
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjor20

Journal of the Operational Research Society

ISSN: 0160-5682 (Print) 1476-9360 (Online) Journal homepage: https://www.tandfonline.com/loi/tjor20

A three-phase algorithm for the cell suppression
problem in two-dimensional statistical tables

F D Carvalho & M T Almeida

To cite this article: F D Carvalho & M T Almeida (2008) A three-phase algorithm for the cell
suppression problem in two-dimensional statistical tables, Journal of the Operational Research
Society, 59:4, 556-562, DOI: 10.1057/palgrave.jors.2602389

To link to this article: https://doi.org/10.1057/palgrave.jors.2602389

Published online: 21 Dec 2017.

Submit your article to this journal

Article views: 7

View related articles

https://www.tandfonline.com/action/journalInformation?journalCode=tjor20
https://www.tandfonline.com/loi/tjor20
https://www.tandfonline.com/action/showCitFormats?doi=10.1057/palgrave.jors.2602389
https://doi.org/10.1057/palgrave.jors.2602389
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1057/palgrave.jors.2602389
https://www.tandfonline.com/doi/mlt/10.1057/palgrave.jors.2602389

Journal of the Operational Research Society (2008) 59, 556 --562 2008 Operational Research Society Ltd. All rights reserved. 0160-5682/08 $30.00

www.palgrave-journals.com/jors

A three-phase algorithm for the cell suppression
problem in two-dimensional statistical tables
FD Carvalho∗ and MT Almeida
ISEG, Universidade Técnica de Lisboa, Lisbon, Portugal and CIO – Centro de Investigação Operacional

To obtain full cooperation from respondents, statistical offices must guarantee that confidential data will
not be disclosed when their reports are published. For tabular data, cell suppression is one of the preferred
techniques to control statistical disclosure. When suppressing only confidential values does not guarantee the
desired data protection, it is also necessary to suppress the values in some non-confidential cells. The problem
of finding an optimal set of complementary suppressions—the cell suppression problem (CSP)—is NP-hard.
We present a three-phase algorithm for the CSP based on a binary relaxation derived from row and column
protection conditions. To enforce violated single cell conditions, integer cuts are added to the CSP relaxation.
The numerical results obtained in 1410 instances with up to more than 250 000 cells, which were generated
to reproduce two classes of real-world data, indicate that the algorithm is quite effective for both classes of
instances and that it outperforms state-of-the-art algorithms for one of them.
Journal of the Operational Research Society (2008) 59, 556–562. doi:10.1057/palgrave.jors.2602389
Published online 28 February 2007

Keywords: integer programming; networks and graphs; heuristics; cell suppression problem

Introduction

Statistical offices face the challenge of disseminating as much
data as possible while, at the same time, protecting the right
to privacy by guaranteeing confidentiality where appropriate.
Ever-growing demands made by public and private decision
makers for statistical information come up against increas-
ingly sophisticated computational and statistical technology
that is available to intruders, which makes this conflict diffi-
cult to resolve. In recent years academics and practitioners
have devoted a great deal of effort to developing and imple-
menting efficient statistical methods to control information
disclosure. For an overview of these efforts, see Willenborg
and de Waal (2001), Doyle et al (2001) and Domingo-Ferrer
and Torra (2004).

Statistical data are frequently published as two-dimensional
arrays, called statistical tables, which are obtained from
microdata files by aggregation. In practice, tables are released
with row and column subtotals. As a rule, statistical tables
contain either frequency counts for sociological aspects, or
magnitude data for economic aspects. In frequency count
tables, if the value of a cell is very small, some of the
respondents may be identified by an intruder that has some
information on their other attributes. In magnitude tables, if
very few respondents contribute to make up a large share
of the cell value, it may be possible for one of them to
compute narrow estimates for some of the other individual

∗Correspondence: FD Carvalho, Instituto Superior de Economia e Gestão,
Rua do Quelhas 6, Lisbon 1200-781, Portugal.
E-mail: filipadc@iseg.utl.pt

contributions to the cell (Willenborg and de Waal, 2001).
To avoid the disclosure of confidential information in two-
dimensional non-negative tables, some cell values may have
to be either perturbed or suppressed. When confidential
values are suppressed, the additive structure of the table pro-
vided by row and column subtotals may still make it possible
for an intruder to deduce the missing information or to com-
pute narrow bounds for the information. When this is the
case, values in non-confidential cells—called complementary
suppressions—must also be omitted to make the table safe for
publication. Once the lower and upper protection limits for
each confidential value have been defined, the goal is then to
guarantee that the narrowest ranges an intruder can compute
for confidential figures do not fall within these limits.

