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Abstract

We propose new formulations for the exact disclosure problem and develop Lagrangian schemes, that rely
on shortest path problems, to generate near optimal solutions. Computational experience is reported for 550
tables with up to 40,000 cells. A proven optimal solution was obtained for 95% of the instances and a near
optimal solution was computed for each remaining instance as well as an upper bound on the deviation from
the optimum.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Statistical o8ces disseminate economic and social data using two-dimensional tables built from
microdata aggregating 9gures by relevant categories (economic activity, geographic region, company
number of employees, etc.). The row and column subtotals are presented in the last column and
the last row, respectively. This information is redundant when all table values are published but
may be important otherwise. Many statistical tables display frequency counts and therefore do not
contain negative values. These tables are called nonnegative [1] (some authors call them positive
[2,3]). Economic tables often contain magnitude data that may be unrestricted in sign (e.g. 9nancial
de9cits or negative growth rates). Tables containing data unrestricted in sign are called general
tables [1,2,4].
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Statistical o8ces must guarantee that the tables made available to the public do not enable an
intruder to identify a respondent through its responses.

The 9rst issue is then to determine the cells that reveal too much information about individual
respondents and shall be considered sensitive. The disclosure risk of a cell depends on its contents, on
whether it results from data gathered from the whole population or from some population sample, on
whether the disclosure control rules are known to the intruders or not, etc. For a good discussion on
risk disclosure for tabular data see chapter 6 of [1]. In this work we will assume that the set of
sensitive cells is given.

To protect a sensitive cell against disclosure one may suppress it from publication or make some
sort of perturbation to its value (by adding noise, by stochastic rounding, etc.) [1,5]. For tables that
aggregate magnitude data, such as economic census tables, suppression is the preferred technique
[2]. Due to the table additive structure, suppressing from publication only the sensitive values does
not, in general, ensure their protection. It is then necessary to omit also some nonsensitive values,
known as complementary suppressions, which yields an undesirable loss of information to the user
community.

So, in very general terms, the problem is that of 9nding a set of complementary suppressions that
protects sensitive entries avoiding unnecessary losses of nonsensitive information.

Exact disclosure is typically used for frequency count data [2], when sensitive values are considered
protected if and only if their exact values cannot be deduced from the published tables. Even if
their exact value is impossible to compute, combining the additive structure with the nonnegativity
conditions may allow an intruder to compute narrow ranges for sensitive 9gures. If these ranges
are deemed unacceptable a diHerent protection criterion is adopted: a protection interval is de9ned a
priori, for each sensitive cell, and the table considered safe for public release if and only if the ranges
of values that can be deduced for the sensitive values, by any intruder, contain the corresponding
protection intervals. The protection intervals may depend on each cell value [6–8] or may be the
same for all sensitive cells [3]. In [6] a sliding version of protection intervals is proposed, 9xing just
the width of the protections. For integer nonnegative data if all widths are set to one this amounts
to exact disclosure protection. For general tables, the magnitude of the sensitive values is irrelevant
for their protection. Either it is possible to compute the exact value of a suppressed cell or no
meaningful estimation is possible for it, regardless of its value. In other words, for general tables
only exact disclosure must be prevented.

In the open literature the case of nonnegative tables with protection intervals has received more
attention than the exact disclosure criterion. Heuristic methods and lower bounding procedures have
been developed by several authors [2,3,6,8–10]. Recently, Fischetti and Salazar [7] proposed a
branch-and-cut approach based on a new network Kow formulation, with an exponential number
of cut type constraints, to which constraints selected from 9ve new families of valid inequalities are
added. As far as we are aware, this is the best exact algorithm to date for nonnegative tables with
the 9xed interval protection criterion. The method may also be used for general tables but does not
solve the problem with sliding protection ranges.

For the exact disclosure problem Gus9eld [11] devised a polynomial time algorithm that solves
to optimality the special case of minimizing the number of complementary suppressions in strictly
positive integer tables, under the condition that the intruders are not aware of the fact that the
tables do not contain zero cells. The core of his method is the solution of a graph augmen-
tation problem on a mixed graph representation of statistical tables, assuming that no subtotal
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cell may be suppressed. The method does not solve the more general case addressed in this
paper.

