
Two-phase heuristics for the k-club problem

Maria Teresa Almeida a,b,n, Filipa D. Carvalho a,b

a ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
b CIO, FC, Universidade de Lisboa, Bloco C6, Piso 4, 1749-016 Lisboa, Portugal

a r t i c l e i n f o

Available online 17 July 2014

Keywords:
Heuristics
Maximum k-club
Clique relaxations
Social network analysis
Computational biology

a b s t r a c t

Given an undirected graph G and an integer k, a k-club is a subset of nodes that induces a subgraph with
diameter at most k. The k-club problem consists of identifying a maximum cardinality k-club in G. It is an
NP-hard problem. The problem of checking if a given k-club is maximal or if it is a subset of a larger
k-club is also NP-hard, due to the non-hereditary nature of the k-club structure. This non-hereditary
nature is adverse for heuristic strategies that rely on single-element add and delete operations. In this
work we propose two-phase algorithms which combine simple construction schemes with exact
optimization of restricted integer models to generate near optimal solutions for the k-club problem.
Numerical experiments on sets of uniform random graphs with edge densities known to be very
challenging and test instances available in the literature indicate that the new algorithms are quite
effective, both in terms of solution quality and running times.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decade, the use of network models has been
steadily growing in a large number of areas, e. g., social network
analysis, computational biology, and financial information data
mining, [1–5].

In all these areas it is important to identify groups of elements
that form clusters. The characterization of a cluster may be made
from several standpoints. In some cases, the most important
aspect is the number (or the proportion) of direct links between
pairs of elements. In other cases, the most important feature is the
number of hops that separate pairs of elements, i. e., the number of
intermediate elements that are needed to establish a connection
between any two members. The former case can be addressed
with density-based network models such as cliques, quasi-cliques,
k-cores and k-plexes [6–13]. The latter case can be addressed with
diameter-based network models such as k-clubs.

Given an undirected graph G¼ ðV ; EÞ and a pair of nodes
u; vAV , the distance distGðu; vÞ is the minimum number of edges
needed to link u and v in G. The diameter of G diamðGÞ is the
maximum distance between any pair of nodes. Given G¼ ðV ; EÞ
and a positive integer k, a k-club is a subset of nodes SDV that
induces a subgraph G½S� ¼ ðS; EðSÞÞ with a diameter of at most k

and a k-clique is a set of nodes CDV such that distGðu; vÞrk, for
all u; vAC. The k-club (resp. k-clique) number of G is the number
of nodes in a maximum k-club (resp. k-clique) in G. For k¼1, k-
clubs and k-cliques induce complete subgraphs, i. e., cliques. For
any positive integer k 41, a k-club is a k-clique, but the
converse is not true – since distGðu; vÞrdistG C½ �ðu; vÞ, for all
u; vAC, the diameter of the subgraph induced by a k-clique C
may be greater than k.

The k-club problem consists of finding a maximum cardinality
k-club in an undirected graph. It is known to be an NP-hard
problem, for any k 41 (Bourjolly et al. [14]). Mahdavi Pajouh and
Balasundaram [15] discuss in full length the non-hereditary nature
of k-clubs and prove that checking the inclusionwise maximality of
a k-club is also an NP-hard problem.

The rest of the paper is organized as follows. Section 2 provides
the background for the new heuristics and reviews recently
published work on the k-club problem. Sections 3, 4, and 5 contain
the detailed description of the two-phase heuristics and the
motivation for them. The computational results are presented in
Section 6 and the conclusions in Section 7.

2. Background and related work

In this section we briefly review heuristic algorithms and
integer models that are used in the two-phase algorithms pro-
posed in Sections 4 and 5. We also survey related work recently
published in the literature.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.07.006
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Correspondence to: Instituto Superior de Economia e Gestão, Departamento de
Matemática, Rua do Quelhas 6, 1200-781 Lisboa, Portugal. Tel.: þ351 213 925 800;
fax: þ351 213 922 781.

E-mail addresses: talmeida@iseg.utl.pt (M.T. Almeida),
filipadc@iseg.utl.pt (F.D. Carvalho).

Computers & Operations Research 52 (2014) 94–104

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.07.006
http://dx.doi.org/10.1016/j.cor.2014.07.006
http://dx.doi.org/10.1016/j.cor.2014.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.07.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.07.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.07.006&domain=pdf
mailto:talmeida@iseg.utl.pt
mailto:filipadc@iseg.utl.pt
http://dx.doi.org/10.1016/j.cor.2014.07.006
http://dx.doi.org/10.1016/j.cor.2014.07.006

2.1. Heuristic algorithms

Bourjolly et al. [16] proposed three simple heuristics for the
k-club problem: Constellation, Drop, and k-Clique and Drop.

Constellation is a constructive heuristic that starts with a star
centred at a maximum degree node – which is a k-club for any k
41 – and iteratively adds new nodes while the induced subgraph
has a diameter smaller than k. It can be summarized as follows:

Heuristic Constellation

Step 1: Set t:¼2. The initial 2-club is the set W of nodes of a star
graph centred at a maximum degree node.
Step 2: If t¼k or W¼V, stop. Otherwise set t:¼tþ1. Determine
the node ofW having the largest set S of neighbours in V\W and
set W:¼W [S. Repeat step 2.

If heuristic Constellation is halted upon completion of step 1, it
returns a star graph. We will call this procedure heuristic Star.
Note that, for k¼2, heuristic Constellation hits the stopping
criterion before executing step 2 and reduces to heuristic Star.

Drop is an elimination heuristic that starts with the whole node
set V and then removes one node at a time to obtain a subset that
induces a k-club. It can be summarized as follows:

Heuristic Drop

Step 1: Compute shortest chain lengths between all node pairs.
Step 2: Compute for each node i of V the number qi of nodes of
V whose shortest chain to i has length at least kþ1. If qi¼0, for
all i, stop.
Step 3: Let W¼{i ∊ V: qi is maximum} and in be a minimum
degree node in W. Remove in from V and eliminate all edges
incident to it.
Step 4: Update shortest chain lengths and go to step 2.

For k¼2, Carvalho and Almeida [17] proposed an alternative
node elimination criterion based on optimal solutions of a strong
linear programming model for the 2-club problem.

Given a graph G¼ ðV ; EÞ and an integer k 41, a subset SDV is a
k-clique if distGðu; vÞrk, for all u; vAS, and it is a k-club if
distG½S�ðu; vÞrk, for all u; vAS. Since distGðu; vÞrdistG½S�ðu; vÞ, for
all u; vAS, k-cliques may be interpreted as relaxations of k-clubs
and large k-cliques are good candidates to contain large k-clubs.
This is the basis of heuristic k-Clique and Drop, which can be
summarized as follows:

Heuristic k-Clique and Drop

Step 1: Find a largest k-clique.
Step 2: Remove all nodes not in the k-clique and their incident
edges and call heuristic Drop.

Shahinpour and Butenko [18] proposed a variable neighbour-
hood search (VNS) heuristic for the k-club problem that uses
Constellation, Drop and Expand solutions as starting points.
Expand is a heuristic similar to k-Clique and Drop which finds
the k-neighbourhood Nk

GðvÞ ¼ fjAV : distGðj; vÞrkg of a node vAV
instead of a k-Clique. Given a k-club S, they define four neighbour-
hoods of S, obtained by adding and/or removing nodes, and two
procedures, 1-add and 2-add moves, whose goal is to improve a
given k-club.

2.2. Integer models

The k-club problem may be formulated as an integer linear
programming problem in several different variable spaces. For the
sake of brevity, we shall review in detail only the models that are
used in Sections 4 and 5.