Since making complementary suppressions leads to a loss
of non-confidential information, the cell suppression problem
(CSP) consists of finding a set of complementary suppressions
that guarantees protection to all confidential cells while simul-
taneously minimizing the loss of information. This problem
is known to be NP-hard (Kelly et al, 1992). Heuristic algo-
rithms for the CSP are presented in Kelly et al (1992) and Cox
(1995), among others. Carvalho and Almeida (2000) proposed
new necessary safety conditions to derive lower bounds on
the CSP optimum. Fischetti and Salazar (1999, 2000) devel-
oped branch-and-cut algorithms to solve the CSP for two-
dimensional tables and for tabular data with linear constraints.
Recently, Gonzalez Jr and Cox (2005) presented a desktop
software system that implements cell suppression and three
other techniques to protect two-dimensional tables. Other
versions of the problem are considered in Gusfield (1988),

FD Carvalho and MT Almeida—Three-phase algorithm for CSP 557

Kelly et al (1992), Carvalho et al (1994a,b), Fischetti and
Salazar (2003) and Almeida and Carvalho (2005).

In this paper, we present a three-phase algorithm for the
CSP, based on an integer relaxation of the problem to which
integer cuts are iteratively added. The relaxation used to start
the algorithm is an improvement of the lower-bounding model
in Carvalho and Almeida (2000). The model is enlarged with
a new set of constraints, associated with rows and columns
whose subtotal is confidential, and the whole set of constraints
is reformulated. Owing to the new constraints, the lower
bound is much tighter, especially when large row or column
subtotal values are confidential. The reformulation results in
an important reduction on memory and run time in phase 1.
In phase 2 the generation of a heuristic solution is coupled
with a procedure to find single cell protection violations, if
any. This is an efficient way of either proving the optimality
of the current solution or identifying integer cuts to generate
in phase 3. The results obtained in 1410 randomly generated
instances with up to more than 250 000 cells, reproducing
two classes of real-world tables, indicate that the algorithm is
quite effective for both classes and that it outperforms state-
of-the-art algorithms for the class having confidential cells
with large values.

This paper is organized as follows. The first three sections
are devoted to the presentation of the terminology and nota-
tion, to the discussion of the safety conditions and to a
brief description of the heuristic algorithm to generate near
optimal solutions. The next two sections present the three-
phase algorithm and its computational performance on two
classes of randomly generated instances. The last section
contains the conclusions.

Terminology and notation

A two-dimensional statistical table A = [ai j] is a (m + 1) ×
(n + 1) array of non-negative numbers. The values in the
(m + 1)th row are the column subtotals, and the values in the
(n + 1)th column are the row subtotals. The subtotals will
also be called marginal cells. The value am+1,n+1 is the grand
total. We assume that am+1,n+1 > 0.

The set of all cells of a table will be denoted byC, the set of
its rows by R and the set of its columns by C . The set of confi-
dential cells will be denoted by S1 and its cardinality will be
denoted by p. When convenient to simplify the notation, the
set S1 of confidential cells will be considered in the form S1=
{(ik, jk) : 1�k� p}. The set of confidential cells in row i ∈ R
(respectively column j ∈ C) will be denoted by Sr1(i) (respec-
tively Sc1(j)). For each confidential cell (i, j), li j will represent
its lower protection level and ui j its upper protection level.
The set of non-confidential cells will be denoted by C\S1.
Sets of complementary suppressions will be denoted by S2.

A cell (i, j) ∈ S1 is left-protected (respectively
right-protected) if, after the suppression of all values in
S1 ∪ S2, the tightest range an intruder is able to compute for
ai j contains the lower protection limit ai j − li j (respectively

Figure 1 S′
2 and S′′

2

upper protection limit ai j + ui j). A cell in S1 is protected if
it is both left-protected and right-protected. To determine the
tightest range for a given cell (i, j) ∈ S1, an intruder has to
solve a pair of linear programming problems—a maximiza-
tion problem for its upper limit and a minimization problem
for its lower limit—whose feasible region is defined by the
additive structure of the table (Fischetti and Salazar, 1999).

