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This paper proposes a new conditional mean test to assess the validity of
binary and fractional parametric regression models. The new test checks
the joint significance of two simple functions of the fitted index and is
based on a very flexible parametric generalization of the postulated
model. A Monte Carlo study reveals a promising behaviour for the new
test, which compares favourably with that of the well-known RESET test
as well as with tests where the alternative model is non-parametric.

1 INTRODUCTION

Parametric regression models for binary and fractional data are widely used
in applied work. Because these models rely on the correct specification of the
conditional expectation of the dependent variable given a set of explanatory
variables, several conditional mean tests have been proposed in the literature.
Most of those tests are based on the construction of general parametric
models that incorporate the postulated model as a particular case. Examples
are goodness-of-link (GOL) tests, which are very popular in the statistics
literature (see inter alia Prentice, 1976; Pregibon, 1980; Aranda-Ordaz, 1981;
Whitemore, 1983; Stukel, 1988; Czado, 1994; Koenker and Yoon, 2009), and
the RESET test, which is more common in the econometrics literature.
Recently, general tests that assess parametric specifications against non-
parametric alternatives have also been proposed; see inter alia Zheng (1996)
and Whang (2000).

While proposed originally for binary models, GOL tests may also be
easily extended to deal with fractional responses, as noted by Ramalho et al.
(2011). However, each GOL test is valid for testing the functional form of
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particular binary and fractional regression models, instead of any possible
specification for those models. Therefore, not surprisingly, practitioners
seemingly prefer to assess the specification of their models using the RESET
test, which can be applied to all binary and fractional single index regression
models as a simple significance test for some omitted variables. Nevertheless,
RESET tests have also an important drawback: their size and power prop-
erties in finite samples may vary substantially according to the number of
powers of the fitted index included in the test regression; see the recent
comprehensive simulation study of Ramalho and Ramalho (2012) for binary
models. On the other hand, non-parametric tests for parametric models,
while sensitive to any type of departure from the null hypothesis, are typically
much less powerful than parametric tests in cases where the alternative
hypothesis underlying the latter approximates well the true model. Moreover,
given its higher complexity, non-parametric tests are still rarely used in
empirical work.

In this paper, we propose a new conditional mean test for parametric
binary and fractional regression models. The derivation of the test closely
follows the philosophy of GOL tests, but uses a much more general para-
metric model under the alternative hypothesis, which nests any plausible
parametric specification for the conditional mean of binary and fractional
responses. Therefore, the new test can be seen as a generalized GOL test
and, in fact, encompasses the pioneering GOL test proposed by Prentice
(1976) for binary logit models as a particular case. Moreover, the applica-
tion of the new test is as simple as that of the RESET, the main difference
being that instead of an arbitrary number of powers of the fitted index,
the new test checks the significance of two simple functions of the fitted
index.

The new test proposed in this paper includes also as particular cases the
two ‘goodness-of-functional form’ (GOFF) tests proposed by Ramalho et al.
(2011). In a simulation study, these authors found that GOFF tests often
display a better power performance than RESET and GOL tests, namely in
cases where the misspecification induces some type of asymmetry relative to
the postulated model. However, for other types of misspecification, the power
of the GOFF tests may be very low. The new test, which we designate by
generalized GOFF (GGOFF) test, should circumvent this limitation of
GOFF tests because, in contrast to the latter, it is based on a generalized
model that is flexible enough to incorporate misspecifications that do not
impose asymmetry.