To simplify the notation, the set ffi; jg : i; jAV ; distGði; jÞ4kg of
all pairs of nodes that cannot belong simultaneously to a k-club is
denoted by Pk and the set ffi; jg : i; jAV ; ði; jÞ=2E; distGði; jÞrkg of all
pairs of nonadjacent nodes whose distance in G does not exceed k
is denoted by Nk.

Bourjolly et al. [14] proposed a formulation with node and
chain variables and showed that, for the case k¼2, the formulation
may be simplified by eliminating all chain variables – since any
chain (u, w, v) with length two that links a pair of nonadjacent
nodes u and v can be identified by its central node w. The
simplified model for the case k¼2 can be presented as follows.
Let xi be binary variables such that xi ¼ 1 if and only if node i is
included in the 2-club. A maximum 2-club is an optimal solution
of the following integer linear programming problem:

Max ∑
iAV

xi

s.t.

xiþxjr1 fi; jgA P2 ð1Þ

xiþxjr1þ ∑
rA ðNi \NjÞ

xr fi; jgA N2 ð2Þ

xiAf0;1g iAV ð3Þ
Constraints (1) impose that if distGði; jÞ42, then nodes i and j

are not both included in the 2-club. Constraints (2) impose that if
distGði; jÞ ¼ 2 then to include these two nodes in the 2-club it is
necessary to include also at least one of their common neighbours.
Constraints (3) define the variables as binary.

Veremyev and Boginski [19] developed a formulation with
recursive path variables and introduced the new concept of robust
k-club: a k-club that verifies the stronger condition that every pair
of nodes must be linked by at least R node-disjoint paths with at
most k edges.

For k¼3, Almeida and Carvalho [20] proposed two integer
formulations denoted by [F_S] and [F_N]. To present them, it is
necessary to define for each pair of nodes fi; jgA N3 the set
Eij ¼ fðp; qÞAE : pA ðNi n NjÞ; qA ðNj n NiÞg of the inner edges of
chains that link i and j, have three edges and whose inner nodes
are not in Ni \ Nj:

[F_S] is a node cut set-based model with variables defined as in
Bourjolly et al. [14]. For each pair of nodes fi; jgA N3, let Sij denote
the set of all minimal sets SijDV that intersect all chains under-
lying the definition of edge set Eij. A maximum 3-club is an
optimal solution of the following integer linear programming
problem:

Max ∑
iAV

xi

s.t.

xiþxjr1 fi; jgA P3 ð4Þ

xiþxjr1þ ∑
rA ðNi \NjÞ

xrþ ∑
sASij

xs ði; jÞA N3; SijA Sij ð5Þ

xiAf0;1g iAV ð3Þ
Constraints (4) impose that if distGði; jÞ43 then nodes i and j

are not both included in the 3-club. Constraints (5) impose that if a
pair fi; jgA N3 is included in the 3-club, then a common neighbour
of i and j or one node from each SijA Sij is also included in the

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104 95

3-club, since otherwise distG½S�ði; jÞ43. Almeida and Carvalho [20]
also presented a compact integer relaxation of [F_S], obtained by
eliminating for each pair fi; jgA N3 all constraints (5) except one.
This relaxation, denoted by [F_SIR], dominates in the theoretical
sense the k-clique model (viewed as an integer relaxation of the
k-club model). [F_SIR] is one of the components of algorithms
5.2 and 5.3 (see Section 5.2).

[F_N] is a compact formulation, with one binary variable xi for
each node iAV and one binary variable zij for each edge ði; jÞAE:

Max ∑
iAV

xi

s.t.

xiþxjr1 fi; jgA P3 ð4Þ

xiþxjr1þ ∑
rA ðNi \NjÞ

xrþ ∑
ðp;qÞAEij

zpq fi; jgA N3 ð6Þ

zijrxi zijrxj ði; jÞAE ð7Þ

zijZxiþxj�1 ði; jÞAE ð8Þ

xiAf0;1g iAV ð3Þ

zijAf0;1g ði; jÞAE ð9Þ

Constraints (6) impose that two nonadjacent nodes i and j
cannot be both in a 3-club unless a common neighbour is in the
3-club or a pair of neighbours, p and q, of i and j respectively,
linked by an edge, are in the 3-club, since otherwise distG½S�ði; jÞ43.
Constraints (7) and (8) impose that an edge ði; jÞ is used if and only
if both its end nodes belong to the 3-club. Constraints (9) define
edge variables as binary.

[F_S] is a natural formulation with |V| variables and a non-
polynomial number of constraints. [F_N] is an extended formula-
tion with |V|þ |E| variables and ðjV j2�jV j=2Þþ2jEj constraints.

Almeida and Carvalho [21] performed an analytical comparison
of the linear programming relaxations of all integer formulations
in the literature for k¼3. They showed for k¼3 that formulation
[F_S] dominates all the others from the linear programming (LP)
point of view. They also proposed enhanced versions of the chain
and the recursive formulations in [14,19] and showed that they are
LP-equivalent to [F_S].

All formulations for the k-club problem mentioned above
include packing constraints of the form xiþxjr1, for all
i; jAV : distGði; jÞ4k, to guarantee that if the distance between
two nodes is greater than k then at most one of them is selected to
be in the k-club. Packing constraints enforce k-clique conditions,
which are necessary but not sufficient conditions in the definition
of k-clubs. They play a decisive role in the computational perfor-
mance of Algorithm 4.1 (see Section 4.1) because they force the
elimination of all nodes that are at a distance greater than k of at
least one node of the initial k-club.

3. Motivation for new heuristics

Designing improvement heuristics for the maximum k-club
problem is not a straightforward task. A k-club S is a maximal
k-club if and only if for every WDV n S the induced subgraph
G½S [W � has diameter greater than k. If S is not maximal, then a
subset WDV n S can be added to S to obtain a maximal k-club.
While testing cliques for maximality can be performed in poly-
nomial time, testing maximality of k-clubs in general graphs is an
NP-hard problem (Mahdavi Pajouh and Balasumdaram [15]). This
is a consequence of the non-hereditary nature of k-clubs. Every
subset of a clique is a clique, but for k-clubs this property does not
hold. If S´ and S are k-clubs and S C S´, then S [W is not
necessarily a k-club for every subset of nodes W C (S´\S). An
illustration is provided by the graph depicted in Fig. 1. S¼{1, 2, 3,
4, 5} is a 2-club and so is set S´¼{1, 2, 3, 4, 5, 6, 7}¼S [{6, 7}.
However, neither S1¼S [{6} nor S2¼S [{7} are 2-clubs.

Furthermore, it may happen that for a k-club S and two subsets
of V\S, say W1 and W2, S [W1 and S [W2 are both maximal
k-clubs, but with different cardinalities. An illustration is provided
by the graph depicted in Fig. 2. Consider the 3-club S¼{1, …, 10}
and sets W1¼{a, b} and W2¼{c, d, e}. S1¼S [W1 and S2¼S [W2

are both 3-clubs, are both maximal, but S1 has 12 nodes whereas
S2 has 13 nodes.

The non-hereditary nature of k-clubs is also adverse for tradi-
tional greedy heuristics. An enlightening example is given by
odd-holes (i.e., cycles with an odd number of nodes and no edges
between nonadjacent nodes of the cycle). Let G¼ ðV ; EÞ be a graph
and let UDV be a subset of 2kþ1 nodes (k 41) whose induced
graph is an odd-hole. Set U is a k-club, but any constructive
algorithm that proceeds by adding one node at a time, while
keeping feasibility, will stop after adding kþ1 nodes and missing
another k nodes, i. e., with a relative gap of ðk=2kþ1Þ.