Consider a table with m = 3 and n = 4, S1 = {(1, 1)},
a11 = 100, l11 = u11 = 0.15 × a11, and two sets of comple-
mentary suppressions, S′

2 = {(1, 2), (2, 1), (2, 2)} and
S′′
2 = {(1, 2), (2, 1), (2, 2), (2, 4), (3, 2), (3, 4)}, depicted in

Figure 1.
With S′

2 an intruder can deduce that a11 is in the range [90,
115], so S′

2 does not protect cell (1,1). With S′′
2 the narrowest

range an intruder can compute for a11 includes [85, 115], so
S′′
2 protects cell (1,1).
A set S2 of complementary suppressions is feasible if, after

suppressing the values in S1 ∪ S2, all confidential cells are
protected, that is the table becomes safe for publication. The
volume of non-confidential information lost with S2 is given
by �(S2) = ∑

(i, j)∈S2 ai j . The value �(S2) will be called the
cost of S2.

A two-dimensional table may be represented by a directed
bipartite network N = (V,A), with capacities defined on
its arcs (Kelly et al, 1992; Fischetti and Salazar, 1999). The
node set V = R ∪ C is the union of a set R of m + 1 nodes,
representing the table rows, with a set C of n + 1 nodes,
representing the table columns. Each cell (i, j) of the table
is represented by two directed arcs: the forward arc (i, j)
from row node i to column node j , and the reverse arc (j, i)
from column node j to row node i . The capacities on the
forward arcs are ci j = +∞ if (i, j) is either an internal cell
or the grand total cell, and ci j = ai j if (i, j) is a marginal
cell. The capacities on the reverse arcs are c ji = ai j if (i, j)
is either an internal cell or the grand total cell, and c ji =+∞
if (i, j) is a marginal cell. Given a set S2 of complementary
suppressions, NS1∪S2 = (V,AS1∪S2) is the subnetwork that
represents only the suppressed cells. For every k ∈ {1, . . . , p},
Nk

S1∪S2 =(V,Ak
S1∪S2) is the network that results fromNS1∪S2

removing arcs (ik, jk) and (jk, ik).

Safety conditions

Every feasible set of complementary suppressions must
comply with several classes of pattern and volume conditions,

558 Journal of the Operational Research Society Vol. 59, No. 4

(Kelly et al, 1992; Carvalho and Almeida, 2000). Solutions
that satisfy pattern and volume constraints but do not protect
one or more confidential cells may be eliminated by integer
cuts. Pattern and volume conditions are reviewed below and
generalized to include a new class. Their mathematical formu-
lation in Carvalho and Almeida (2000) is revised to reduce
the dimension of the resulting problem and to strengthen its
LP-relaxation. Finally, a flow-based formulation for integer
cuts is proposed.

Pattern and volume constraints

Kelly et al (1992) proposed an integer model to compute a
lower bound on the CSP optimum derived from the observa-
tion that if in a row (or column) there is a unique suppression,
then its value can always be computed from the published
values. This observation sets the ground for two pattern condi-
tions:

(a) if in a row (or column) there is a unique confidential
cell, then at least one complementary suppression must
be made in that row (or column);

(b) if in a row (or column) there is no confidential cell, then
either no or at least two complementary suppressions
must be made in that row (or column).

As the rationale for rows and for columns is the same, from
now on we will consider only rows. For each row condition
there is always a column counterpart.

For rows, the integer model in Kelly et al (1992) has two
sets of binary variables, xi j and �i , associated with non-
confidential cells and with rows having no confidential cells,
respectively, defined by

xi j
(i, j)∈C\S1

=
{
1 if (i, j) ∈ S2
0 otherwise

�i
i∈{i :Sr1(i)=∅}

=
{
1 if at least one cell is suppressed in row i
0 otherwise

and the following constraints∑
(i, j)∈C\S1

xi j �1, i ∈ {i : |Sr1(i)| = 1} (1)

∑
(i, j)∈C

xi j �2�i , i ∈ {i : Sr1(i) = ∅} (2)

�i �xi j , i ∈ {i : Sr1(i) = ∅}, j ∈ C (3)

Constraints (1) guarantee condition (a) and constraints
(2)–(3) guarantee condition (b).