The paper is organized as follows. Section 2 discusses the generalized
model from which the GGOFF test is derived. Section 3 details the applica-
tion of the new test. Section 4 uses Monte Carlo methods to compare the
finite sample behaviour of the GGOFF test with that of RESET, GOFF and
non-parametric tests. Section 5 illustrates the use of conditional mean tests in
empirical work. Finally, Section 6 presents some concluding remarks.
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2 GENERALIZED MODELS FOR BINARY AND FRACTIONAL

REGRESSION MODELS

Consider a random sample of i = 1, . . . , N individuals. Let y be a binary or
a fractional outcome, respectively, defined as y ∈ {0, 1} or y ∈ [0, 1], and x a
vector of k exogenous variables. The conditional expectation of y given x is
defined as

μ θ θ≡ ( ) ( )E y x G x| ; = (1)

where θ is the vector of parameters of interest and 0 ≤ G(·) ≤ 1. In parametric
models for both binary and fractional responses, the most usual choices for
G(·) are the logit and probit specifications but there are many other altern-
atives such as the loglog, complementary loglog (cloglog) and cauchit models.
Table 1 presents the specifications for G(·) under each of those models and
also the corresponding expressions for the derivatives g = ∇xθG(xθ), which are
necessary to implement the test proposed in Section 3. Alternatively, E(y|x; θ)
could be defined simply as a single index model, with G(·) remaining unspeci-
fied; see, for example, Horowitz (2009). However, many practitioners still
prefer using parametric models, given that semiparametric estimators are
often not particularly simple to implement and interpret. Moreover, to the
best of our knowledge, no applications of semiparametric estimators for
fractional responses have so far been proposed.

With the aim of testing the adequacy of a particular specification for
G(·), several alternative generalized models have been proposed in the econo-
metrics literature on binary models. For example, Poirier (1980) and Smith
(1989) introduce asymmetry in the logit model using the Burr II distribution,
Bera et al. (1984) test the suitability of probit models by nesting the standard
normal distribution assumed in the probit specification within the Pearson
family of distributions and Koenker and Yoon (2009) suggested a generalized
version of the cauchit functional form. On the other hand, in the statistics
literature it has been much more common to work with generalizations of the

TABLE 1
ALTERNATIVE NON-LINEAR CONDITIONAL MEAN SPECIFICATIONS FOR BINARY AND FRACTIONAL

RESPONSE VARIABLES

Model G(xθ) g(xθ)

Cauchit
1
2

1+ ( )
π

θarctan x
1 1

12π θx( ) +
Complementary loglog 1− −e exθ

exθ[1 − G(xθ)]

Logit
e

e

x

x

θ

θ1+
G(xθ)[1 − G(xθ)]

Loglog e e x− − θ e−xθG(xθ)
Probit Φ(xθ) ϕ(xθ)

The Manchester School490

© 2013 The University of Manchester and John Wiley & Sons Ltd

 14679957, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

anc.12032 by C
ochrane Portugal, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



so-called ‘link’ function h(·), which relates the linear predictor xθ to the
conditional expected value μ, i.e. h(μ) = xθ. In this framework, generaliza-
tions of the binary logit model were proposed by Pregibon (1980),
Aranda-Ordaz (1981) and Czado (1994), while Prentice (1976) and Stukel
(1988) suggested models that encompass also the binary probit, loglog and
complementary loglog models. Naturally, to each particular link function
h(μ) corresponds a different functional form G(xθ) and, therefore, such gen-
eralizations may also be used as the basis for testing the specification adopted
for model (1). In particular, as shown by Ramalho et al. (2011), first-order
Taylor series approximations of the generalizations proposed for E(y|x; θ),
via h(μ), may be written as

E y x G x h| ; , , = ;θ α φ θ μ α φα( ) + ∇ ( )[ ] (2)

where h(μ; α) is a generalized link function indexed by some vector of para-
meters α that includes the hypothesized link function as a special case for
some specific values of α. All the various GOL tests proposed in the literature
are thus tests for H0: ϕ = 0, differing only on the specification adopted for h(μ;
α). An unattractive feature of these tests is that none of the proposed h(μ; α)
functions is sufficiently general to include as particular case any possible
choice for h(μ) and, hence, G(xθ).

