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boundary outcomes and endogeneity, with applications to
nonnegative and fractional responses
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ABSTRACT

In this article, we suggest simple moment-based estimators to deal with
unobserved heterogeneity in a special class of nonlinear regression models
that includes as main particular cases exponential models for nonnegative
responses and logit and complementary loglog models for fractional
responses. The proposed estimators: (i) treat observed and omitted covariates
in a similar manner; (ii) can deal with boundary outcomes; (iii) accommodate
endogenous explanatory variables without requiring knowledge on the
reduced form model, although such information may be easily incorporated
in the estimation process; (iv) do not require distributional assumptions
on the unobservables, a conditional mean assumption being enough for
consistent estimationof the structural parameters; and (v) under the additional
assumption that the dependence between observables and unobservables is
restricted to the conditional mean, produce consistent estimators of partial
e�ects conditional only on observables.
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1. Introduction

Economic theory o�en postulates that a response variable depends on both observed and unobserved
individual factors; see inter alia Heckman (2000, 2001), and his notion of a Marshallian structural func-
tion, and Wooldridge (2005), and his related concept of a structural expectation of interest. Therefore,
empirical researchers o�en have to deal with the problem of “omitted variables” or “unobservables” in
their econometric models. When the model is linear in the parameters, this issue is easily dealt with.
For example, if the omitted variables are uncorrelated with the variables included in the model, then
unobservablesmay be simply ignored, and standard application of ordinary least squares (OLS) produces
unbiased estimators of the parameters of interest; if, instead, unobserved and observed covariates
are correlated, then, provided that a set of instruments is available for the endogenous regressors,
instrumental variables based approaches, such as the generalized method of moments (GMM), may
be applied.

While linear models are widely used in econometrics, there are many circumstances where it is
preferable to specify a nonlinear regressionmodel, such aswhen the dependent variable, y, has a bounded
nature. In such a case, linear models provide, in general, an inadequate description of the behavior of
y, because they do not impose any restriction on the range of values yielded by the structural function
relating y to the observables x and the unobservables u. Conversely, in a structural model of the type
y = G (xθ + u), whereG(·) is a nonlinear function, it is straightforward to take into account the bounded
nature of y. For example, if all realizations of y are nonnegative or fractional, then several alternative
nonlinearmodels that ensure that, respectively,G(·) > 0 or 0 < G(·) < 1, are available. Unfortunately, in
the framework of nonlinear models it is much more complicated to deal with unobserved heterogeneity
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and its consequences are in general more serious. For example, Ramalho and Ramalho (2010) found
the following consequences of neglected heterogeneity in the context of binary and fractional regression
models: it produces an attenuation bias in the estimation of regression coe�cients; apart from some
particular cases, it generates biased estimation of (averaged across the distribution of unobservables)
partial e�ects; and, although innocuous for the size of Wald tests for the signi�cance of observed
regressors, it substantially reduces their power.1

Despite the general acknowledgement of the deleterious e�ects of unobserved heterogeneity in
nonlinear speci�cations, many empirical researchers still specify nonlinear models that simply do not
allow for unobservables as if ignoring the problem would eliminate it. Other common practice in
empirical work (which, in practical terms, is identical to the previous approach) is the introduction
of heterogeneity in the model in such a way that it can immediately be discarded again, i.e., observables
and unobservables are treated, o�en without any plausible reason, in a non-symmetrical way, just to
ensure the separability of the observable and unobservable components. Authors that do incorporate the
heterogeneity in the model in a sensible manner then typically choose one of the following strategies:
(i) make strong distributional assumptions for the unobservables, which o�en generate poorly �tting
models; (ii) work with linearized versions of the model of interest (e.g., log-transformed models for
nonnegative responses), which, typically, cannot be directly applied in cases where boundary values
of y are observed with nonzero probability; or (iii) use nonparametric techniques, which avoid the
speci�cation of a functional form for the structural model, but, given their larger complexity, are less
appealing to applied researchers than parametric techniques.

In this article we propose a new class of transformation regression models to deal with boundary
outcomes, neglected heterogeneity, and endogeneity issues in nonlinear models that treat observed
and omitted covariates in a similar manner. Our approach is, on the one hand, less �exible than the
three mentioned strategies, since it applies only to a speci�c class of nonlinear regression models,
the most prominent examples of that class being models for nonnegative and fractional responses.
However, for these particular models, the proposed approach displays several advantages. First, unlike
the linearized models used by strategy (ii), our transformation regression model accommodates values
of y observed at one of its boundaries (e.g., the value zero of nonnegative outcomes; the value zero or
one of fractional response variables). Second, because the suggested model may be estimated by GMM,
its implementation is typically much simpler than those of strategy (i), where o�en the parameters
have to be estimated using simulation techniques, and strategy (iii), where substantial technical and
programming skills are o�en required. Third, unlike strategy (i), no distributional assumptions are
required, a conditional mean assumption regarding the unobservables being enough for consistent
estimation of the parameters of interest. Fourth, our approach can deal with endogenous covariates
without requiring knowledge on the reduced form model, although such information may be easily
incorporated in the estimation process. In contrast, most of the approaches following strategies (i) and
(iii) above require either the estimation of the reduced form model or heavier assumptions on the
relationship between observables and unobservables.

This article focuses on the estimation of the parameters that appear in the structural model, which
are of interest in its own right for policy analysis or for testing restrictions imposed by economic
theory, for example. However, some authors, notably Wooldridge (2005), argue that in the presence
of unobservables, the quantities of primary interest for empirical analysis are o�en the partial e�ects
averaged across the population distribution of any unobserved heterogeneity. Therefore, in this paper
we consider also the estimation of partial e�ects conditional only on observables and show how,
a�er obtaining consistent estimates for the structural parameters using the proposed transformation
regression model, it is also possible to estimate consistently those quantities under the additional
assumption that the dependence between observables and unobservables is restricted to the conditional
mean.

1We use the term “neglected heterogeneity” to designate the case where the unobserved and the included covariates are
independent.
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All results derived in the paper are �rst presented in general terms and then specialized for
exponential (Wooldridge, 1992) and fractional (Papke and Wooldridge, 1996) regression models. In
the former case, several estimators already known in the econometric literature are produced. In the
latter case, new estimators for dealing simultaneously with boundary outcomes, neglected heterogeneity
and endogeneity issues are obtained. Given the large variety of economic models that have a dependent
variable with a fractional nature (e.g., pension plan participation rates, �rm market share, proportion
of debt in the �nancing mix of �rms, fraction of land area allocated to agriculture, and proportion of
exports in total sales), the large number of cases with boundary outcomes (e.g., many �rms do not use
debt and do not export), and the fact that unobservables virtually a�ect all econometric models, the
proposed transformation regression models are potentially useful for many areas of applied economics.

This article is organized as follows. Section 2 discusses brie�y the speci�cation and estimation of
nonlinear structural models. Section 3 describes the proposed transformation regressionmodel. Section
4 considers estimation of partial e�ects conditional on observables. Section 5 usesMonte Carlomethods
to compare the �nite sample performance of some alternative estimators. Section 6 presents an empirical
application concerning the proportion of debt in �rms’ capital structure. Finally, Section 7 concludes.

2. Speci�cation and estimation of nonlinear regressionmodels

Let y be an observed (limited) dependent variable, and let x and q be k and c vectors of observed
explanatory variables and unobserved heterogeneity, respectively. Assume that x contains a constant
term and denote by θ and η the vectors of parameters associated to x and q, respectively. Without loss
of generality, let u ≡ qη.

