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Given an undirected graph G = (V,E), a k-club is a subset of nodes that induces a subgraph with diameter
at most k. The k-club problem is to find a maximum cardinality k-club. In this study, we use a linear pro-
gramming relaxation standpoint to compare integer formulations for the k-club problem. The compari-
sons involve formulations known from the literature and new formulations, built in different variable
spaces. For the case k = 3, we propose two enhanced compact formulations. From the LP relaxation stand-
point these formulations dominate all other compact formulations in the literature and are equivalent to
a formulation with a non-polynomial number of constraints. Also for k = 3, we compare the relative
strength of LP relaxations for all formulations examined in the study (new and known from the litera-
ture). Based on insights obtained from the comparative study, we devise a strengthened version of a
recursive compact formulation in the literature for the k-club problem (k > 1) and show how to modify
one of the new formulations for the case k = 3 in order to accommodate additional constraints recently
proposed in the literature.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction Butenko, & Trukhanov, 2005; Butenko & Wilhelm, 2006) and data
Given an undirected graph G = (V,E) and an integer k, a k-club S
is a cluster of nodes such that any two of its elements can reach
each other through at most k � 1 intermediate cluster members.
If k = 1, then every cluster member is directly linked to all the oth-
ers and S is a clique (Bomze, Budinich, Pardalos, & Pelillo, 1999;
Sorensen, 2004; Alidaee, Glover, Kochenberger, & Wang, 2007;
Martins, 2010). If k > 1, a k-club can be interpreted as a distance-
based relaxation of a clique.

The need for graph models to represent clusters was first noted
during the 1970s in the literature of social networks analysis (Alba,
1973;Mokken, 1979). It was also noted then that the clique model
is too restrictive for many real-world applications for not all social
relations require face-to-face interaction. In fact, social relations
are frequently established through intermediaries. This explains
the importance of clique relaxation models for social sciences.

Recently, the OR community has produced a significant number
of studies on clique-related models with applications in both the
social sciences as well as other fields such as computational biol-
ogy (Bla _zewicz, Formanowicz, & Kasprak, 2005; Balasundaram,
mining (Boginski, Butenko, & Pardalos, 2006).
For any k > 1, the k-club problem is to find a maximum cardinal-

ity k-club of a graph. The k-club problem is NP-hard (Bourjolly, La-
porte, & Pesant, 2002). The computational performance of all the
approaches reported in the literature depends on the value of k
and the edge density of the graph. To be able to devise better exact
and approximate approaches, it is important to gain a deeper
understanding of the problem from a theoretical point of view. A
detailed study of the non-hereditary nature of k-clubs for k > 1 is
presented in Mahdavi Pajouh and Balasundaram (2012). In this
study, we investigate the relative strength of the LP relaxations
of integer programming formulations for the k-club problem built
in different variable spaces.

The rest of the paper is organized as follows. In Section 2 we pro-
vide definitions, terminology, and notation. Section 3 contains the
motivation and an overview of the study. Section 4 contains a review
of the literature on k-club models. Sections 5 and 6 are devoted to the
comparison of models and the development of enhanced versions,
from the linear programming standpoint. In Section 7 we derive a
formulation for a problem that has recently been proposed in the lit-
erature: a variant of the 3-club problem with additional robustness
constraints. Conclusions are presented in Section 8.

2. Definitions, terminology, and notation

Given an undirected graph G = (V,E) and a node v 2 V, we
represent by Nv the set of all nodes adjacent to v, and call it the
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neighbourhood of v. The distance distG(u,v) between two nodes u
and v is the minimum number of edges needed to link them, and
the diameter diam(G) is the maximum distance between any u
and v. If S # V, the subgraph induced by S is G[S] = (S,E(S)), where
E(S) is the set of edges with both end nodes in S. For any k P 1, if
diam(G[S]) 6 k, S is a k-club. A k-club S # V can be represented by
its incidence vector X = (x1, . . . ,xjVj). If C is a subset of nodes and s,
t 2 VnC, we say that C is an s � t node cut set if C intersects all
chains that link s and t.

Formulations with variables to represent only nodes are called
natural whereas formulations with additional variables to repre-
sent edges, chains or paths are called extended. A formulation is
compact if the number of its variables and constraints is bounded
from above by a polynomial function of the number of nodes. If an
integer linear programming formulation is represented by [F], then
[F]LP represents its linear programming (LP) relaxation, their opti-
mal values are represented by Z[F] and Z[F]LP, and their feasible
sets are represented by S[F] and S[F]LP, respectively. Feasible solu-
tions to LP relaxations of natural (resp. extended) integer formula-
tions are represented by X, (resp. ðX;YÞ; ðX;VÞ, and ðX; ZÞ). Integer
formulations are compared by projecting their LP relaxation feasi-
ble sets onto the space of node variables. Given a polyhedron
P ¼ fðx; yÞ 2 Rn�q : Axþ By 6 bg, where A, B, an b have m rows,
the projection of P onto the x-space is defined as
ProjxðPÞ ¼ fx 2 Rn : 9y 2 Rqðx; yÞ 2 Pg. For more on polyhedral the-
ory and projection the reader is referred to Nemhauser and Wolsey
(1988) and Balas (2005). Given two integer formulations [F1] and
[F2], whose objective function is the same and is to be maximized,
if Projx(S[F1]LP) is a subset of Projx(S[F2]LP), then Z[F1]LP 6 Z[F2]LP,
and we say that [F1]LP is stronger than [F2]LP and formulation [F1]
dominates [F2]. If Projx(S[F1]LP) = Projx(S[F2]LP), then [F1] and [F2]
are LP-equivalent.
3. Motivation and overview

Like many other combinatorial optimization problems, the
k-club-problem has alternative integer linear programming formu-
lations that are stated with different sets of variables. The first
formulation in the literature, proposed in Bourjolly et al. (2002),
is a compact extended formulation with node and chain variables.
Following Almeida and Carvalho (2012), we shall call it the chain
formulation and denote it by [F_C]. Since two-edge chains
t = (i,r, j) that link nodes i and j can be identified by the central node
r, there is no need for chain variables to represent them. Based on
this observation, Bourjolly et al. (2002) also proposed a simplified
natural formulation for the case k = 2. Very recently, four new for-
mulations have been proposed for k-clubs. Veremyev and Boginski
(2012) present a compact extended recursive formulation (hence-
forth referred to as [F_R]) derived from a nonlinear model by a lin-
earization procedure that takes into account the structure of k-
clubs. For k = 3, Almeida and Carvalho (2012) propose a node cut
set natural formulation [F_S] with a non-polynomial number of
constraints and a compact extended formulation [F_N] with node
and edge variables. For the case k = 2, Carvalho and Almeida
(2011) devise a natural formulation whose constraints define fac-
ets of the 2-club polytope P2c. This formulation, based on Bourjolly
et al.’s model, is obtained by lifting redundant constraints.

Many authors have carried out comparative studies of alterna-
tive formulations for important combinatorial optimization prob-
lems – e.g. tree problems (Magnanti & Wolsey, 1995) and
travelling salesman-related problems (Gouveia & Voss, 1995;
Oncan, Altinel, & Laporte, 2009). To the best of our knowledge,
no similar study can be found in the literature for the k-club
problem. Veremyev and Boginski (2012, pp. 320–321) comment
on the tightness of binary formulations based on the results
obtained with a set of test instances. They guess that their recur-
sive formulation ‘‘is generally at least as good (or, at the very least,
not substantially worse) than the one by Bourjolly et al. (2002)’’
and that their formulation ‘‘is rather tight for larger values of
k’’. Almeida and Carvalho (2012) have proved that formulation
[F_N] dominates chain formulation [F_C] for k = 3, and they present
a weakened version of [F_N] which is LP-equivalent to [F_C]. The
authors also prove that for k = 3 node cut set formulation [F_S]
dominates [F_N], but do not show how to strengthen the latter
to obtain a formulation LP-equivalent to the former.