In this paper, we address the exact disclosure problem in general and in integer nonnegative
tables with arbitrary nonnegative weights associated with the nonsensitive cells (to quantify the loss
of information due to their suppression) and no special conditions on the subtotals. The problem is
NP-hard as its restricted version with all weights equal to one is known to be NP-hard [11]. The main
contributions of this work are two new compact linear integer formulations, one for general tables
and one for nonnegative integer tables, and a Lagrangian scheme to decompose them into shortest
path problems. As the formulations are compact (i.e., have a polynomial number of variables and of
constraints) they can be solved by commercial packages for many small and medium sized tables
within reasonable computing times. The Lagrangian scheme produces lower bounds on the optimum
values that are theoretically equal to the linear bounds, for general tables, and that dominate the
linear bounds for nonnegative tables. Coupled with a constructive heuristic it also generates near
optimal solutions and upper bounds on the gaps between the best heuristic value and the optimum.
As the Lagrangian procedure relies on the solution of shortest path subproblems it is very easy to
implement and rather fast. The computational experience showed that the Lagrangian scheme often
generates proven optimal solutions. This approach is theoretically compact, quite e8cient and Kexible
to implement. These are desirable features for methods to be adopted in practical settings, involving
personnel with diHerent technical backgrounds [2].

The paper is organized as follows. In Section 2 we set the notation used in the sequel and review
a graph representation of the problem. In Sections 3 and 4 we present the new approach for general
and for nonnegative tables. Section 5 reports the computational results and Section 6 contains the
9nal remarks.

2. The exact disclosure problem

A two-dimensional statistical table A = [aij] may be de9ned as an (m + 1)×(n + 1) array of real
numbers. The values in the (m + 1)th row are the column subtotals and the values in the (n + 1)th
column are the row subtotals:

am+1; j =
m∑
i=1

aij; j = 1; : : : ; n;

ai;n+1 =
n∑

j=1

aij; i = 1; : : : ; m:

The value am+1; n+1 is the grand total:

am+1; n+1 =
m∑
i=1

n∑
j=1

aij:

If all entries in A are nonnegative, A is said to be a nonnegative table. Otherwise A is called a
general table. In any case we will assume that there is at least one nonzero cell in A.

Given a statistical table A let

C = {(i; j) : 16 i6m + 1; 16 j6 n + 1}
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be the set of its cells and let

S1 = {(ik ; jk) : 16 k6p}
be the set of sensitive cells (also known as primary suppressions or con9dential cells). Sets of
complementary suppressions will be denoted by S2.

A set S2 is said to be feasible if omitting the values in S1∪S2 precludes an intruder from computing
the values in S1.

The total loss of information associated with a set S2 of complementary suppressions is given by

�(S2) =
∑

(i; j)∈S2

�ij;

where �ij are weights associated with cells in C \ S1 to quantify the loss of information due to the
suppression of their values from publication. If all weights are set to 1, then minimizing �(S2) yields
the minimum cardinality feasible set S2. However omitting large values is, in general, considered
more undesirable than omitting small values. So several authors set �ij = |aij| for every cell in C\S1.

A statistical table may be represented by an undirected bipartite graph G = (V;E) [4]. The node
set, V =R∪C, is the union of a set R of m+ 1 nodes, representing the table rows, with a set C of
n+1 nodes, representing the table columns. Each edge (i; j) ∈E represents a table cell. To represent
only the suppressed cells one may use the subgraph GS1∪S2 = (V; S1 ∪ S2). From now on we will
make no distinction between an edge (i; j) and the cell it represents. In the sequel we will assume
the reader is familiar with graph and network terminology and basic results. For a good reference
see [12].

3. General tables

For general tables the protection against disclosure may be established based on the de9nition
of a table completion given in [4]. A completion of a table A = [aij], (i; j) ∈C, is a set of values
D=[dij], (i; j) ∈C, for cells in C, which is consistent with the given row and column subtotals, and
such that dij =aij for all unsuppressed cells (i; j) ∈C\ (S1 ∪S2). Exact disclosure occurs in a table A
if for some sensitive cell (ik ; jk) ∈ S1, there are no two completions D and D′ such that dikjk �= d′

ik jk .
In a general table with a set of sensitive cells S1 and a set of complementary suppressions S2, the

value of a sensitive cell (i; j) ∈ S1 is protected against exact disclosure if and only if its corresponding
edge belongs to a circuit in the corresponding subgraph GS1∪S2 =(V; S1 ∪S2) [4]. Since general tables
are not restricted in sign for them exact disclosure protection implies that no meaningful estimation
for suppressed values can be derived from the published values.

