
Computers & Operations Research 35 (2008) 1613–1623
www.elsevier.com/locate/cor

Cell suppression problem: A genetic-based approach

M.T. Almeidaa,b,∗, G. Schützc, F.D. Carvalhoa,b

aDep. Matemática, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa, Rua do Quelhas, 6, 1200-781 Lisboa, Portugal
bCIO—Centro de Investigação Operacional-FC/UL, Portugal

cEscola Superior de Tecnologia, Universidade do Algarve, Campus da Penha, Estrada da Penha, 8005-139 Faro, Portugal

Available online 18 October 2006

Abstract

Cell suppression is one of the most frequently used techniques to prevent the disclosure of sensitive data in statistical tables.
Finding the minimum cost set of nonsensitive entries to suppress, along with the sensitive ones, in order to make a table safe for
publication, is a NP-hard problem, denoted the cell suppression problem (CSP).

In this paper, we present GenSup, a new heuristic for the CSP, which combines the general features of genetic algorithms with
safety conditions derived by several authors. The safety conditions are used to develop fast procedures to generate multiple initial
solutions and also to recombine, to perturb and to repair solutions in order to improve their quality. The results obtained for 300 tables,
with up to more than 90,000 entries, show that GenSup is very effective at finding low-cost sets of complementary suppressions to
protect confidential data in two-dimensional tables.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Genetic algorithms; Heuristics; Networks; Cell suppression

1. Introduction

Statistical offices carry out census and surveys to collect personal and business data as the input for their reports.
In order to get full cooperation from the respondents, the offices must guarantee that all confidential data entrusted
to them is protected against disclosure. Over the last decade, work by researchers and practitioners has resulted in a
multiplicity of methods for statistical disclosure limitation (see [1–6]).

Statistical data is often published as two-dimensional arrays, called statistical tables, resulting from the aggregation
of individual data saved in microfiles. For tabular data, one of the preferred disclosure limitation techniques is cell
suppression. It consists of omitting the figures that would allow users of the published tables to compute close estimates
of the confidential data.

Fig. 1 shows a table with turnover data for companies, aggregated by geographical location and by activity, with
confidential values substituted by the missing symbol *. By simply solving a system of linear equations, any user is
able to deduce that the missing value in cell (Activity IV, Region B) is 10. If an uncertainty margin for each confidential
cell of, for instance, at least ±15% was desired, one could substitute by the missing symbol the nonconfidential value
in the single set of cells {(Activity IV, Region G)}, as in Fig. 2. A volume of nonconfidential data equal to 44 would

∗ Corresponding author. Dep. Matemática, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa, Rua do Quelhas, 6, 1200-781
Lisboa, Portugal. Fax: +351 213922781.

E-mail address: talmeida@iseg.utl.pt (M.T. Almeida).

0305-0548/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2006.09.004

http://www.elsevier.com/locate/cor
mailto:talmeida@iseg.utl.pt

1614 M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623

Reg.A Reg.B Reg.C Reg.D Reg.E Reg.F Reg.G Total

Act. I 20 40 35 31 72 26 10 234

Act. II 18 * 45 29 18 25 * 215

Act. III 34 27 * 50 * 34 38 223

Act. IV 22 * * 43 * 31 444 180

Act. V 30 * 32 33 26 39 * 215

Total 124 137 142 186 156 155 167 1067

Fig. 1. Insufficiently protected table.

Reg. A Reg. B Reg. C Reg. D Reg. E Reg. F Reg. G Total

Act. I 20 40 35 31 72 26 10 234

Act. II 18 * 45 29 18 25 * 215

Act. III 34 27 * 50 * 34 38 223

Act. IV 22 * * 43 * 31 * 180

Act. V 30 * 32 33 26 39 * 215

Total 124 137 142 186 156 155 167 1067

Fig. 2. Protected table.

be lost. If, instead, the omission was made in the set {(Activity III, Region B)}, then the loss of nonconfidential data
would only be 27.

