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a b s t r a c t

Theoretical and simulation analysis is performed to examine whether unobserved
heterogeneity independent of the included regressors is really an issue in logit, probit
and loglog models with both binary and fractional data. It is found that unobserved
heterogeneity has the following effects. First, it produces an attenuation bias in the
estimation of regression coefficients. Second, although it is innocuous for logit estimation
of average sample partial effects, it may generate biased estimation of those effects in the
probit and loglog models. Third, it has much more deleterious effects on the estimation of
population partial effects. Fourth, it is only for logit models that it does not substantially
affect the prediction of outcomes. Fifth, it is innocuous for the size of Wald tests for the
significance of observed regressors but, in small samples, it substantially reduces their
power.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In economics, researchers are often interested in explaining a limited dependent variable, Y , as a function of a set of
explanatory variables, X . Because of the bounded nature of the variable of interest, linear specifications often provide an
inadequate description of the conditional mean of Y , E(Y |X), since no restriction is imposed on the range of values taken
by the predicted outcome. Moreover, when interest lies in the conditional probability of Y , Pr(Y |X), nonlinear models are
typically used. While the omission of relevant explanatory variables that are independent of the included regressors is
relatively innocuous in linear models, it generally causes inconsistency in the estimation of the parameters of interest in
nonlinear models (see inter alia Gourieroux, 2000, pp. 32–33). In this paper we examine the consequences of the presence
of that type of unobserved heterogeneity in logit, probit and loglog models for binary and fractional or proportionate data.
To the best of our knowledge, there are very few studies on the consequences of unobserved heterogeneity in binary and

fractional regression models. Moreover, the few studies undertaken have assumed restrictive conditions or consider only
the effects of neglected heterogeneity on particular aspects of those models. For example, Lee (1982) derived conditions
under which the omission of an orthogonal explanatory variable would not cause bias in the estimation of the remaining
parameters of a binary logit model. However, those conditions are too stringent to be of practical use. Yatchew and Griliches
(1985) showed that for a binary probitmodelwith a normally distributed omitted variable, the estimators for the parameters
of the included variables suffer from attenuation bias. Wooldridge (2002, 2005), under similar assumptions, demonstrated
that this bias does not affect the consistent estimation of the partial effect of the observed regressors on the outcome.
Cramer (2003, 2007) considered the binary logit model and proved formally that the same bias attenuation would occur
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in this context if the distribution of the omitted variables is such that their relegation to the disturbance term of the latent
regression underlying the logit model does not change its logistic distribution, which is also a strong assumption. However,
Cramer (2007) also presents a small simulation study that reveals that a particular partial effect, the average sample effect, is
quite insensitive to the inconsistency of the parameters of interest, evenwhen the logit shape of the conditional distribution
is severely affected. In the context of generalized linearmodels (which include themodels analysed in this paper as particular
cases), Neuhaus and Jewell (1993) restricted their attention to the case of a single observed covariate.
Given that the estimation of partial effects is often themain aim of empirical work and given that in nonlinearmodels the

analysis of themagnitude of regression coefficients is not relevant per se, bothWooldridge (2002) and Cramer (2007) suggest
that, similarly to what happens in linear models, unobserved heterogeneity is not an important issue in, respectively, binary
probit and logit models. However, it is not clear whether the robustness of the binary logit model revealed by the simulation
study of Cramer (2007) extends to the binary probit model (or, in fact, to any other binary or fractional model) because no
similar analysis has been carried out for the latter model. Moreover, there are other quantities of interest in empirical work
that have not been considered by those authors. One example is outcome prediction, which is relevant not only for the
analysis of binary and fractional data but also in the estimation of multi-part models that require binary outcome prediction
in the first stage. Testing the significance of the observed covariates is clearly another relevant issue for practitioners.
In order to address these questions, we consider the theoretical framework ofWooldridge (2002) and Cramer (2007) and

extend their results to other quantities of interest and models. However, given that a more general theoretical approach
does not seem to be feasible, we also conduct an extensive Monte Carlo study that extends the findings of the cited papers
in several directions. On the one hand, in addition to the binary logit and probit models, we also consider an alternative
asymmetric specification, the loglog model, and, in each case, both binary outcomes, where interest lies in modelling
Pr(Y |X), and fractional responses, where the main purpose is modelling E(Y |X); see Papke and Wooldridge (1996) for
a seminal paper on the so-called fractional regression model, see Simas et al. (forthcoming) for alternative models for
fractional responses and see Ramalho et al. (forthcoming) for a comprehensive survey of this subject. On the other hand,
we examine the consequences of neglected heterogeneity over the performance of standard estimators for those models
at various levels: (i) the magnitude and direction of the parameters of interest; (ii) the two common forms of calculating
partial effects considered separately by Wooldridge (2002) and Cramer (2007); (iii) the prediction of outcomes; and (iv)
the size and power of Wald tests for the significance of the included regressors. In all cases, we consider several patterns
of neglected heterogeneity by assuming various alternative distributions for the omitted variables and assigning different
weights to their relative importance.
This paper is organized as follows. In Section 2 we establish the framework of the paper, discussing analytically the