In light of the discussion above, the heuristics presented in
Sections 4 and 5 were devised based on a basic principle: avoid
single-element operations when enlarging feasible solutions or
removing nodes from non-feasible solutions. To avoid single-element
operations, the enlargement of feasible solutions and the removal of
nodes from non-feasible solutions are accomplished by solving
restricted versions of compact formulations for the k-club problem.

4. New heuristics for the k-club problem

The algorithms proposed in this section are two-phase con-
structive and elimination heuristics. In the constructive heuristic,
phase 1 is devoted to generating a k-club S and phase 2 is devoted
to obtaining a largest set WD ðV n SÞ such that S [W is a k-club. In
the elimination heuristic, phase 1 addresses the problem of finding

2

1

3 4

5

67

8

Fig. 1. Example of a graph with 2-club number equal to 7.

2

3

4

10

5

1

67

8

9

a b

c

d

e

Fig. 2. Example of a graph with 3-club number equal to 13.

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–10496

a set CDV likely to contain large k-clubs and phase 2 is devoted to
finding a largest k-club SDC.

4.1. Constructive heuristic

The aim of this algorithm is to add nodes to a given non-maximal k-
club S in order to obtain a maximum cardinality k-club that includes S.
For this purpose, it is necessary to find a largest setWDV n S such that
G½S [W � has diameter less than or equal to k. In other words, we need
to identify a largest set of nodes that can be added to the current set S
while complying with the diameter condition that defines the subgraph
induced by a k-club. Let AðSÞ ¼ fWDV n S : diamðG½S [W �Þ r kg be
the family of all such sets. A set Wn¼arg max fjW j : WAAðSÞg is an
optimal solution of the restricted integer problem that results from
adding to a valid formulation of the k-club problem the condition that
all nodes in S must be included in the solution. The general framework
of the algorithm can be summarized as follows:

Algorithm 4.1.

begin
/n Phase 1 n/
Find an initial k-club, SI;

/n Phase 2 n/
A ðSIÞ:¼fWDV n SI : diamðG½SI [W � Þr kg;
Wn:¼arg max fjW j : WAAðSIÞg;
SF :¼Wn [SI;

end

The final solution SF returned by Algorithm 4.1 is a k-club,
which is maximal in G¼ ðV ; EÞ and has maximum cardinality
among all k-clubs that include SI .

Phase 1 of Algorithm 4.1 may be implemented with any
heuristic algorithm for the k-club problem (see Section 2). Phase
2 may be implemented by adding to an integer programming
formulation of the k-club problem constraints xv ¼ 1, for all vASI .
For every node vASI , all variables xj associated with nodes jAV n SI
such that distGðv; jÞ4k can be eliminated from the formulation,
further reducing its dimension.

4.2. Elimination heuristic

Bearing in mind the discussion in Section 3, it seems intuitively
appealing to test another two-phase approach variant: first find a
k-clique C in G¼ ðV ; EÞ and then find a largest k-club in the family
of all k-clubs included in C.

Let D ðCÞ ¼ fSDC : diamðG½S�Þ r kg be the family of all k-clubs
that can be obtained by deleting nodes of C. A largest k-club in this
family Sn ¼ arg max fjSj : SADðCÞg can be obtained by solving the
restricted model that results from adding constraints xv ¼ 0, for all
vAV n C, to any integer programming formulation of the k-club
problem.

The algorithm can be summarized as follows:

Algorithm 4.2.

begin
/n Phase 1 n/
Find a maximum k-clique, C;
if diam ðG½C�Þrk then SF :¼C;
else

/n Phase 2 n/
DðCÞ:¼fSDC : diamðG½S�Þr kg;
SF :¼arg max f jSj : SADðCÞg;
end if

end

Algorithm 4.2 can be interpreted as an enhanced version of
heuristic k-Clique and Drop. For a k-clique C, built in phase 1, it
solves to optimality the problem of finding a largest k-club
contained in C, rather than applying heuristic Drop. As a conse-
quence, if heuristic k-Clique and Drop and Algorithm 4.2 are
initialized with the same maximum k-clique C, then SF , the k-club
returned by Algorithm 4.2, has at least as many nodes as the k-club
generated by heuristic k-Clique and Drop. If there is more than one
maximum k-clique in G, as it is often the case, and if the
algorithms find different sets C in phase 1, then no a priori claim
can be made about the cardinality of their final k-clubs. To reduce
the computing time, a near-optimal solution can be used in phase
1 of Algorithm 4.2, as well as in step 1 of heuristic k-Clique
and Drop.

5. New heuristics for the 3-club problem

In this section, we propose new heuristics based on results that
hold only for the case k¼3.

5.1. Heuristic Backbone

In any graph G¼ ðV ; EÞ, the end nodes of an edge and their
neighbours are a 3-club. For any edge ðu; vÞAE, we will refer to this
structure as the backbone induced by ðu; vÞ and denote its set of
nodes by bkbðu; vÞ.

Heuristic Backbone selects an edge ðun; vnÞAE that induces a
backbone with a maximum number of nodes and returns its set of
nodes, SB. Denoting by Ni the neighbourhood fjAV : ði; jÞAEg of
node iAV , the algorithm can be summarized as follows:

Algorithm 5.1.

begin
bkb ðu; vÞ:¼Nu[Nv for all ðu; vÞAE;
ðun; vnÞ:¼arg max f jbkb ðu; vÞ j : ðu; vÞAEg;
SB:¼ bkb ðun; vnÞ;

end

For any graph G, the number of nodes in the 3-club SB,
generated by heuristic Backbone, is greater than or equal to the
cardinality of the 3-club SC, built with heuristic Constellation. Let p
be the maximum degree node selected in step 1 of heuristic
Constellation as the centre of the star and let q be the node in the
star whose neighbours are added in step 2. The number of nodes
in SC is the cardinality of bkb ðp; qÞwhich is smaller than or equal to
the cardinality of bkb ðun; vnÞ. That the number of nodes in SC may
be strictly smaller than the number of nodes in SB is illustrated by
the graph depicted in Fig. 3. Heuristic Constellation generates the
3-club SC¼bkb ð1;6Þ ¼ {1, 2, 3, 4, 5, 6, 7} whereas heuristic Back-
bone generates the 3-club SB¼bkb ð6;7Þ ¼ {1, 4, 5, 6, 7, 8, 9, 10}. SC
has 7 nodes whereas SB has 8 nodes.

7

9

10

8
1

23

4

6
5

Fig. 3. Illustration of heuristic Backbone's dominance over heuristic Constellation.

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104 97

5.2. Heuristics based on [F_SIR]

[F_SIR] is a compact integer relaxation of the natural formula-
tion [F_S] for the 3-club problem proposed in Almeida and
Carvalho [20] (see Section 2.2). Any feasible solution of [F_SIR] is
a 3-clique that satisfies some additional constraints, which are
necessary for the 3-club structure. Therefore, an optimal solution
of [F_SIR] is likely to contain a large 3-club. Algorithm 5.2 was
designed to test this idea.

Algorithm 5.2.

begin
/n Phase 1 n/
SI’optimal solution of [F_SIR];
if diam ðG½SI �Þ r3 then STOP;
else

/n Phase 2 n/
run heuristic Drop on subgraph G½SI �;
end if

end

It should be pointed out that, if heuristic 3-Clique and Drop is
initialized with a maximum 3-clique C and heuristic SIR and Drop
is initialized with set SI , optimum for [F_SIR], although the
inequality jSIjr jCj holds, the inclusion SIDC may not hold, since
[F_SIR] and the maximum 3-clique problem may have multiple
optimal solutions. Furthermore, even if the inclusion SIDC holds,
the rules that drive the elimination of nodes performed by the
heuristic Drop may lead to very different solutions.