This example illustrates the core of the cell suppression problem (CSP): given a statistical table and a set S1 of
confidential cells, whose values shall not be disclosed, find an optimal set S2, of nonconfidential cells, such that
omitting the values of all cells in S1 ∪S2 renders the table safe for publication. A table is considered safe for publication
if no intruder can compute estimates, for confidential values, deemed too close to the actual values and a set S2 is
optimal if it minimizes the loss of information. The CSP belongs to the class of NP-hard problems [7] for which no
exact algorithm running in polynomial time exists, unless P = NP .

In this paper we present the GenSup algorithm, a genetic-based heuristic for the CSP, which combines the general
features of genetic algorithms [8] with theoretical results derived by several authors for the CSP. The success of GenSup
results from the use of safety conditions, to develop fast procedures to generate and to repair solutions, in a way that fits
a natural representation of feasible solutions for the CSP. To the best of our knowledge this is the first attempt to tackle
the CSP with a genetic methodology. The computational experience performed on two sets of test instances, randomly
generated to reproduce real-world instances typical of sociological and of business data, showed that the performance
of GenSup is more stable than that of other heuristics known from the literature, with low-cost solutions consistently
produced for both test sets.

The paper is organized as follows. Section 2 presents the background and the notation. Section 3 is devoted to a
brief review of constructive heuristics for the CSP. The GenSup algorithm is described in Section 4. Section 5 presents
the lower-bounding and the clean-up procedures. Sections 6 and 7 contain the computational experience and the
conclusions, respectively.

2. Background and notation

A two-dimensional statistical table A = [aij] may be defined as an (m + 1) × (n + 1) array of nonnegative numbers.
The values in the (m + 1)th row are the column totals and the values in the (n + 1)th column are the row totals. Row
and column totals are also called marginal cells. The value am+1,n+1 is the grand total.

The set of confidential cells will be denoted by S1 and its cardinality will be denoted by p. For each cell (i, j) ∈ S1,
a lower protection level, lij , with 0� lij �aij , and an upper protection level, uij , with uij �0 and lij +uij > 0, are set a
priori, to define the cell’s protection interval [aij − lij , aij +uij]. A confidential cell (i, j) is left-protected (respectively,

M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623 1615

right-protected) if the tightest range an intruder is able to compute for aij contains aij − lij (respectively, aij + uij). If
a cell is both left-protected and right-protected then it is protected. When convenient to simplify the notation, the set of
confidential cells will also be denoted by S1 ={(ik, jk) : 1�k�p} and protection ranges denoted by [ak − lk, ak +uk],
1�k�p.

A set S2, of complementary suppressions, is feasible if all confidential cells get protected when the values in S1 ∪ S2
are omitted. Its cost is defined by �(S2) = ∑

(i,j)∈S2
aij and represents the total volume of nonconfidential data lost by

the users.
A statistical table may be represented by a directed bipartite network N = (V ,A), with capacities defined on its

arcs [7,9]. The node set, V = R ∪ C, is the union of a set R of m + 1 nodes, representing the table rows, with a set C of
n + 1 nodes, representing the table columns. Each cell (i, j) of the table is represented by two directed arcs, namely
the forward arc (i, j) from row node i to column node j and the reverse arc (j, i) from column node j to row node i. The
capacities on the forward arcs are cij =+∞ if (i, j) is either an internal cell or the grand total cell and cij =aij if (i, j)

is a marginal cell. The capacities on the reverse arcs are cji = aij if (i, j) is either an internal cell or the grand total cell
and cji = +∞ if (i, j) is a marginal cell. Given a set S2 of complementary suppressions, NS1∪S2 = (V ,AS1∪S2) is
the subnetwork that represents only the suppressed cells. For every k ∈ {1, . . . , p}, Nk and Nk

S1∪S2
are the networks

that result from removing arcs (ik, jk) and (jk, ik) from A and from AS1∪S2 , respectively. Readers unfamiliar with
network flow theory and algorithms are referred to [10].

In [7], Kelly et al. derived a network flow condition for a confidential cell to be protected, that can be stated for the
whole table as follows: internal cells and the grand total, (ik, jk) ∈ S1, are right-protected if and only if uk units of flow
may be sent from column node jk to row node ik and are left-protected if and only if lk units of flow may be sent from
row node ik to column node jk , in Nk

S1∪S2
; marginal cells, (ik, jk) ∈ S1, are right-protected if and only if uk units of

flow may be sent from row node ik to column node jk and are left-protected if and only if lk units of flow may be sent
from column node jk to row node ik , in Nk

S1∪S2
.