The �i variables may be eliminated, substituting (2) and
(3) by∑

(i, j)∈C
xi j �2xis, i ∈ {i : Sr1(i) = ∅}, s ∈ C (4)

With the same two sets of variables, Carvalho and Almeida
(2000) added volume constraints to Kelly et al’s lower-
bounding model, based on the following observations:

(c) if in a row there is a unique confidential cell, it is
possible to compute a lower bound on the volume of
non-confidential information that must be omitted in that
row;

(d) for some rows with two or more confidential cells whose
marginal is not confidential, it is also possible to guar-
antee that at least one complementary suppression must
be made and to compute a lower bound on the volume
of non-confidential information that must be omitted in
each such row;

(e) for every row with no confidential cells and a positive
marginal cell, if non confidential cells are suppressed,
the volume of non-confidential information suppressed
in that row must be at least equal to its smallest positive
cell value.

The conditions in Carvalho and Almeida (2000) may be
generalized to apply to rows with two or more confidential
cells whose marginal is confidential. This generalization is
decisive for the good overall performance of the three-phase
algorithm because it leads to a significant improvement in
the optimum of the integer relaxation for many instances. To
reduce the problem’s dimensions and to strengthen its LP-
relaxation, an alternative formulation to the one in Carvalho
and Almeida (2000) is proposed next.

Let R� be the set of rows iwith at least one confidential cell,
with a non-confidential marginal cell and such that gu(i) =
max{ai j + ui j : (i, j) ∈ Sr1(i)} − ∑

(i, j)∈S1 ai j > 0. A volume
of non-confidential information at least equal to gu(i) must
be suppressed in each row i ∈ R�.

Let R� be the set of rows i such that gl(i) = li,n+1 −∑
(i, j)∈S1\{(i,n+1)} ai j > 0. A volume of non-confidential infor-

mation at least equal to gl(i) must be suppressed in each row
i ∈ R�.

Let R∅ be the set of rows described in (e). If complementary
suppressions are made in a row i ∈ R∅, at least one of them
must be positive.

These three sets of conditions may be formulated as
follows. ∑

(i, j)∈C\S1
�i j xi j �gu(i), i ∈ R� (5)

∑
(i, j)∈C\S1

�i j xi j �gl(i), i ∈ R� (6)

∑
(i, j) =(i,s)

xi j �xis, i ∈ R∅, s ∈ C : ais > 0 (7)

∑
(i, j):ai j>0

xi j �xis, i ∈ R∅, s ∈ C : ais = 0 (8)

FD Carvalho and MT Almeida—Three-phase algorithm for CSP 559

with the coefficients �i j in (5) and (6) defined as

�i j =
{
min{ai j , gu(i)} if i ∈ R�
min{ai j , gl(i)} if i ∈ R�

Note that conditions (5)–(8) dominate conditions (1) and
(4), which may therefore be eliminated. Note also that when
the integrality constraints are relaxed to 0�xi j �1, constraints
(5) and (6) still dominate constraints (1), but the dominance
would not hold if coefficients ai j , rather than �i j , were used, as
in Carvalho and Almeida (2000). This dominance contributes
to the reduction of the run time for the first phase of the
algorithm.

If suppressions are made in a row with zero marginal value,
this marginal value must be suppressed. With R0

∅ representing
rows with zero marginal value, this condition may be formu-
lated as follows:∑

(i, j) =(i,n+1)

xi j �xi,n+1, i ∈ R0
∅ (9)

xi,n+1�xi j , i ∈ R0
∅, j ∈ C\{(n + 1)} (10)

The counterpart of conditions (5)–(10) for columns will be
referred to as (5c)–(10c).

Flow constraints

The network flow representation of the CSP may be used to
formulate a necessary and sufficient condition for a confi-
dential cell to be protected with a set S2 (Kelly et al, 1992).
Consider the networksNk

S1∪S2 (1�k� p) associated with S2.
An internal cell or the grand total, (ik, jk) ∈ S1, is right-
protected if and only if uk units of flow may be sent from
column node jk to row node ik , and it is left-protected if and
only if lk units of flowmay be sent from row node ik to column
node jk . A marginal cell, (ik, jk) ∈ S1, is right-protected if
and only if uk units of flow may be sent from row node ik to
column node jk , and it is left-protected if and only if lk units
of flow may be sent from column node jk to row node ik .