In line with the rationale used for Algorithm 4.2, we also
designed a heuristic which solves to optimality the problem of
finding the largest 3-club in the universe of all 3-clubs contained
in an optimal solution of [F_SIR]. It is aimed at investigating
whether or not it is worthwhile replacing heuristic Drop by an
exact procedure in phase 2 of Algorithm 5.2. This method can be
summarized as follows:

Algorithm 5.3.

begin
/n Phase 1 n/
SI’optimal solution of [F_SIR];
if diam ðG½SI �Þr3 then STOP;
else

/n Phase 2 n/
DðSIÞ:¼fSDSI : diamðG½S�Þ r 3g;
SF :¼arg max f jSj : SADðSIÞg;
end if

end

For some graphs, solving to optimality the integer linear
problems embedded in Algorithms 5.2 and 5.3 may be too time-
consuming. As in heuristics presented in Section 4, near-optimal
solutions may be used to reduce running times.

6. Computational results

All algorithms were coded in C and run on a 2.93 GHz PC
Pentium III processor with 3.46GB of RAM. The integer linear
programming problems were solved with the integer routine of
ILOG/CPLEX 11.1. In algorithms 4.1, 4.2, 5.2, and 5.3 a time limit of
3 min was imposed in each call of the integer routine. In the multi-
start versions of algorithm 4.1 (denoted by mS_IP and mB_IP)
there are as many integer problems to solve as the number of
starting nodes or edges selected. In these versions, the time limit
for each integer model solved in one run of the algorithm was set

by dividing 10 min by the number of integer problems to solve.
When the time limit was hit before obtaining a proven optimal
solution, we used the best known integer solution. To assess the
performance of the new heuristics, we used the results obtained
with the exact algorithms proposed in [17,20] for k¼2 and k¼3,
respectively. Each gap was computed as

GAP¼ 100�ωbest� SHj j
SHj j %

where ωbest is the k-club number (for the instances solved to
proven optimality by the exact algorithms) or the best known
upper bound on the k-club number (for the unsolved instances)
and SHj j is the cardinality of the k-club generated by heuristic H.

6.1. Randomly generated uniform graphs

Uniform graphs with 50, 100, 150, and 200 nodes were
randomly generated as described in [16]. The generation proce-
dure is controlled by two parameters a and b ð0rarbr1Þ.
The expected edge density is equal to ðaþbÞ=2 and the node
degree variance increases with b�a. All computational results
presented in the literature, both for exact and heuristic algorithms,
indicate that, in practice, the difficulty in solving the maximum k-
club problem depends to a large extent on the combination of
values of k and edge density of the graphs. For the 2-club problem,
graphs with edge density around 0.15 seem to be the hardest to
solve, regardless of the approach adopted. In this study, for k¼2,
we considered edge density values DA{0.10, 0.15, 0.20}. For k¼3,
many authors consider graphs with edge density around 0.05 as
the hardest to solve but the results in [20] indicate that graphs
with edge density around 0.035 may be even harder to solve to
optimality. In this study, for k¼3, we considered edge density
values DA{0.020, 0.035, 0.050}. All graphs are connected. For edge
density 0.020 (resp. 0.035) we do not present results for graphs
with 50 and 100 nodes (resp. with 50 nodes) because the majority
of graphs generated was not connected. For each combination of
node number and edge density there are 10 graphs in the test set.
As in [15,20], 5 graphs (group I) were generated with a¼0 and
b¼2�D and 5 graphs (group II) with a¼b¼D. All these instances
can be downloaded from https://aquila2.iseg.ulisboa.pt:443/
aquila/homepage/f706/uniform-graphs.

The figures presented in all tables are average values for these
groups of 5 graphs.

6.1.1. Results for k¼2
Table 1 contains the results obtained with Algorithm 4.1.

Phase 1 was implemented with heuristic Star (see Section 2).
In phase 2 we used the simplified model (1)–(3) (see Section 2.2)
with additional constraints xv ¼ 1, for all vASI :

Column (1) of Table 1 presents average ratios of the cardinality
of the 2-clubs generated by Algorithm 4.1 to the cardinality of the
2-clubs generated by heuristic Star. They show that only for graphs
with edge density 0.20 did the new algorithm manage to achieve
significant improvements. This poor performance is partially
explained by the fact that, for low density graphs, heuristic Star
solutions are frequently optimal, as pointed out in [16]. The gap
values presented in Table 3 show that in this test set it turned out
that heuristic Star generated optimal solutions for a large number
of graphs with edge density 0.10. Columns (3) and (4) show that
computing times are very small in all cases. We also implemented
a multi-start version of the algorithm, denoted by mS_IP, which
consists of repeating the algorithm with the initialization centred
at different nodes. The results in Columns (2) and (5) show that,
for the 0.15 and 0.20 edge density groups, the multi-start version
was much more successful, with running times below 40 s.
Considering the whole set of 120 graphs, the basic version of

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–10498

https://aquila2.iseg.ulisboa.pt:443/aquila/homepage/f706/uniform-graphs
https://aquila2.iseg.ulisboa.pt:443/aquila/homepage/f706/uniform-graphs

Algorithm 4.1 managed to increase the number of nodes in the
Star solution in 28% of the graphs and the multi-start version
outperformed the basic version in 48% of the graphs.

The results obtained with Algorithm 4.2 are presented in Table 2.
The computational implementation of phase 2 was made using the
same integer formulation used to implement Algorithm 4.1.

The ratios presented in Column (1) of Table 2 show that
Algorithm 4.2 outperformed heuristic 2-Clique and Drop in seven-
teen groups of graphs. Considering the whole set of 120 graphs,
the cardinality of the 2-clubs generated by Algorithm 4.2 was, on
average, 11% higher than the cardinality of the 2-clubs generated
by heuristic 2-Clique and Drop. The best relative performance of
Algorithm 4.2 was achieved for graphs with edge density 0.15,
which are known to be particularly hard to solve to optimality. The
overall average computing time of Algorithm 4.2 was less than
14 s. The time limit was hit in heuristic 2-Clique and Drop and
Algorithm 4.2, while looking for a maximum 2-clique, for one
graph, with 200 nodes and edge density 0.10, in group II. It was
also hit in phase 2 of Algorithm 4.2 for four graphs, with 200 nodes
and edge density 0.15, also in group II.

The average gaps for Algorithms 4.1 and 4.2 are presented in
Table 3, with the best row result printed in bold type.

Columns (1) and (2) present the average gaps obtained with
heuristic 2-Clique and Drop and Algorithm 4.2, respectively.
Columns (3)–(5) display the average gaps of heuristic Star, the
basic version of Algorithm 4.1, and its multi-start version, respec-
tively. For graphs with edge density D¼0.10, the average gap
obtained with heuristic 2-Clique and Drop was 73.04%, while by
solving a restricted integer problem, instead of running Drop, the
average gap was 50.79%. Heuristic Star and both versions of
Algorithm 4.1 yielded an average gap of only 0.34%, with many
proven optimal solutions generated by Star. For graphs with edge
density D¼0.15, the average gaps obtained with heuristics 2-
Clique and Drop and Star were 47.55% and 59.63%, respectively.
With Algorithm 4.2 (2-Cl_IP) and the multi-start version of
Algorithm 4.1 (mS_IP), they were only 22.73% and 24.07%,

respectively. For graphs with edge density D¼0.20, the solutions
produced by heuristic 2-Clique and Drop had an average gap of
7.37%, whereas by solving a restricted integer model instead of
running heuristic Drop, the average gap was only 5.14%. Heuristic
Star showed a poor performance, with an average gap of 127.63%.
With the basic version of Algorithm 4.1 this gap was reduced to
26.31% and with the multi-start version it was further reduced to
only 1.52%.