3.1. Integer formulation

Let A be a general table with a set S1 = {(ik ; jk) : 16 k6p} of p sensitive cells. If a path
of suppressed cells is created from jk to ik , for each cell (ik ; jk) ∈ S1, then each sensitive cell is
embedded in a circuit of suppressions and the table is safe for release. So the problem for general
tables may be restated as follows: 9nd a minimum cost set of p paths in the undirected bipartite
graph G = (R ∪ C;E), each linking a node jk to a node ik , and excluding edge (ik ; jk), 16 k6p.
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This problem may be formulated as a linear programming problem with binary variables. For reasons
to be explained later, we will look for directed paths. So a pair of reverse arcs, (i; j) and (j; i), will
be associated to each edge (i; j) in E.

Consider the following variables:

xij
(i; j)∈C\S1

=

{
1 if (i; j) ∈ S2;

0 otherwise;

yk
ij

i �=ik ; j �=jk ; k=1;:::;p
i∈R;j∈C

=

{
1 if arc (i; j) is in a directed path from jk to ik ;

0 otherwise;

yk
ji

( j; i) �=( jk ; ik); k=1;:::;p
j∈C; i∈R

=

{
1 if arc (j; i) is in a directed path from jk to ik ;

0 otherwise:

A minimum cost feasible set of complementary suppressions is an optimal solution for the
following binary problem:

(P) ZP = min
∑

(i; j)∈C\S1

�ijxij; (1)

s:t:

xij ∈ {0; 1}; (i; j) ∈C \ S1

for k = 1; : : : ; p; (2)

∑
i∈R

yk
jk i = 1; (3)

∑
j∈C

yk
jik = 1; (4)

∑
j∈C

yk
ji −

∑
j∈C

yk
ij = 0; i∈ [R \ {ik}]; (5)

∑
i∈R

yk
ij −

∑
j∈R

yk
ji = 0; j∈ [C \ {jk}]; (6)

yk
ij6 xij; (i; j) ∈C \ S1; (7)

yk
ji6 xij; (i; j) ∈C \ S1; (8)

yk
ij; y

k
ji ∈ {0; 1}; (i; j) ∈C: (9)

Constraints (3)–(6), (9) de9ne, for every sensitive cell (ik ; jk); k ∈ {1; : : : ; p}, a directed path from
node jk to node ik that does not contain arc (jk ; ik). The coupling constraints (7) and (8) along with
(2) ensure that a cell is suppressed whenever one of its corresponding arcs is used in a path.
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The coupling constraints may be substituted by

yk
ij + yk

ji6 xij (i; j) ∈C \ S1: (10)

As in some optimal solution at most one arc in the pair of reverse arcs is in every path this
substitution does not alter the value of ZP. With (10) the number of coupling constraints is reduced
by 50% and so is the number of variables in the Lagrangian dual problem de9ned below.

The numbers of variables and of constraints in (P) are polynomial in the table’s size. So, for
many small and medium sized tables (P) may be solved to optimality, within reasonable computing
time, by any integer programming commercial package. When it is not the case, the value of its
linear programming relaxation is easily obtained if a Lagrangian relaxation approach is adopted. It is
also easy to generate feasible near optimal solutions for (P) based on Lagrangian solutions adapting
the procedure proposed by Carvalho et al. [4].