While all previous generalizations, and the corresponding GOL tests, are
only valid for particular specifications of G(xθ), the RESET test is based on
an approximation of the true model that is valid for any G(·) function.
Indeed, using standard approximation results for polynomials, it can be
shown that any index model of the form E(y|x; θ) = H(xθ) can be approx-
imated by

E y x G x xj
j

j

J

| ; ,θ φ θ φ θ( ) = + ( )⎡

⎣
⎢

⎤

⎦
⎥

+

=
∑ 1

1

(3)

for J large enough. Therefore, testing model (1) is equivalent to test H0: ϕ = 0,
where ϕ is a J-dimensional vector, in the augmented model (3). In a recent
paper, Ramalho and Ramalho (2012) found that, in the binary framework,
the best RESET variants are clearly those that consider J ≤ 2.

Similarly, the two generalized models recently proposed by Ramalho
et al. (2011), which are defined by

E y x G x| ; ,θ α θ α( ) = ( ) (4)

and

E y x G x| ; ,θ α θ α( ) = − − ( )[ ]1 1 (5)

α > 0, are also applicable to any binary and fractional regression model.
Note that both (4) and (5) induce (complementary forms of) asymmetry in
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the postulated functional form G(xθ) and keep the property of producing
values only on the interval [0, 1]. In a simulation study concerning
fractional regression models, Ramalho et al. (2011) found that the overall
performance of Lagrange Multiplier (LM) tests for the null hypothesis H0:
α = 1 in both (4) and (5), respectively, designated as GOFF1 and GOFF2,
was often superior to that of RESET and GOL tests. However, the study
also revealed that both GOFF1 and GOFF2 have a strong drawback: they
are both insensitive to misspecifications that do not induce asymmetry in
G(xθ).

The GGOFF test proposed in the present paper circumvents this
problem by using a more general model, which is a mixture of (4) and (5), and
allows not only for a wider variety of asymmetric forms but also for many
different symmetric shapes:

E y x G x G x| ; , , ,θ λ α α λ θ λ θα α
1 2

1 21 1 1( ) = ( ) + −( ) − − ( )[ ]{ } (6)

where 0 < λ < 1 and α1, α2 > 0 such that 0 < μ < 1. For λ = 1 and
λ = 0, expression (6) would reduce to (4) and (5) respectively. On the
other hand, as (6) reduces to G(xθ) when α1 = α2 = 1, we may test
whether G(xθ) is the correct specification of μ by testing for H0: α = 1, where
α = (α1, α2).

The consequences of introducing additional parameters in the condi-
tional mean of y as in (6) are illustrated in Fig. 1 for several combinations of
α1, α2 and λ, where a probit specification is assumed for G(xθ). The first two
rows of Fig. 1 illustrate cases where α α α1 2= = , while the third and fourth
consider distinct values for those parameters. The graphs where λ = 0 or λ =
1 represent limiting cases of (6).

In general, different combinations of the parameters produce shifts of
the original curve in different directions and of different magnitudes. For
example, for α α α1 2= = , it is clear that for α >1 ( 0 1< <α ), the probit curve
is shifted to the left (right) for small values of λ and to the right (left) for large
values of λ, while for λ = 0.5 symmetric curves, with more dispersion than the
original, are obtained. Moreover, in the cases where α1 (α2) is fixed and
different values are considered for α2 (α1), the shifted curves become more
similar as λ is increased (reduced); compare the third and fourth rows of
Fig. 1, column by column. In fact, the shifted curves would coincide in the
extreme case where λ = 1 (λ = 0), because model (6) would be only a function
of α1 (α2). For this reason, the graph in the first row for λ = 1 (λ = 0) represents
model 4 (5), which yields the GOFF1 (GOFF2) test, since it actually repre-
sents curves yielded by the values chosen for α1 (α2), irrespective of the values
adopted for α2 (α1). Clearly, a test based on the generalized model (6) is
potentially sensitive to a wider set of model misspecifications than GOFF1 or
GOFF2.
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3 THE GGOFF TEST

In the previous section, we presented five alternative types of generalized
models that, for specific values of the additional parameters introduced,
reduce to G(xθ); see Table 2 for a summary of those models and correspond-
ing null hypotheses. Naturally, each of those models gives rise to a distinct
statistic for testing H0: E(y|x) = G(xθ). However, as discussed below, all tests
may be implemented as simple LM tests for the omission of a set of J artificial
regressors z from G(xθ + zϕ), where the null hypothesis is written as H0: ϕ =
0. Besides providing an integrated approach to all tests, the use of LM
statistics in this framework has another very attractive feature: the general-
ized model underlying each test does not need to be estimated. Due to the
computational issues that often arise from the estimation of generalized
models with additional parameters (see inter alia Taylor, 1988), this feature of
LM statistics is particularly relevant in this context.