Table 1
Algorithm 4.1.

Ratio CPU time (s)

S_IP/S mS_IP/S S S_IP mS_IP
D |V| Group (1) (2) (3) (4) (5)

0.10 50 I 1.00 1.00 0.0 0.6 1.2
50 II 1.00 1.00 0.0 0.8 0.6

100 I 1.00 1.00 0.0 0.8 1.6
100 II 1.00 1.00 0.2 0.6 1.8
150 I 1.00 1.00 0.0 0.8 3.4
150 II 1.00 1.00 0.0 0.6 3.8
200 I 1.00 1.00 0.0 0.6 7.4
200 II 1.00 1.00 0.0 0.8 7.0

0.15 50 I 1.00 1.07 0.0 0.8 1.0
50 II 1.00 1.03 0.2 1.2 1.2

100 I 1.01 1.42 0.0 0.6 3.0
100 II 1.00 1.02 0.2 1.2 1.6
150 I 1.00 1.72 0.0 0.8 13.0
150 II 1.00 1.07 0.0 0.6 5.2
200 I 1.17 2.31 0.0 1.0 37.6
200 II 1.00 1.08 0.0 0.6 15.6

0.20 50 I 1.03 1.36 0.0 0.8 1.6
50 II 1.01 1.28 0.0 0.6 1.0

100 I 1.21 1.80 0.0 0.8 3.8
100 II 1.37 2.09 0.0 0.4 4.0
150 I 2.08 2.26 0.0 0.8 11.6
150 II 3.00 3.18 0.0 1.0 13.2
200 I 2.56 2.60 0.0 0.6 29.2
200 II 3.47 3.48 0.0 1.0 33.6

Table 2
Algorithm 4.2.

Ratio CPU time (s)

2-Cl_IP/2-Cl & D 2-Cl&D 2-Cl_IP
D |V| Group (1) (2) (3)

0.10 50 I 1.00 0.6 1.0
50 II 1.00 1.2 0.6

100 I 1.10 1.2 1.4
100 II 1.02 2.0 2.0
150 I 1.20 2.6 2.6
150 II 1.19 11.2 11.0
200 I 1.27 6.4 7.8
200 II 1.26 97.8 96.4

0.15 50 I 1.01 1.2 1.0
50 II 1.00 0.6 1.0

100 I 1.14 0.8 0.6
100 II 1.17 0.4 1.2
150 I 1.05 0.6 0.8
150 II 1.55 1.0 15.2
200 I 1.04 0.6 0.8
200 II 1.56 0.8 178.4

0.20 50 I 1.00 0.8 0.8
50 II 1.04 1.0 1.0

100 I 1.00 0.8 0.6
100 II 1.09 1.0 1.0
150 I 1.01 1.4 1.4
150 II 1.01 0.8 1.0
200 I 1.00 1.2 1.4
200 II 1.00 1.2 1.4

Table 3
Algorithms for the 2-club problem: Gaps (%).

2-Cl & D 2-Cl_IP S S_IP mS_IP

D |V| Group (1) (2) (3) (4) (5)

0.10 50 I 1.54 1.54 1.54 1.54 1.54
50 II 1.67 1.67 0.00 0.00 0.00

100 I 50.24 36.10 0.00 0.00 0.00
100 II 83.36 79.36 0.00 0.00 0.00
150 I 90.57 59.36 0.63 0.63 0.63
150 II 114.73 78.38 0.00 0.00 0.00
200 I 83.87 43.30 0.51 0.51 0.51
200 II 158.32 106.61 0.00 0.00 0.00

0.15 50 I 22.83 21.51 10.67 10.67 3.72
50 II 19.23 19.23 11.27 11.27 8.19

100 I 27.54 11.82 44.74 43.75 2.01
100 II 71.95 46.60 29.15 29.15 25.98
150 I 15.27 10.20 75.03 74.18 1.70
150 II 95.11 26.03 45.89 45.89 37.87
200 I 10.21 6.02 132.50 108.65 0.67
200 II 118.29 40.41 127.77 127.77 112.39

0.20 50 I 5.63 5.63 36.55 32.78 0.83
50 II 22.16 16.75 36.11 34.42 7.13

100 I 5.42 5.42 79.85 52.78 0.00
100 II 19.45 9.27 117.00 73.34 4.19
150 I 2.12 1.37 125.62 8.72 0.00
150 II 3.01 1.85 218.43 6.50 0.00
200 I 0.33 0.22 159.89 1.69 0.00
200 II 0.84 0.62 247.56 0.21 0.00

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104 99

To get a more general picture of the algorithms analysed in
Tables 1–3, we computed overall average gaps, overall average
running times, and number of times each heuristic obtained the
best 2-club. They are given in Figs. 4–6, respectively. In Fig. 5, Star's
average CPU time is omitted because it is too small to be visible in
the chart.

The most successful heuristic was mS_IP, the multi-start ver-
sion of Algorithm 4.1: it found the best 2-club in 106 graphs and
yielded an average gap of 8.7%, with an average running time of
only 8.5 s. Its good performance, both in terms of solution quality
and running time, can be explained by the fact that, for each
choice of the initial node, a large proportion of nodes can be
immediately eliminated. This elimination leads to small integer
models that are, in general, fast to solve. Since the restricted
models are fast to solve, it is possible to try a large number of
different initial nodes and get a good insight on the set of large 2-
clubs within limited running times. Bringing constructive
approaches face to face with elimination approaches, the former
were more successful in finding large 2-clubs than the latter and
their running times were also more favourable. There are possibly
two reasons for that: the dimensions of the integer models
embedded in the heuristics and the incumbent solution for the
branch-and-bound search, provided by phase 1 of all constructive
approaches, but not available in elimination approaches.

6.1.2. Results for k¼3
In Table 4 we compare the performances of heuristics Backbone

and Constellation for the 3-club problem. The figures in Column
(1) are average ratios of the cardinality of the 3-clubs generated by
Backbone to the cardinality of the 3-clubs generated by Constella-
tion. These ratios show that in 50% of the groups, the 3-clubs built
by heuristic Backbone are strictly larger, on average, than the
3-clubs built by heuristic Constellation, but the differences are
very small. The corresponding computing times, in Columns
(2) and (3), are undistinguishable.

Phase 1 of Algorithm 4.1 was implemented with heuristics Star,
Constellation, and Backbone (represented in Table 5 by the initials
S, C, and B, respectively) and phase 2 was implemented with the
compact formulation [F_N] (see Section 2.2) with the additional
constraints xv ¼ 1, for all vASI .

Columns (1)–(3) of Table 5 show the average ratios of the
number of nodes in the final 3-clubs to the number of nodes in the
3-clubs used to initialize the procedures. Columns (5)–(10) present
the corresponding running times. It should be pointed out that for
a given graph, since a star is a k-club for any k 41, the number of
nodes in SI is smaller when heuristic Star is used to implement
phase 1. As a consequence, the number of constraints xv ¼ 1, vASI ,
added to formulation [F_N] is smaller and the integer model in
phase 2 takes longer to solve, but may produce larger 3-clubs (see
Table 7). While, on average, phase 2 of Algorithm 4.1 improved
Constellation solutions by 41%, it improved Backbone solutions by
44%, suggesting that the backbone structure may be a better seed
for large 3-clubs. Columns (4) and (11) refer to a multi-start
version mB_IP of the algorithm, implemented running heuristic
Backbone in phase 1. This version consists of repeating the
algorithm with initial backbones induced by different edges. The
selection of these edges was guided by the intuition that edges
with high end nodes' degree are more likely to produce good
results. After a limited parameter tuning, we decided to select an
edge (i, j) to induce an initial backbone if min fΔi; ΔjgZ0:5Δ ðGÞ
and max fΔi; ΔjgZ0:7Δ ðGÞ, where Δv and Δ ðGÞ denote the
degree of node vAV and the maximum node degree in G,
respectively. This choice yielded a number of initial backbones
that did not lead to unacceptably long computing times and
enhanced the search. The ratios in Columns (3) and (4) show that
mB_IP outperformed B_IP in all but one group of graphs: graphs
with 150 nodes and edge density 0.020 in group I. As shown in

0

10

20

30

40

50

60

70

S 2-Cl&D S_IP 2-Cl_IP mS_IP

A
ve

ra
ge

 g
ap

 (%
)

k = 2

Fig. 4. Average gaps.