3.2. Lagrangian approach

Relaxing the coupling constraints (10) in a Lagrangian fashion [13] yields the following
Lagrangian relaxation problem, for each vector of Lagrangian multipliers, �¿ 0:

(P�) z(�) = min
∑

(i; j)∈C\S1

�ijxij +
p∑

k=1

∑
(i; j)∈C\S1

�kij (yk
ij + yk

ji − xij)

s:t: (2); (3); (4); (5); (6); (9):

The best vector of multipliers is an optimal solution of the Lagrangian dual:

(D) Max
�¿0

z(�):

As (P�) has the integrality property the optimum value of (D) is equal to the optimum value of
the linear relaxation of (P) [13]. As shown in the appendix directing the path variables strengthens
the linear bound even when compared to an undirected formulation to which some cuts are added
(for a more detailed presentation see [14]). This is the reason to associate a pair of directed arcs
(i; j) and (j; i), to each edge (i; j) in E and then look for directed paths. Problem (P�) is very fast to
solve because it can be decomposed into (p+ 1) independent subproblems: one on the xij variables
only, that is solved by inspection, and p shortest path problems with nonnegative arc lengths, for
which very e8cient algorithms are well known [12].

4. Nonnegative integer tables

If it is known that all table values are nonnegative, including a sensitive cell in a circuit of
suppressions may not be su8cient to prevent the disclosure of its exact value. Let (1; 1) be the only
sensitive cell in the table of Fig. 1.

Suppressing also cells in S2 = {(1; 3); (3; 1); (3; 3)} includes cell (1,1) in a circuit as shown in
Fig. 2.

However, due to the nonnegativity constraints, from column 3 an intruder deduces that a13=a33=0
and then, from row 1, deduces that the sensitive value, a11, must be 2. In other words, in all
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c1 c2 c3 c4

r1 2 3 0 5

r2 1 4 1 6

r3 0 5 0 5

r4 3 12 1 16

Fig. 1.

c1 c2 c3 c4

r1 * 3 * 5

r2 1 4 1 6

r3 * 5 * 5

r4 3 12 1 16

Fig. 2.

c1 c2 c3 c4

r1 2 3 0 5

r2 1 4 1 6

r3 0 5 1 6

r4 3 12 2 17

Fig. 3.

c1 c2 c3 c4

r1 2 3 1 6

r2 1 4 1 6

r3 1 5 0 6

r4 4 12 2 18

Fig. 4.

completions, D = [dij]; (i; j) ∈C, the condition d11 = 2 must hold to comply with dij¿ 0 for all
(i; j) ∈C.

Consider now tables in Figs. 3 and 4, again with only one sensitive cell, (1,1).
If the same set of complementary suppressions is selected then both tables get protected against

exact disclosure of the value in cell (1,1). To con9rm that, consider the following completions D
and D′, given in Figs. 5 and 6, respectively, with d11 �= 2 and d′

11 �= 2.
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c1 c2 c3 c4

r1 1 3 1 5

r2 1 4 1 6

r3 1 5 0 6

r4 3 12 2 17

Fig. 5.

c1 c2 c3 c4

r1 3 3 0 6

r2 1 4 1 6

r3 0 5 1 6

r4 4 12 2 18

Fig. 6.

Note that for this set S2 of complementary suppressions there is no completion for the table in
Fig. 3 with d11 ¿ 2 and there is no completion for the table in Fig. 4 with d′

11 ¡ 2.
The examples above show that, for nonnegative tables, the same suppression pattern may or may

not render a table safe for release, depending on the cell values.
In general terms, in a nonnegative integer table A, with a set S1 ∪ S2 of suppressions, the value of

a positive sensitive cell (ik ; jk) cannot be exactly disclosed if and only if there is either a completion
D for which dikjk 6 aik jk − 1 or a completion D′ for which d′

ik jk ¿ aik jk + 1. If aik jk = 0 then the
sensitive cell (ik ; jk) cannot be exactly disclosed if and only if there is a completion D for which
dikjk ¿ aik jk + 1, as values dikjk 6 aik jk − 1 would be negative.