Following Davidson and MacKinnon (1984), in maximum likelihood-
based binary regression models, LM statistics for the significance of z can be
straightforwardly computed as LM = ESS, where ESS is the explained sum of
squares of the auxiliary regression

� �u gx error= +*δ (7)

û = y − Ĝ, �u u= ˆω̂ , �g g= ˆω̂ , ˆ ˆ ˆ .
ω = −( )⎡⎣ ⎤⎦

−
G G1

0 5
, ⋅̂ indicates evaluation under

H0, x* = (x′, z′) and δ is a vector of parameters. For fractional regression
models, which are usually estimated by quasi-maximum likelihood methods,
it is in general preferable to compute heteroskedasticity-robust LM statistics.
These statistics may be calculated also as LM = ESS, but based on the
artificial regression

1 = +� �ur errorδ (8)

where �r is the vector of residuals �rj, j = 1, . . . , J, that results from regressing
separately each element �gz j on the entire vector �gx; see Papke and
Wooldridge (1996) for details. In both cases, the limiting distribution of the
test is a chi-square distribution with J degrees of freedom.

TABLE 2
SUMMARY OF ALTERNATIVE MODELS USED IN THE TESTS AND RESPECTIVE H0

Test Model H0: G(xθ)

GOL G[xθ + ∇αh(μ; α)ϕ] ϕ = 0
RESET G x xj

J
j

jθ φ θ+ ∑ ( )[ ]=
+

1
1 ϕ = 0

GOFF1 G(xθ)α α = 1
GOFF2 1 − [1 − G(xθ)]α α = 1
GGOFF λ θ λ θα αG x G x( ) + −( ) − − ( )[ ]{ }1 21 1 1 α = 1

Variable omission G(xθ + zϕ) ϕ = 0
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From (2) and (3), see also Table 2, it follows immediately that z = ∇αh(μ;

α) for GOL tests and z x x
J

= ( ) ( )⎡
⎣

⎤
⎦

+ˆ , , ˆθ θ
2 1

… for RESET tests. For the

GGOFF test, it is not so evident how the vector z may be defined, since the
generalized model (6) is not written in the form G(xθ + zϕ). However, as shown
by Wooldridge (2002, pp. 463–464), in models that may be written as μ =
F[G(xθ), γ] and reduce to G(xθ) for some particular value of the vector γ, testing
H0: E(y|x; θ) = G(xθ) is equivalent to test for the omission of z g= ∇ −

γ μ̂ ˆ 1 from
G(xθ + zϕ). In this framework, F [·] is given by the right-hand side of (6), γ ≡ α,
μ reduces to G(xθ) for γ = (1, 1) and λ is a parameter that is not identified under
the null hypothesis. Let z z z g g= ( ) = ∇ ∇( )− −

1 2
1 1, ,1 2α αμ μˆ ˆ ˆ ˆ . Then, z1 = λĜln(Ĝ)ĝ−1

and z2 = −(1 − λ)(1 − Ĝ)ln(1 − Ĝ)ĝ−1, where λ appears in those expressions as an
irrelevant multiplicative constant that can be dropped.1 Thus, the two test
variables are the following:

z G G g1
1= ( ) −ˆ ln ˆ ˆ (9)

z G G g2
11 1= −( ) −( ) −ˆ ln ˆ ˆ (10)

Note that (9) and (10) are the test variables used separately by the
GOFF1 and GOFF2 tests respectively. When used for testing the loglog
(cloglog) models, it is straightforward to demonstrate (see Table 1) that the
test variable z1 = 1 (z2 = 1) and, therefore, must be dropped from the vector z,
implying that for those models the GGOFF test coincides with the GOFF2
(GOFF1) test.