In the last couple of decades, one of the most active research streams in combinatorial optimization has been that on
heuristic algorithms that attempt to imitate natural processes to solve difficult problems. The algorithms that imitate
the evolution of biological species are referred to as genetic algorithms [8]. In short, these algorithms act as follows:
starting with a set of solutions (the initial population) generate new solutions (their offsprings) by combining some
selected pairs of solutions (crossover) and by perturbing solutions (mutation) until a stopping criterion is verified. These
basic features may be combined with constructive heuristics, local search and other traditional optimization tools to
develop a wide variety of genetic-based methods [11,12].

3. Constructive heuristics

Some constructive heuristics for the CSP, in two-dimensional tables, are based on the network representation of the
problem, reviewed above. Other heuristics are adaptations of methods developed for more complex tables.

3.1. Network-based heuristics

Based on the network flow condition, Kelly et al. [7] proposed a constructive heuristic for the CSP that protects a
confidential cell at a time, by solving a pair of minimum cost flow problems. Later on, Carvalho et al. [13] suggested
the substitution of the minimum cost flow problems by a sequence of shortest path computations, to get a more accurate
representation of the suppression costs and to reduce the computing time. Several variants based on this general
framework have been developed.

Shortest path heuristic [9,13,14]: In the shortest path (SP) heuristic the confidential cells are considered, one at a
time, in any order. Different solutions may be obtained modifying the order, but experience indicates that there is no
best ordering. A feasible solution is obtained including in S2 all nonconfidential cells corresponding to the arcs in the
paths generated as follows. For each cell (ik, jk) ∈ S1, a sequence of minimum cost paths, joining nodes ik and jk in
Nk , with a total capacity at least equal to the cell’s right-protection level is built. The procedure is then performed for
the left-protection level. In the path computations, the arcs representing confidential cells are assigned zero cost and
the arcs representing nonconfidential cells have their costs set to zero after being included in a path for the first time.
Different solutions may be generated defining different initial costs for the nonconfidential cells. By default, these costs
are equal to the cell values.

1616 M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623

Castro’s heuristic [15]: Castro’s heuristic also relies on shortest path computations, to generate feasible solutions
for the CSP, but implements them in a different way: every time a shortest path is computed, the protection levels of
all confidential cells on it are checked, and those fulfilled are considered solved. To avoid residual capacity updating
operations, when two or more shortest paths are required to fulfill a protection level, they are sequentially computed
under the additional condition that they share no arc. The cost matrix, for the path computations, is defined following
the stratification scheme proposed in [16], to balance the number of new suppressions and the number of shortest path
problems to be solved.

In the computational experience reported in [15], the algorithm never failed to find feasible sequences of arc-disjoint
paths. To guarantee its robustness, the algorithm includes an infeasibility recovery procedure to deal with failures. It
substitutes the computation of shortest paths by the solution of minimum cost network flow problems. This substitution
is very resource demanding, even for moderate size tables, due to the high density of the underlying networks and
destroys the accuracy of the representation provided by the shortest path approach for the loss of information.

Parallel bound and path heuristic: Genetic algorithms require a set of solutions for their initial populations. To
obtain a diversified set of feasible solutions, we designed the parallel bound and path (PBP) heuristic that is a two-
phase scheme to generate in parallel a given number, N, of solutions. It uses the row and column lower bounds, derived
in [14], for the volume of nonconfidential data that must be suppressed in each row or column with confidential cells.
In phase 1, the confidential cells are considered one at a time, in decreasing order of their values, and N complementary
suppression sets are generated, as follows. For each confidential cell, the minimum number of nonconfidential cells in
its row, in the sequence resulting from their ordering in increasing value order, necessary to reach the row lower bound
are included in S2, for the first individual. The procedure is repeated for the following N − 1 individuals, beginning the
ordering of the cells to be selected at the second position in the ordering for the previous individual. Then, the rationale
is repeated for the columns, taking into account the complementary suppressions already assigned to each individual.
After processing all confidential cells, phase 1 is concluded with a set of cell interchanges and substitutions aimed at
eliminating single suppressions in rows and in columns with no confidential cells, if any. Phase 2 consists of applying
the SP heuristic to each solution resulting from phase 1, with zero cost assigned to cells in S1 ∪ S2, to certify that S2 is
feasible or to enlarge it in order to achieve feasibility.