With this study we aim to investigate the relative strength of
the LP relaxations of different formulations for the maximum
k-club problem. Since the formulations are stated with different
sets of variables, the comparisons are made by projecting the LP
feasible sets onto the space of node variables. The insight gained
into the k-club structure by means of these comparisons may be
of help to explore possible ways to formulate related problems,
as illustrated in Section 7 with the R-robust k-club problem re-
cently proposed in the literature by Veremyev and Boginski (2012).

First, for the case k = 3, we show how to modify [F_C] in order to
obtain an enhanced version [F_EC], which is LP-equivalent to [F_S].
Then, we address the tightness of the recursive formulation [F_R]
in comparison with the tightness of [F_C] and show that the con-
clusion depends on the value of k: for k = 3 [F_R] dominates [F_C]
but the dominance does not hold for k = 4. For k = 3, we also show
that [F_R] is dominated by [F_EC].

Based on the insight gained from the comparisons of [F_R],
[F_C], and [F_EC] for k = 3, we derive a strengthened version of
[F_R] that is valid for any k > 1, denoted by [F_ER]. We then show
that for k = 3 [F_ER] and [F_EC] are LP-equivalent.

We conclude the paper with a formulation for the R-robust 3-
club problem, introduced in the literature by Veremyev and Bogin-
ski (2012). To the best of our knowledge, there is in the literature
no other formulation for the robustness condition when k > 2.

4. Review of integer programming formulations for the k-club
problem

To set the grounds for the comparisons presented in the follow-
ing sections, we shall first review integer programming formula-
tions in the literature.

To simplify the notation, we will denote by Pk the set of all pairs
of nodes that cannot belong simultaneously to a k-club, because
their distance in G = (V,E) is greater than k, and by Nk the set of
all pairs of nonadjacent nodes whose distance in G = (V,E) does
not exceed k.

4.1. Chain formulation

The formulation proposed in Bourjolly et al. (2002), with node
and chain variables, can be presented as follows. For any two non-
adjacent nodes i, j 2 V, let Ck

ij be the set of all chains, of length at
most k, that link i and j, and let C ¼ [i;j2V Ck

ij. Let yt, t 2 C, be a binary
variable associated with chain t and Vt be the set of all nodes in the
chain.

A maximum k-club is an optimal solution for

½F C� max Z ¼
X
i2V

xi

s:t: xi þ xj 6 1 fi; jg 2 Pk ð1Þ
xi þ xj 6 1þ

X
t2Ck

ij

yt fi; jg 2Nk ð2Þ

yt 6 xr t 2 C; r 2 Vt ð3Þ
xi 2 f0;1g i 2 V ð4Þ
yt 2 f0;1g t 2 C ð5Þ
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Constraints (1) guarantee that if distG(i,j) > k, then nodes i and j
are not both selected for the k-club. Constraints (1) will be referred
to as packing constraints. Constraints (2) impose that a pair of non-
adjacent nodes in a k-club must be linked by at least one selected
chain with at most k edges. Constraints (3) impose the inclusion in
the k-club of all nodes in selected chains. Conditions (4) and (5) de-
fine the variables as binary.

Note that for every pair fi; jg 2Nk and every chain
t 2 Ck

ij; r 2 Vt n fi; jg can be substituted for r 2 Vt, in constraints
(3), since in any solution such that �yt > minf�xi; �xjg the value of var-
iable yt can be decreased to minf�xi; �xjg, without altering the solu-
tion in the x-space.

The number of chain variables yt and constraints in [F_C] is
O(jVjk+1).
4.2. Recursive formulation

Veremyev and Boginski (2012) use a different approach to de-
vise a formulation for the k-club problem. First, they develop a
nonlinear model. Then, they transform it into a linear model with
binary variables xi (i = 1, . . . , jVj) to represent nodes, and integer
variables wðlÞij ði; j ¼ 1; . . . ; jV j; l ¼ 2; . . . ; kÞ to represent the number
of paths of length l that link nonadjacent nodes i and j. Finally, tak-
ing into account the k-club structure, they devise a recursive binary
formulation with node variables xi (i = 1, . . . , jVj) and binary vari-
ables v ðlÞij ði; j ¼ 1; . . . ; jV j; l ¼ 2; . . . ; kÞ such that v ðlÞij ¼ 1 if and only
if there is at least one path of length l from node i to node j in
the subgraph induced by the set S # V whose incidence vector is
X = (x1, . . . ,xjVj).

The recursive formulation can be presented as follows:

½F R� max Z ¼
X
i2V

xi

s:t: xi þ xj 6 1þ
Xk

l¼2

v ðlÞij i; j 2 V ; ði; jÞ R E ð6Þ

for i; j 2 V ; j > i;

v ð2Þij 6 xi v ð2Þij 6 xj v ð2Þij 6
X

k2ðNi\NjÞ
xk ð7Þ

v ð2Þij P
1
jV j

X
k2ðNi\NjÞ

xk

0@ 1Aþ ðxi þ xj � 2Þ ð8Þ

for l ¼ 3; . . . ; k; i; j 2 V ; j > i;

v ðlÞij 6 xi v ðlÞij 6
X
k2Ni

v ðl�1Þ
kj ð9Þ

v ðlÞij P
1
jV j

X
k2Ni

v ðl�1Þ
kj

0@ 1Aþ ðxi � 1Þ ð10Þ
xi 2 f0;1g i 2 V ð4Þ
v ðlÞij 2 f0;1g i; j 2 V ; l ¼ 2; . . . ; k ð11Þ

Constraints (6) impose that each pair of selected nodes must be
linked by at least a path with at most k edges. Constraints (7) and
(8) define paths with two edges. Constraints (9) and (10) define the
recursion for paths with three or more edges. Constraints (11) de-
fine the recursion variables as binary.

Recursive formulation [F_R] has size O(kjVj2).
4.3. Neighbourhood and node cut set formulations (k = 3)

For the case k = 3, Almeida and Carvalho (2012) propose two
alternative formulations – neighbourhood formulation [F_N] and
node cut set formulation [F_S]. The rationale for [F_N] and [F_S]
is summarized next.

Consider a pair of nonadjacent nodes i and j of G = (V,E). They
may be included in a 3-club S only if at least one of the following
conditions holds:

(I) There is a node r in S that is a neighbour of i and j, i.e.,
r 2 (Ni \ Nj);

(II) There are two adjacent nodes in S, p and q, such that p is a
neighbour of i, and q is a neighbour of j, i.e., p 2 Ni, q 2 Nj,
and (p,q) 2 E.

Condition (I) holds if and only if distG[S](i, j) = 2.
If condition (II) holds and p 2 (Ni \ Nj) or q 2 (Ni \ Nj), then

distG[S](i, j) = 2 and condition (I) holds as well. So, in (II), we can con-
sider only nodes p 2 (NinNj) and q 2 (NjnNi). Let Eij denote the set of
edges that link those nodes:

Eij ¼ fðp; qÞ 2 E : p 2 ðNi n NjÞ; q 2 ðNj n NiÞg:

Let us now associate a variable zij with each edge (i, j) 2 E.
A maximum 3-club is an optimal solution for

½F N� max Z ¼
X
i2V

xi

s:t: xi þ xj 6 1 fi; jg 2 P3 ð12Þ
xi þ xj 6 1þ

X
r2ðNi\NjÞ

xr þ
X
ðp;qÞ2Eij

zpq fi; jg 2N3 ð13Þ

zij 6 xi; zij 6 xj; zij P xi þ xj � 1 ði; jÞ 2 E ð14Þ
xi 2 f0;1g i 2 V ð4Þ
zij P 0 ði; jÞ 2 E ð15Þ

Conditions (12) are packing constraints. Neighbourhood con-
straints (13) impose that two nonadjacent nodes i and j cannot
be both in a 3-club unless a common neighbour is in the 3-club
or a pair of neighbours, p and q, of i and j respectively, linked by
an edge, are in the 3-club. Constraints (14) guarantee that an edge
(i, j) is used if and only if both its end nodes belong to the 3-club.
Constraints (15) define edge variables as nonnegative.