consequences of neglected heterogeneity in binary regressionmodels. TheMonte Carlo study used to assess the performance
of naive estimators in both binary and fractional regressionmodels is carried out in Section 3. Section 4 concludes the paper.

2. Framework

Consider a random sample of i = 1, . . . ,N individuals, let Y be the binary or fractional variable of interest, defined,
respectively, as Y = {0, 1} and Y ∈ [0, 1], and let X1 and X2 be, respectively, k1- and k2-vectors of explanatory variables. We
denote by θ1 and θ2 the k1- and k2-vectors of parameters associated with X1 and X2, respectively, and assume that there are
no relevant explanatory variables other than those included in X1 and X2, that X1 contains an intercept term, that X2 is not
observed and that X1 and X2 are independent. We also assume that

E (Y |X1 = x1, X2 = x2) = G (x1θ1 + x2θ2) , (1)

where G(xθ) is defined as exθ/(1+ exθ ),Φ(xθ), and ee
−xθ
for, respectively, the logit, probit, and loglog models. Note that in

the binary case G(·) also equals Pr(Y = 1|X1 = x1, X2 = x2).

2.1. The effects of neglected heterogeneity on parameter estimation

By a simple application of the law of iterated expectations, it follows that

E (Y |X1) = EX2 [G (x1θ1 + x2θ2)] =
∫

X2

G (x1θ1 + x2θ2) fX2 (x2) dx2, (2)

where X2 and fX2(x2) denote, respectively, the sample space and the marginal distribution of X2. Because, in general,
E(Y |X1) 6= G(x1θ1), naive estimation based on G(x1θ1) will not produce consistent estimators of θ1. In fact, omission of
X2 tends to bias θ1 towards zero, as shown by Yatchew and Griliches (1985) and Wooldridge (2002) for a particular binary
probit model, as shown by Cramer (2007) for a specific binary logit model, and as shown by Neuhaus and Jewell (1993) for
any generalized linear model based on a log concave density function (which binary and fractional logit, probit and loglog
models exhibit) with a single observed covariate. However, as we show next by retracing the arguments of Yatchew and
Griliches (1985), Wooldridge (2002) and Cramer (2007), it is not possible to prove formally that this attenuation effect is
the consequence of neglected heterogeneity under any circumstances.
For simplicity, consider the following latent regression equation:

y∗ = x1β1 + x2β2 + u, (3)
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where y∗ is not observed, x1 includes a unit variable, x2 contains a single explanatory variable that is uncorrelatedwith x1 and
u is a random disturbance that is uncorrelated with the regressors. Instead of observing y∗, we observe the binary variable
y, which takes the value 1 if y∗ > 0 and takes the value 0 otherwise. Assume that u has a mean of zero and a variance of σ 2u
and let its standardized distribution be H . When X2 is observed, we have:

E (Y |X1, X2) = Pr (Y = 1|X1, X2)
= Pr (u > −x1β1 − x2β2|X1, X2)
= 1− Pr (u ≤ −x1β1 − x2β2|X1, X2)

= 1− H
(
−x1

β1

σu
− x2

β2

σu

)
= G

(
x1
β1

σu
+ x2

β2

σu

)
, (4)

where G(·) is the complementary function of H(·). When u has a symmetric distribution, G(·) ≡ H(·). It is well known that
the parameters β1 and β2 are not separately identified from σu. Let θ1 = β1/σu.
Assume now that X2 is not observed and has amean of zero and a variance of τ 2. Then, the composite error u∗ = x2β2+u

is independent of x1 and has a variance of σ 2u∗ = β
2
2τ
2
+σ 2u . Denote the standardized distribution of u

∗ byH∗. In this setting,
it follows that:

E (Y |X1) = Pr (Y = 1|X1)
= Pr

(
u∗ > −x1β1|X1

)
= 1− Pr

(
u∗ ≤ −x1β1|X1

)
= 1− H∗

(
−x1

β1

σu∗

)
= G∗

(
x1
β1

σu∗

)
. (5)