3.2. Other heuristics

The hypercube method, as described in [17], is a fast heuristic developed to find sets of complementary suppressions
to protect confidential data in large complex tables. It decomposes complex tables into subtables, without substructure,
and iteratively protects the subtables. For two-dimensional tables, it amounts to finding, for each confidential cell, a
minimum cost set of three cells to protect it, forming the corner points of a rectangle, i.e. it amounts to including each
confidential cell in a minimum cost feasible circuit of cardinality equal to 4. Due to the cardinality constraint, it has a
tendency of oversuppression. The method was designed to guarantee a sliding protection range for each confidential
cell: a lower bound is calculated for the width of the cell’s protection range, resulting from the suppression of the corner
points of each hypercube, and that suppression is considered feasible if it turns out that the bound is sufficiently large.
Suggestions on how to set the width of the protection ranges, to obtain a feasible set of suppressions, can be found
in [17]. The adaptation of the hypercube method to the a priori fixed interval protection criterion has no theoretical
difficulty. However, in practice, this adaptation yields a high rate of failure for tables with large protection levels.

The HiTaS method [18] was developed for tables with hierarchical structure. It is a top-down methodology to
decompose a hierarchical table into subtables, and then solving the CSP for each subtable. In hierarchical tables,
certain cells appear in more than one subtable (e.g. marginal cells in one subtable may be internal cells of another one)
and it shall not be possible to use values in one subtable to recompute missing values in another one. So, whenever a
particular value is suppressed in one of the subtables, it must be also suppressed in all the others, which may imply some
backtracking steps. In [18], the HiTaS method is illustrated on a small two-dimensional table, in which both explanatory
variables have a hierarchical structure, but no mention is made to the algorithm used to solve the CSP for each subtable.

4. GenSup algorithm

GenSup starts with an initial population generated by constructive heuristics. This population has a number of indi-
viduals bounded from above by a parameter P, with no two individuals with the same cost allowed. In each population,

M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623 1617

reproduction is carried out performing crossover operations on selected individuals and mutations. The selection of
the individuals for reproduction favors the smaller cost ones. By crossover, each pair selected for reproduction yields
four new individuals. The population renewal is made selecting the best individuals in the current generation and in its
offspring. New populations of sets of complementary suppressions are repeatedly generated until a stopping condition
is verified.

Each individual is encoded as a vector, v = [v1, . . . , v|S2|], that stores the corresponding set of complementary
suppressions, with each cell (i, j) ∈ S2 stored as the integer (i − 1) × (n + 1) + j . This is a quite concise encoding
because the number of complementary suppressions is much smaller than (m + 1) × (n + 1).

The main components of GenSup are detailed below.
Initial population: For the initial population, two individuals are generated with the SP heuristic, which is very fast

and, in general, produces low-cost solutions (see Section 6.4). One is generated with the default initial costs. For the
other, we use the optimal solution of the lower-bounding model (see Section 5), setting to zero the initial costs of
nonconfidential cells represented by positive variables. The remaining P − 2 individuals are generated with the PBP
heuristic. If two or more individuals sharing the same cost result, then only one of them, with the minimum cardinality
for S2, is accepted in the population.

Selection: For selection purposes, the quality of each individual is defined by its cost and each one of the 25% best
individuals is considered an elite solution. The set of pairs to be subjected to crossover is selected matching each elite
solution with one of the remaining 75% individuals, chosen at random.

Crossover: The crossover of each pair of selected individuals yields four offsprings: the first two result from the
traditional 1-point crossover operator; the third offspring receives the suppressions shared by both parents; the last
offspring receives the suppressions shared by both parents, as its sibling, and receives also the suppressions exclusive
of the best parent, with probability of 0.75, and the suppressions exclusive of the other parent, with probability of 0.25.
Every offspring is checked for feasibility and repaired, when necessary, as follows. The SP heuristic is run with zero
cost assigned to its inherited suppressed cells. If the SP solution has zero cost, then the offspring is feasible. Otherwise,
the repair consists of enlarging its set of suppressions with the cells associated with nonzero cost arcs in the SP solution.
As no two individuals with the same cost are accepted, an offspring may end up discarded.