Conditions zij P xi + xj � 1 can be ignored because in any solu-
tion with �zij < �xi þ �xj � 1 the value of variable zij can be increased
to minf�xi; �xjg, without altering the solution in the x-space.

Note that, if in the last term of conditions (13) E(Ni,Nj) is substi-
tuted for Eij, the resulting formulation is LP-equivalent to [F_C]
(Almeida & Carvalho, 2012); if in [F_C] for each pair of nodes
fi; jg 2N3 all variables yt associated with three-edge chains
t = (i,p,q, j) with p 2 (Ni \ Nj) or q 2 (Ni \ Nj) are removed, the
resulting formulation is LP-equivalent to [F_N] (Almeida &
Carvalho, 2012).

Neighbourhood formulation [F_N] has jVj + jEj variables and
jV j2�jV j

2 þ 2jEj constraints.
[F_S] is a natural formulation for the 3-club problem based on

node cut sets of auxiliary graphs built for pairs fi; jg 2N3. This
formulation is described next.

Consider again a pair of nonadjacent nodes i and j of G = (V,E)
and Eij = {(p,q) 2 E:p 2 (NinNj),q 2 (NjnNi)}. Eij is the set of inner
edges of three-edge chains that link nodes i and j, and whose inner
nodes are not in Ni \ Nj. Let Vij represent the set of their end nodes.
Each node v 2 Vij is either adjacent to node i or to node j. Therefore
Vij can be partitioned into subsets Aij = {v 2 Vij:v 2 (NinNj)} and
Bij = {v 2 Vij:v 2 (NjnNi)}.

Let us now associate with i and j a subgraph Gij = (Nij,Hij), where
Nij = Vij [ {i, j} and Hij = Eij [ {(i,v) 2 E:v 2 Aij} [ {(v, j) 2 E:v 2 Bij}.



492 M.T. Almeida, F.D. Carvalho / European Journal of Operational Research 232 (2014) 489–498
To include nodes i and j in a 3-club S, it is also necessary to in-
clude a node r 2 (Ni \ Nj) or a node of each set Sij # Vij such that
E(VijnSij) = £, since otherwise distG[S](i, j) > 3. These sets Sij are i � j
node cut sets. The set of all minimal Sij will be denoted by Sij.

A maximum 3-club is an optimal solution for

½F S� max Z ¼
X
i2V

xi

s:t: xi þ xj 6 1 fi; jg 2 P3 ð12Þ

xi þ xj 6 1þ
X

r2ðNi\NjÞ
xr þ

X
s2Sij

xs fi; jg 2N3; Sij 2 Sij ð16Þ

xi 2 f0;1g i 2 V ð4Þ

Conditions (12) are packing constraints. Node cut set con-
straints (16) impose that, if two nonadjacent nodes i and j are both
selected for the 3-club, then a common neighbour of i and j or one
node from each Sij 2 Sij is also selected for the 3-club.

Node cut set formulation [F_S] dominates neighbourhood for-
mulation [F_N] (Almeida & Carvalho, 2012).
i j
q1

p q2

Fig. 1. (a) Consider a feasible solution for [F_C]LP in which
�xi ¼ 2

3 ; �xj ¼ 1; �xp ¼ �xq1
¼ �xq2

¼ 1
3, and �yt1 ¼ �yt2 ¼ 1

3, where t1 = (i,p,q1, j) and
t2 = (i,p,q2, j). In the corresponding solution for [F_EC]LP, to comply with constraint
yij

p;q1
þ yij

p;q2
6 xp , constraint (21) for the pair {i, j} is violated. (b) Consider again a

feasible solution for [F_C]LP in which �xi ¼ 2
3 ; �xj ¼ 1; �xp ¼ �xq1

¼ �xq2
¼ 1

3, and
�yt1 ¼ �yt2 ¼ 1

3, where t1 = (i,p,q1, j) and t2 = (i,p,q2, j). In the corresponding solution
for [F_R]LP, constraint (6) for the pair {i, j} is violated because
�v ð2Þpj 6minf�xp; �xj; �xq1 þ �xq2 g ¼ 1

3 ; �v ð3Þij 6min �xi; �v ð2Þpj

n o
6

1
3, and �v ð2Þij ¼ 0. (c) Con-

sider a solution in the x-space such that �xi ¼ 2
3 ; �xj ¼ 1; �xp ¼ �xq1

¼ �xq2
¼ 1

3. In the
corresponding solution for [F_R]LP, constraint (6) for the pair {i, j} is violated (see
Section 4.2). By contrast, �zp;q1

¼ �zp;q2
¼ 1

3 yields a feasible solution for [F_N]LP.
5. Enhanced chain formulation for the case k = 3

For k = 3, Almeida and Carvalho (2012) show that chain formu-
lation [F_C] is dominated by formulation [F_N], which is in turn
dominated by natural formulation [F_S]. They also show how to
modify [F_C] to obtain a chain formulation, LP-equivalent to
[F_N]. All these formulations are compact, except for [F_S], which
has a non-polynomial number of node cut set constraints. The
comparisons in Almeida and Carvalho (2012) suggest that if we
aim to obtain a chain formulation LP-equivalent to [F_S], we have
to devise more stringent constraints to link node and chain vari-
ables. The intuition for the new linking constraints is provided by
the example in Almeida and Carvalho (2012, p. 157): the domi-
nance of [F_S]LP over [F_N]LP may be strict only when there is at
least one pair fi; jg 2N3 and a node v 2 Vij such that
deg ðvÞGij½Vij �

> 1. In this case, node v is shared by two or more

three-edge chains whose central edges are represented by vari-
ables zpq, with (p,q) 2 Eij. In a non-integer feasible solution ðX; ZÞ
for [F_N]LP, if v 2 Aij, it may happen that

P
q:ðv ;qÞ2Eij

�zvq > �xv or, if

v 2 Bij, it may happen that
P

p:ðp;vÞ2Eij
�zpv > �xv . In either case, the

solution can be cut off by imposing the condition that the sum of
the values of all variables that represent the chains that share node
v cannot be greater than �xv . To formulate these new linking

constraints, we shall rewrite chain variables yt, t = (i,p,q, j), as yij
pq,

in order to make the identification of inner nodes immediate.
The enhanced version of chain formulation [F_C] for k = 3 we

propose in this section combines the new linking constraints
sketched above with the rationale used to remove yt variables
associated with three-edge chains t = (i,p,q, j) with at least one
inner node in Ni \ Nj (see Section 4.3).