An interesting feature of the GGOFF test is that (9) and (10) coincide
with the test variables resulting from the two-parameter model that underlies
the pioneer GOL test proposed by Prentice (1976) for binary logit models; see
Stukel (1988). Therefore, the GGOFF test can be seen as a generalization of
Prentice’s (1976) GOL test, because, unlike this test, it can be applied to any
possible specification for G(·).

4 MONTE CARLO ANALYSIS

In this section we analyse the finite sample performance of the GGOFF test
through a Monte Carlo simulation study for both binary and fractional
regression models. In the former case, we follow the experimental design of
Santos Silva (2001), assuming a linear index model with two covariates, xθ =
θ0 + θ1x1 + θ2x2, where x1 and x2 are generated, respectively, as a standard
normal and a Bernoulli variate with mean 2/3. We set θ2 = 1 and consider
several values for θ0 and θ1 in order to control the percentage of zeros and

1See, for example, Verbeek (2008, p. 190) for an analogous case where constant proportionality
factors are eliminated from test variables of a heteroskedasticity test implemented as a
variable omission test.

Generalized Goodness-of-functional Form Test 495

© 2013 The University of Manchester and John Wiley & Sons Ltd

 14679957, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

anc.12032 by C
ochrane Portugal, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ones of y and the contribution of x1 for the variance of the response index.
For fractional responses, as in Ramalho et al. (2011), we consider xθ = θ0 +
θ1x1 and generate y according to a beta variate with mean G(xθ) and variance
G(xθ)[1 − G(xθ)]/(ϕ + 1). We set θ1 = 0.5 and consider several values for the
shape parameter ϕ, which produces different degrees of variability of y, and
several values for θ0, which influence the (a)symmetry of the data.

In all experiments, data are generated according to a symmetric (probit)
and an asymmetric (loglog) specification for the conditional mean. In both
cases, three different null models are considered: the true model, to evaluate
empirical size; and a symmetric (cauchit) and an asymmetric (cloglog) model,
to evaluate power. The performance of the GGOFF test is compared with
that of: GOFF1 and GOFF2; the two most common RESET versions, which
use one (RESET1) or two (RESET2) fitted powers; and two versions of
Whang’s (2000) non-parametric test, which generalize the Kolmogorov–
Smirnov (KS) and Cramer–von Mises (CM) tests to the regression frame-
work. While the parametric tests are implemented as LM tests based on both
asymptotic and bootstrap critical values, for the KS and CM tests we use the
bootstrap procedures described in Whang (2000), or some adaptation of
them.2 For the LM tests, we report only results based on asymptotic critical
values, since, as shown next, the actual and nominal sizes are not significantly
different in many cases.3 All experiments are based on 10,000 replications and
sample sizes of N = {100, 200, 400, 1000}.

Figure 2 (binary case) and Fig. 3 (fractional case) display the percentage
of rejections of the null hypothesis for a nominal size of 5 per cent when this
hypothesis is indeed true. For binary regression models, we consider θ0 = {−2,
−1.5, . . . , 2} and θ1 = {0.5, 0.75, . . . , 2.5} and report results for N = {200,
1000}. For the fractional case, we consider ϕ = {5, 10, . . . 45} and θ0 = {−0.5,
−0.375, . . . , 0.5} and report results for N = {200, 400}. The horizontal lines
in Figs 2 and 3 represent the limits of a 95 per cent confidence interval for the
nominal size of 5 per cent.

For N = 200, the parametric tests are often undersized in the experiments
with binary data, while the non-parametric tests are often slightly oversized
with both types of data, especially the KS test. However, as the sample size
increases, those problems disappear in most cases.4 Overall, the GGOFF test
seems to be as reliable as the other tests, displaying actual sizes that are not
significantly different from the nominal ones, at the 5 per cent level, in most
of the experiments considered in the second rows of Figs 2 and 3. For
instance, for those cases, the empirical sizes of the GGOFF test range from

2In particular, in the binary case we use a parametric bootstrap. The number of bootstrap
repetitions is 200.