So, in this case, the approach proposed in the previous section is no longer valid. To deal with
the nonnegative case a directed graph, H = (R ∪ C; F), will be built excluding from its arc set, F ,
a subset of arcs, E, that would otherwise be associated with zero cells. Note that in a completion
D if, for an internal sensitive cell (ik ; jk); dik jk ¿aikjk then either (ik ; n + 1) and (m + 1; jk) are
both suppressed or, to keep the additive structure in row ik and column jk , there must be some
internal cells for which dij ¡aij. But, due to the nonnegativity conditions, dij ¡aij is feasible only
if aij ¿ 0. A similar argument applies to the subtotal cells. As a consequence the set of excluded
arcs is

E = {(j; i) : 16 i6m; 16 j6 n; aij = 0}
∪ {(i; n + 1) : 16 i6m; ai;n+1 = 0}
∪ {(m + 1; j) : 16 j6 n; am+1; j = 0}

and the arc set in H is F = [(R×C) ∪ (C×R)] \ E.
A set of complementary suppressions, S2, is feasible for a nonnegative integer table A, with a set

S1 of sensitive cells, if and only if for each positive cell (ik ; jk) in S1 there is either a path in the
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subgraph HS1∪S2 of H from jk to ik that does not include arcs (ik ; jk) and (jk ; ik) or a path from ik
to jk that does not include arcs (ik ; jk) and (jk ; ik). In the same subgraph for each zero cell (ik ; jk)
in S1 there must be a path from jk to ik that does not include arcs (ik ; jk) and (jk ; ik).

In the examples above with S2 = {(1; 3); (3; 1); (3; 3)}, for the table in Fig. 3 there is a path in
HS1∪S2 from row node 1 to column node 1 through (3,3) and no path from column node 1 to row
node 1; on the contrary, for the table in Fig. 4 there is a path from column node 1 to row node 1
through (3,3) and no path from row node 1 to column node 1. Note that the either/or condition is
not exclusive: for example, with the suppression set {(1; 2); (2; 1); (1; 2)} there are in HS1∪S2 paths
from column node 1 to row node 1 and from row node 1 to column node 1 for both tables.

4.1. Integer formulation

The same rationale underlying formulation (P), for general tables, may be used to state a formu-
lation (PN ), for nonnegative integer tables, de9ning two directed paths for each positive sensitive
cell and one directed path to each zero sensitive cell.

Let K={1; : : : ; p} be partitioned into K1 ={k ∈K : aik jk =0} and K2 ={k ∈K : aik jk ¿ 0}. Consider
the binary variables:

xij (i; j) ∈C \ S1 de9ned as before

 k =

{
1 if a path is generated from jk to ik ;

0 otherwise;
k ∈K2;

!k =

{
1 if a path is generated from ik to jk ;

0 otherwise;
k ∈K2

for (i; j); (j; i) ∈F :

yk
ij

i �=ik ; j �=jk
i∈R;j∈C

=

{
1 if arc (i; j) is in a directed path from jk to ik ;

0 otherwise;
k ∈K;

yk
ji

( j; i) �=( jk ; ik)
j∈C; i∈R

=

{
1 if arc (j; i) is in a directed path from jk to ik ;

0 otherwise;
k ∈K;

wk
ij

(i; j)�=(ik ; jk)
i∈R;j∈C

=

{
1 if arc (i; j) is in a directed path from ik to jk ;

0 otherwise;
k ∈K2;

wk
ji

j �=jk ; i �=ik
j∈C; i∈R

=

{
1 if arc (j; i) is in a directed path from ik to jk ;

0 otherwise;
k ∈K2:

And the binary problem:

(PN ) ZPN = min
∑

(i; j)∈C\S1

�ijxij (11)
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s:t:∑
i∈R

yk
jk i =  k ; k ∈K2; (12)

∑
j∈C

yk
jik =  k ; k ∈K2; (13)

∑
i∈R

yk
jk i = 1; k ∈K1; (14)

∑
j∈C

yk
jik = 1; k ∈K1; (15)

∑
j∈C

yk
ji −

∑
j∈C

yk
ij = 0; i∈ [R \ {ik}]; k ∈K; (16)

∑
i∈R

yk
ij −

∑
i∈R

yk
ji = 0; j∈ [C \ {jk}]; k ∈K; (17)

yk
ij + yk

ji6 xij; (i; j) ∈C \ S1; k ∈K; (18)∑
j∈C

wk
ik j = !k; k ∈K2; (19)

∑
i∈R

wk
ijk = !k; k ∈K2; (20)

∑
j∈C

wk
ji −

∑
j∈C

wk
ij = 0; i∈ [R \ {ik}]; k ∈K2; (21)