Throughout this article, we consider what Heckman (2000) calls a “well-posed economic model”,
that is, “a model that speci�es all of the input processes, observed and unobserved by the analyst, and
their relationship to outputs (p. 47)”. We also assume that economic theory implies restrictions on the
structure of the model, generating a nonlinear single-index representation for the relationship between
y and (x, u). Under these assumptions, the resultant structural model, called by Heckman (2000, 2001)
a Marshallian causal function, may be speci�ed as

y = G (xθ + u) , (1)

where G(·) is a known nonlinear function that imposes the bounded nature of y on the model and is
assumed to be strictly monotonic, continuously di�erentiable, and not additively separable.2

From (1), it follows that

E
(

y|x
)

= Eu [G (xθ + u)] =
∫

U

G (xθ + u) f (u|x) du, (2)

where Eu [·] denotes expectation with respect to the conditional distribution of u and U and f (u|x)
denote, respectively, the sample space and the conditional (on the observables) density of u, which in
this case, for simplicity, is assumed to be a scalar. Equation (2) shows that conditioning on the observed
explanatory variables does not remove, in general, the dependency of the model on unobservables (see
Section 3.4.1 for a well-known exception). From (2), it follows that the (conditional only on observables)
partial e�ects of unitary changes in a continuous covariate xl on y are given by

∂E
(

y|x
)

∂xl
=
∫

U

∂ [G (xθ + u)]

∂xl
f (u|x) du, (3)

assuming that the integral and di�erential operators are interchangeable.
The transformation regression model that is proposed in this article, see Section 3, is de�ned by a set

of orthogonality conditions between a function of the unobservables, say u∗ ≡ u∗ (y, x; θ
)

, and a set of

2See Heckman (2000) for a rigorous de�nition of Marshallian causal functions.



400 E. A. RAMALHO AND J. J. S. RAMALHO

s instrumental variables, s ≥ k, which we denote by z:

E
(

z′u∗) = 0. (4)

The instruments z may or may not coincide with the explanatory variables, depending on whether the
latter variables may be viewed as exogenous or endogenous. As shown later on, u∗ may be a nonlinear
function of θ , and therefore, the parameters of interest that appear in (4) have to be estimated by GMM
or any other method appropriate for moment conditionmodels. In this article, we consider the so-called
two-step GMM estimator de�ned as

θ̂ = argmin
θ∈2

m̂(θ)′�̂(θ̃)−1m̂(θ), (5)

where 2 denotes the parameter space, m̂(θ) ≡
∑N

j=1m(yj, xj, zj; θ)
/

N, m(·) = z′u∗, j indexes each

sampling unit, N denotes the number of observations, �̂(θ) ≡
∑N

j=1mj(θ)mj(θ)′
/

N, and θ̃ is some

preliminary estimator de�ned by an equation similar to (5) butwith �̂(θ) replaced by the identitymatrix.

3. Transformation regressionmodels

Estimating θ directly from (1) or (2) is typically a challenging task given the presence of unobservables
in both expressions. One possible alternative is the use of transformation regression models. In this
section, we �rst brie�y review the typical transformation that has been applied tomost nonlinearmodels.
Then, we propose a new transformation regression model that circumvents the inability of the standard
approach to accommodate boundary values of the response variable. Both approaches transform the
original model (1) in such a way that the coherence with the economic theory that implied Eq. (1) is
kept, but orthogonality conditions of the type given by (4) may be straightforwardly generated under
the assumption that

E(u∗|z) = 0. (6)

3.1. The standard linearization approach

Assume that there is a monotonic functionH(·) = G(·)−1 that, applied to both sides of (1), gives rise to
the linear model

H(y) = xθ + u. (7)

If u was observed, Eqs. (1) and (7) would represent exactly the same deterministic relationship and it
would be indi�erent to workwith either equation. However, given that u is not observed and is additively
separable only in (7), identi�cation and estimation of θ becomesmuch simpler than inmodel (1). Indeed,
assuming that E (u|z) is a constant not depending on z, consistent GMM estimators for the structural
parameters are straightforwardly obtained by considering orthogonality conditions generated from (6),
with u∗ = u

E
{[

H(y) − xθ
]

|z
}

= 0. (8)

When z = x, this corresponds to a simple estimation of (7) by OLS.
The transformation regression model de�ned by (7) is very simple and may be applied to a wide

variety of nonlinear regression models. However, the H(·) function is o�en not de�ned for boundary
values of y, as the examples of Section 3.4 illustrate.
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3.2. The proposed transformation

To overcome the problem associated to the linearized model (7), we propose next a di�erent trans-
formation of the structural model (1). This new transformation is slightly more complicated than the
previous one and gives rise to a regressionmodel that, similarly to the original model, is nonlinear in the
parameters. However, the problems with the boundary values that a�ect the linearized regressionmodel
are in general attenuated and, in some cases, even eliminated.

Assume that the function G(·) in (1) may be decomposed as

G (xθ + u) = G1 [G2 (xθ + u)] , (9)

where G1(·) is an invertible function and G2(·) is a nonlinear function multiplicatively separable into
k+ c terms, which, for our purposes, is convenient to group into two terms, one function of xθ , and the
other function of u, as follows:

G2 (xθ + u) = G2 (xθ)G2(u). (10)

Typically, G2(·) will be the exponential function. Assume that G2 (xθ) 6= 0 and that E [G2(u)|z] is a
constant not depending on z. In particular, given that x contains a constant term, wemay assumewithout
any loss of generality that E [G2(u)|z] = 1.3

Let H1(·) = G1(·)−1. Then, from (8), it follows that

H1(y) = G2 (xθ)G2(u). (11)

Dividing both sides of (11) by G2 (xθ), so that (functions of) x and u become additively separable, and
subtracting 1 to both sides of the resultant model produces

H1(y)

G2 (xθ)
− 1 = G2(u) − 1. (12)

As, under the assumptions stated above, E {[G2(u) − 1] |z} = 0, the le� hand-side of this equation may
be interpreted as the residual function that appears in (6). Hence, assuming standard rank conditions
for identi�cation, consistent GMM estimators for θ may be obtained based on a set of orthogonality
functions generated from

E

{[

H1(y)

G2 (xθ)
− 1

]
∣

∣

∣

∣

z

}

= 0. (13)

The transformation regression model (12) applies to a more restrict class of models than the simple
linearized model (7), since it involves more requirements on the de�nition of G(·). However, note that
while H1(·) merely transforms G(·) into a (possibly nonlinear) function G2(·) of xθ + u, H(·) goes one
step further and reduces G(·) to xθ + u. Thus, as the examples in Section 3.4 illustrate,H1(·) creates less
restrictions in the domain of y, being well de�ned for (some of) its boundary values.

While the transformation models (7) and (12) represent the same deterministic relationship, their
stochastic versions (8) and (13) are not in general equivalent. In particular, the assumptions required
for consistent estimation of the parameters of interest in each model do not imply each other. That is, it
may be the case that E (u|z) is a constant not depending on z, as required by (8), but that E [G2(u)|z] is a
function of z, unlike required by (13), and vice-versa. Only under the stronger assumption of statistical
independence between z and u will the two models produce simultaneously consistent estimators for
the slope parameters. Therefore, a major discrepancy between the estimated parameters might suggest
that some form of misspeci�cation is present in one of the models. Although in this paper we do not
consider the development of speci�c criteria for choosing between the two models, in the Monte Carlo
section we investigate the ability of the popular RESET test to detect this type of misspeci�cation.