If a set S2 of complementary suppressions that verifies
constraints (5)–(10), (5c)–(10c) does not make the table safe
for publication, then at least one of the flows above is not
feasible in the corresponding network Nk

S1∪S2 . If s is the
source node, t is the sink node and f is the value of such a flow
associated with a confidential cell (ik, jk), then the following
flow constraints eliminate S2:

∑
v

zkuv −
∑
v

zkvu =
{ f if u = s

− f if u = t
0 otherwise

(11)

0� zkuv ��uvxuv, 0� zkvu ��vuxuv, (u, v) ∈ C\S1 (12)
0� zkuv ��uv, 0� zkvu ��vu, (u, v) ∈ S1 (13)

where variables zk represent the flows along the arcs in
Ak

S1∪S2 , �uv =min{cuv, f } and �vu =min{cvu, f }. In general,
for small values of f, the sets of st-paths that carry the flow

at minimum cost have a simple structure, whereas for large
values of f, it is necessary to find a complex pattern of
non-disjoint st-paths to minimize the suppression costs. This
explains why, in practice, the CSP is harder to solve on tables
having confidential cells with large values.

Through the max flow–min cut theorem (Ahuja et al, 1993),
the flow variables may be projected into the x variable space.
However, the model is faster to solve with the flow structure
(11)–(13).

Heuristic

To generate near optimal solutions we use the iterative proce-
dure that protects one cell at a time (Kelly et al, 1992). As
suggested in Carvalho et al (1994b), the pair of minimum cost
flow problems associated with the protection of each confi-
dential cell is solved heuristically by a sequence of shortest
path problems. A similar procedure is discussed in Fischetti
and Salazar (1999).

Different solutions may be obtained by modifying the costs
used in the path computations to penalize or to favour the
inclusion of some cells. In our experiment, assigning zero
costs to the cells in the optimal solution of the CSP relaxation
led to the best results. As the heuristic considers one confi-
dential cell at a time, the final solution may include redundant
complementary suppressions. For each suppression (i, j) ∈
S2, the heuristic routine is run on NS1∪S2\{(i, j)}. Every time
a feasible solution is found, the corresponding suppression
(i, j) is identified as redundant and discarded. This procedure
is known in the literature as a clean up.

Three-phase algorithm

The algorithm starts with the solution of an integer relaxation
of the CSP to obtain a set of complementary suppressions. If
this set protects all confidential cells, the CSP is solved. Other-
wise a near optimal solution is generated and the uncovered
protection limits are identified. New constraints are then added
to the integer model to enforce those protection limits. The
procedure is repeated until all confidential cells are protected.

A description of each phase of the algorithm is given next.

Phase 1

Phase 1 of an iteration q consists of solving an integer relax-
ation of the CSP, denoted by (Pq).

For q = 1 (Pq) is:

(P) min Z =
∑

(i, j)∈C\S1
ai j xi j

s.t. (5).(10), (5c).(10c)
xi j ∈ {0, 1}, (i, j) ∈ C\S1.

For q > 1, (Pq) is the problem that results from adding
to (P) the constraints generated in phase 3 of all preceding
iterations.

560 Journal of the Operational Research Society Vol. 59, No. 4

If the optimal solution of (Pq) is feasible for the CSP,
the problem is solved. Otherwise, solving (Pq) provides a
lower bound on the CSP optimum value as well as a set of
complementary suppressions—say Sq2—that does not protect
all cells in S1. A feasibility check is performed in phase 2. If
Sq2 is feasible, the algorithm stops. Otherwise, new constraints
are identified.

Phase 2

In phase 2 of an iteration q, the heuristic algorithm is run with
the matrix of modified costs:

�′
i j =

{
0 if (i, j) ∈ S1 ∪ Sq2
ai j otherwise

Every time an arc with non-zero modified cost is used in
a path associated with the lower protection level of a cell
(ik, jk), this level is included in a list of lower protections. A
list of upper protections is built likewise.