3Full results are available upon request.
4In the case of parametric tests, the same happens when bootstrapped versions are considered,

although in some cases it has occurred an overcorrection, with the tests becoming slightly
oversized.
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0.043 to 0.052 (binary models) and from 0.045 to 0.057 (fractional models),
while those of the non-parametric tests range are in the range of 0.047–0.058
(KS) and 0.043–0.057 (CM), in the binary case, and 0.049–0.062 (KS) and
0.049–0.061 (CM), in the fractional case.

The same experimental designs are the basis for Figs 4–7, except that
now the hypothesized and true models have no longer the same specification.
Figures 4 and 5 consider the case of binary responses. Clearly, the GGOFF
test displays a very promising behaviour in all experiments. When the null
hypothesis is the cloglog model, the best performers are undoubtedly the
GGOFF and RESET1 tests. In the experiments where the cauchit is the null
model, either the GGOFF test is much more powerful than any of the other
tests (θ0 = 0, changing θ1) or the test that most consistently delivers, in relative
terms, higher powers (θ1 = 1, changing θ0). Regarding the latter case, note for
example how RESET1 is the best power performer for some values of θ0 and
the worst for others, while GGOFF displays a much more uniform
behaviour.

In the case of fractional responses, see Figs 6 and 7, the power perform-
ance of GGOFF is again very encouraging, being one of the most powerful
tests in all experiments. In contrast, notice how the RESET1, GOFF1 and
GOFF2 tests have no power at all when the distribution of y (θ0 = 0), the null
model (cauchit) and the true model (probit) are symmetric. The non-
parametric tests are reasonably powerful, particularly the CM test, but they
are outperformed by the GGOFF test in most cases.

5 EMPIRICAL APPLICATION: FIRMS’ CAPITAL STRUCTURE DECISIONS

In this section, we illustrate the usefulness of the proposed test in an empirical
application concerning firms’ capital structure decisions. The main focus of
many capital structure empirical studies lies in the investigation of the main
determinants of the ratio of long-term debt to long-term capital assets
(defined as the sum of long-term debt and equity) using regression techniques.
By definition, this leverage ratio is bounded by 0 and 1, so fractional regres-
sion models have recently started to be used in this analysis. On the other
hand, many firms do not use long-term debt in the financing of their activities,
so binary regression models are also commonly used in this area to study the
factors that influence the probability of a firm using debt. A model that
considers both issues is the two-part fractional regression model proposed by
Ramalho and Silva (2009), which first explains the decision on using debt or
not (using a binary regression model) and then, conditional on this decision,
the decision on the relative amount of debt to issue (using a fractional
regression model).

Clearly, the two-part fractional regression model for financial leverage
decisions provides a particularly interesting example for our purposes, since,
on the one hand, the GGOFF test is applicable precisely to binary and
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fractional regression models and, on the other hand, economic theory does
not suggest a specific functional form for each model component. Next, we
use a subset of the data analysed in Ramalho and Silva (2009) to illustrate the
application of the GGOFF and other parametric tests for binary and frac-
tional regression models.5 In particular, we consider only the subset of 3397
non-financial micro and small Portuguese firms.

We estimate five alternative specifications for each part of the model:
cauchit, logit, probit, loglog and cloglog. In all cases, the same explanatory
variables as those employed by Ramalho and Silva (2009) are contemplated:
Non-debt tax shields (NDTS), measured by the ratio between depreciation
and earnings before interest, taxes and depreciation; Tangibility, the propor-
tion of tangible assets and inventories in total assets; Size, the natural log-
arithm of sales; Profitability, the ratio between earnings before interest and
taxes and total assets; Growth, the yearly percentage change in total assets;
Age, the number of years since the foundation of the firm; Liquidity, the sum
of cash and marketable securities, divided by current assets; and four activity
sector dummies: Manufacturing; Construction; Trade (wholesale and retail);
and Transport and Communication.