3For example, if G2(·) is an exponential function, then we may rede�ne the constant θ0 and the error term as β0 = θ0 +
log E [exp(u)] and ε = exp(u)/E [exp(u)], respectively.
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3.3. An alternative GMMestimator for the case of endogenous explanatory variables

By de�ning the composition of the vector z appropriately, the GMM estimator proposed in the previous
section is valid under a variety of situations, including cases of endogenous covariates. From now on, we
denote by GMMx the estimator that uses z = x and, thus, is only appropriate when endogeneity is not
a problem; and by GMMz the estimator based on a set of instruments z that were chosen in such a way
that the consistency of the parameter estimators is achieved also under endogeneity.

As it is clear from (13), a very attractive feature of the GMMz estimator is that no assumptions about
the reduced form of the endogenous explanatory variables need to be made. Moreover, our estimator
applies in exactly the same way irrespective of the endogenous regressors being discrete or continuous.
Thus, theGMMz estimatormay be seen as a generalization ofMullahy’s (1997) estimator for exponential
regression models (see Section 3.4.1) and is in clear contrast to most instrumental variable estimators
that have been proposed for nonlinear regression models (e.g., Smith and Blundell, 1986; Rivers and
Vuong, 1988; Wooldridge, 1997), which are not robust to misspeci�cation of the reduced form of the
endogenous covariates and typically require di�erent procedures according to the characteristics of
those variables. Nevertheless, a potentially more e�cient estimator may be constructed in the presence
of reliable information about the reduced form of the endogenous explanatory variables. Next, we
outline how such information may be incorporated in the estimation process of the parameters of the
transformation model (12) in order to obtain an estimator that is similar in spirit to that suggested by
Smith and Blundell (1986) for censored regressionmodels, Rivers and Vuong (1988) for binary response
models and Wooldridge (1997) for count data/exponential regression models.

Assume that there are k1 and k2 exogenous (x1) and endogenous (x2) explanatory variables, respec-
tively. Assume also that strictly monotonic transformations of each x2l, l = 1, . . . , k2, can be found so
that a linear reduced form with additive disturbances can be found. Let S (x2) denote the vector of those
monotonic transformations. Then, we may write

S (x2) = zπ + v, (14)

where z contains x1, π is an s × k2 matrix of reduced form parameters, and v is a k2 vector of reduced
form errors. Finally, assume that (u, v) is independent of z and that

u = vρ + ǫ, (15)

where ǫ is independent of v. Under these assumptions, it follows from (1) and (15) that

y = G (xθ + vρ + ǫ) , (16)

and, hence,

H1(y)

G2 (xθ + vρ)
− 1 = G2 (ǫ) − 1. (17)

Using standard arguments from two-step estimation, it may be shown that GMM estimation based on

E

{[

H1(y)

G2 (xθ + vρ)
− 1

]
∣

∣

∣

∣

x, v

}

= 0, (18)

with v replaced by v̂ = S (x2) − zπ̂ , where π̂ is an OLS estimator, produces consistent estimators for
θ and ρ; see Newey and McFadden (1994) for the consistency of two-step estimators. Alternatively, we
may append the �rst-order conditions for π̂ to themoment conditions generated from (18) and estimate
simultaneously π , θ , and ρ by GMM, which has the advantage of providing directly correct standard-
errors to all parameters.

Clearly, unlike the Mullahy-type GMMz estimator, the consistency of this alternative estimator,
denoted from now on byGMMxv, depends crucially on the correctness of both Eq. (15) and the reduced
form (14). However, if both equations are correctly speci�ed, then, by using that extra information,
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the GMMxv estimator is more e�cient. Moreover, testing for endogeneity is simpler in this framework:
simply test for the signi�cance of the parameters ρ in (18) using any classical GMM test of parametric
restrictions; see inter alia Wooldridge (1997) for a discussion of similar tests of endogeneity and Newey
and West (1987) for GMM tests of parametric restrictions. In contrast, in the GMMz framework, it
appears that the only form of testing for endogeneity of x2 would involve the implementation of a
standard Hausman test contrasting GMMx and GMMz estimators.

3.4. Examples

To illustrate themain results of the article, all results will now be specialized to exponential and fractional
regression models. These are two clear examples of models to which the proposed transformation will
be particularly useful, since in both cases it is very common to observe the boundary values of zero
(exponential and fractional models) or one (fractional models).

3.4.1. Exponential regressionmodel

The exponentialmodel, which is commonly used to describe nonnegative outcomes,may be expressed as

G (xθ + u) = exp (xθ + u) ; (19)

see, for example, Wooldridge (1992). Although nonlinear, G(·) is multiplicatively separable in terms
of x and u, which implies that E

(

y|x
)

= exp (xθ) under the assumption that E
[

exp(u)|x
]

= 1. In
this context, conventional application of quasi-maximum likelihood (QML) methods yields consistent
estimators for θ ; see Santos Silva and Tenreyro (2006) for alternative QML estimators for exponential
regression models.

The linearization of model (19) is based on the log-transformation H(y) = log(y). Because this
transformation is not de�ned for y = 0, this approach can only be directly applied to positive data.
This is an important limitation of this approach because the excess of zeros is an endemic problem with
nonnegative responses, be they discrete (e.g., count data, see Cameron and Trivedi, 2005, pp. 681–682)
or continuous (e.g., gravity equations, see Santos Silva and Tenreyro, 2006). Typically, the extensive
literature using log-transformed models has overcome this limitation by adding an arbitrary constant
to all observations of y or by dropping observations with y = 0. As shown by Santos Silva and
Tenreyro (2006), both approaches may originate large biases in the estimation of the parameters of
interest.

The transformation regression model proposed in this article applies to (19) by de�ning G1(·) and
G2(·) as, respectively, a linear and an exponential function. Hence, H1(y) = y and

H1(y)
G2(xθ)

= y
exp(xθ)

.

This implies that the transformation regression model de�ned by (12) includes as particular cases two
estimators well known in the econometrics literature: the estimator proposed by Mullahy (1997) to deal
with endogeneity in count data models; and the Gamma-based QML estimator considered by Manning
andMullahy (2001) and Santos Silva and Tenreyro (2006) for the case of exogenous variables. Clearly, in
contrast to the standard linearization approach, in this context there is no problem in dealing with zero
outcomes of y.

3.4.2. Fractional regressionmodels

Models for variables de�ned on the unit interval (0 ≤ y ≤ 1) were �rst suggested by Papke and
Wooldridge (1996); see also the recent survey by Ramalho et al. (2011). In this context, some popular
choices for G(·) are the probit, logit, and complementary loglog functional forms described in Table 1.
In contrast to the previous example, the terms involving x and u are not directly separable in any of those
models. Therefore, as discussed by Ramalho and Ramalho (2010), even under neglected heterogeneity
does the Bernoulli-based QML method usually applied in this framework yield inconsistent estimators
for θ .
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Table 1. Alternative fractional regression models.