Let θ∗1 = β1/σu∗ . Clearly, one cannot evaluate the effects on parameter estimation of omitting X2 unless one assumes that
H = H∗, i.e. the distribution of X2 must be such that its inclusion in the error term does not change the distribution of the
disturbance. If we make this assumption, then G = G∗ and, by comparing (4) and (5), we find that:

θ∗1 =
σu

σu∗
θ1. (6)

Given that σu∗ > σu (unless β2 = 0 or τ 2 = 0), in general |θ∗1 | < |θ1|, which implies that, under the assumptions made,
the omission of an explanatory variable produces an attenuation bias in the estimation of the coefficients of the observed
covariates.
In this proof, the crucial assumption is that H = H∗, which researchers in this field typically make, with the exception

of Neuhaus and Jewell (1993), who, however, use a geometric approach that applies only to models with a single observed
covariate. Indeed, both Yatchew and Griliches (1985) andWooldridge (2002, 2005) assumed that both u and X2 are normally
distributed, which implies that u∗ also has a normal distribution. On the other hand, in his proof of the existence of an
attenuation bias in the logit model, rather than specifying the distribution of X2, Cramer (2007) assumed that both u and u∗
had a logistic distribution. However, in practice, it is extremely unlikely that H = H∗. Moreover, for fractional regression
models, which cannot be written in latent form, finding a corresponding similar proof does not seem feasible. Therefore,
in the Monte Carlo simulation study carried out in the next section, we investigate whether Eq. (6), which applies only to
specific binary regression models, holds approximately for cases in which H 6= H∗ and for fractional regression models.

2.2. The effects of neglected heterogeneity on partial effects

For empirical analysis based on nonlinearmodels, themain focus is not on the analysis of themagnitude of the regression
coefficients, but on consistent estimation of the partial effects. In applied work, the two standard measures of partial effects
in nonlinearmodels are the average sample effect (ASE), which is themean of the partial effects calculated independently for
each individual in the sample, and the population partial effect (PPE), which is calculated for specific values of the covariates.
As discussed in detail by Wooldridge (2002), in the presence of neglected heterogeneity, of interest are the partial effects
averaged across the population distribution of the omitted variables.
Consider again the model described by (1) and assume that X2 is not observed. In this setting, for the covariate x1j, those

partial effects are defined by

ASE =
1
N

N∑
i=1

∂E (Yi|X1i)
∂x1j

=
1
N

N∑
i=1

∂EX2 [G (x1iθ1 + x2iθ2)]
∂x1j

(7)
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and, with evaluation at a given point X1 = x̄1 (e.g. the mean of the observed regressors), by:

PPE =
∂E (Y |X1 = x̄1)

∂x1j
=
∂EX2 [G (x̄1θ1 + x2θ2)]

∂x1j
. (8)

Because both effects depend on X2, the following naive estimators should be inconsistent:

ÂSEn =
1
N

N∑
i=1

∂G
(
x1iθ̂n1

)
∂x1j

(9)

and

P̂PEn =
∂G
(
x̄1θ̂n1

)
∂x1j

, (10)

where θ̂n1 denotes the naive estimator of θ1. This is because θ̂
n
1 is inconsistent and because G(·) is in general misspecified.

However, when H = H∗ both ÂSEn and P̂PEn provide consistent estimates of ASE and PPE, respectively. To see this, consider
again the example discussed in the previous section. Given (2) and (5), it follows that for binary regression models:

E (Y |X1) = EX2 [G (x1θ1 + x2θ2)] = G
∗

(
x1
β1

σu∗

)
. (11)

Hence:

PPE =
∂EX2 [G (x̄1θ1 + x2θ2)]

∂x1j
=

∂G∗
(
x̄1

β1
σu∗

)
∂x1j

. (12)

Therefore, as when H = H∗, G = G∗ and θ̂n1 converges to θ
∗

1 = β1/σu∗ , it follows that, under this assumption, P̂PEn is a
consistent estimator for PPE. A similar proof can be applied to ASE.
Using similar arguments,Wooldridge (2002)was the first to demonstrate that, in the binary probitmodelwith a normally

distributed omitted variable, the bias in the estimation of θ1 does not carry over to estimation of the PPE. Cramer (2007)
showed that the same conclusion holds for logit models when the logit shape of E(Y |X1, X2) of (1) is preserved in E(Y |X1) of
(2). Both these findings are supported by Stoker (1986), who showed that misspecification of the functional form in single
index models does not affect the estimation of average behavioural derivatives. By simulation, Cramer (2007) also showed
that, for logit models, even when E(Y |X1) deviates significantly from the logit functional form assumed for E(Y |X1, X2), the
ASE is relatively robust to neglected heterogeneity. In Section 3 we investigate whether this robustness of naive partial
effects extends to other models and applies in more general settings.