Let us consider chain formulation [F_C] for k = 3.
For each pair of nodes fi; jg 2N3, let C¼2

ij (resp. C¼3
ij ) represent

all chains with two (resp. three) edges that link i and j.
Each chain t ¼ ði; r; jÞ 2 C¼2

ij can be represented by its central
node r. Therefore, all variables yt that represent chains of C¼2

ij can
be discarded and constraints (2) rewritten as

xi þ xj 6 1þ
X

r2ðNi\NjÞ
xr þ

X
t2C¼3

ij

yt fi; jg 2N3 ð17Þ

As discussed in Section 4.3, for each fi; jg 2N3, variables yt

associated with chains t ¼ ði; p; q; jÞ 2 C¼3
ij with p 2 (Ni \ Nj) or

q 2 (Ni \ Nj) can be eliminated. To simplify the notation, for all
other chains t ¼ ði; p; q; jÞ 2 C¼3
ij let us write yij

pq, instead of yt, with
constraints (3) rewritten as

yij
pq 6 xi yij

pq 6 xj fi; jg 2N3 ðp; qÞ 2 Eij ð18Þ
yij

pq 6 xp yij
pq 6 xq fi; jg 2N3 ðp; qÞ 2 Eij ð19Þ

and constraints (5) rewritten as

yij
pq 2 f0;1g fi; jg 2N3 ðp; qÞ 2 Eij ð20Þ

Constraints (2) in [F_C] can now be lifted to

xi þ xj 6 1þ
X

r2ðNi\NjÞ
xr þ

X
ðp;qÞ2Eij

yij
pq fi; jg 2N3 ð21Þ

A chain that includes edge (i,p) (resp. (q, j)) can only be used if
node p (resp. q) is in the 3-club, and to include a pair of nonadja-
cent nodes i and j in the 3-club, there is no need to select more than
one chain with three edges. Therefore, constraints (19) can be lifted
toX
q:ðp;qÞ2Eij

yij
pq 6 xp fi; jg 2N3 p 2 Aij ð22Þ

X
p:ðp;qÞ2Eij

yij
pq 6 xq fi; jg 2N3 q 2 Bij ð23Þ

An enhanced chain formulation for the 3-club problem is

½F EC� max
X
i2V

xi : ð12Þ; ð21Þ; ð18Þ; ð22Þ; ð23Þ; ð4Þ; ð20Þ
( )

:

By construction, [F_EC] dominates [F_C].

Proposition 1. For k = 3, Z [F_EC]LP 6 Z [F_C]LP.

Note that constraints (18) can be ignored because in any

solution with �yij
pq > min �xi; �xj

� �
the value of variable yij

pq can be
decreased to min �xi; �xj

� �
, without altering the solution in the

x-space. Constraints (18) can also be written as
P
ðp;qÞ2Eij

yij
pq 6 xi

and
P
ðp;qÞ2Eij

yij
pq 6 xj because the upper bounding constraints

xv 6 1, for all v, dominate (21) if
P
ðp;qÞ2Eij

�yij
pq > minf�xi; �xjg. This ver-

sion of constraints (18) imposes the extra condition that at most
one chain with three edges can be selected to link nodes i and j
in the induced subgraph. The condition is not restrictive for the
3-club problem, but it is incompatible with multiple-chain condi-
tions for robustness that have been recently proposed in the



M.T. Almeida, F.D. Carvalho / European Journal of Operational Research 232 (2014) 489–498 493
literature (see Section 7). By contrast, the lifting of constraints (19)
to constraints (22) and (23) strengthens the LP relaxation of the
integer model and paves the way to the introduction of robustness
conditions.

The dominance of [F_EC] over [F_C] may be strict. An illustra-
tion is provided by the graph depicted in Fig. 1(a).

For k = 3, the number of variables in [F_EC] and [F_C] is O (jVj4).
In practice, the number of variables in [F_EC] is significantly smal-
ler than the number of variables in [F_C] because all variables that
represent chains with two edges as well as many variables that
represent chains with three edges are eliminated.

6. Comparison of formulations for k = 3

In this section, we compare the LP relaxations of the integer
models described in Sections 4 and 5, for the case k = 3. In these
relaxations, constraints (4), (5), (11), and (20) are replaced by

0 6 xi 6 1 i 2 V ð40 Þ
yt P 0 t 2 C ð50 Þ

v ðlÞij P 0 i; j 2 V ; l ¼ 2; . . . ; k ð110Þ

yij
pq P 0 fi; jg 2N3 ðp; qÞ 2 Eij ð200Þ

In Section 6.1, we establish the LP-equivalence of [F_EC] and
[F_S]. In Section 6.2, we show that formulation [F_R] is dominated
by enhanced chain formulation [F_EC] and dominates chain formu-
lation [F_C]. Based on the comparative study made for the case
k = 3, we propose an enhanced version of [F_R] which is valid for
the k-club problem, for any k > 1. We then establish the LP-equiv-
alence between [F_EC] and this enhanced version of [F_R] for k = 3.
In Section 6.3, we show that there is no dominance relation be-
tween formulations [F_N] and [F_R].

6.1. Comparison of the LP relaxations of [F_EC] and [F_S]

The rationale used to derive formulation [F_EC] suggests that with
constraints (22) and (23) we may obtain a chain formulation as strong
as [F_S] from the LP relaxation standpoint. In this section we present a
formal proof that [F_EC] and [F_S] are, in fact, LP-equivalent.

To prove that [F_EC] and [F_S] are LP-equivalent, we shall show
that the feasible set of [F_S]LP is the projection of the feasible set of
[F_EC]LP onto the x-space.

Let ðX; YÞ be any feasible solution for [F_EC]LP.

For any fi; jg 2N3 and Sij 2 Sij,X
ðp;qÞ2Eij

�yij
pq ¼

X
ðp;qÞ2Eij

p2ðAij\Sij Þ
q2Bij

�yij
pq þ

X
ðp;qÞ2Eij

p2ðAijnSij Þ
q2ðBij\Sij Þ

�yij
pq 6

X
p2ðAij\SijÞ

�xp þ
X

q2ðBij\SijÞ

�xq ¼
X
s2Sij

�xs:

Therefore, X satisfies all node cut set constraints (16), for the
pair fi; jg 2N3. Since fi; jg 2N3 was chosen arbitrarily, X is feasi-
ble for [F_S]LP.

Conversely, let X be any feasible solution for [F_S]LP, and let us
build a feasible solution ðX;YÞ for [F_EC]LP.

For every fi; jg 2N3, let us consider subgraph Gij = (Nij,Hij) (see
Section 4.3), and a layered digraph Dij built from Gij as follows.

The layers of Dij are: L1 = {i}, L2 = Aij, L3 = Bij, and L4 = {j}. For each
edge in Hij, we create a directed arc in Dij and define the arc capac-
ities as:

cap ðu;vÞ ¼
�xv if u ¼ i and v 2 Aij

1 if u 2 Aij and v 2 Bij

�xu if u 2 Bij and v ¼ j

8><>:
Let f be a maximum i � j flow in Dij. By construction,

valueðf Þ ¼
P
ðp;qÞ2Eij

fpq. Let us set �yij
pq ¼ fpq for all (p,q) 2 Eij. By the

max-flow min-capacity cut theorem, value(f) is also the capacity
of an i � j cut of minimum capacity in Dij. Hence,
valueðf Þ ¼

P
s2Cij

�xs, where Cij is the set of nodes of Vij that are inci-

dent to the arcs in a minimum capacity i � j cut in Dij. Therefore,

valueðf Þ ¼min
P

s2Sij
�xs : Sij 2 S ij

n o
, and constraints (16) for {i, j} are

satisfied. Since the pair {i, j} was chosen arbitrarily, we can conclude
that ðX;YÞ is feasible for [F_EC]LP.

Proposition 2.

Z½F EC�LP ¼ Z½F S�LP:
6.2. Comparison of the LP relaxations of [F_R], [F_C], and [F_EC]

As pointed out by Veremyev and Boginski (2012), a theoretical
comparison of the tightness of the LP relaxation of their formula-
tion [F_R] with that of the LP relaxation of [F_C] is a very challeng-
ing task, due to the recursive nature of [F_R]. As we shall show
next, the result of the comparison is not independent of the value
of k: [F_R] dominates [F_C] for k = 3, but the dominance does not
hold for k = 4.

We shall conclude this section by showing that [F_EC] domi-
nates [F_R] for k = 3.

We shall first show that [F_R] dominates [F_C] for the case k = 3.
Recalling the rationale presented in the proof of Proposition 2, it is
quite intuitive that constraints (7) play an important role in any
comparison of [F_R]LP and [F_C]LP for k = 3. Given a pair

fi; jg 2N3 and a node p 2 Aij, constraint v ð2Þpj 6 xp may cut off feasi-
ble solutions of [F_C]LP in the x-space, in a way that bears a clear
resemblance with the effect of constraints (22) in [F_EC].