Model G (xθ + u) H(y) G1 [G2(·)] G2 (a) H1(y)
H1(y)
G2(xθ)

Probit 8 (xθ + u) 8−1(y) – – – –

Logit exp(xθ+u)
1+exp(xθ+u)

ln y
1−y

G2(·)
1+G2(·) exp (a)

y
1−y

y
1−y exp (−xθ)

Complementary
loglog 1 − exp [− exp (xθ + u)] ln

[

− ln (1 − y)
]

1 − exp [−G2(·)] exp(a) − ln(1 − y) − ln(1 − y) exp(−xθ)

The linear transformationH(·), also given in Table 1, is not de�ned for both the boundaries values 0
and 1 for the three mentioned fractional regression models. Therefore, to deal with boundary values in
linearized fractionalmodels, the same “solutions” described for linearized exponential regressionmodels
are in general used and the same criticisms apply. In contrast, the new transformation (12), which can be
applied to logit and complementary loglog models, can accommodate one of the two boundary values
of fractional responses, see Table 1. This is particularly relevant because most samples cluster only at
zero or one (see, for example, the applications by Ramalho and Silva, 2009, and Ramalho et al., 2010,
respectively). Moreover, note that we can always rede�ne the response variable and decide to model its
complementary, whichmeans that the transformed logit and complementary loglogmodelsmay be used
irrespective of the boundary value that is observed with a nonzero probability.

3.5. Comparisonwith non- and semiparametric approaches

We assume throughout this article that the G(·) function is known (and, hence,H(y) andH1(y) are also
known). Alternatively, y in (1) could be speci�ed simply as a single index model, with G(·) unspeci�ed.
Next, we compare the transformationmodel proposed in this article and some non- and semiparametric
approaches considered in the econometrics literature.

Several authors proposed nonparametric estimators for the modelH(y) = xθ +u given in (7), where
H(·) is an unknown function and u has unknown distribution function. In particular, Horowitz (1996);
Ye and Duan (1997) and Chen (2002), assuming the availability of a

√
n-consistent nonparametric

estimator for θ , developed
√
n-consistent estimators for H(·). However, their methods are unable to

provide consistent estimators of E
(

y|x
)

for all y and u and require independence between the covariates
and the error term. In contrast, in this article we focus on consistent estimation of θ and can handle
endogeneity through the use of instruments.

On the other hand, several nonparametric estimators for θ have been proposed, such as the average
derivative estimator of Horowitz and Hardle (1996), the maximum rank correlation estimator of Han
(1987), the monotone rank estimator of Cavanagh and Sherman (1998) and the pairwise-di�erence
rank estimator of Abrevaya (2003). Again, none of thesemethods can deal with endogenous explanatory
variables.Moreover, becauseH(·) is le� unspeci�ed, θ is only identi�ed up-to-scale andwithout location.

Semi- and nonparametric methods that allow for endogenous covariates in model (7) have also
been proposed, but typically, in contrast to our proposal, such approaches require the continuity of
the endogenous variables (e.g., Vanhems and van Keilegom, 2011) and o�en also of the instrumental
variables (e.g., Fève and Florens, 2010). Other disadvantage is that o�en the rate of convergence of
the estimators is no longer the usual

√
n rate (Fève and Florens, 2010). As far as we know, the only

nonparametric approach that allows for both continuous and discrete endogenous and instrumental
variables is that by Abrevaya et al. (2010). However, the proposed method merely identi�es the sign of
the endogenous regressors.

Finally, irrespective of the advantages and disadvantages of any particular nonparametric estimator
relative to our transformation regression model, note that most practitioners still prefer working with
parametric transformations, since they are easier to implement and interpret than nonparametric ones.
In particular, to the best of our knowledge, no applications of nonparametric estimators for fractional
responses have been performed yet. Therefore, particularly for empirical researchers working with
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fractional data, our approach is potentially very useful, since it will allow them to deal simultaneously
with boundary values, neglected heterogeneity and endogeneity in a very straightforward way.

4. Estimation of partial e�ects conditional on observables

As it is clear from (3), estimation of partial e�ects conditional on observables will require in general
making distributional assumptions on the unobservables. Moreover, the integrals that appear in (3), in
general, cannot be calculated analytically and have to be computed by numeric integration or simulation.
There are, however, some exceptions to this situation. One concerns the exponential regression model,
since in this case the structural function G(·) is multiplicatively separable in terms of x and u, see
Section 3.4.1, and, thus, f (u|x) does not need to be speci�ed. The other exceptions concern very special
combinations of the structural function and the distribution of unobservables, still requiring making
distributional assumptions on unobservables but avoiding the computation of integrals. In fact, when
u has a speci�c distribution (typically, the normal distribution), G(·) has a speci�c form (e.g., a binary
probit model), and u is independent of x, or independent conditionally on a set of additional controls,
then estimating the naive model that ignores the presence of unobserved heterogeneity (i.e., estimating
the misspeci�ed model E

(

y|x
)

= G (xθ) instead of the correct model de�ned in (2)), or the model that
adds a set of controls to the index function but still omits u, produces biased estimates for the structural
parameters but consistent estimators for the partial e�ects conditional on unobservables; seeWooldridge
(2005) for details and examples and Ramalho and Ramalho (2010) for further discussion.

Wooldridge’s (2005) approach still requires making distributional assumptions on u, has the unde-
sirable feature of yielding inconsistent estimators for the structural parameters, and is not generally
applicable. The transformation regressionmodels proposed in the previous section are also not generally
applicable but, in addition to produce consistent estimators for the structural parameters, have also
the ability of generating consistent estimators for conditional partial e�ects without requiring the full
speci�cation of f (u|x), provided that we restrict the dependence between observables and unobservables
to the conditional mean (i.e., E {[G2(u) − 1] |x} may depend on x but other functions of u not). Under
this additional assumption, the following two-step procedure may be used for estimating partial e�ects
for individual i:

1. Obtain the GMM estimator θ̂ and the residuals û∗
j = H1(yj)

G2

(

xjθ̂
) − 1 and ûj = G−1

2

(

û∗
j + 1

)

,

j = 1, . . . ,N, where the function G2 is assumed to be invertible;
2. Compute the partial e�ect (3) using its sample analog

̂
(

∂E
(

y|x
)

∂xl

)

= 1

N

N
∑

j=1

∂

{

G1

[

G2

(

xiθ̂
)

G2

(

ûj
)

]}

∂xl
= 1

N
θ̂l

N
∑

j=1

g
(

xiθ̂ + ûj

)

, (20)

where g(·) is the derivative of G(·).
Note that this two-step procedure is valid for all the GMM estimators de�ned in the previous section:
GMMx, GMMz, and GMMxv.

The estimator de�ned in (20) is a natural extension of the smearing technique suggested by Duan
(1983) for the log-transformed model, estimating the unknown error distribution by the empirical
distribution function of the GMM residuals calculated in step 1. Although rarely used in the economics
literature, this is a very simple method to employ in practice. Of course, the variance of (20) will have to
be computed using the delta method or the bootstrap, but that is the standard procedure when working
with partial e�ects in nonlinear models. In the former case, the following formula should be used for
computing the variance of the partial e�ects:

Var





̂
(

∂E
(

y|x
)

∂xl

)



 =
∂ ̂
(

∂E
(

y|x
)

/∂xl
)

∂θ
Var

(

θ̂

) ∂ ̂
(

∂E
(

y|x
)

/∂xl
)

∂θ

′

; (21)
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see Abrevaya (2002). In the latter case, an appropriate bootstrap for GMM estimators must be applied
(see, e.g., Ramalho, 2006), with the variance of (20) being given by the sample variance of the B estimates

of
(

∂E(y|x)
∂xl

)

obtained in the bootstrap samples.