0

5

10

15

20

2-Cl&D S_IP 2-Cl_IP mS_IP

A
ve

ra
ge

 C
PU

 (s
ec

on
ds

) k = 2

Fig. 5. Average CPU time.

0

20

40

60

80

100

120

S 2-Cl&D S_IP 2-Cl_IP mS_IP

N
um

be
r o

f b
es

t s
ol

ut
io

ns
 fo

un
d

k = 2

Fig. 6. Number of best solutions found.

Table 4
Heuristics Backbone and Constellation.

Ratio CPU time (s)

B/C B C
D |V| Group (1) (2) (3)

0.020 150 I 1.00 0.0 0.0
150 II 1.00 0.0 0.0
200 I 1.00 0.0 0.0
200 II 1.01 0.0 0.0

0.035 100 I 1.01 0.0 0.0
100 II 1.04 0.0 0.0
150 I 1.00 0.0 0.0
150 II 1.02 0.0 0.0
200 I 1.01 0.0 0.0
200 II 1.01 0.0 0.0

0.050 50 I 1.00 0.0 0.0
50 II 1.02 0.0 0.0

100 I 1.00 0.0 0.0
100 II 1.00 0.0 0.0
150 I 1.01 0.0 0.0
150 II 1.00 0.2 0.2
200 I 1.00 0.0 0.0
200 II 1.02 0.0 0.0

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104100

Table 7, it turned out that heuristic B_IP built optimal 3-clubs for
all graphs in that group, leaving no room for improvement.

Table 6 displays the results obtained with Algorithm 4.2, and
also with algorithms 5.2 and 5.3. Figures in Columns (1) and
(2) show that solving an integer model in phase 2, rather than
using heuristic Drop, yielded an average increase of 6% on the final
solution cardinality, regardless of the option taken in phase 1 (a 3-
clique or a solution of [F_SIR]). The best results were achieved for
graphs with edge density 0.05 – in the group II of instances with
150 nodes 3-Cl_IP and SIR_IP yielded average improvements of 38%
or 26%, respectively. Figures in Column (3) show that, in all groups
but one, building an optimal solution of [F_SIR] in phase 1 yielded
better results than building a maximum 3-clique. As shown in
Columns (4) and (5) it was also more time consuming but the
overall average running time was below one minute.

The average gaps are presented in Table 7, with the best row
value printed in bold type. Considering the whole set of 90 graphs

in the test set, the new algorithms proposed in this article
produced average gaps between 1.83% (mB_IP) and 19.01% (3-
Cl_IP) whereas heuristics Constellation and 3-Clique and Drop
produced average gaps of 62.06% and 27.01%, respectively. The
multi-start version of Algorithm 4.1 built proven optimal 3-clubs
for all graphs in 11 out of the 18 groups. In the whole set of 90
graphs, it produced the largest 3-club for 85 of them. Algorithm
4.1, implemented with the Star solution (phase 1), and algorithm
5.3 were close competitors for the second position in the global
ranking.

To get a more general picture of the algorithms for the case
k¼3, we computed overall average gaps, overall average running
times, and number of times each heuristic obtained the best 3-
club. They are given in Figs. 7–9, respectively.

The most successful heuristic was mB_IP: it found the best 3-
club in 85 graphs and yielded an average gap of 1.8%, with an
average running time of only 36.7 s. In terms of solution quality

Table 5
Algorithm 4.1.

Ratio CPU time (s)

S_IP/S C_IP/C B_IP/B mB_IP/B S S_IP C C_IP B B_IP mB_IP
D |V| Group (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.020 150 I 1.80 1.15 1.19 1.19 0.0 1.8 0.0 1.8 0.0 1.4 2.8
150 II 1.79 1.11 1.13 1.14 0.0 1.4 0.0 1.0 0.0 1.4 3.0
200 I 1.81 1.11 1.16 1.21 0.0 1.8 0.0 1.2 0.0 1.4 6.2
200 II 1.77 1.11 1.11 1.15 0.0 1.6 0.0 1.2 0.0 1.2 6.4

0.035 100 I 2.17 1.30 1.25 1.35 0.0 1.2 0.0 1.2 0.0 1.0 2.6
100 II 1.87 1.19 1.16 1.20 0.0 1.2 0.0 1.4 0.0 1.4 1.8
150 I 2.41 1.42 1.40 1.45 0.0 1.6 0.0 1.4 0.0 1.4 5.4
150 II 2.03 1.20 1.20 1.26 0.0 1.6 0.0 1.0 0.0 1.2 6.6
200 I 2.56 1.48 1.52 1.54 0.0 5.2 0.0 1.6 0.0 1.8 12.8
200 II 2.23 1.34 1.30 1.42 0.0 3.0 0.0 2.0 0.0 1.4 17.4

0.050 50 I 1.60 1.05 1.08 1.12 0.0 1.2 0.0 1.6 0.0 1.0 1.4
50 II 1.64 1.07 1.11 1.13 0.0 1.2 0.0 0.8 0.0 1.0 1.4

100 I 2.20 1.30 1.33 1.42 0.0 1.2 0.0 1.2 0.0 1.0 3.4
100 II 2.10 1.31 1.32 1.34 0.0 1.0 0.0 1.2 0.0 1.0 3.4
150 I 3.22 1.62 1.76 2.24 0.0 6.4 0.0 2.2 0.0 2.0 34.4
150 II 2.72 1.42 1.42 1.61 0.2 7.2 0.2 2.2 0.2 2.2 15.8
200 I 5.47 3.04 3.09 3.48 0.0 8.8 0.0 3.4 0.0 3.0 229.2
200 II 4.34 2.17 2.35 3.05 0.0 182.4 0.0 5.4 0.0 9.2 305.8

Table 6
Algorithm 4.2, Algorithm 5.2, and Algorithm 5.3.

Ratio CPU time (s)

3-Cl_IP/3-Cl & D SIR_IP/SIR & D SIR_IP/3-Cl_IP 3-Cl_IP SIR_IP
D |V| Group (1) (2) (3) (4) (5)

0.020 150 I 1.00 1.00 1.00 2.8 4.0
150 II 1.00 1.00 1.04 4.6 7.2
200 I 1.01 1.00 1.22 20.6 48.2
200 II 1.00 1.00 1.01 19.4 48.0

0.035 100 I 1.00 1.00 1.13 1.2 2.2
100 II 1.00 1.00 1.10 1.0 1.6
150 I 1.00 1.00 1.08 1.8 26.6
150 II 1.04 1.00 1.41 3.6 58.8
200 I 1.15 1.22 1.01 4.6 181.2
200 II 1.07 1.05 1.14 5.4 181.6

0.050 50 I 1.02 1.00 1.03 0.6 1.0
50 II 1.06 1.00 1.09 1.2 1.2

100 I 1.00 1.00 1.17 0.4 4.0
100 II 1.04 1.13 1.34 1.0 8.6
150 I 1.17 1.14 1.02 0.4 23.8
150 II 1.38 1.26 1.03 1.0 116.4
200 I 1.04 1.04 1.01 46.8 3.0
200 II 1.07 1.21 1.16 181.2 133.8