Mutation: The mutation operator considers one cell (i, j) ∈ S2 at a time. For each (i, j) ∈ S2, it consists of setting
to zero the cost of all cells in S2\{(i, j)} and then running the SP heuristic. The mutation operator was applied to each
new best individual found. It was also applied to the best offspring of each pair at iteration k = ��/2�, where � is the
maximum number of iterations before halting the search.

Population renewal: The population management is aimed at keeping computing times within reasonable limits,
avoiding premature convergence. After the reproduction operations over the current population are concluded, the
next generation is obtained selecting the best individuals among all individuals in this population and all their off-
springs, under two conditions: (i) no more than P individuals are selected; (ii) no two selected individuals share
the same cost. Condition (ii) guarantees that no solution is repeated in the population and determines the rejection
of solutions that would, most probably, have a pattern very similar to one present in the population. In general,
good solutions move along several generations. If less than P individuals, in the pool of the current population
and its offspring, verify the diversity condition, then less than P individuals will constitute the following genera-
tion. Note that the number of individuals in a generation is never smaller than that number in the precedent one.
As a consequence, as soon as the upper limit is achieved the population size remains stable up to the end of the
procedure.

Stopping criterion: The algorithm stops after performing � iterations or after performing � consecutive iterations
without improving the best solution.

5. Lower bound and clean-up

To assess the quality of the solutions generated by the constructive heuristics and by GenSup, we used the lower
bound on the CSP optimum given by the optimum of the LP-relaxation of the binary model presented in [14]. This
lower bound is very fast to compute (see Section 6.3) and dominates, in the theoretical sense, the lower bounds in
[7,15,19].

Protecting confidential cells sequentially often results in final solutions with redundant suppressions. To eliminate
them, we developed an adaptation of the delete-and-check procedure [20]: for each cell (i, j) ∈ S2, the SP heuristic

1618 M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623

0

S
ec

o
n

d

0.3

0.2

0.1

1111 1701 2121 2511 3131 3721 4141 5151 5751 6161 6561 7171 8181 9191 10201

Number of Cells

Fig. 3. Preprocessing time (class I).

is run on the network that results from removing from NS1∪S2 the arcs associated to (i, j). If the result is a feasible
solution for the CSP, then (i, j) is redundant and may be removed from S2. This clean-up procedure was applied to the
solutions generated with SP to include in the initial population.

6. Computational experience

The computational study was carried out on a 3.00 GHz Pentium IV processor with 1.00 GB RAM. The codes for
GenSup were written in C and compiled in Visual C.

6.1. Data

The computational experience was performed on two classes of typical statistical tables randomly generated following
the rules used in [7,9]. For each class, we present the average results obtained on 15 sets of instances. Each set has 10
tables, sharing the same dimensions m and n.

The 150 tables in class I have a number of internal cells ranging from 1,000 up to 10,000 and dimensions m×n up to
100 × 100. Every internal cell has a random integer value in [0, 499] and all cells with values in [1, 4] are confidential.
The upper and lower protection levels are uij = aij and lij = aij − 1. These generating rules were first used in [9],
following the advice of a member of the ISTAT, the Italian statistical institute.

The 150 tables in class II have a number of internal cells ranging from 1, 000 up to 90, 000 and dimensions m×n up
to 300 × 300. Every internal cell has a random integer value in [0, 1000] and the upper and the lower protection levels
are both equal to 15% of the respective confidential cell’s value rounded up to the nearest integer. Internal cells and
marginal cells are confidential with probabilities of 0.2 and 0.1, respectively. These generating rules were proposed in
[7] and later used also in [9].

For both classes, the cost assigned to each complementary suppression (i, j) is its value aij , and no zero-valued cells
are suppressed.