Proposition 3. For k = 3, Z [F_R]LP 6 Z [F_C]LP.
Proof. Let ðX;VÞ be feasible for [F_R]LP. We shall assume, without

loss of generality, that �v ð2Þab ¼min �xa; �xb;
P

r2ðNa\NbÞ
�xr

n o
and

�v ð3Þab ¼min �xa;
P

k2Na
�v ð2Þkb

n o
, for all a, b 2 V.

Let us now build a feasible solution ðX; YÞ for [F_C]LP.

All packing constraints are satisfied by X because �v ð2Þij ¼ �v ð3Þij ¼ 0
for all pairs fi; jg 2 P3.

Let fi; jg 2N3 be chosen arbitrarily. If Ni \ Nj = £, then �v ð2Þij ¼ 0
and

P
r2ðNi\NjÞ

�xr ¼ 0. Otherwise, let Dij be a complete layered

digraph with five layers:

L1 ¼ fig; L2 ¼ fi0g; L3 ¼ Ni \ Nj; L4 ¼ fj0g; and L5 ¼ fjg

(where i0 and j0 are copies of i and j, respectively) and arc capacities
defined by

cap ðu;vÞ ¼

�xi if u ¼ i and v ¼ i0

�xr if u ¼ i0 and v ¼ r 2 ðNi \ NjÞ
1 if u 2 ðNi \ NjÞ and v ¼ j0

�xj if u ¼ j0 and v ¼ j

8>>><>>>:
Suppose that f is a maximum i � j flow in Dij. By construction,

valueðf Þ ¼
P

r2ðNi\NjÞfi0r . If we set �yt ¼ fi0r , for every chain

t ¼ ði; r; jÞ 2 C¼2
ij , it follows that

P
t2C¼2

ij
�yt ¼ �v ð2Þij . We are now left

with variables �v ð3Þij and chains t 2 C¼3
ij , for all fi; jg 2N3. For every

pair fi; jg 2N3, let us build a layered digraph Dij, with layers
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L1 = {i}, L2 = {i0}, L3 = {p:p 2 Ni and Np \ Nj – £g; L4 ¼ t : t 2 C¼3
ij

n o
,

and L5 = {j} (where i0 is a copy of i) and whose set of arcs is

Aij ¼ fði; i0Þg [ fði0; pÞ : p 2 Ni and Np \ Nj – £g[

[ ðp; tÞ : t 2 C¼3
ij and edge ði;pÞ belongs to chain t

n o
[ ðt; jÞ : t 2 C¼3

ij

n o
with arc capacities defined by

capðu;vÞ

¼

�xi if u ¼ i and v ¼ i0

�v ð2Þpj if u ¼ i0 and v ¼ p 2 L3

1 if u 2 L3 and v ¼ t 2 L4

minf�xw : w is a node of tg if u ¼ t 2 L4 and v ¼ j

8>>>><>>>>: :

Suppose that f is a maximum i � j flow in Dij. By construction,

valueðf Þ ¼
P

t2C¼3
ij

ftj ¼ �v ð3Þij . By setting �yt ¼ ftj, for all t 2 C¼3
ij , it fol-

lows that
P

t2C¼3
ij

�yt ¼ valueðf Þ. We can now conclude thatP
t2C3

ij
�yt ¼ �v ð2Þij þ �v ð3Þij and consequently, since fi; jg 2N3 was cho-

sen arbitrarily, that ðX;YÞ is feasible for [F_C]LP. h

The dominance of [F_R] over [F_C] for k = 3 may be strict. An
illustration is provided by the graph depicted in Fig. 1(b).

The dominance does not hold for k = 4, as illustrated by the
example presented in Appendix A.

Let us now consider [F_EC] and [F_R] for k = 3.
Let fi; jg 2N3 be chosen arbitrarily. In [F_EC] constraints (23)

impose that
P

p:ðp;qÞ2Eij
yij

pq 6 xq for every q 2 Bij. In [F_R] constraints

(9) impose only that v ð3Þij 6 xi and v ð3Þij 6
P

k2Ni
v ð2Þkj . Due to con-

straints (23), feasible solutions for [F_R]LP on the x-space, may be
infeasible for [F_EC]LP. An illustration is provided by the graph
depicted in Fig. 2(a).

We shall next show that for k = 3 [F_EC] dominates [F_R].

Proposition 4. For k = 3, Z [F_EC]LP 6 Z [F_R]LP.
Proof. We shall show that the projection onto the x-space of the
feasible set of [F_EC]LP is included in the projection onto the
x-space of the feasible set of [F_R]LP by showing that if ðX;YÞ is
feasible for [F_EC]LP, then ðX;VÞ is feasible for [F_R]LP, where

�v ð2Þab ¼min �xa; �xb;
X

r2ðNa\NbÞ

�xr

( )
and �v ð3Þab ¼ min �xa;

X
k2Na

�v ð2Þkb

( )
;

for all a; b 2 V :
ji

p2 q

p1

Fig. 2. (a) Consider a feasible solution for [F_R]LP in which
�xi ¼ 2

3 ; �xj ¼ 1; �xp1
¼ �xp2

¼ �xq ¼ 1
3 ; �v ð2Þij ¼ 0; �v ð2Þp1 ;j

¼ �v ð2Þp2 ;j
¼ 1

3, and �v ð3Þij ¼ 2
3. In the cor-

responding solution for [F_EC]LP, constraint (21) for the pair {i, j} is violated because

yij
p1 ;q þ yij

p2 ;q 6 xq must hold. (b) Consider again k = 3 and a feasible solution for

[F_R]LP in which �xi ¼ 2
3 ; �xj ¼ 1; �xp1 ¼ �xp2 ¼ �xq ¼ 1

3 ; �v ð2Þij ¼ 0; �v ð2Þp1 ;j
¼ �v ð2Þp2 ;j

¼ 1
3, and

�v ð3Þij ¼ 2
3. To comply with (900), constraint (6) is violated.
We shall assume, without loss of generality, that for all pairs

fi; jg 2N3;
P
ðp;qÞ2Eij

�yij
pq 6 �xi and

P
ðp;qÞ2Eij

�yij
pq 6 �xj. Note that, to

satisfy constraints (7) and (9), v ð2Þij and v ð3Þij cannot assume values
greater than the ones they are being assigned, which makes
constraints (8) and (10) irrelevant.

If fi; jg 2 P3, then �vð2Þij ¼ �v ð3Þij ¼ 0, and consequently,
�xi þ �xj 6 1þ �v ð2Þij þ �vð3Þij if and only if �xi þ �xj 6 1.

Let fi; jg 2N3 be chosen arbitrarily.

If �v ð2Þij ¼ �xi or �v ð2Þij ¼ �xj, constraint (6) is satisfied, regardless of

the value of v ð3Þij . Otherwise, �vð2Þij ¼
P

r2ðNi\NjÞ
�xr .

If �v ð3Þij ¼ �xi, constraint (6) is satisfied, regardless of the value of

vð2Þij . Otherwise,
P

k2Ni
�v ð2Þkj < �xi and �v ð3Þij ¼

P
k2Ni

�v ð2Þkj .

Let us assume that �v ð3Þij ¼
P

k2Ni
�v ð2Þkj .

By construction,
P
ðp;qÞ2Eij

�yij
pq ¼

P
p2Aij

P
q:ðp;qÞ2Eij

�yij
pq

� �
.

Let p⁄ be chosen arbitrarily in Aij and remember we are

assuming, without loss of generality, that
P
ðp;qÞ2Eij

�yij
pq 6 �xj.