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104 101

the second best is closely disputed by a constructive method
(Algorithm 4.1, initialized with the Star solution) and an elimina-
tion method initialized with an optimal solution of [F_SIR]
(Algorithm 5.3), but in terms of running time the constructive
approach is a clear winner. This difference stems from two

reasons: in phase 1, solving [F_SIR] takes longer than running
heuristics Star, Constellation or Backbone; in phase 2, forcing the
nodes in the initial 3-club into the solution excludes a large
number of other nodes and provides the integer routine with a
feasible solution at the root of the branch-and-bound tree,
whereas removing only the nodes not in the solution of [F_SIR]
excludes a smaller number of nodes and does not provide an
incumbent solution for the branch-and-bound tree search. Since
heuristics Constellation and Backbone gave very similar results
(see Table 4), in Fig. 7 we omitted the results for the second.
Figs. 8 and 9 do not present results for heuristics Star, Constella-
tion, and Backbone because their running times were very close to
zero (see Table 5) and they found no best solution. Bringing
constructive approaches face to face with elimination approaches,
the results were again more favourable for the former, but the
difference is less clear than for the case k¼2.

6.2. Graphs from the DIMACS implementation challenge

To assess their performance on large-scale instances and to
allow for a direct comparison with the VNS algorithm (Shahinpour
and Butenko [18]), we also tested heuristics mS_IP and mB_IP on a
subset of instances from the 10th DIMACS implementation chal-
lenge considered in [18]. These are all real-world sparse instances
(all edge densities are below 0.15 and more than half of them are
below 0.01). Columns (1), (2), (5) and (6) of Table 8 reproduce the
figures presented in [18]. The computing times in Columns (2) and
(6) were obtained on a Dell workstation with Intel 3.00 Gz Quad-
core processor and 8.00 GB RAM (Shahinpour and Butenko [18]).

Columns (1)–(4) of Table 8 present the results for k¼2: the
cardinalities of the solutions found by heuristics VNS and mS_IP
are shown in Columns (1) and (3), and the corresponding running
times in Columns (2) and (4), respectively. The figures in Columns
(1) and (3) show that mS_IP was outperformed by the VNS
heuristic only in instances Football and Uk, by just one node in
each case. Columns (2) and (4) show that the computing times for
mS_IP were all under 10 s while the corresponding running times
for the VNS heuristic were in the range [1, 11372]. These results
confirmed mS_IP as a very effective heuristic algorithm for the 2-
club problem on sparse graphs. For sparse graphs, the number of
nodes that are at a distance greater than two of at least one of the
nodes in a Star solution represents a very large share of the total
number of nodes of the graph. At each step of mS_IP, by forcing the

Table 7
Algorithms for the 3-club problem: Gaps (%).

C 3-Cl & D S_IP C_IP B_IP 3-Cl_IP SIR & D SIR_IP mB_IP
D |V| Group (1) (2) (3) (4) (5) (6) (7) (8) (9)

0.020 150 I 18.78 0.00 0.00 3.07 0.00 0.00 0.00 0.00 0.00
150 II 14.39 4.96 0.00 3.41 1.05 4.96 1.43 1.43 0.00
200 I 21.06 23.94 6.57 9.34 3.40 21.86 0.00 0.00 0.00
200 II 16.53 2.06 5.19 5.19 3.81 2.06 1.05 1.05 0.00

0.035 100 I 37.06 19.88 1.11 6.16 8.77 9.88 7.14 7.14 0.00
100 II 24.44 10.68 4.71 4.71 3.28 10.68 1.00 1.00 0.00
150 I 45.76 15.18 0.49 3.07 4.36 15.18 6.71 6.71 0.49
150 II 29.20 49.00 0.77 7.50 5.64 42.96 1.60 1.60 0.77
200 I 59.20 50.40 2.90 8.03 3.30 30.97 58.22 30.51 2.07
200 II 42.78 59.65 6.45 7.08 9.51 49.18 37.06 30.87 0.00

0.050 50 I 12.38 5.45 3.08 6.41 3.08 3.33 0.00 0.00 0.00
50 II 15.09 17.14 5.45 7.27 1.67 8.89 0.00 0.00 0.00

100 I 42.24 23.79 6.14 9.11 6.96 23.79 6.07 6.07 0.00
100 II 33.59 46.48 2.53 2.53 1.53 41.03 19.33 4.93 0.00
150 I 137.35 34.82 20.24 48.04 34.75 15.10 29.32 13.46 5.78
150 II 86.75 72.44 15.95 31.92 31.92 25.02 55.37 22.85 16.45
200 I 249.72 8.73 9.26 15.03 13.28 4.72 7.67 3.69 0.57
200 II 230.71 41.53 39.15 61.49 49.59 32.49 38.68 14.52 6.76

0

10

20

30

40

50

60

70

C 3-Cl&D S_IP C_IP B_IP 3-Cl_IP SIR&D SIR_IP mB_IP

A
ve

ra
ge

 g
ap

 (%
)

k= 3

Fig. 7. Average gaps.

0

10

20

30

40

50

60

S_IP C_IP B_IP 3-Cl_IP SIR_IP mB_IP

A
ve

ra
ge

 C
PU

 (
se

co
nd

s) k= 3

Fig. 8. Average CPU time.

0
10
20
30
40
50
60
70
80
90

3-Cl&D S_IP C_IP B_IP 3-Cl_IP SIR&D SIR_IP mB_IP

N
um

be
r o

f b
es

t s
ol

ut
io

ns
 fo

un
d

k= 3

Fig. 9. Number of best solutions found.

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104102

nodes of a Star into the heuristic solution, that large share of nodes
is immediately eliminated. As a consequence, the integer models
embedded in mS_IP are very fast to solve to optimality. For these
graphs, the search of multiple neighbourhoods, with the search
hampered by the non-hereditary nature of the 2-club structure, is
naturally more time consuming in most cases.

Columns (5)–(8) of Table 8 present the results for k¼3: the
cardinalities of the solutions found by the heuristics VNS and
mB_IP are shown in Columns (5) and (7), and the corresponding
running times in Columns (6) and (8), respectively. For the
instances with more than 200 nodes, the number of initial back-
bones considered in mB_IP was limited to a maximum of five.
For the Polblogs instance, the figure in Column (7) is the cardin-
ality of the heuristic Backbone's solution since the integer routine
of CPLEX reported insufficient memory and gave no result at all.
On the other instances, the running time of heuristic mB_IP
exceeded ten minutes in only four cases: Email, Add20, Hep-th,
and PGPgiantcompo. For the PGPgiantcompo instance, the time
limit given to the integer routine of CPLEX was hit, but in the other
three cases the integer routine needed only a few seconds to
compute the final solution, meaning that a huge share of the time
was spent building the integer model. The figures in Columns
(7) and (8) corroborate the comments in Section 6.1.2 for sparse
instances. The backbone structure was confirmed as a good seed
for large cardinality 3-clubs: it plays for the case k¼3 a role similar
to the role played by the star for the case k¼2. Similarly to the case
k ¼2, the search of multiple neighbourhoods, with the search
hampered by the non-hereditary nature of the 3-club structure, is
naturally more time consuming in most cases.