6.2. Problem preprocessing

The running times of the heuristics depend on the number of protection levels of a table that need to be covered.
A confidential cell may be automatically right-protected (respectively, left-protected), i.e. a cell may not require com-
plementary suppressions for its upper (respectively, lower) protection. This happens when, due to the pattern and the
values of the other confidential cells, an intruder is unable to compute values that violate the right (respectively, the
left) end of the cell’s protection interval. To identify redundant protection levels, we run the SP heuristic, with infinity
costs assigned to all cells not in S1. To speed up the computations, the shortest path routine is substituted, in this case,
by a maximum capacity path routine [10].

Figs. 3 and 4 present the preprocessing computing times for the class I and the class II instances, respectively.
For class I tables, the preprocessing procedure identified almost 80% of the protection levels as redundant, with

average computing times below half a second in every set. For class II tables, the overall average running time was 13 s.
Only for the last set of tables did the average running time exceed 1 min (with a value of 112 s in this case). Although

M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623 1619

0

Number of Cells

S
ec

o
n

d
s

120

105

90

75

60

45

30

15

1111 2121 3131 4141 5151 6161 7171 8181 9191 10201 20301 30401 40401 60501 90601

Fig. 4. Preprocessing time (class II).

0.0

0.5

1.0

1.5

2.0

1111 1701 2121 2511 3131 3721 4141 5151 5751 6161 6561 7171 8181 9191 10201

Number of Cells

S
ec

o
n

d
s

Fig. 5. LB computing time (class I).

0.0

0.5

1.0

1.5

2.0

1111 2121 3131 4141 5151 6161 7171 8181 9191 10201 20301 30401 40401 60501 90601

Number of Cells

S
ec

o
n

d
s

Fig. 6. LB computing time (class II).

comparatively larger than for the other class, these running times were justified by the identification of over 99% of
the protection levels as redundant, for those instances. For tables generated with the same rules, a similar redundancy
ratio is reported in [9].

6.3. Lower bound

Figs. 5 and 6 present, for the class I and the class II instances, respectively, the time to compute the lower bound
value, LB, using the commercial solver Cplex 8.10 on a 866 MHz PC Pentium III processor with 128 Mbyte RAM.

The LB values were computed, on average, in less than 2 s in every set, for both classes. The percentage of integer
LP solutions was much larger in the first class suggesting that, in practice, LB is a tighter bound for class I than for
class II tables.

1620 M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623

Gap (%) SP Hypercube Castro’s

Average 3.67 68.5 129.78

Best 0.46 13.8 11.01

Worst 7.25 97.67 255.19

Fig. 7. Constructive heuristics (class I).

0

2

4

6

8

1111 1701 2121 2511 3131 3721 4141 5151 5751 6161 6561 7171 8181 9191 10201

Number of Cells

%

SP GenSup

Fig. 8. Percentage gaps (class I).

6.4. Computational results

The assessment of the quality of the solutions produced by the heuristics was made, for instances with LB �= 0,
according to the standard formula

gap = UB − LB

LB
× 100%,

where UB stands for the heuristic solution value. The two instances in the test set with LB = 0 did not need any
complementary suppressions at all.

We implemented the hypercube and Castro’s heuristics to compare their performance with those of the SP heuristic
and of GenSup. To make the comparison fair, the solutions obtained with the hypercube method and with Castro’s
heuristic were subjected to the same clean-up procedure used in the SP heuristic to eliminate redundant suppressions
in the solutions introduced in the initial population of GenSup.

For class I tables the hypercube method never failed to produce a feasible solution and Castro’s heuristic never failed
to find feasible sequences of arc-disjoint paths. To compare our results with those presented in [15], it must be taken
into account that the denominator in our gap formula is LB (rather than UB) and that in [15] no clean-up was made,
because it was considered too time consuming. The overall average gap, the best gap and the worst gap over the 15 sets
of tables in class I are presented in Fig. 7.

For class II tables the results obtained do not allow a meaningful comparison. The hypercube method failed to produce
a feasible solution for 143 instances and Castro’s heuristic failed to find feasible sequences of arc-disjoint paths in 132
instances. To obtain feasible solutions with Castro’s heuristic, one could resort to the infeasibility recovery procedure.
However, solutions requiring a systematic call of that procedure would not be representative of the performance of the
algorithm, as it was presented by the author: a method that avoids the efficiency problems of minimum cost network
flow heuristics (see [15, p. 4]). The failures in class II tables were due to the large protection levels (remember that both
levels are set to 15% of the cell value and that 10% of the marginal cells and 20% of the internal cells are confidential).