Since
P

q:ðp�;qÞ2Eij
�yij

p�q 6
P
ðp;qÞ2Eij

�yij
pq, we can conclude thatP

q:ðp�;qÞ2Eij
�yij

p�q 6 �xj.

By (22),
P

q:ðp�;qÞ2Eij
�yij

p�q 6 �xp� , and by (19),
P

q:ðp� ;qÞ2Eij
�yij

p�q 6P
q:ðp�;qÞ2Eij

�xq ¼
P

q2Np�
q2NjnNi

�xq 6
P

q2 Np� \Njð Þ�xq.

It follows that
P

q:ðp� ;qÞ2Eij
�yij

p�q 6 min �xp� ; �xj;
P

r2 Np� \Njð Þ�xr

n o
¼

�vð2Þp� j and, therefore
P
ðp;qÞ2Eij

�yij
pq 6 min �xi;

P
k2Ni

�vð2Þkj

n o
¼ �vð3Þij .

Since fi; jg 2N3 was chosen arbitrarily, we can conclude that if
ðX;VÞ is feasible for [F_EC]LP, then ðX;YÞ is feasible for [F_R]LP. h
6.2.1. Enhanced version of [F_R]
The study of the relations between [F_EC]LP and [F_R]LP for k = 3

gives hints on how to strengthen the recursive formulation from
the LP relaxation standpoint for any integer k P 3. Note that for
k = 2, [F_C] and [F_R] are essentially the same (Veremyev &
Boginski, 2012).

For k = 3, the dominance of [F_EC]LP over [F_R]LP stems from two
reasons: the elimination of all variables that represent chains
t ¼ ði; p; q; jÞ 2 C¼3

ij with p 2 (Ni \ Nj) or q 2 (Ni \ Nj) in [F_EC] and
the lifting effect provided by constraints (23). For any k P 3, a sim-
ilar elimination is obtained by replacing (9) with

v ðlÞij 6 xi v ðlÞij 6
X

k2ðNinNjÞ
v ðl�1Þ

kj ð90Þ

Due to their recursive nature, variables v ðlÞij represent paths di-
rected from node i to node j. Given any undirected graph, there
is at least one path from i to j if and only if there is at least one path
from j to i. Therefore, for any k P 3, we can add to [F_R] the follow-
ing conditions

for l = 3, . . . , k; i, j 2 V, j > i,

v ðlÞij 6 xj v ðlÞij 6
X

k2ðNjnNiÞ
v ðl�1Þ

ki ð900Þ

v ðlÞij P
1
jV j

X
k2Nj

v ðl�1Þ
ki

0@ 1Aþ ðxj � 1Þ ð100Þ

The resulting enhanced recursive formulation for the k-club
problem is

½F ER� max
X
i2V

xi : ð6Þ � ð8Þ; ð90Þ; ð900Þ; ð10Þ; ð100Þ; ð4Þ; ð11Þ
( )

:
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By construction, [F_ER] dominates [F_R].

Proposition 5. Z [F_ER]LP 6 Z[F_R]LP.
The dominance of [F_ER] over [F_R] may be strict. An illustra-

tion is provided by the graph depicted in Fig. 2(b).
It is quite intuitive that if k = 3, [F_EC] and [F_ER] are LP-

equivalent.
The proof of Proposition 6 follows the rationale used in the

proof of Proposition 4. A detailed proof is presented in Appendix B.

Proposition 6. For k = 3, Z [F_EC]LP = Z[F_ER]LP.
6.3. Comparison of the LP relaxations of [F_N] and [F_R]

For k = 3, formulation [F_C] is dominated both by [F_N] and
[F_R], but the dominances stem from different reasons. The domi-
nance of [F_N] over [F_C] is due to the substitution of Eij for E(Ni,Nj)
in the last term of inequalities (13) (Almeida & Carvalho, 2012).
The dominance of [F_R] over [F_C] is, roughly speaking, a conse-
quence of (7). It is then natural to suspect that in the x-space the
feasible sets of [F_N]LP and [F_R]LP are different and no inclusion
relation holds for them.

The graph used to illustrate the dominance of [F_R] over [F_C]
(see Fig. 1(c)) can also be used to show that in the x-space a feasible
solution for [F_N]LP may not be feasible for [F_R]LP.

On the other hand, in the x-space a feasible solution for [F_R]LP

may not be feasible for [F_N]LP. An illustration is provided by the
graph depicted in Fig. 3.

Since there is no inclusion relation in the x-space between the
feasible sets of [F_R]LP and [F_N]LP, there is no domination relation
between [F_R] and [F_N].

6.4. Neighbourhood formulation revisited

For the case k = 3, neighbourhood formulation [F_N] is more
compact than any other formulation in the literature. Since, also
for k = 3, [F_EC] and [F_S] are LP-equivalent, and [F_S] dominates
[F_N], we can conclude that [F_N] is also dominated by [F_EC].
Note that there is no way of imposing constraints on the set of
three-edge chains that link each pair of nodes fi; jg 2N3 using
only node and edge variables. However, it is possible to derive
[F_EC] from [F_N] by introducing chain variables and adding valid
inequalities for the 3-club polytope.

Let us consider again variables yij
pq (see Section 5), and let us add

constraints (18), (20), (22), and (23) to [F_N]. After adding these
constraints, constraints (13) can be replaced with

xi þ xj 6 1þ
X

r2ðNi\NjÞ
xr þ

X
ðp;qÞ2Eij

yij
pq fi; jg 2N3 ð21Þ

Now, edge variables zij play no role in the formulation and can
be dropped, together with constraints (14). To summarize, (13) and
(14) in [F_N] can be replaced with 18 and (20)–(23). Thus, by
introducing chain variables yij

pq and lifting variable linking
i j

p q

Fig. 3. Consider a solution in the x-space such that �xi ¼ 2
3 ; �xj ¼ 1; �xp ¼ �xq ¼ 1

3. By
setting �v ð2Þij ¼ �v ð2Þpj ¼ �v ð3Þij ¼ 1

3 we get a feasible solution for [F_R]LP. SinceP
r2ðNi\NjÞ

�xr ¼ 1
3 and Eij = £, constraint (13) in [F_N]LP for the pair {i, j} is violated.
constraints, [F_N] is transformed into [F_EC]. This procedure pro-
vides an alternative proof of the dominance of [F_S] over [F_N] pre-
sented in Almeida and Carvalho (2012).

The large number of variables added to [F_N] to transform it
into [F_EC] raises the question of the magnitude of the difference
Z [F_N]LP � Z [F_EC]LP. An upper bound on this difference is easy
to derive by considering a variant of formulation [F_S], denoted
by [F_Sc], which results from replacing constraints (16) with

xi þ xj 6 1þ
X

r2ðNi\NjÞ
xr þ

X
s2Sij

ðcs � 1Þxs fi; jg 2N3; Sij 2 Sij ð24Þ

where cs is the degree of node s in subgraph Gij.
Since

P
s2Sij
ðcs � 1Þxs P 1 if and only if

P
s2Sij

xs P 1, formulation
[F_Sc] is valid for the 3-club problem. Since cs P 2 for all s 2 Sij and
Sij 2 Sij; Z½F S�LP 6 Z½F Sc�LP.

We shall next show that [F_N] dominates [F_Sc].

Proposition 7. Z[F_N]LP 6 Z[F_Sc]LP.
Proof. Let ðX; ZÞ be feasible for [F_N]LP. For all fi; jg 2N3 and
Sij 2 Sij,X
ðp;qÞ2Eij

�zpq ¼
X
ðp;qÞ2Eij

p2ðAij\Sij Þ
q2Bij

�zpq þ
X
ðp;qÞ2Eij

p2ðAijnSij Þ
q2ðBij\Sij Þ

�zpq

6

X
s2ðAij\SijÞ

ðcs � 1Þ�xs þ
X

s2ðBij\SijÞ
ðcs � 1Þ�xs ¼

X
s2Sij

ðcs � 1Þ�xs

and X is feasible for [F_Sc]LP. h

The dominance of [F_N] over [F_Sc] may be strict. An illustration
is provided by the graph depicted in Fig. 4.