7. Final remarks

The use of graph concepts to analyse complex systems has been
steadily growing in areas such as social network analysis, biology
and financial data mining. In all these areas it is important to
have fast heuristics to identify the elements relevant for the
comprehension of the systems under analysis. In this paper, we
have proposed new algorithms for the problem of finding large

graph clusters with a small number of hops between any two
elements – the maximum k-club problem. The work was moti-
vated by the non-hereditary nature of the k-club structure. Our
contribution is a novel approach to tackle the problem. This
approach consists of using constructive and elimination algo-
rithms to build restricted integer models that are much smaller
in size than the integer models needed to solve the problem to
proven optimality. The computational results obtained on a set of
real-world DIMACS graphs indicate that the VNS algorithm (Ver-
emyev and Boginski [18]) and constructive-based versions of the
new algorithms give in general similar quality results, with the
method that produces the largest k-club being dependent on the
instance considered. In what computing time is concerned, the
VNS algorithm is in general more time-consuming. For sparse
graphs, the simplicity of the constructive and elimination proce-
dures embedded in the new algorithms, together with their
capability of reducing the dimensions of the integer models to
be solved, renders this approach faster to run, when compared
with an approach that relies on the search of multiple neighbour-
hoods, with the search hampered by the non-hereditary nature of
the k-club structure. To the best of our knowledge, this is the first
time that an integer model-based heuristic approach is proposed
for the k-club problem.

Acknowledgements

This work is supported by the National Funding from FCT –

Fundação para a Ciência e a Tecnologia, under the project: PEst-
OE/MAT/UI0152.

We thank the three anonymous reviewers for their comments
and suggestions and Ann Henshall, who was always ready to
elucidate our English grammar and vocabulary doubts.

References

[1] Blażewicz J, Formanowicz P, Kasprzak M. Selected combinatorial problems of
computational biology. Eur J Oper Res 2005;161:585–97.

Table 8
Results on DIMACS instances.

k¼2 k¼3

VNS CPU mS_IP CPU VNS CPU mB_IP CPU
Instance |V| |E| (1) (2) (3) (4) (5) (6) (7) (8)

Karate 34 78 18 1 18 1 25 4 25 1
Dolphins 62 159 13 2 13 1 29 6 29 1
Polbooks 105 441 28 12 28 1 53 59 53 2
Adjnoun 112 425 50 70 50 o1 82 505 82 o1
Football 115 613 16 6 15 1 58 193 58 79
Jazz 198 2742 103 2013 103 9 174 4224 174 142
Celegans-metabolic 453 2025 238 3604 238 o1 371 3658 371 39
Email 1133 5451 72 274 72 o1 215 3605 211 816
Polblogs 1490 16715 352 3872 352 6 352 3608 532a –

Netscience 1589 2742 35 70 35 o1 54 110 54 2
Add20 2395 7462 124 1957 124 8 671 3659 671 3612
Data 2851 15093 18 261 18 1 32 1919 31 9
Uk 4824 6837 5 392 4 o1 8 5747 7 1
Power 4941 6594 20 480 20 o1 30 1168 30 2
Add32 4960 9462 32 567 32 1 96 1450 99 49
Hep-th 8361 15751 51 1825 51 o1 120 3799 120 529
Whitaker3 9800 28989 9 2321 9 o1 15 3563 15 3
Crack 10240 30380 10 2452 10 o1 17 3498 15 4
PGPgiantcompo 10680 24316 206 5184 206 1 273 9301 400 17065
Cs4 22499 43858 5 11372 5 o1 9 7523 9 3

a Backbone heuristic's value.

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104 103

http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref1
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref1

[2] Balasundaram B, Butenko S, Trukhanov S. Novel approaches for analyzing
biological networks. J Comb Optim 2005;10:23–39.

[3] Bruinsma G, Bernasco W. Criminal groups and transnational illegal markets: a
more detailed examination on the basis of social network theory. Crime Law
Soc Chang 2004;41:79–94.

[4] Varanda MP, Carvalho FD. Leadership and diffusion of information for policy
implementation: a new methodology approach, Working Paper SOCIUS
1/2009. Universidade Técnica de Lisboa; 2009.

[5] Boginski V, Butenko S, Pardalos PM. Mining market data: a network approach.
Comput Oper Res 2006;33:3171–84.

[6] Bomze IM, Budinich M, Pardalos PM, Pelillo M. The maximum clique problem.
In: Du D-Z, Pardalos PM, editors. Handbook of combinatorial optimization, The
Netherlands. Dordrecht: Kluwer Academic Publishers; 1999. p. 1–74.

[7] Butenko S, Wilhelm WE. Clique detection models in computational biochem-
istry and genomics. Eur J Oper Res 2006;173:1–7.

[8] Martins P. Extended and discretized formulations for the maximum clique
problem. Comput Oper Res 2010;37:1348–58.

[9] Benlic U, Hao J-K. Breakout local search for maximum clique problems.
Comput Oper Res 2012;40(1):192–206.

[10] McClosky B, Hicks IV. Combinatorial algorithms for the maximum k-plex
problem. J Comb Optim 2012;23:29–49.

[11] Balasundaram B, Butenko S, Hicks IV, Sachdeva S. Clique relaxations in social
network analysis: the maximum k-plex problem. Oper Res 2011;59:133–42.

[12] Mokken RJ. Cliques, clubs and clans. Qual Quan 1979;13:161–73.
[13] Wasserman S, Faust K. Social network analysis. New York: Cambridge

University Press; 1994.
[14] Bourjolly J-M, Laporte G, Pesant G. An exact algorithm for the maximum

k-club problem in an undirected graph. Eur J Oper Res 2002;138:21–8.
[15] Mahdavi Pajouh F, Balasundaram B. On inclusionwise maximal and maximum

cardinality k-clubs in graphs. Discret Optim 2012;9:84–97.
[16] Bourjolly J-M, Laporte G, Pesant G. Heuristics for finding k-clubs in an

undirected graph. Comput Oper Res 2000;27:559–69.
[17] Carvalho FD, Almeida MT. Upper bounds and heuristics for the 2-club

problem. Eur J Oper Res 2011;210:489–94.
[18] Shahinpour S, Butenko S. Algorithms for the maximum k-club problem in

graphs. J Comb Optim 2013;26(3):520–54.
[19] Veremyev A, Boginsky V. Identifying large robust network clusters via new

compact formulations of maximum k-club problems. Eur J Oper Res
2012;218:316–26.

[20] Almeida MT, Carvalho FD. Integer models and upper bounds for the 3-club
problem. Networks 2012;60(3):155–66.

[21] Almeida MT, Carvalho FD. An analytical comparison of the LP relaxations of
integer models for the k-club problem. Eur J Oper Res 2014;232:489–98.

M.T. Almeida, F.D. Carvalho / Computers & Operations Research 52 (2014) 94–104104

http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref2
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref2
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref3
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref3
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref3
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref4
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref4
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref4
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref5
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref5
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref6
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref6
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref6
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref7
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref7
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref8
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref8
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref9
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref9
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref10
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref10
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref11
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref11
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref12
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref13
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref13
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref14
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref14
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref15
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref15
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref16
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref16
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref17
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref17
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref18
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref18
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref19
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref19
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref19
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref20
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref20
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref21
http://refhub.elsevier.com/S0305-0548(14)00188-9/sbref21

	Two-phase heuristics for the k-club problem
	Introduction
	Background and related work
	Heuristic algorithms
	Heuristic Constellation
	Heuristic Drop
	Heuristic k-Clique and Drop

	Integer models

	Motivation for new heuristics
	New heuristics for the k-club problem
	Constructive heuristic
	Elimination heuristic

	New heuristics for the 3-club problem
	Heuristic Backbone
	Heuristics based on [FunderscoreSIR]

	Computational results
	Randomly generated uniform graphs
	Results for kequal2
	Results for kequal3

	Graphs from the DIMACS implementation challenge

	Final remarks
	Acknowledgements
	References