5. Monte Carlo simulation study

In this section, we carry out a Monte Carlo study to investigate the �nite-sample performance of the
estimators proposed in the article under di�erent simulated scenarios. For comparative purposes, in
addition to the GMMx, GMMz, and GMMxv estimators, we include also three estimators based on
the linearized model (7), and two QML estimators. The linearized estimators, denoted for simplicity
by LINx, LINz and LINxv, are constructed in a similar way to their GMM counterparts. Regarding the
QML estimators, we considered the standard Bernoulli-based QML estimator proposed by Papke and
Wooldridge (1996) for fractional regression models (denoted by QMLx), which does not account for
any type of unobserved heterogeneity; and a variant of that estimator (denoted by QMLxv), which was
proposed by Wooldridge (2005) to deal with endogeneity issues and is constructed in a similar way to
the GMMxv estimator, but, unlike the latter, does not allow for other sources of heterogeneity.

This Monte Carlo study considers three distinct experimental designs, all of them concerning the
estimation of a logit fractional regression model. In the �rst set of experiments, the data is generated
without boundary observations, a setting where all estimators discussed in the article may be applied
with no need for ad-hoc adaptations. We use these experiments to perform a comprehensive analysis of
the ability of eachmethod to estimate structural parameters and conditional partial e�ects. In the second
set of experiments, we generate data with boundary observations that result from rounding errors in
order to illustrate the advantages of the estimators proposed in this article over the (modi�ed) linearized
estimators that are typically applied in such a context. Finally, in the third set of experiments, we generate
the data in such away that the two transformation regressionmodels discussed in the article cannot yield
simultaneously consistent estimators for the slope parameters, the aim being the analysis of the ability
of the RESET test to detect the misspeci�cation that a�ects one of the models.

All experiments were repeated 5, 000 times using the statistical package R. For the nonlinear estima-
tors, the general-purpose optimization function nlminb, which is based on a quasi-Newton algorithm,
was used in both the GMM and QML cases. Also in both cases, the true values of the parameters were
used to initiate the algorithm.

5.1. Experiments without boundary observations

5.1.1. Design

The experiments without boundary observations are based on the structural model

y = G (θ0 + θ1x1 + u) , (22)

whereG (a) = exp (a) /
[

1 + exp (a)
]

, θ0 = 0, θ1 = 1, and x1 denotes a single covariate. The explanatory
variable x1 is generated from either

x1 = zπ1 + v (23)

or

ln
x1

1 − x1
= zπ2 + v, (24)

where z is an (s − 1)-vector of instrumental variables, which are generated asN (0, 1) random variables,
with the elements of z independent of each other and of u and v. The reduced form parameters π1 and
π2 equal an (s − 1)-vector of ones times a scalar constant 51 and 52, respectively. We set s = {3, 12},
51 = 0.5, and 52 = 1.
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We generate the error terms (u, v) as correlated: their joint distribution is N (µ,6), where µ =
(−0.5, 0) and 6 ∈ R2×2 with diagonal elements equal to unity and o�-diagonal elements ρuv. Setting
themean of u equal to−0.5 ensures that E

[

exp(u)|z
]

= 1, as assumed by ourGMM estimators. Because
E (u|z) 6= 0 but does not depend on z, LIN estimators may be consistent for θ1 but not for θ0.

As the error terms have a joint multivariate normal distribution, we may write

u = ρuvv + ǫ, (25)

with ǫ independent of v and z, as in Eq. (15).Moreover, the variance of ǫ is given by σ 2
ǫ = 1−ρ2

uv. Hence,
while in the ρuv = 0 (σ 2

ǫ = 1) case x1 is exogenous but there is a large amount of neglected heterogeneity,
for ρuv = ±1 (σ 2

ǫ = 0) x1 is strongly endogenous but the impact of neglected heterogeneity is
irrelevant (if ignored, only the estimation of the parameter θ0 is a�ected). In order to measure the
e�ect of di�erent degrees of endogeneity and neglected heterogeneity over the various estimators, we
set ρuv = {−1,−0.8, . . . , 1}. In all cases, Monte Carlo samples of size N = {200, 1000} are generated.

5.1.2. Estimation of structural parameters

Figure 1 presents the results obtained for the �rst set of experiments, where the reduced form (23) was
used both for generating the data and for estimating purposes. For each experiment, we report for six
alternative estimators of the structural parameter θ1 the following statistics: themean across replications;
the rootmean squared error (RMSE); and the empirical coverage of a 95% con�dence interval, whichwas
estimated by taking the proportion of cases where the con�dence interval covers the true value of θ1. In
order to estimate correctly the standard errors necessary for the computation of the con�dence interval,
in the implementation of the QMLxv and GMMxv estimators both the parameters of the structural and
reduced forms were estimated simultaneously. To facilitate the reading of the �gures, the results for LINx

and LINxv are not reported, but their performances relative to LINz are similar to the performances of
GMMx and GMMxv relative to GMMz, respectively.

The �rst column of Fig. 1 shows clearly that, irrespective of the value of ρuv, GMMxv, GMMz, and
LINz provide consistent estimation of θ1. In contrast, all the other estimators are biased in most cases.
The GMMx estimator is consistent only for ρuv = 0, its bias increasing as the degree of endogeneity
(in absolute value) increases. The QMLxv estimator is consistent only when the neglected heterogeneity
can be ignored (ρuv = ±1), its bias increasing as the variance of v increases (ρuv decreases), achieving
a maximum for σ 2

ǫ = 1. That is, the QMLxv estimator displays the classic attenuation bias that is
o�en mentioned as the main consequence of neglected heterogeneity. As in all simulated cases there
are endogeneity and/or neglected heterogeneity, the standard QMLx estimator, used in most empirical
applications, displays large biases most of time, except in a particular situation where the e�ects of
endogeneity and neglected heterogeneity seem to compensate each other. Because they do not account
for endogeneity, the bias of both theQMLx andGMMx estimatorsmay be positive or negative, depending
on the value of ρuv.

The analysis of the RMSE of each estimator shows the importance of using additional information
in the estimation process in order to obtain more e�cient estimators, especially for smaller sample sizes
and when less moment conditions are used.4 Clearly, in the presence of unobserved heterogeneity, if
the empirical researcher knows for sure that endogeneity is not an issue, then he/she should use the
GMMx (or LINx) estimator; if neglected heterogeneity is not a problem and the reduced form of the
endogenous explanatory variable is known, then the QMLxv estimator is probably the best option; if
the data are a�ected by both neglected heterogeneity and endogeneity issues and the reduced form of
the endogenous regressor is known, then it is preferable to apply theGMMxv (or LINxv) estimator. On the
other hand, the LIN estimators display clearly a better RMSE performance than theirGMM competitors
for N = 200 and s = 3, but that advantage becomes much less important as the sample size and the
number of moment conditions increase.

4Note that as π1 is �xed independently of the number of instruments, more instruments imply a higher overall �t of the
instruments to the endogenous regressor x1.
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Figure 1. Monte Carlo statistics for the structural parameter θ1 .