If, after executing the heuristic algorithm, both lists are
empty, Sq2 is optimal for the CSP, and the algorithm stops.
Otherwise, the clean up procedure is called for the heuristic
solution. If redundant suppressions are found, their removal
generates a new feasible solution for the CSP. If this new
solution has a cost equal to the current lower bound value,
it is optimal, and the algorithm stops. Otherwise, the lists of
lower and upper protections are used in phase 3 to generate
new constraints.

Phase 3

In phase 3 of an iteration q, constraints of the form (11)–(13)
are generated for the lower and upper protections in the
lists built during phase 2 of the current iteration. These new
constraints are added to (Pq) to generate problem (Pq+1),
and the lists are emptied.

Computational experiments

The computational study was carried out on a 866MHz PC
PentiumIII processor with 128Mb RAM. The integer prob-
lems were solved by Cplex 8.0 (ILOG, 2002) with a time
limit of 1 h.

To implement the three-phase algorithm, we programmed
codes in Pascal with Delphi-32 development environment
editor. The shortest path problems needed to generate near
optimal solutions were computed with Dijkstra’s algo-
rithm (Ahuja et al, 1993). In the pre-processing procedure,
Dijkstra’s algorithm was modified in order to solve maximum
capacity path problems.

Data

The computational experiments were performed on two
randomly generated datasets, denoted Class I and Class II.
To allow meaningful comparisons, we followed generation
rules described in Kelly et al (1992) and Fischetti and Salazar
(1999).

The number of Class I and Class II instances generated was
580 and 830, respectively, with dimensions m × n ranging
from 10×10 up to 500×500. For each combination m×n the
three-phase algorithm was tested on 10 instances. The values
used for nwere 10, 20, . . . ,m form�100 and 50, 100, . . . ,m
for m> 100.

Instances in Class I were randomly generated as the first set
of random instances presented in Fischetti and Salazar (1999).
Every internal cell has a random integer value in [0, 499], zero
valued cells cannot be suppressed, and all cells with values in
[1,4] are confidential. The upper and lower protection levels
are ui j = ai j and li j = ai j − 1. These rules were suggested by
a member of ISTAT, the Italian statistical office, to reproduce
real-world statistical tables.

Class II instances were generated following the rules
proposed in Kelly et al (1992), which were also used for the
second set of random instances presented in Fischetti and
Salazar (1999). Every internal cell has a random integer value
in [0,1000]. Zero valued cells cannot be suppressed, and
non-zero internal and marginal cells are confidential with
probability of 0.2 and of 0.1, respectively. Upper and lower
protection levels for each confidential cell are both set to
15% of the cell value, rounded up to the nearest integer.

Problem pre-processing

A confidential cell may be automatically right-protected
and/or left-protected, that is a cell may not require comple-
mentary suppressions for its upper and/or lower protection.
This happens when an intruder is unable to compute esti-
mates below the right protection limit and/or above the left
protection limit, due to the pattern and the values of the other
confidential cells. To identify redundant protection limits, it is
necessary to execute a safety check. In order to reduce the time
spent in problem pre-processing, a modified version of the
constructive heuristic was adopted. It was run on the network
NS1 = (V,AS1), which represents only the confidential cells
(all with zero cost), substituting the shortest path routine by a
maximum capacity path routine (Ahuja et al, 1993) to speed
up the computations. Each protection level for which a set
of paths is identified whose total capacity is at least equal to
the level’s value may be ignored, as it is satisfied a priori.

If, for a row i ∈ R�, the right-hand side of the corre-
sponding constraint (5) is greater than the sum of its internal
non-confidential cells, then its confidential cells can only be
protected by suppressing the marginal value. In this case, the
internal values are too small to provide protection to all confi-
dential cells in row i, even if they are all suppressed. The
same rationale applies to columns and constraints (5c). For
all such rows i and columns j, variables xi,n+1 and xm+1, j are
set to one.