Thus, we next compare the performance of GenSup with that of the SP heuristic. For GenSup, the parameter values
were set to P = 20, � = 20 and � = 10, based on some experience performed with 30 tables, chosen arbitrarily in the
whole set of instances.

Fig. 8 compares, for class I instances, the quality of the best solution generated by GenSup with the quality of the
solution obtained with the SP heuristic.

The overall average gap for GenSup was 0.97% and its worst value, 2.07%, was smaller than the SP average, 3.67%.

M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623 1621

0

4

8

12

16

20

1111 2121 3131 4141 5151 6161 7171 8181 9191 10201 20301 30401 40401 60501 90601

Number of Cells

%

SP GenSup

Fig. 9. Percentage gaps (class II).

0.01

0.10

1.00

10.00

100.00

1000.00

1111 1701 2121 2511 3131 3721 4141 5151 5751 6161 6561 7171 8181 9191 10201

S
ec

o
n

d
s

(l
o

g
 s

ca
le

)

SP GenSup

Number of Cells

Fig. 10. Running times (class I).

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

1111 2121 3131 4141 5151 6161 7171 1818 9191 10201 20301 30401 40401 60501 90601

Number of Cells

S
ec

o
n

d
s

(l
o

g
 s

ca
le

) SP GenSup

Fig. 11. Running times (class II).

We intended to run GenSup for larger tables (as for class II) but our experience was that, for tables with more than
10,000 internal cells, a dominant proportion of instances did not require complementary suppressions at all—no table
with more than 300 rows, in our test set, required complementary suppressions. On top of that, for the tables requiring
some protection, the average gap of the SP heuristic solutions was less than 0.5%, indicating that there is no need of a
more powerful heuristic, in this case.

Fig. 9 presents the results obtained on class II instances.
The overall average gap was 3.7% for GenSup and 13.16% for the SP heuristic. GenSup gaps only reached two

digits for the two smallest table sets, whereas for the SP heuristic two-digit gaps were scattered across the graphic. The
performance of GenSup improved with the number of cells: the average gaps were 4.55%, for tables with less than
20,000 cells, and 2.00% for the remaining tables. For this class, the GenSup performance is still good for tables with
more than 100,000 cells, in what solution quality is concerned. However, being a population-based method, it requires
computing times that we consider too long.

To compare the results obtained in classes I and II it should be noted that, as mentioned before, the lower bound used
to compute the gap is likely to be tighter for the class I tables.

1622 M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623

Figs. 10 and 11 present the SP heuristic and the GenSup running times, for classes I and II, respectively. Times
presented for GenSup include the constructive heuristics’ time to generate the initial population.

These running times represent a good trade-off between time and solution quality. The gap reductions yielded by
GenSup were in the range [35%, 92%], for class I tables, and in the range [9%, 95%], for class II tables. For tables
with up to 10,000 internal cells, GenSup average running times were all less than 2 min. For class II tables with less
than 60,000 cells, the average running times were still less than 10 min. In the last two sets (class II tables with more
than 60,000 cells) the average computing times increased to approximately 22 min, but the gaps were reduced from
about 10.5% to less than 1.5%.

7. Conclusions

This paper presents a genetic-based algorithm to solve the CSP. Its performance was tested on two classes of randomly
generated instances, with up to 90,000 internal cells: class I instances reproduce real-world count tables, typical of
sociological data, and class II instances reproduce real-world business data tables. In practice, class II tables are more
difficult to protect than class I tables because, to cover large protection levels at a low loss of information, it is necessary
to devise a complex pattern of suppressions. For class II, no results for tables with more than 10,000 internal cells are
reported for the best exact algorithm in the open literature [9], and it did not solve to proven optimality 45 out of the
550 instances in the test set. The computational experience, reported in Section 6, shows that GenSup is very effective
for both classes: it bridged over 70% of the optimality gap of the constructive heuristic solutions. For tables with up
to 10,000 internal cells GenSup average running times were all less than 2 min. For the tables with more than 20,000
cells the GenSup average running times increased to 13 min but the percentage of the optimality gap bridged increased
to 85%, which represents a very good quality vs. time trade-off.