∑
i∈R

wk
ij −

∑
i∈R

wk
ji = 0; j∈ [C \ {jk}]; k ∈K2; (22)

wk
ij + wk

ji6 xij; (i; j) ∈C \ S1; k ∈K2; (23)

 k + !k¿ 1; k ∈K2; (24)

!k ∈ {0; 1}; k ∈K2; (25)

 k ∈ {0; 1}; k ∈K2; (26)

xij ∈ {0; 1}; (i; j) ∈C \ S1; (27)

yk
ij; y

k
ji ∈ {0; 1}; (i; j) ∈C \ S1; k ∈K; (28)

wk
ij; w

k
ji ∈ {0; 1}; (i; j) ∈C \ S1; k ∈K2: (29)

As all the weights �ij are nonnegative there is an optimal solution to the binary problem where
all constraints (24) are tight, i.e., where

 k + !k = 1; k ∈K2:
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Therefore variables !k; k ∈K2, and constraints (24), (25) may be dropped from the model, with
(19) and (20) replaced with∑

j∈C

wk
ik j = 1 −  k ; k ∈K2; (30)

∑
i∈R

wk
ijk = 1 −  k ; k ∈K2: (31)

To strengthen the linear relaxation, the coupling constraints (18) and (23) may be written in the
lifted form:

yk
ij + yk

ji6 xij; (i; j) ∈C \ S1; k ∈K1; (32)

yk
ij + yk

ji + wk
ij + wk

ji6 xij; (i; j) ∈C \ S1; k ∈K2: (33)

From now on we will consider the feasible region of PN de9ned by constraints (12)–(17), (30),
(31), (21), (22), (32), (33), (26)–(29).

4.2. Lagrangian approach

Let |K2| = #. To each vector � = [ 1; : : : ;  #] ∈ {0; 1}# one can associate a problem PN (�), setting
the values of the  k variables to their values in �. By construction, the optimum value of PN is

Z∗
PN

= min{Z∗
PN

(�) : �∈ {0; 1}#}:
In each problem PN (�) relaxing constraints (32) and (33) in a Lagrangian fashion, with a vector of

multipliers �, yields a relaxation problem, PN (�; �), that may be decomposed into p+1 subproblems
as follows:

(i) one subproblem de9ned on the xij variables by constraints (27);
(ii) (p − #) independent shortest path problems (one for each zero sensitive cell) de9ned on yk

ij

and yk
ji, k ∈K1, by constraints (14), (15) and by constraints (16), (17) and (28) for k ∈K1;

(iii) # independent subproblems (one for each positive sensitive cell) de9ned on  k , yk
ij, yk

ji, wk
ij,

wk
ji, k ∈K2, by constraints (12), (13), (30), (31), (21), (22), (26), (29) and by constraints (16),

(17) and (28) for k ∈K2.

For each subproblem in (iii), i.e., for each k ∈K2, in any feasible solution either  k = 1 or  k = 0.
If  k = 1 then constraints (30), (31), (21), (22) and (29) are trivially ful9lled by the null vector
and the subproblem reduces to a shortest path problem from jk to ik ; if  k = 0 then constraints (12),
(13), (16), (17) and (28) are trivially ful9lled by the null vector and the subproblem reduces to a
shortest path problem from ik to jk . So the optimum solution of each subproblem in (iii) may be
obtained solving two shortest path problems, keeping the variable values for the shortest one and
setting all other variables to zero.

The best value for vector of multipliers \ is obtained solving the Lagrangian dual. The optimum
of the Lagrangian dual is equal to the optimum of the mixed integer problem that results from (PN )
substituting constraints (27)–(29) by their linear relaxation [13]. As a consequence the lower bound
on the optimum of (PN ) generated by this procedure is tighter than the bound obtained with the
linear relaxation of (PN ).
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5. Computational experience

The computational study of the methods proposed in Sections 3 and 4 was carried out on a
PC PentiumIII with 128 Mbyte RAM. The integer formulations were solved with the commercial
package Cplex 8.1.0. with a time limit of 1 h to solve each problem. To implement the Lagrangian
approaches we programmed codes in Pascal with Delphi-32 development environment editor. The
shortest path problems resulting from the Lagrangian relaxations were computed with Dijkstra’s
algorithm [12]. The Lagrangian duals were solved by a standard implementation of subgradient
optimization [15].