2.3. The effects of neglected heterogeneity on predicted outcomes

We also examine whether naive predictions of E(Y |X1) or Pr(Y |X1), based on the misspecified functional form G(x1θ1)
evaluated at the inconsistent estimator θ̂n1 , are reliable. Existing studies have not addressed this issue. However, outcome
prediction, besides being a relevant matter per se, is also the basis for the estimation of partial effects in multi-part models,
the first stage of which typically requires the estimation of a binary model. Because X2 is not observed, as in the case of the
partial effects discussed above, the main interest is outcome prediction averaged across the population distribution of the
omitted variables.
From (11), the assumptions required for consistent estimation of partial effects are clearly still needed: only if H = H∗

does G(x̄1θ̂n1 ) consistently predict E(Y |X1). Therefore, in a probit model with normally distributed heterogeneity or in the
special logit model considered by Cramer (2007), neglected heterogeneity is not a problem for outcome prediction. In our
Monte Carlo study, we focus on cases in which H 6= H∗.

2.4. The effects of neglected heterogeneity on Wald tests

Because testing the significance of the impact of a particular covariate, say X1j, on the outcome variable is one of themain
aims of any empirical study, we next evaluate the effects of neglected heterogeneity on significance tests. In particular,
we examine the application of the widely used Wald test to assess the individual significance of the parameters on the
observed regressors in the presence of unobserved heterogeneity. The extension to Wald tests of the joint significance of
those parameters is straightforward.

When there are no omitted variables, the Wald statistic for assessing H0 : θ1j = 0 is given byW = θ̂1j/
√
V̂ (θ̂1j), where

V̂ (θ̂1j) denotes an estimate of the variance of θ̂1j, and converges to a standard normal distribution. Let g(z) = ∂G(z)/∂z
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and

ai =
g
(
x1iθ̂1 + x2iθ̂2

)2
G
(
x1iθ̂1 + x2iθ̂2

) [
1− G

(
x1iθ̂1 + x2iθ̂2

)] . (13)

For binary data, givenmodel (1), and because we are assuming that X1 and X2 are independent, a consistent estimator of the
covariance matrix of θ̂ is given by:

V̂
(
θ̂
)
=


1
N

N∑
i=1

aix′1ix1i 0

0
1
N

N∑
i=1

aix′2ix2i


−1

. (14)

Therefore:

V̂
(
θ̂1

)
=

(
1
N

N∑
i=1

aix′1ix1i

)−1
(15)

and

V̂
(
θ̂1j

)
=

 1
N

N∑
i=1

aix21ji −
1
N

N∑
i=1

aix1jix1′ i

(
1
N

N∑
i=1

aix′1′ix1′ i

)−1
1
N

N∑
i=1

aix1jix′1′ i

−1 , (16)

where x1′ i excludes x1ji from x1i. Similarly, when X2 is omitted, the naive significance test that X1j has no effect is given by

W n = θ̂n1j/
√
V̂
(
θ̂n1j

)
, where:

V̂
(
θ̂n1j

)
=

 1
N

N∑
i=1

ani x
2
1ji −

1
N

N∑
i=1

ani x1jix1′i

(
1
N

N∑
i=1

ani x
′

1′ ix1′i

)−1
1
N

N∑
i=1

ani x1jix
′

1′ i

−1 (17)

and ani = g(x1iθ̂
n
1 )
2/G(x1iθ̂n1 )[1− G(x1iθ̂

n
1 )].

Under the assumptions made previously, i.e. that the distribution of the neglected heterogeneity is such that H = H∗,
there is a case, θ1j = 0, in which neglected heterogeneity does not generate any bias. Indeed, in such a case the existence of
an attenuation bias implies that both θ̂1j and θ̂n1j are consistent estimators of θ1j and, therefore, the size of any significance
test should remain unaffected by unobserved heterogeneity; see also Lagakos and Schoenfeld (1984), who discuss this issue
in the context of score tests in proportional-hazards regression models in which the coefficient being tested for significance
is attached to a binary variable. Subsequently, we examine by simulation the consequences of neglected heterogeneity for
the size of Wald tests when H 6= H∗.
Lagakos and Schoenfeld (1984) showed that the power of a score significance test for a binary included variable may be

substantially lower in the presence of omitted covariates. In our framework, we suspect that neglected heterogeneity may
cause some power loss in the application of the Wald test. In fact, although no general power comparison betweenW and
W n seems to be feasible, in the special case of the logitmodel such a comparison is straightforward, provided thatwe assume
again that H = H∗. Indeed, for this model it is well known that g(z) = G(z)[1− G(z)], which implies that the quantities ai
and ani simplify to g(x1iθ̂1 + x2iθ̂2) and g(x1iθ̂