Acknowledgments

The authors thank two anonymous referees and the editor for their comments and suggestions that helped improve
the paper.

References

[1] Willenborg L, de Waal T. Elements of statistical disclosure control. New York: Springer; 2001.
[2] Doyle P, Lane JI, Theeuwes JM, Zayatz LV, editors. Confidentiality, disclosure, and data access—theory and practical applications for statistical

agencies. Amsterdam: North-Holland; 2001.
[3] Domingo-Ferrer J, editor. Inference control in statistical databases—from theory to practice. Lecture notes in computer science, vol. 2316.

Berlin: Springer; 2002.
[4] Domingo-Ferrer J, Torra V, editors. Privacy in statistical databases. Lecture notes in computer science, vol. 3050. Berlin: Springer; 2004.
[5] Fischetti M, Salazar JJ. Solving the cell suppression problem on tabular data with linear constraints. Management Science 2001;47(7):

1008–27.
[6] Gonzalez JF, Cox LH. Software for tabular data protection. Statistics in Medicine 2005;24:659–69.
[7] Kelly J, Golden B, Assad A. Cell suppression: disclosure protection for sensitive tabular data. Networks 1992;22:397–417.
[8] Goldberg D. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley; 1989.
[9] Fischetti M, Salazar JJ. Models and algorithms for the 2-dimensional cell suppression problem in statistical disclosure control. Mathematical

Programming 1999;84:283–312.
[10] Ahuja RK, Magnanti TL, Orlin JB. Network flows—theory, algorithms and applications. Englewood Cliffs, NJ: Prentice-Hall; 1993.
[11] Michalewicz Z. Genetic algorithms + data structures = evolution programs. Berlin: Springer; 1996.
[12] Reeves C, Rowe J. Genetic algorithms—principles and perspectives, a guide to GA theory. Boston: Kluwer Academic Publishers; 2003.
[13] Carvalho FD, Dellaert N, Osório M. Statistical disclosure in two-dimensional tables: positive tables. Report 9441/a, Econometric Institute,

Erasmus University Rotterdam, The Netherlands, 1994.
[14] Carvalho FD, Almeida MT. An integer approach for the cell suppression problem in two-dimensional statistical tables. Working Paper #3-05,

Centro de Investigação Operacional, 2005.
[15] Castro J. A shortest paths heuristic for statistical data protection in positive tables. 2005. Available at: 〈http://www-eio.upc.es/∼jcastro〉.
[16] Cox LH. Network models for complementary cell suppression. Journal of the American Statistical Association 1995;90(432):1453–62.
[17] Giessing S, Repsilber D. Tools and strategies to protect tables with the GHQUAR cell suppression engine. In: Domingo-Ferrer J, editor.

Inference Control in Statistical Databases—from Theory to Practice. Lecture notes in computer science, vol. 2316. Berlin: Springer; 2002.
p. 181–92.

http://www-eio.upc.es/jcastro

M.T. Almeida et al. / Computers & Operations Research 35 (2008) 1613–1623 1623

[18] de Wolf P-P. HiTaS: a heuristic approach to cell suppression in hierarchical tables. In: Domingo-Ferrer J, editor. Inference control in statistical
databases—from theory to practice. Lecture notes in computer science, vol. 2316. Berlin: Springer; 2002. p. 74–82.

[19] Carvalho FD, Almeida MT. Lower-bounding procedures for the 2-dimensional cell suppression problem. European Journal of Operational
Research 2000;123:29–41.

[20] Carvalho FD, Dellaert N, Osório M. Statistical disclosure in two-dimensional tables: general tables. Journal of the American Statistical
Association 1994;89:1547–57.

	Cell suppression problem: A genetic-based approach
	Introduction
	Background and notation
	Constructive heuristics
	Network-based heuristics
	Other heuristics

	=GenSup algorithm
	Lower bound and clean-up
	Computational experience
	Data
	Problem preprocessing
	Lower bound
	Computational results

	Conclusions
	Acknowledgments
	References

