit Probit Loglog Cloglog

LANDLORD 0.032 0.047 0.040 0.035 0.062 0.062 0.062 0.064 0.061 0.052 0.053 0.053 0.055 0.051

LIVESTOCK 0.054 0.076 0.052 0.050 0.119 0.121 0.121 0.121 0.121 0.119 0.121 0.121 0.122 0.122

CROP 0.071 0.077 0.076 0.064 0.112 0.112 0.112 0.112 0.113 0.115 0.115 0.115 0.115 0.116

SIZE 0.405 0.671 0.785 0.702 0.869 0.869 0.868 0.873 0.863 0.785 0.785 0.784 0.789 0.780

SUBSIDIES -0.094 -0.097 -0.075 -0.127 -0.168 -0.164 -0.164 -0.160 -0.166 -0.200 -0.196 -0.196 -0.192 -0.199

ALTO -0.043 -0.024 -0.046 -0.040 -0.020 -0.019 -0.019 -0.020 -0.018 -0.023 -0.022 -0.022 -0.024 -0.021

CENTRAL -0.081 -0.060 -0.087 -0.080 -0.074 -0.072 -0.072 -0.073 -0.071 -0.071 -0.069 -0.069 -0.069 -0.068

BAIXO -0.057 -0.054 -0.069 -0.060 -0.063 -0.063 -0.063 -0.065 -0.061 -0.068 -0.068 -0.068 -0.070 -0.066
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Fig. 4 Predicted partial effects and efficiency scores as a function of the SIZE variable
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by linear or tobit regression models, which are the standard

approaches to second-stage DEA analysis. We have shown

that, instead, using FRMs is the most natural way of

modeling bounded, proportional response variables such as

DEA scores. Because some DEA scores are unity, we

discussed both one- and two-part FRMs. Tests for assessing

the correct specification of each alternative model were

also reviewed.

In our empirical example, we found that the main issue

in the regression analysis of DEA scores is not so much

their bounded nature as the existence of a mass point at

unity in their distribution. Therefore, two-part models may

be useful in this framework, particularly when the per-

centage of unity values is large. We found important

differences between the FRMs selected by the specifica-

tions tests and the linear, tobit and other FRMs, particularly

in terms of the magnitudes of the partial effects generated

by each competing model. Given the variety of FRMs that

can be constructed, functional form tests suited to selecting

the most adequate model should be routinely applied in

second-stage DEA analysis.

In this paper we made the crucial assumption, common

in the existing literature, that DEA scores are descriptive

measures of the relative performance of DMUs. As dis-

cussed in Sect. 2, particularly since the publication of the

seminal paper by Simar and Wilson (2007), some

researchers have criticized this approach on the grounds

that DEA scores should be viewed as estimates rather than

actual observations and that second-stage DEA analyses

should take this into account. Therefore, our paper could be

usefully extended by applying our proposed estimating and

testing procedures to the ‘conventionalist’ approach. Such

an extension would have to deal with two main issues.

First, it must be shown that using estimated DEA scores

(ŷ) rather than observed DEA scores (y) does not generate

inconsistent parameter estimation. Given that ŷ converges

to y, albeit at a slow rate, one might expect consistency

to be maintained, provided that an appropriate set of

assumptions (such as a separability condition of the type

assumed by Simar and Wilson 2007) is made. However,

because ŷ is a biased estimator of y, in small samples, the

estimators produced by our methods for the second-stage

regression parameters will also be biased. However, this

small-sample bias seems to be a common feature of all the

estimators proposed in the DEA literature.

The second issue that any extension of our methodology

to the conventionalist approach has to deal with is how to

make inferences about the regression parameters. Indeed,

the standard errors and test statistics obtained from standard

procedures are generally invalid because they ignore the

sampling variability in ŷ. Given that deriving the asymptotic

distribution of the estimators of the second-stage regression

parameters would be a formidable task (neither Simar and

Wilson 2007 nor Banker and Natarajan 2008 did so for their

models), bootstrap procedures similar to those proposed by

Simar and Wilson (2007) seem to be the only feasible way

to make valid inference in this framework. In order to

implement (adaptations of) their parametric bootstraps,

additional distributional assumptions are required. For

example, for one-part models, we may assume that DEA

scores have a beta or a simplex distribution with mean given

by our (5), (10) or (11), which would replace assumptions

A2 and A3 of Simar and Wilson (2007); see Ramalho et al.

(2010) for details of these distributions. Under these addi-

tional assumptions, both of the bootstrap methods suggested

by Simar and Wilson (2007), with the necessary adapta-

tions, could be straightforwardly applied in our framework.

For two-part models, one could proceed similarly, assuming

that one of the distributions suggested above is applied to

the DEA scores in the second part of the model. In all cases,

given the additional distributional assumptions made, one

would have to apply additional specification tests, such as

the information matrix tests referred to by Ramalho et al.

(2010).
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