n
1 ), respectively. Because ∂G(xθ)/∂x1j = θ1jg(xθ), in the logit model we have

W = θ̂1j

√
V̂
(
θ̂1j

)−1
= θ̂1j

 1
N

N∑
i=1

aix21ji −
1
N

N∑
i=1

aix1jix1′ i

(
1
N

N∑
i=1

aix′1′ix1′ i

)−1
1
N

N∑
i=1

aix1jix′1′ i

0.5

=

√
θ̂1j

 1N
N∑
i=1

∂G
(
x1iθ̂1 + x2iθ̂2

)
∂x1j

x21ji −
1
N

N∑
i=1

∂G
(
x1iθ̂1 + x2iθ̂2

)
∂x1j

x1jix1′ i

×

 1
N

N∑
i=1

∂G
(
x1iθ̂1 + x2iθ̂2

)
∂x1j

x′1′ ix1′i

−1 1
N

N∑
i=1

∂G
(
x1iθ̂1 + x2iθ̂2

)
∂x1j

x1jix′1′ i


0.5

. (18)
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Fig. 1. Attenuation bias of parameter estimates in binary regression models.

Similarly, we have:

W n =
√
θ̂n1j

 1N
N∑
i=1

∂G
(
x1iθ̂n1j

)
∂x1j

x21ji −
1
N

N∑
i=1

∂G
(
x1iθ̂n1j

)
∂x1j

x1jix1′i

×

 1
N

N∑
i=1

∂G
(
x1iθ̂n1j

)
∂x1j

x′1′ ix1′i

−1 1
N

N∑
i=1

∂G
(
x1iθ̂n1j

)
∂x1j

x1jix′1′i


0.5

. (19)

Thus, because both ∂G(x1iθ̂1+ x2iθ̂2)/∂x1j and ∂G(x1iθ̂n1j)/∂x1j converge to the same quantity, ∂EX2 [G(x1θ1+ x2θ2)]/∂x1j, see
(12), and θ̂1j and θ̂n1j converge to θ1j and θ

∗

1j, respectively, it follows from (6), (18) and (19) that:

W n

W
=

√√√√ θ̂n1j

θ̂1j
→

√
σu

σu∗
. (20)

Hence, assuming H = H∗, in a logit model the naive Wald testW n is smaller thanW by a factor given by the square root of
the attenuation factor that relates θ̂n1 to θ̂1. This implies that, in small samples, unobserved heterogeneity may reduce the
power of Wald tests.
In theMonte Carlo study that follows, we investigate the size and power properties of naiveWald statistics under general

patterns of heterogeneity.
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Fig. 2. Average sample effects for binary regression models (α1 = 1).

3. A Monte Carlo simulation study

In this section we present an extensive Monte Carlo simulation study for binary and fractional logit, probit and loglog
models. All experiments are based on a simple two-variable equation given by:

E (Y |X1, X2) = G (α0 + α1x1 + α2x2) , (21)

where α0 = 0, α2 ranges from 0 to 4 in steps of 0.25 and α1 takes different values across the different experiments. Our aim
is to analyse the effects of omitting X2 on the estimation of α1 and related statistics. Note that α2 = 0 corresponds to the case
in which there is no neglected heterogeneity and note also that larger values of α2 imply a larger amount of heterogeneity.
In all experiments, X1 is generated from amixture of normal distributions, where the variate isN(−1, 1)with probability

0.7 andN(2.333, 1)with probability 0.3, and X2 is generated from theN (0, 1), t5, Exponential(1) andχ2(1) distributions. Both
variables are scaled to have means of zero and unit variances. The choice of an asymmetric distribution for X1 was made
to avoid the reflection property about the origin that would affect the sampling distributions of the estimators of α1; see
Chesher and Peters (1994) and Chesher (1995) for a discussion of the design of Monte Carlo simulation studies.
We generate Y as a Bernoulli (binary case) or a beta (fractional case) variate with a mean given by the logit, probit or

loglog functional form,with the shape parameter of the beta distribution fixed at 1; see inter aliaRamalho et al. (forthcoming)
for the mean-dispersion parametrization of the beta distribution used in the generation of data. In the former case, the
parameters of interest are estimated bymaximum likelihood (ML), while in the latter we use the quasi-maximum likelihood
(QML) method, both of which are the standard ways of dealing with the respective types of data. In both cases, we estimate
full and curtailed versions of the models, i.e. models with and without X2. Because the full version of the model yields
consistent estimators for all the quantities of interest, this model is used as a reference to evaluate the consequences of
neglected heterogeneity.
All experiments were repeated 5000 times using the statistical package R and, given the substantial volume of results

produced in each experiment, we summarize them in figures. In all cases except for the experiments regarding the Wald
tests, given the similarity of the results obtained, we only report those relative to binary models; full results are available
from the authors on request. Apart from the last experiment, in which several samples sizes were used, in all the remaining
cases, the sample size is N = 200.
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Fig. 3. Population partial effects for binary regression models (α1 = 1).
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Fig. 4. Predicted outcomes for binary regression models (α1 = 1).