Similar conclusions are achieved if we analyze the graphs relative to the coverage of con�dence
intervals. The last column of Fig. 1 also illustrates the danger of not accounting for the correct type of
unobserved heterogeneity: the empirical coverage of the con�dence intervals yielded byQMLx,QMLxv,
andGMMx tend to zero except in the particular cases of neglected heterogeneity (GMMx) and innocuous
neglected heterogeneity (QMLxv).
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In Fig. 2, we consider the case where the reduced form of the endogenous covariate is misspeci�ed.
We generate x1 using the linearized logit model given in (24) but estimateQMLxv andGMMxv using the
following linearized loglog reduced form:

− ln (− ln x1) = zπ2 + v. (26)

The results reported in Fig. 2 show clearly that, under misspeci�cation of the reduced form, the only
estimators that produce reliable estimates of structural parameters are GMMz and LINz. All the other
estimators are inconsistent when x1 is endogenous, with the extent of the bias depending on the degree
of endogeneity. In e�ect, the use of an incorrect reduced form is innocuous for the consistency of the
GMMxv and LINxv estimators only when there is no endogeneity, i.e., precisely in the case where no
reduced form for x1 would need to be speci�ed. In terms of RMSE, the GMMz and LINz estimators
display the most uniform behavior of all estimators, but there are several cases, particularly for s = 3
and N = 200, where the RMSE of GMMz is not among the lowest. However, as the sample size grows,
the RMSE of the GMMz estimator decreases substantially, outperforming most of the other estimators
also in terms of this criteria when N = 1, 000. Nevertheless, the RMSE of the LINz estimator is always
smaller. Finally, note that, with the exception of the GMMz and LINz estimators, the empirical coverage
of a 95% con�dence interval converges o�en to zero for all the other estimators. In particular, note the
unreliable behavior of the GMMxv estimator: for some values of ρuv, that coverage converges to zero as
N grows; for other values of ρuv, it seems to converge to one. The same applies, naturally, to the LINxv

estimator.

5.1.3. Conditional partial e�ects

We now examine the ability of QML, GMM, and LIN estimators to measure partial e�ects con-
ditional only on observables. For each GMM and LIN estimator, the partial e�ect is given by

N−1θ̂1
∑N

j=1 g
(

θ̂0 + θ̂1x̄1 + ûj

)

, where x̄1 represents represents one of the {0, 0.02, 0.04, . . . , 0.98, 1}
population quantiles of x1. To stress the importance of using the proposed two-step procedure
for computing conditional partial e�ects, we estimated also “naive” partial e�ects, given simply by

θ̂1g
(

θ̂0 + θ̂1x̄1

)

, which sets u = 0 in the evaluation of the partial e�ect. For the QML estimators,

we computed also naive partial e�ects and, only for QMLxv, the following smearing-type estimator,

suggested by Wooldridge (2005): N−1θ̂1
∑N

j=1 g
(

θ̂0 + θ̂1x̄1 + ρ̂uvv̂j

)

. We add the superscript “s” to all

estimators that average out the unobservables, e.g., GMMs
z.

In Fig. 3, we display the mean across the replications of the estimated partial e�ects for some selected
cases. In particular, only three experimental designs are presented in Fig. 3: neglected heterogeneity but
no endogeneity (ρuv = 0); strong endogeneity but innocuous neglected heterogeneity (ρuv = 1); and
the previous situation but under misspeci�cation of the reduced form. In the three cases, we consider
N = 1, 000 and s = 12 and display only the partial e�ects based on the QMLxv, GMMz, and LINz

estimators. As benchmark, we display also the “true” partial e�ects, which were calculated by integration
as in (3) with f (u|x) replaced by the density used to generate u.

Under neglected heterogeneity and no endogeneity (�rst graph), note how both the QMLxv and
QMLsxv estimators yield partial e�ects very close to the true ones (the same happenswith the not reported
QMLx estimator), in spite of being based on inconsistent estimates of the structural parameters. This is
in accordance with the conjecture by Wooldridge (2005) that when heterogeneity is independent of the
covariates and the interest lies in average partial e�ects of the observed covariates on mean responses,
one may simply ignore the unobservables. Wooldridge (2005) demonstrated this result for the probit
model with normal-distributed unobservables, but, given the similarity between probit and logitmodels,
it is not surprising that the same conclusion holds approximately for the speci�cation considered in this
Monte Carlo study. Regarding the LIN and GMM estimators, application of the smearing corrections
is clearly essential for estimating consistently conditional partial e�ects. Otherwise, large biases may be
created.
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Figure 2. Monte Carlo statistics for the structural parameter θ1 (incorrect reduced functional form).

When all relevant heterogeneity concerns the endogeneity of x1 (second and third graphs), all naive
estimators provide biased estimates of partial e�ects. Applying the smearing correction, the GMMs

z and
LINs

z estimators are the only ones that estimate consistently the partial e�ects in both cases. In the case
of QMLsxv (and also GMMs

xv and LINs
xv) it is essential to use the right reduced form for x1.
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Figure 3. Partial e�ects conditional on unobservables (s = 12; N = 1, 000).

5.2. Experiments with boundary observations and rounding errors

The results in the previous section revealed a promising behaviour for theGMM estimators proposed in
this article, but also showed that LIN estimators display less variability, especially in small samples. Now,
we investigate whether that advantage holds when the sample has boundary observations and, hence,
ad-hoc modi�ed LIN estimators have to be implemented.

First, we generate the data as in the previous set of experiments, but with the following di�erences:
only (23) is used to generate x1; the variance of u (σ

2) take values in the interval {0.25, 0.5, 1, . . . , 4}; and
θ0 take values in the interval {−4,−3.5, . . . , 0}. Then, in order to mimic the rounding errors in o�cial
statistics, a new random variable y∗ was generated by rounding to the nearest thousandth the values
of y obtained in the �rst stage. This procedure generates a larger number of zeros as θ0 decreases: for
σ 2 = 4, the average percentage of zeros in the simulated samples ranges from about 3% to about 29%
as θ0 decreases from 0 to −4. It also generates a larger number of zeros as σ 2 increases: for θ0 = −4,
the average percentage of zeros in the simulated samples ranges from about 7% to about 29% as σ 2

increases from 0.25 to 4. As noted by Santos Silva and Tenreyro (2006) in a similarMonte Carlo study for
exponential regression models, because the initial model generates a larger proportion of observations
close to zero than to one, rounding down is more frequent than rounding up, which will necessarily bias
the estimates, since the probability of rounding up or down depends on the covariates.

Under these conditions, the LIN estimators cannot be directly applied. Focusing on LINz-type
estimators, the following two estimators are considered: LIN0.001

z , which adds 0.001 to each observation
of y∗; and LIN+

z , which is obtained by dropping the observations for which y∗ equals zero. Figure 4
reports the results obtained for GMMz, LIN

0.001
z and LIN+

z for some of the experiments performed.
While the GMM estimators are relatively robust to the presence of rounding errors, the two LIN

estimators seem to be very sensitive to this type of measurement error, leading to sizable biases in most
cases. Indeed, even for

(

θ0, σ
2
)

= (0, 4) and
(

θ0, σ
2
)

= (−4, 0), the cases where the percentages of zeros
in the original sample is the lowest, the biases of both estimators are at least 7.5% and 4.6%, respectively.
Moreover, their coverage of 95% con�dence intervals tends to zero very fast as θ0 decreases and is nearly
zero whenever θ0 = −4. In contrast, in the former case there is only a slight coverage decrease in the
coverage ofGMM estimator as the percentage of zeros increases, while in the latter case only forσ 2 > 1 is
its empirical coverage below 80%. The performance of the GMM estimator is thus clearly encouraging,
since, at least in this example, it seems to be able to deal simultaneously with endogeneity, boundary
observations, and rounding errors in a more robust way than LIN estimators.

5.3. RESET test

The �rst set of experiments performed in this studywas designed in such away that both LIN andGMM,
based on appropriate instruments, are able to deliver consistent estimators for the slope parameter, since
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Figure 4. Monte Carlo statistics for the structural parameter with rounding (s = 12; N = 1, 000; ρuv = 0.5).

both E
[

exp(u)|z
]

and E (u|z) do not depend on z. Now, we consider a data generating process where
only one of those two assumptions holds and investigate the ability of the popular RESET test to detect
model misspeci�cation. As found out by Ramalho and Ramalho (2012) for binary regression models
(which use the same speci�cations as fractional regression models), the RESET test is sensitive to a large
number of model misspeci�cations, including neglected heterogeneity, and thus it may be useful also in
this context.