Results

Tables 1 and 2 show the results obtained with the three-phase
algorithm on Class I and Class II data, respectively. Each row

FD Carvalho and MT Almeida—Three-phase algorithm for CSP 561

Table 1 Class I

m inst opt Popt (%) 1gap (%) time (s)

20 20 20 15.0 21.44 22.85
40 40 40 12.5 8.09 132.35
60 60 53 38.3 3.45 39.81
80 80 76 38.8 2.97 37.89
100 100 95 55.0 1.82 32.64
200 40 39 95.0 0.81 26.88
300 60 60 100.0 — 33.17
400 80 80 100.0 — 6.00
500 100 100 100.0 — 6.82

Table 2 Class II

m inst opt Popt (%) 1gap (%) time (s)

10 10 10 40.0 27.85 0.40
20 20 20 25.0 8.30 3.15
30 30 30 70.0 5.66 0.51
40 40 40 65.0 25.82 2.40
50 50 50 84.0 4.50 1.10
60 60 60 83.3 12.37 35.21
70 70 70 94.3 4.82 15.65
80 80 80 92.5 8.18 23.50
90 90 87 91.1 8.74 154.67
100 100 95 88.0 4.69 219.59
200 40 35 92.5 0.28 617.46
300 60 55 91.7 0.69 365.81
400 80 61 76.3 0.40 882.41
500 100 78 78.0 0.06 873.85

contains the following information: m, number of rows; inst,
number of instances; opt, number of proven optimal solutions;
Popt, percentage of solutions proven optimal at iteration 1;
1gap, average gap over the instances not yet solved at the end
of iteration 1; time, average run time (in seconds).

The gaps were computed as UB− LB/LB× 100%, where
UB and LB stand for the best upper and lower bounds obtained
for the CSP optimum.

The values for 1gap were computed at the end of iteration
1, with the values of the heuristic solutions generated in phase
2, for UB, and the optima of (P), for LB. If the optimum
of (P) was not yet available when the time limit was hit, its
best-known lower bound was used instead.

The pre-processing procedure identified 15.2% of Class I
and 2.7% of Class II instances as requiring no complementary
suppressions. The average pre-processing times were 52.4 s
for each Class I instance and 207.9 s for each Class II instance.

The three-phase algorithm solved to proven optimality 563
Class I instances, that is 97.1% of them. In the remaining 17
instances memory limitations occurred after short run times
in phase 1 of either iteration 2 or of iteration 3. For these
instances the algorithm produced near optimal solutions, with
an average percentage gap below 3.5%. The three-phase algo-
rithm was very successful for the largest instances, failing to
solve to proven optimality only 1 of the 280 instances with

m> 100. The overall average run time was less than 1min.
The algorithm required only one iteration to find 70% of the
proven optimal solutions. For Class I instances, the results
obtained with the three-phase algorithm were slightly infe-
rior to the results reported in Fischetti and Salazar (1999): on
a similar set of 580 instances their branch-and-cut algorithm
solved all instances to proven optimality.

In the set of 830 Class II instances, the three-phase algo-
rithm solved to proven optimality 771 instances, that is 92.9%
of them. For the remaining 59 instances, the optimal solution
of (P) had not yet been found when the 1-h time limit was hit.
In all these instances, the best solution known for (P) when
hitting the time limit was identified as feasible for the CSP
in the second phase of the iteration. For these instances, the
algorithm produced near optimal solutions with an average
gap of 0.44%. The key to these results is the tightness of the
lower bound given by (P); it improved the lower bound in
Carvalho and Almeida (2000) for 92% of the instances tested
and was the optimum of the CSP for 89% of the instances
solved to proven optimality. The short run times of the three-
phase algorithm—less than 5min on average—were partially
due to the fact that the LP-relaxation of (P) had optimal integer
solution for 40% of the instances.

We could not find in the literature computational results of
exact methods for Class II instances with m> 100. The three-
phase algorithm solved to proven optimality 81.8% of the
280 instances tested. For the remaining instances, it produced
solutions with an average gap of 0.50%. For m�100, the
results shown in Table 2 may be compared with the results
of the branch-and-cut algorithm for instances with the same
dimensions, presented in Fischetti and Salazar (1999). The
branch-and-cut algorithm solved to proven optimality 91.8%
of the instances tried (with no failures in instances with up to
m × n = 50 × 50). For the remaining instances, it generated
solutions with an average gap of 0.27%. The corresponding
figures for the three-phase algorithm were 98.5% (m × n =
80 × 80) and 0.03%, respectively.