3.1. Attenuation bias in the parameter estimates

Under certain conditions, we proved above that neglected heterogeneity generates an attenuation bias in the naive
estimation of the parameters of the observed regressors. Given that our Monte Carlo study incorporates only one observed
covariate, it follows from the findings of Neuhaus and Jewell (1993) that an attenuation bias will be present in all the
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Fig. 5. Empirical size for binary regression models (N = 200).

models simulated. However, this bias may differ substantially from that predicted by (6). This is because the assumptions
on which its derivation is based are not satisfied in 11 of the 12 models simulated. Therefore, the main aim of our first set of
experiments is to examine whether Eq. (6) measures appropriately the extent of the bias caused by neglected heterogeneity
when H 6= H∗. Fig. 1 displays the values of the ratio α̂n1/α1 for two different values of α1 (−1 and 1) for each one of the 17
values of α2 simulated. In this figure we also display (using the solid line) the value of the ratio α∗1/α1, obtained from (6).
Clearly, in all cases, α̂n1 tends towards zero, with its absolute bias increasing as α2 (which measures the extent of

the heterogeneity) increases. In the loglog models and, not surprisingly, in the probit models with normally distributed
heterogeneity, and in the logit model with t5 distributed heterogeneity, Eq. (6) approximates the attenuation bias well.
However, in some cases, there are important deviations. For example, when X2 has an exponential or chi-squared
distribution, α̂n1 is not, in general, as biased as predicted by (6) in the logit and probit models, whereas for the loglog model
the attenuation effect is amplified relative to (6). Note also that in some cases the actual bias depends on the value of α1,
whereas (6) is not a function of that parameter. Therefore, because there are many cases in which the extent of that bias is
not perfectly approximated by (6), we next investigate the consequences of this for the estimation of marginal effects and
the prediction of outcomes when H 6= H∗.

3.2. Partial effects

Using the set up from the previous section, in Fig. 2, we display the mean across the replications of the ASE estimated
for the case in which α1 = 1. For the curtailed model we estimate the ASE as in (9). For the full model, we use (7), in which
the expectation E(Y |X1) is calculated by integration as in (2) with fX2(x2) replaced by the density used to generate X2. This
figure clearly shows that in the logit case, the ML estimation results are similar whether based on the full (MLf) or curtailed
(MLc) equations (the largest bias is 3.6% for α2 = 2.75 in the chi-squared case). Thus, as already noted by Cramer (2007),
logit analysis of the ASE is robust to neglected heterogeneity.
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Fig. 6. Empirical size for fractional regression models (N = 200).

In the probit model, with a symmetrically distributed omitted variable, the estimated ASEs for each equation are almost
identical, whereas with an asymmetric X2, the estimated ASEs differ significantly from each other, by up to 7.7% (for
α2 = 2.25 in the chi-squared case). For the loglog model, the consequences of neglected heterogeneity are somewhat
similar to those found for the probit model: for a symmetric X2, the bias is minimal (no more than 3%), but for asymmetric
unobserved heterogeneity the ASE tends to be overestimated (by up to 8.3%, for α2 = 1.75 in the chi-squared case).
It is worth noting that the bias increases with the level of unobserved heterogeneity but only up to a certain point. This

may be because of the negligible contribution of X1 to the variation in E(Y |X1)when α2 is very large (the marginal effect of
X1 tends towards zero as α2 increases). For example, when α2 = 4, the weight attached to the variance of the term α2x2 in
the total variance of the index (α0 + α1x1 + α2x2) is 94%.
We computed the PPE from (10) for the curtailed equation and from (8) for the full model. In both cases, the PPEs were