The graphs depicted in Figs. 3 and 4 provide an illustration that
there is no dominance relation between [F_Sc] and [F_C].

7. k-Clubs with additional constraints

A k-club is by definition a subset of nodes of a graph which
induces a subgraph with diameter at most equal to k. If k is small,
a k-club represents a cluster with good connectivity between each
pair of its members– every member needs at most k � 1 interme-
diaries to reach any other member. If the underlying graph repre-
sents a communication network, the diameter has been considered
a natural way of describing the reliability of the network (Boesch,
Harary, & Kabell, 1981). However, a k-club is a fragile structure in
that if one of its elements breaks down by accident, the communi-
cations among members may be severely affected. A k-club is also
quite vulnerable to external attacks: the destruction of a selected
single element (node or link) may render the communication
among members totally impossible. To identify network clusters
that combine good connectivity among members with better
i

jp2 q2

q1

p1

Fig. 4. Consider a solution in the x-space in which �xi ¼ 5
8 ; �xj ¼ 1; �xp1 ¼ �xq2 ¼ 1

4, and
�xp2
¼ �xq1

¼ 1
8. In [F_Sc]LP, Sij = {Aij, {p1,q2},Bij}, thus node cut set constraints (24) are

satisfied for all Sij 2 Sij , but in [F_ N]LP, to comply with (14), neighbourhood
constraint (13) for {i, j} is violated.
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reliability properties, Veremyev and Boginski (2012) introduced
the new concept of R-robust k-club, which extends the original
k-club definition by imposing the additional condition that there
must be at least R internally node-disjoint paths between every
pair of cluster members. A key feature of this new concept is that
the elimination of up to R � 1 elements will not destroy the k-club
structure, which means that the R-robust k-clubs have much better
error and attack tolerance characteristics than k-clubs (Veremyev
& Boginski, 2012). As pointed out by the authors, developing math-
ematical programming approaches for finding large network clus-
ters with good error and attack tolerance characteristics is not an
easy task.

For the case k = 2, all distinct paths that link a given pair of
nodes i and j are internally node-disjoint, since each path is either
edge (i, j) or a two-edge path of the form (i,r, j) with node r in
Ni \ Nj. The R-robust 2-club problem is formulated in Veremyev
and Boginski (2012) as follows:

max Z ¼
X
i2V

xi

s:t: aij þ
X

k2ðNi\NjÞ
xk P Rðxi þ xj � 1Þ i; j 2 V ; i < j ð25Þ

xi 2 f0;1g i 2 V ð4Þ

where aij = 1 if (i, j) 2 E and aij = 0 otherwise.
For k > 2, to guarantee that there are at least R internally node-

disjoint paths between any pair of nodes it is necessary to identify
the inner nodes of each path with more than two edges. In Vere-
myev and Boginski (2012), the wðlÞij variables that represent the
number of distinct paths with l edges (l = 2, . . . ,k) that link each
pair of nodes i and j (i, j = 1, . . . , jVj) are defined by recursion, and
by its very nature a definition by recursion is incompatible with
the identification of inner nodes path by path. For that reason,
for k > 2 Veremyev and Boginski (2012) considered a relaxation
of the R-robust k-club concept, obtained by replacing the original
condition ‘‘R internally node-disjoint paths’’ by the relaxed condi-
tion ‘‘R distinct paths’’.

The relaxed R-robust k-club problem is formulated in Veremyev
and Boginski (2012) with binary node variables xi (i = 1, . . . , jVj) and
integer path variables wðlÞij ði; j ¼ 1; . . . ; j V j; l ¼ 2; . . . ; kÞ as follows:

max Z ¼
X
i2V

xi

s:t: aij þ
Xk

l¼2

wðlÞij P Rðxi þ xj � 1Þ ð26Þ

wð2Þij 6
X

k2ðNi\NjÞ
xk þ jV jð2� xi � xjÞ ð27Þ

wð2Þij P
X

k2ðNi\NjÞ
xk � jV jð2� xi � xjÞ ð28Þ

wð2Þij 6 jV jxi wð2Þij P �jV jxi ð29Þ

wð2Þij 6 jV jxj wð2Þij P �jV jxj and for l ¼ 3; . . . ; k; ð30Þ

wðlÞij 6
X
k2Ni

wðl�1Þ
kj þ jV jl�1ð1� xiÞ ð31Þ

wðlÞij P
X
k2Ni

wðl�1Þ
kj � jV jl�1ð1� xiÞ ð32Þ

wðlÞij 6 jV j
l�1xi wðlÞij P �jV jl�1xi ð33Þ

xi 2 f0;1g ð4Þ

wðlÞij 2 Zþ ð34Þ

where aij = 1 if (i, j) 2 E, aij = 0 otherwise, and i, j = 1, . . . , jVj.
Constraints (26) impose that each pair of selected nodes must
be linked by at least R paths with at most k edges. Constraints
(27)–(30) define the number of two-edge paths that link each pair
of nodes, and constraints (31)–(33) define the number of paths
with three or more edges that link each pair of nodes. Constraints
(34) define the path variables as nonnegative and integer.

While for k = 2 the conditions ‘‘R internally node-disjoint paths’’
and ‘‘R distinct paths’’ are equivalent, for k > 2 the latter is consid-
erably weaker than the former, since distinct paths may share even
all inner nodes. This means that the error and attack tolerance
properties of R-robust k-clubs are not guaranteed by conditions
(26)–(34) and (4). For k = 3, the error and attack tolerance proper-
ties of R-robust k-clubs can be guaranteed by adapting formulation
[F_EC], as described next.

Given a pair of nodes i and j not linked by an edge in G, con-
straints (22) and (23) impose that at most one chain that includes
node p and at most one chain that includes node q can be selected
to link them in the induced subgraph. Furthermore, in formulation
[F_EC], variables yij

pq are defined only for (p,q) 2 E such that
p 2 (NinNj) and q 2 (NjnNi). Thus, chains represented by variables
yij

pq are internally node-disjoint with two-edge chains that link i
and j (which are represented by their central nodes). In short, all
that is missing to model R-robust 3-clubs is a set of variables to
identify each chain with three edges that links pairs of nodes i
and j, linked by an edge in G.

For each pair of nodes i and j adjacent in G, let us define vari-
ables yij

pq, with p 2 Nin(Nj [ {j}) and q 2 Njn(Ni [ {i}). Each variable
is associated with one edge in E1

ij ¼ fðp; qÞ 2 E : p 2 Ni n ðNj [ fjgÞ;
q 2 Nj n ðNi [ figÞg.

To obtain a valid formulation for the R-robust 3-club problem,
we substitute constraintsX
r2ðNi\NjÞ

xr þ
X
ðp;qÞ2Eij

yij
pq P Rðxi þ xj � 1Þ fi; jg 2N3 ð37Þ

for constraints (21) and enlarge formulation [F_EC] with the new
constraintsX
r2ðNi\NjÞ

xr þ
X
ðp;qÞ2E1

ij

yij
pq P ðR� 1Þðxi þ xj � 1Þ ði; jÞ 2 E ð38Þ

yij
pq 6 xi yij

pq 6 xj ði; jÞ 2 E ðp; qÞ 2 E1
ij ð39ÞX

q:ðp;qÞ2E1
ij

yij
pq 6 xp ði; jÞ 2 E p 2 Ni n ðNj [ fjgÞ ð40Þ

X
p:ðp;qÞ2E1

ij

yij
pq 6 xq ði; jÞ 2 E q 2 Nj n ðNi [ figÞ ð41Þ

yij
pq 2 f0;1g ði; jÞ 2 E ðp; qÞ 2 E1

ij ð42Þ

Conditions (37) and (38) impose that each pair of nodes must be
linked by at least R selected chains with at most three edges. Con-
ditions (39)–(41) impose that all nodes in selected chains that link
adjacent nodes are included in the solution and that these chains
are internally node-disjoint.