Equation (22) is again used to generate y, but x1 and u are now drawn from normal distributions with
mean µ and variance σ 2. In the case of x1, µ = 0 and σ 2 = 0.5. In the case of u, σ 2 = 1 + λx1 and µ

is either 0 or −0.5 (1 + λx1). In the former case, E (u|x1) = 0 and E
[

exp(u)|x1
]

= exp [0.5 (1 + λx1)],
so LINx provides consistent estimators for θ1 irrespective of the value of λ, while GMMx is consistent
only when λ = 0. In the other case, it occurs the opposite, since E (u|x1) = −0.5 (1 + λx1) and
E
[

exp(u)|x1
]

= 1.
Figure 5 reports the results obtained for an heteroskedasticity-robust Wald version of the RESET

test based on the addition of a quadratic power of the index
(

θ̂0 + θ̂1x1

)

to the regression equations

underlying the LINx and GMMx estimators, considering N = {1000, 5000}. The displayed percentage
of rejections of the null hypothesis of correct model speci�cation is based on the use of asymptotic
critical values and a 5% signi�cance level. Clearly, the RESET test seems to be useful in this context: its
power tends to one as λ and/or N increase and its estimated size is either very close to the nominal size
(E (u|x1) = 0) or slightly higher but converging to the nominal size as N increases (E

[

exp(u)|x1
]

= 1).

6. Empirical application: the determinants of corporate capital structure

In this section we use some of the estimators discussed before to assess the determinants of �rms’
capital structure decisions, namely their option between long-term debt and equity. First, two competing
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Figure 5. Monte Carlo statistics for the RESET test.

capital structure theories are brie�y discussed, then themain characteristics of the data and variables are
described, and �nally the main estimation results are presented.

6.1. Capital structure theories

Two of the most popular explanations of �rms’ debt policy decisions are the trade-o� and the pecking-
order theories. According to the former, �rms choose the proportion of debt in their capital structure that
maximizes their value, balancing the bene�ts of debt (e.g., the tax deductibility of interest paid) against its
costs (e.g., potential bankruptcy costs caused by an excessive amount of debt). In contrast, the pecking-
order theory advocates that, due to information asymmetries between �rms’ managers and potential
outside �nanciers, �rms tend to adopt a perfect hierarchical order of �nancing, giving preference to the
use of internal funds and issuing new shares only when their ability to issue safe debt is exhausted. For
details on both theories, see the recent survey by Frank and Goyal (2008).

To evaluate the trade-o� and pecking-order theories, many di�erent tests have been proposed in the
�nancial literature. Themost common procedure is to use regressionmodels to examine how a given set
of potential explanatory variables in�uences some leverage ratio (e.g., debt to capital or total assets) and
then test whether each variable behaves or not as predicted by each theory. Hence, in this framework,
the main interest of the econometric analysis lies on the signi�cance of the structural parameters that
appear in the leverage equation.

6.2. Data and variables

The data set used in this study was provided by the Banco de Portugal Central Balance Sheet Data O�ce
and has already been considered by Ramalho and Silva (2009). It comprises �nancial information and
other characteristics of 4,692 non-�nancial Portuguese �rms for the year 1999. In accordance with the
latest de�nitions adopted by the European Commission (recommendation 2003/361/EC), each �rm is
assigned to one of the following two size-based group of �rms: micro and small �rms; medium and large
�rms. A separate econometric analysis for each group is performed.

As a measure of �nancial leverage, the ratio of long-term debt (de�ned as the total company’s debt
due for repayment beyond one year) to long-term capital assets (de�ned as the sum of long-term
debt and equity) is considered (Leverage). In all alternative regression models estimated next, the same
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explanatory variables as those employed by Ramalho and Silva (2009) are contemplated: Non-debt tax
shields (NDTS), measured by the ratio between depreciation and earnings before interest, taxes and
depreciation;Tangibility, the proportion of tangible assets and inventories in total assets; Size, the natural
logarithm of sales; Pro�tability, the ratio between earnings before interest and taxes and total assets;
Growth, the yearly percentage change in total assets; Age, the number of years since the foundation
of the �rm; Liquidity, the sum of cash and marketable securities, divided by current assets; and four
activity sector dummies:Manufacturing; Construction; Trade (wholesale and retail); and Transport and
Communication. Some of these variables are expected to have a positive impact on leverage ratios (e.g.,
Pro�tability and Liquidity, in the case of the trade-o� theory; Growth, in the case of the pecking-order
theory; and Tangibility and Size, in both cases), while others are expected to have a negative e�ect (e.g.,
NDTS and Growth, in the former theory; and Pro�tability, Age, and Liquidity, in the latter); see inter alia
Ramalho and Silva (2009) for a detailed explanation of these e�ects.

Table 2 reports descriptive statistics for the dependent and explanatory variables by group of �rms.
Clearly, the group of medium and large �rms display a mean leverage ratio that is substantially higher
than that of the other group. While this di�erence may be partially explained by the variables included
in the leverage regression, there are many other factors that may a�ect the capital structure decisions
of �rms and that, due to data unavailability, typically are not considered in applied work. For example,
especially for smaller �rms, it is o�en argued that the personal characteristics of the �rms’ owners are
important factors for explaining �rms’ �nancial leverage decisions; see inter alia Hutchinson (1995).
As discussed in previous sections, not accounting for these characteristics may lead to inconsistent
estimation of the structural parameters and erroneous conclusions about their signi�cance. As illustrated
by the previous example, unobserved heterogeneity may be particularly important for smaller �rms.
Actually, note that even with respect to the observed variables the smaller �rms in our data set are clearly
more heterogenous than larger �rms: with the exception of Age, all other explanatory variables display
larger standard deviations for the micro and small group of �rms.

6.3. Econometric analysis

Given that leverage ratios are, by de�nition, bounded on the closed interval [0,1], several authors have
recently explained �rms’ �nancing decisions using regression models suitable to deal with fractional

Table 2. Descriptive statistics.

Group Variable Mean Min Max St.Dev.

Micro and Small Leverage 0.074 0 0.998 0.189
NDTS 0.829 0 102.150 3.189
Tangibility 0.298 0 0.995 0.233
Size 12.951 7.738 16.920 1.437
Pro�tability 0.147 0 1.590 0.117
Growth 14.923 −81.248 681.354 39.835
Age 18.267 6 210 12.306
Liquidity 0.227 0 1 0.247
Manufacturing 0.563 0 1 0.496
Construction 0.213 0 1 0.409
Trade 0.030 0 1 0.171
Communication 0.116 0 1 0.321

Medium and Large Leverage 0.148 0 0.978 0.199
NDTS 0.829 0 26.450 1.479
Tangibility 0.377 0.002 0.977 0.197
Size 15.814 11.736 22.270 1.386
Pro�tability 0.135 0.001 1.040 0.087
Growth 8.909 −61.621 188.035 21.014
Age 28.769 5 184 20.139
Liquidity 0.120 0 0.963 0.155
Manufacturing 0.767 0 1 0.423
Construction 0.121 0 1 0.327
Trade 0.017 0 1 0.129
Communication 0.046 0 1 0.210
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responses; see inter alia Cook et al. (2008) and Ramalho and Silva (2009). In their formulations, no
unobserved heterogeneity is allowed for. Here, we also assume that all observed explanatory variables
are exogenous but, in contrast to those authors, allow for the presence of unobservables.