evaluated at the means and the {0, 0.02, 0.04, . . . , 0.98, 1} quantiles of X1. Fig. 3 shows the results obtained for α1 = 1 and
α2 = 0.5, 1, 2 and 4 when X2 is generated according to a normal and a chi-squared distribution. The dotted line indicates
the mean of X1. For cases in which X2 is normally distributed, both the logit and the probit estimators are clearly unaffected
by neglected heterogeneity. However, in the chi-squared case, while for small amounts of heterogeneity (α2 = 0.5) the
bias in the estimation of the PPEs is insubstantial (up to 2.0% for the logit and up to 6.5% for the probit), for large amounts
of heterogeneity (α2 = 4) the bias reaches 28.9% (for the logit model) or 50.0% (for the probit model), even when the
analysis is restricted to the 0.05–0.95 quantile range. For the loglog model, the bias is in general substantial, reaching 17.4%
for normally distributed heterogeneity and reaching 82.6% in the chi-squared case, in both cases for α2 = 2 and again
restricting the analysis to the 0.05–0.95 quantile range.
The bias of the various estimators is much smaller when the PPEs are evaluated at the mean of X1. For example, for

the symmetric X2 case, the maximum bias in the loglog model is 4.2%. Nevertheless, there are substantial biases for the
chi-squared case: up to 9.8%, 21.4% and 25.1% for the logit, probit and loglog models, respectively.
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Fig. 7. Empirical power for binary regression models (N = 200).

Overall, we can draw three main conclusions from the results obtained in this section. First, the logit model produces
more robust estimates of partial effects than do the probit and loglogmodels. Second, when one’s aim is to estimate average
partial effects, which is usually the case in empirical work (in most cases, practitioners report only average partial effects),
computing ASEs is better than computing PPEs evaluated at the means of the regressors, because the former appear much
more robust to neglected heterogeneity. A similar finding was reported by Ramalho et al. (forthcoming), who found that
computation ofASEs is relatively robust to functional formmisspecification in the framework of fractional regressionmodels,
whereas estimation of PPEs evaluated at themeans of the covariatesmay be severely biased. Under neglected heterogeneity,
computing PPEs for an individual with specific characteristics may be very unreliable.

3.3. Predicted outcomes

Fig. 4 illustrates the effects of the omission of X2 on the prediction of E(Y |X1) through a simulation design similar to
that used for the PPEs. For the full model, the prediction is based on (21), and for the curtailed equation, we used the naive
estimator G(α̂n0 + α̂

n
1x1).

Clearly, unobserved heterogeneity is relatively harmless in logit models: the maximum bias in the 0.05–0.95 quantile
range is 5.0% (for α2 = 2). The probit model is also robust to the omission of variables when the distribution of X2 is
symmetric, but displays more important distortions when X2 is asymmetric (with a bias of up to 15.8% for α2 = 2). The
loglog model is relatively robust to unobserved heterogeneity when X2 has a normal distribution but otherwise produces a
bias which reaches a maximum of 23.7% (for α2 = 2). Hence, for outcome prediction, unobserved heterogeneity resulting
from the omission of independent explanatory variables is not an issue only for the logit model. Nevertheless, our results
suggest that when H 6= H∗, the consequences of using a misspecified model G∗ are much more serious for the calculation
of PPEs (which require computation of the derivatives of G∗) than for outcome prediction.
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Fig. 8. Empirical power for fractional regression models (N = 200).

3.4. The size and power of Wald tests for the significance of observed regressors

In our final set of experiments, we investigate the size and power of naive (Q)ML-based Wald tests for assessing the
statistical significance of observed regressors: i.e. we examine their capability of testing the null hypothesis H0 : α1 = 0
both when it is true and when it is false. Figs. 5 and 6 display the percentage of rejections of H0 for a nominal level of 5%
when this hypothesis is true (the horizontal lines represent the limits of a 95% confidence interval for the nominal size). This
percentage is similar for the curtailed and full models in the binary case, being always close to the nominal level of 5%. For
fractional data, for which we use robust estimation of the standard errors because we are performing QML estimation, the
empirical size of the Wald test based on the naive estimator is even closer to the nominal size than that based on the full
equation. Therefore, these results show clearly that the size properties of theWald test for α1 = 0 are robust to the presence
of neglected heterogeneity.
With regard to the power properties of theWald test, Figs. 7 and 8 illustrate a very different scenario. In this case, there is

a substantial decline in the percentage of rejections of the false H0 as the level of heterogeneity increases. This decay seems
to be more substantial, in relative terms, in the probit and loglog models, the higher is α1, and with fractional data.
To checkwhether Eq. (20), whichwas derived for binary logit models under the assumptionH = H∗, approximates other

models well, in Figs. 9 and 10 we represent threeW n/W ratios: that given by (20) (the solid line) and two others that are
given by the mean across replications of that ratio for the two values of α1 simulated.
For binary models, according to Fig. 9, Eq. (20) seems to be a reasonable approximation not only for the logit model on

which that equation is based, but also for all the other cases. In fact, comparing Figs. 1 and 9 reveals that both cases produce
similar patterns. By contrast, for fractional regression models the attenuation bias in the estimation of the Wald statistic is
much larger, which explains why the loss of power detected in Fig. 8 is more substantial for these models. Clearly, Eq. (20)
is not a good approximation when robust sandwich-type variance estimators are used, even in the logit case.
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Fig. 9. Attenuation bias of Wald statistics in binary regression models.