The three-phase algorithm was also tested to minimize the
number of complementary suppressions

∑
(i, j)∈C\S1xi j . This

objective is mentioned for the CSP in Willenborg and de Waal
(2001) and Cox (1995), among others. In the Class I set, the
number of instances solved to proven optimality decreased
with the change of objective function. By contrast, in the
Class II set, all 830 instances were solved to proven opti-
mality, and the average run time decreased significantly as the
1-h time limit set to the solution of the integer models was
never hit.

Conclusions

We have presented an integer cut algorithm for a well-known
problem arising in the statistical disclosure control of data
published in two-dimensional tables—the CSP. The algo-
rithm is based on a new integer relaxation of the CSP, which
is very tight, even for the class of instances known from

562 Journal of the Operational Research Society Vol. 59, No. 4

experience to be the most difficult to solve in practice. As
the separation procedure is performed over integer structures,
it is less complex than its counterpart in a branch-and-cut
setting. The formulation proposed for the cuts induces a struc-
ture that speeds up the solution of the resulting model. The
computational experience in 1410 tables that were generated
to reproduce two classes of real-world statistical tables indi-
cates that the algorithm is quite effective for both classes. For
the class of statistical tables where the state-of-the-art solu-
tion methods have proved less successful, the new algorithm
outperforms the best exact method in the literature. Statistical
tables in that class are particularly relevant in business data.

Acknowledgements—The authors thank two anonymous referees for their
comments and suggestions. Thanks are also due to Ann Henshall for her
assistance in editing the final version of the paper.

References

Ahuja RK, Magnanti TL and Orlin JB (1993). Network Flows: Theory,
Algorithms and Applications. Prentice-Hall: Englewood Cliffs, NJ.

Almeida MT and Carvalho FD (2005). Exact disclosure prevention
in two-dimensional statistical tables. Comput Opns Res 32:
2919–2936.

Carvalho FD and Almeida MT (2000). Lower-bounding procedures
for the 2-dimensional cell suppression problem. Eur J Opl Res
123: 29–41.

Carvalho FD, Dellaert N and Osório M (1994a). Statistical disclosure
in two-dimensional tables: General tables. J Am Statist Assoc 89:
1547–1557.

Carvalho FD, Dellaert N and Osório M (1994b). Statistical
disclosure in two-dimensional tables: Positive tables. Report
9441/a, Econometric Institute, Erasmus University Rotterdam.

Cox LH (1995). Network models for complementary cell suppression.
J Am Statist Assoc 90: 1453–1462.

Domingo-Ferrer J and Torra V (eds) (2004). Privacy in Statistical
Databases. Lecture Notes in Computer Science, Vol. 3050.
Springer-Verlag: Berlin, Heidelberg.

Doyle P, Lane J, Theeuwes J and Zayatz L (eds) (2001).
Confidentiality, Disclosure and Data Access: Theory and Practical
Applications for Statistical Agencies. North-Holland: Amsterdam.

Fischetti M and Salazar JJ (1999). Models and algorithms for the
2-dimensional cell suppression problem in statistical disclosure
control. Math Program 84: 283–312.

Fischetti M and Salazar JJ (2000). Models and algorithms for
optimizing cell suppression in tabular data with linear constraints.
J Am Statist Assoc 95: 916–928.

Fischetti M and Salazar JJ (2003). Partial cell suppression: A new
methodology for statistical disclosure control. Statist Comput 13:
13–21.

Gonzalez Jr J and Cox LH (2005). Software for tabular data protection.
Statist Med 24: 659–669.

Gusfield D (1988). A graph theoretic approach to statistical data
security. SIAM J Comput 17: 552–571.

ILOG (2002). ILOG Cplex 8.0 User’s Manual and Reference Manual.
ILOG SA. http://www.ilog.com.

Kelly J, Golden B and Assad A (1992). Cell suppression: Disclosure
protection for sensitive tabular data. Networks 22: 397–417.

Willenborg L and de Waal T (2001). Elements of Statistical Disclosure
Control. Springer-Verlag: New York.

Received April 2006;
accepted December 2006 after one revision

	A three-phase algorithm for the cell suppression problem in two-dimensional statistical tables
	Introduction
	Terminology and notation
	Safety conditions
	Pattern and volume constraints
	Flow constraints

	Heuristic
	Three-phase algorithm
	Phase 1
	Phase 2
	Phase 3

	Computational experiments
	Data
	Problem pre-processing
	Results

	Conclusions
	Acknowledgements
	References