As the minimum value observed for the dependent variable Leverage is zero but the maximum is
lower than one, see Table 2, GMMx estimators based on both the fractional logit and complementary
loglog models that appear in Table 1 may be used in this context. In contrast, the corresponding LINx

estimators cannot be directly applied. Next, we restrict our attention to logit-based regression models,
considering the following structural model:

y = exp (xθ + u)

1 + exp (xθ + u)
. (27)

We consider �ve alternative estimators for (27). The �rst is theQMLx estimator used by Ramalho and
Silva (2009), which ignores the presence of unobservables in (27). The second is the GMMx estimator,
which yields consistent estimators for the structural parameters under the assumption that E

[

exp(u)|x
]

does not depend on x. The three other estimators are the OLS estimators LIN+
x , which drops all

observations with y = 0, and LIN0.001
x and LIN0.00001

x , which add, respectively, 0.001 and 0.00001 to
the value observed for y for all �rms.5 In the case of LIN+

x , the sample size is reduced by almost 82%
(smaller �rms) and 50% (larger �rms), given the large number of sampled �rms that do not use long-
term debt. To check the adequacy of each model, we apply the RESET test described in Section 5.3.

Table 3 presents the estimation outcomes resulting from the �ve techniques. The �rst point to notice
is that the truncation applied to y by the LIN+

x estimator originates in several cases very di�erent
conclusions fromall the other estimators. For instance, the variablesTangibility andLiquidity formedium
and large �rms and Trade for micro and small �rms are important determinants of leverage ratios in all
cases except LIN+

x . Conversely, for the latter group of �rms, Growth and Age are relevant covariates
only when the model is estimated by LIN+

x . Moreover, note how the e�ect of the variable Size di�ers
dramatically between LIN+

x and the other estimators: according to LIN+
x , Size a�ects negatively the

proportion of debt used by all �rms; according to the other estimators, that e�ect is positive, as predicted
by both the trade-o� and pecking-order theories. Clearly, the standard approach in many areas of
dropping observations not accommodated by the speci�edmodel does not seem to be a recommendable
practice in the regression analysis of leverage ratios.

Adding a constant to the value observed for y does not seem to be a good idea either. Indeed,
although in terms of parameter signi�cance the conclusions produced by both LIN0.001

x and LIN0.00001
x

are identical, in terms ofmagnitude there are substantial di�erences. Typically, the regression coe�cients
of the lattermodel aremore than 1.5 times the parameter estimates of the former, although in some cases
they may be also much lower (e.g., the Construction coe�cient for micro and small �rms). Therefore,
as the estimates are very sensitive to the value of the constant added, and this has to be de�ned in an
arbitrary way, application of corrections of this type to overcome the problem of boundary observations
may o�en not be a good option.

The results produced by the QMLx and GMMx estimators are relatively similar in terms of the
signi�cance of the parameters. However, particularly for the group of micro and small �rms, the same
does not happen in terms of the magnitude of the parameters. Moreover, while for the larger group
of �rms in half of the cases the parameter estimates from QMLx are higher than those from GMMx

and in the other half it happens the opposite, for the group of micro and small �rms the regression
coe�cients are systematically much larger (in absolute value) for GMMx (the only exception is the
variable Tangibility). Given that the most typical e�ect of neglected heterogeneity is the production of
an attenuation bias in the estimation of regression coe�cients, these results suggest that, as anticipated,
neglected heterogeneity may be a very important issue in capital structure studies involving small �rms
and, hence, that the GMM estimators proposed in this paper may be particularly useful in this context.
This conjecture is also supported by the RESET test, which in the case of micro and small �rms rejects
the hypothesis of correct speci�cation of all models except the one that generates the GMMx estimator.

5Note that the highest value that we could add to y is any positive value below 0.002, given that the maximum value for
Leverage in the sample is 0.998, see Table 2.
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As commented on before, empirical capital structure studies typically focus on the analysis of the
signi�cance of structural parameters. Nevertheless, in Table 4, for completeness, we report the estimated
partial e�ects for each model variable. For GMMx and LINx estimators, we report two types of partial
e�ects, one conditional only on observables, using the smearing technique to average out the error term,
and the other also conditional on unobservables, setting u = 0 (naive partial e�ects). In the case of
QMLx, only the former type of partial e�ect is calculated, given that this estimator assumes no neglected
heterogeneity. In all cases, the values reported are the average sample e�ects, which are calculated as the
mean of the partial e�ects calculated independently for each �rm in the sample.

Table 4 shows clearly that theremay be substantial di�erences between the two types of partial e�ects,
which illustrates the importance of using smearing-type techniques when computing partial e�ects in
nonlinearmodels with unobservables. It also con�rms that neglected heterogeneity seems to a�ectmuch
more the regression equations estimated for micro and small �rms, given that the di�erence between
naive and smearing-corrected partial e�ects is typically much larger for this group of �rms. For example,
in the case ofGMMx, formediumand large �rms the naive e�ects are about twice the smearing-corrected
e�ects, while for micro and small �rms the former e�ects are more than six times the latter.

Overall, the results found for the robust GMMx estimator reinforce the conclusion achieved by
Ramalho and Silva (2009) that the pecking-order model provides a better explanation of the capital
structure decisions of Portuguese �rms than the trade-o� theory. Indeed, the e�ects on leverage of the
variables Tangibility (+), Size (+), Pro�tability (-), Liquidity (-), and, in the case of larger �rms, Growth
(+) conformwith the former theory and in the last three cases are contrary to the predictions of the latter
theory.

7. Conclusion

In this article, we proposed a new transformation regression model to deal with boundary outcomes,
neglected heterogeneity and endogeneity issues in a particular class of nonlinear models that treat
observed and omitted covariates in a similar manner. The suggested GMM estimators are particularly
useful for consistent estimation of structural parameters, since they require only a conditional mean
assumption regarding a function of the unobservables. Nevertheless, under some additional assump-
tions, but still without requiring the full speci�cation of the distribution of the unobservables, our
estimators may also be used to estimate partial e�ects conditional only on observables. One of the
estimators proposed has also the very attractive feature of not requiring the speci�cation of a reduced
form for the endogenous covariates.

Most of the previous features of the proposed GMM estimator are shared with estimators based on
linearized transformations of the structural model. The latter estimators have the obvious advantage of
easier implementation, not requiring numerical optimization as GMM. According to the Monte Carlo
study undertaken, they also seem to display less variability in small samples than GMM. However,
in contrast to the linearized estimators, the proposed GMM estimators have the nice feature of
accommodating boundary observations with no need for ad-hoc adaptations. While this feature does
not immediately imply that GMM estimators should be employed whenever there are boundary values,
the example considered in the Monte Carlo study illustrates one situation where their performance
is clearly superior to that of linearized estimators. The results obtained in the empirical application
also seem to favour the new approach, given the large disparity of results obtained for the three
linearized estimators that used di�erent ad-hoc transformations to handle the boundary observations.
Overall, the proposed GMM approach emerges as an important alternative to the existing linearized
estimators, being particularly useful in exponential and fractional regression models with boundary
observations.6

6R code to compute all estimators and tests discussed throughout the article is available at http://evunix.uevora.pt/˜jsr/
FRM.htm

http://evunix.uevora.pt/\char 126\relax jsr/FRM.htm
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