A further investigation of the power of naive Wald tests was conducted. For the chi-squared distribution only, and
with α1 = 0.15, which produced the poorest power performance of all the cases illustrated so far, we ran experiments
for N = {200, 500, 1000, 2500, 5000}. Fig. 11 shows that in each case, the power of the test increases substantially as
N increases. Given these results, it seems that we can trust the outcome of a naive Wald test that reveals that a given
explanatory variable is significant. Conversely, the opposite conclusion may be simply the consequence of the omission of
a relevant variable, unless the sample size is large and/or the amount of heterogeneity is small.

4. Conclusion

It is well known that the omission of orthogonal relevant variables in nonlinear models generates inconsistent estimates
of the parameters on the included regressors. However, recent work on the probit and logit models by Wooldridge (2002,
2005) and Cramer (2003, 2007), respectively, shows that, in some cases, the bias does not carry over to the marginal effects
of those regressors on the outcome and that, hence, neglected heterogeneity may not be really an issue in, at least, binary
logit and probit models. In this paper, we demonstrated analytically that, under similar assumptions to thosemade by those
authors, their results can be extended to all binary datamodels.Moreover, based on the same set of assumptions, we showed
analytically that outcome prediction in any binary regression model is not affected by neglected heterogeneity and that, in
the specific case of the binary logit model, Wald tests are biased towards zero.
Given that the theoretical analysis undertaken in this paper requires strong assumptions, we also performed an extensive

Monte Carlo simulation study to consider more general forms of heterogeneity. We found that, in general, unobserved
heterogeneity that is independent of the included covariates has the following effects. First, it produces an attenuation
bias in the estimation of regression coefficients. Second, it is relatively innocuous for logit estimation of the average sample
effect (ASE), but may bias estimation in the probit and loglog models. Third, it has much more deleterious effects on the
estimation of populationpartial effects (PPEs) than on the estimation ofASEs. Fourth, only in the logitmodel does unobserved



1000 E.A. Ramalho, J.J.S. Ramalho / Computational Statistics and Data Analysis 54 (2010) 987–1001

0.
2

0.
4

0.
6

0.
8

1.
0

Normal distribution

Theoretical

0.
2

0.
4

0.
6

0.
8

1.
0

t(5) distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Chi-square distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Normal distribution
0.

2
0.

4
0.

6
0.

8
1.

0

t(5) distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Chi-square distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Normal distribution

0.
2

0.
4

0.
6

0.
8

1.
0

t(5) distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential distribution

0.
2

0.
4

0.
6

0.
8

1.
0

Chi-square distribution

Logit model

Probit model

Loglog model

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

0 1 2 3 4

α
2

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

W
n / / W

α
1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Theoretical
α

1
 = 0.15

α
1
 = 0.3

Fig. 10. Attenuation bias of Wald statistics in fractional regression models.
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heterogeneity not substantially affect the prediction of outcomes. Fifth, its effect is innocuous for the size of Wald tests of
the significance of the observed regressors but, in small samples, it reduces their power substantially.
Overall, our results imply that unobserved heterogeneity is not a relevant problem in any of the nonlinear models

considered in this paper if the aim of the analysis is simply to determine the direction of the partial effects of the covariates.
In addition, in the logit case, neglected heterogeneity is also relatively innocuous for outcome prediction and the calculation
of ASEs. These are reassuring and useful results for practitioners because standard approaches to dealing with unobserved
heterogeneity are not entirely satisfactory. They often require strong distributional assumptions for the unobservable
variables that generate poorly fitting models, or ones that are too complex to be widely used by applied economists. Many
of these models require the application of nonparametric techniques that often need substantial programming experience.
Another important implication of our results is that it is extremely important to test the general specification of the

functional form adopted for the model. If the functional form of a binary regression model is correctly specified (which
means that H = H∗), then neither estimation of the partial effects nor outcome prediction is affected by the presence of
neglected heterogeneity. In such a case, the only relevant problem that remains is the poor power of the Wald test in small
samples. However, if all variables are statistically significant or if the sample is large, then even that is not really a problem.
For a comparison of various functional form tests for binary and fractional regression models, see Ramalho and Ramalho
(2009) and Ramalho et al. (forthcoming), respectively.
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