To summarize, an optimal solution for

½F EC�R� max
X
i2V

xi : ð12Þ;ð18Þ;ð22Þ;ð23Þ;ð4Þ;ð20Þ;ð37Þ�ð42Þ
( )

is a maximum 3-club that satisfies the additional condition that
every pair of its nodes is linked by at least R internally node-disjoint
chains.

8. Conclusions

In this paper, we have presented a comparative study of the LP
relaxations of integer formulations for the k-club problem. The
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comparisons involved models known from the literature and three
new models. Some models are valid for any k > 1 whereas some
other were designed for the case k = 3.

For the case k = 3, the connections among all these formulations
are synthesised in Fig. 5. For generic formulations [F_⁄] and [F_�],
[F_⁄] ? [F_�] means that the LP relaxation of [F_⁄] is stronger than
the LP relaxation of [F_�], and [F_⁄] M [F_�] means that [F_⁄] and
[F_�] are LP-equivalent. Thick arrows represent the relations de-
rived in this study and thin arrows represent relations derived in
Almeida and Carvalho (2012). A dashed line between [F_⁄] and
[F_�] means that there is no relation between their LP relaxations.

For k = 4, we showed that [F_R]LP is not stronger than [F_C]LP.
Based on the insight obtained by comparing [F_EC] and [F_R] for

k = 3, we devised [F_ER] for the k-club problem and showed that it
dominates [F_R], for any k > 1. In addition, we have derived a for-
mulation for the maximum R-robust 3-club problem. To the best
of our knowledge, this is the first formulation in the literature for
the maximum R-robust 3-club problem.
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Appendix A

Consider graph G = (V,E) depicted in Fig. A.1 and k = 4.
Suppose that �xi ¼ �xj ¼ 1; �x1 ¼ �x2 ¼ �x3 ¼ 1

5, and �x4 ¼ 1
20.

In [F_C]LP there are six variables yt, associated with chains
(i,1, j), (i,1,2, j), (i,3,2, j), (i,3,2,4, j), (i,1,2,4, j), and (i,3,2,1, j).
Consider any ðX;YÞ. To be a solution for [F_C]LP, it must comply
i j

2
3

4

1

Fig. A.1. Graph to illustrate that [FR] does not dominate [FC] for k=4.
with
P6

t¼1yt 6
9

10, but then constraint (2) for the pair {i, j}, is
violated.

Consider now ðX;VÞ, with,

�v ð2Þab ¼min �xa; �xb;
X

k2ðNa\NbÞ

�xk

� �
for all a; b 2 V

�v ðlÞab ¼min �xa;
X
k2Na

�v ðl�1Þ
kb

� �
for all a; b 2 V ; l ¼ 3;4

Then,
P4

l¼2 �v ðlÞij ¼ 1
5þ 2

5þ 2
5 ¼ 1, which satisfies constraint (6) in

[F_R]LP, for the pair {i, j}.

Appendix B. proof of Proposition 6

Proposition 6. For k = 3, Z[F_EC]LP = Z[F_ER]LP.
Proof. Suppose that ðX;VÞ is feasible for [F_ER]LP. Let us show that
it is possible to build from it a feasible solution ðX;YÞ for [F_EC]LP.
We shall assume, without loss of generality, that

�v ð2Þab ¼min �xa; �xb;
X

k2ðNa\NbÞ

�xk

8<:
9=; for all a; b 2 V

�v ð3Þab ¼min �xa; �xb;
X

k2ðNanNbÞ

�v ð2Þkb ;
X

k2ðNbnNaÞ

�v ð2Þka

8<:
9=; for all a; b 2 V

For packing constraints and for chains with two edges, the
rational of the proof is the same rationale used in Section 6.2.

Let us now address chains with three edges that link nodes i and

j. Let eC¼3
ij ¼ t ¼ ði; p; q; jÞ 2 C¼3

ij : p R Nj; q R Ni

n o
be the set of

chains associated with variables yij
pqðfi; jg 2N3; p 2 Aij; q 2 BijÞ in

[F_EC]LP.
Consider a pair fi; jg 2N3, chosen arbitrarily. Let Dij be a

layered digraph with seven layers:

L1 ¼ fig; L2 ¼ fi0g; L3 ¼ Aij; L4 ¼ t : t 2 eC¼3
ij

n o
; L5 ¼ Bij;

L6 ¼ fj0g; and L7 ¼ fjg

(where i0 and j0 are copies of i and j, respectively) whose set of arcs is

Aij ¼ fði; i0Þg [ fði0; pÞ : p 2 Aijg[

[ ðp; tÞ : p 2 Aij; t 2 eC¼3
ij ; and p is a node of t

n o
[

[ ðt; qÞ : q 2 Bij; t 2 eC¼3
ij ; and q is a node of t

n o
[

[fðq; j0Þ : q 2 Bijg [ fðj0; jÞg

and arc capacities are defined by
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cap ðu;vÞ ¼

�xi if u¼ i and v ¼ i0

�v ð2Þpj if u¼ i0 and v ¼ p 2 Aij

�xp if u¼ p2 Aij and v ¼ t 2 eC¼3
ij and p is a node of t

�xq if u¼ t 2 eC¼3
ij and v ¼ q 2 Bij and q is a node of t

�v ð2Þqi if u¼ q2 Bij and v ¼ j0

�xj if u¼ j0 and v ¼ j

8>>>>>>>>>>><>>>>>>>>>>>:
:

Note that each edge (p,q) 2 Eij is represented in Dij by exactly
one node t 2 L4. This node will be denoted by u(p,q).

Suppose that f is a maximum i � j flow in Dij.
By construction, value ðf Þ ¼

P
p2Aij

t2eC¼3
ij

fpt ¼
P

q2Bij

t2eC¼3
ij

ftq. Also by
construction,

X
u2L3
v2L4

cap ðu;vÞP
X
p2Aij

�xp P
X
p2Aij

min �xp; �xj;
X
k2Bij

�xk

8<:
9=; ¼X

p2Aij

�v ð2Þpj

and

X
u2L4
v2L5

cap ðu;vÞP
X
q2Bij

�xq P
X
q2Bij

min �xq; �xi;
X
k2Aij

�xk

8<:
9=; ¼X

q2Bij

�v ð2Þqi :

Therefore, value ðf Þ ¼min �xi;
P

p2Aij
�v ð2Þpj ;

P
q2Bij

�v ð2Þqi ; �xj

n o
¼ �v ð3Þij .

If we set �yij
pq ¼ fp;uðp;qÞ for all (p,q) 2 Eij, then value ðf Þ ¼P

ðp;qÞ2Eij
�yij

pq.

For the pair {i, j}, all constraints (22) and (23) are satisfied, due
to node flow conservation in L3 and L5. Since constraints (21) for
{i, j} are also satisfied, and the pair fi; jg 2N3 was chosen
arbitrarily, solution ðX;YÞ is feasible for [F_EC]LP.

Conversely, suppose that ðX;YÞ is feasible for [F_EC]LP. By
repeating the arguments used in the proof of Proposition 4, we
conclude that ðX;VÞ is feasible for [F_ER]LP, where

�v ð2Þab ¼min �xa; �xb;
X

k2ðNa\NbÞ

�xk

8<:
9=; for all a; b 2 V

�v ð3Þab ¼min �xa; �xb;
X

k2ðNanNbÞ

�v ð2Þkb ;
X

k2ðNbnNaÞ

�v ð2Þka

8<:
9=; for all a; b 2 V �
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