Table 3 reports the estimation outcomes for the two-part fractional
regression model. While for the fractional component of the model no speci-
fication test is able to reject any of the alternative functional forms considered,
at the 5 per cent level, for the binary case the GGOFF test suggests that the
loglog model is the only admissible specification. In fact, in this example, using
the GGOFF test has the advantage of allowing to choose only one specifica-
tion for the binary component of the two-part model, since the other tests are
able to reject only the cloglog and cauchit (all tests) and logit (the GOFF2 test)
specifications. While in this particular example the practical advantage of
being able to select only one model seems to be relatively limited (the only
relevant difference is that in the selected loglog model the variable Construction
is statistically relevant and in three of the other models is not), in other
applications more important differences across alternative models may arise.
Moreover, if one is interested in the magnitude of partial effects, then sizable
differences across models may appear, as Table 4 illustrates. For example, the
average partial effects of the explanatory variables Tangibility, Liquidity,
Manufacturing and Construction in the selected loglog binary model are at least
9.1 per cent higher or smaller than those produced by all the other models.

6 CONCLUDING REMARKS

In this paper we propose a new conditional mean test for binary and frac-
tional regression models. In a Monte Carlo simulation study, we find that the

5We do not use the non-parametric tests due to the difficulty in dealing with the large number of
explanatory variables that we consider in this application.
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suggested GGOFF test is potentially sensitive to a wider set of model
misspecifications than the most common functional form parametric tests,
since, unlike them, its performance is clearly stable across all experiments. We
also find that the GGOFF test seems to be more powerful than non-
parametric tests when applied to traditional regression models for binary or
fractional responses. Therefore, at least for the type of models simulated in
the paper, the GGOFF test seems to be an attractive statistical tool for
detecting functional form misspecifications.

Despite the complexity of the generalized model from which the
GGOFF test is derived, its implementation as an LM statistic is straightfor-
ward in applied work.6 Relative to RESET tests, the GGOFF test has also the
clear advantage of not requiring the choice of the number of test variables,
arbitrarily made in practice. Moreover, also in contrast to RESET tests, in
case of rejection of the null hypothesis, the generalized model underlying the
GGOFF test may be used as a modelling device. However, note that, in
general, as in many other generalized models with additional parameters,
estimates for all parameters of the model may not be easily computed.

6A canned Stata command that allows automatic computation of the GGOFF test is available at
http://evunix.uevora.pt/~jsr/FRM.htm.

TABLE 4
AVERAGE PARTIAL EFFECTS FOR THE BINARY COMPONENT OF TWO-PART FRACTIONAL

REGRESSION MODELS

Cauchit Logit Probit Loglog Cloglog

NDTS −0.015 −0.009 −0.007 −0.006 −0.009
(0.010) (0.006) (0.005) (0.005) (0.007)

Tangibility 0.128** 0.106** 0.099** 0.088** 0.111**
(0.029) (0.030) (0.030) (0.029) (0.030)

Size 0.063** 0.068** 0.068** 0.066** 0.067**
(0.005) (0.005) (0.005) (0.005) (0.005)

Profitability −0.501** −0.500** −0.484** −0.460** −0.497**
(0.136) (0.108) (0.100) (0.091) (0.112)

Growth 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Age 0.001* 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.001) (0.000)

Liquidity −0.286** −0.194** −0.176** −0.151** −0.205**
(0.054) (0.038) (0.035) (0.031) (0.040)

Manufacturing −0.047* −0.073** −0.077** −0.084** −0.065**
(0.019) (0.022) (0.023) (0.024) (0.021)

Construction −0.026 −0.051 −0.057* −0.066* −0.043
(0.024) (0.027) (0.027) (0.027) (0.026)

Trade −0.162** −0.191** −0.191** −0.188** −0.182**
(0.049) (0.045) (0.044) (0.042) (0.046)

Communication −0.136** −0.150** −0.150** −0.150** −0.145**
(0.036) (0.033) (0.032) (0.031) (0.033)

Notes: Below the partial effects we report standard errors in parentheses; ** and * denote partial effects that
are significant at 1 per cent or 5 per cent respectively.
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