The number of variables and constraints in formulations (P) and (PN ), as well as the number
of variables in the Lagrangian duals, depend on the table dimensions and on the number of cells
that require protection. Note that all, if any, sensitive cells that belong to at least one circuit in the
sensitive cell supporting network do not require complementary suppressions for their protection.
These cells are identi9ed and removed from S1 in a preprocessing phase. The cells remaining in S1

at the end of the preprocessing phase are called unsafe cells.
A heuristic similar to the one proposed in [4] was embedded in the Lagrangian procedure to

generate feasible solutions. It is 9rst called, before starting the subgradient optimization algorithm,
with the original weight values, to generate an initial incumbent solution. After that, it is periodically
called during the subgradient optimization stage, with weights �ij = 0 assigned to all variables xij,
(i; j) ∈C \ S1, equal to one in the current Lagrangian relaxation solution. The incumbent solution
is updated whenever a better solution is found. At the end of the Lagrangian computations, if the
incumbent value is equal to the dual optimum, the 9nal incumbent is a proven optimal solution.
In this case we call it an in-proven optimal solution. Otherwise the Lagrangian scheme yields an
upper bound on the gap between the 9nal incumbent value and the optimum but does not allow any
optimality claim by itself. In this case we call the 9nal incumbent an out-proven optimal solution if
we are able to 9nd, with the Cplex package, an optimum to the corresponding integer model that
matches its value.

To evaluate the computational performance of the methods two data sets were considered.
In the 9rst data set 210 tables with dimensions from 20×10 up to 200×200 were randomly

generated reproducing the tables in [7] suggested by Dr. Roberto Benedetti of the Italian Statistical
O8ce. Since only strictly positive suppressions are allowed in this case, it is easy to establish that,
with the variables associated with zero valued cells 9xed at zero, formulation (P) for general tables
is valid for the exact disclosure problem in this class of instances, following the explanation given
in Section 4.

In the second data set 170 tables, with dimensions from 50×10 up to 100×100, were generated
following the rules used in [6] but decreasing the density of sensitive cells to 25% of the density
adopted in [6] to increase the proportion of unsafe cells and generate more challenging problems.

Table 1 shows the information given in Tables 2–4, where each row refers to results obtained
over a set of 10 instances.

The computational results obtained with the 9rst data set are shown in Table 2. The eHectiveness
of the preprocessing phase increased with table dimensions and was especially impressive for square
tables. All instances were solved to optimality. With Cplex the optimum for the integer formulation
was found in 62.9% of the tables. The Lagrangian procedure produced 98% of in-proven optimal
solutions and all 9nal incumbents were proven optimal. The Lagrangian procedure took, on average,
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Table 1

m + 1 Number of rows (including marginal total)
n + 1 Number of columns (including marginal total)
p Average number of sensitive cells
up Average number of unsafe cells
minup Minimum number of unsafe cells
maxup Maximum number of unsafe cells
Cpl Total number of optimal solutions obtained with Cplex
Lag Total number of in-proven optimal solutions obtained with the Lagrangian procedure
IGap Average deviation of the initial incumbent value from the Lagrangian bound
Fgap Average deviation of the 9nal incumbent value from the Lagrangian bound
T (s) Average wall clock seconds taken by the Lagrangian procedure
Cpl+Lag Number of in-proven and out-proven optimal solutions

Table 2
Results on the 9rst set of tables

m + 1 n + 1 p up minup maxup Cpl Lag IGap FGap T (s) Cpl+Lag

20 10 7.60 7.60 3 14 10 9 7.12 0.39 0.15 10
20 20 12.40 12.40 5 16 10 9 13.84 0.07 2.85 10
40 10 13.00 13.00 10 18 10 10 4.56 0.00 0.92 10
40 20 28.40 27.40 21 33 10 9 3.49 0.06 22.29 10
40 30 46.70 32.90 15 45 10 9 9.32 0.10 64.31 10
40 40 65.80 37.30 29 59 10 10 5.23 0.00 121.54 10
60 20 43.10 36.60 29 47 10 10 3.95 0.00 59.39 10
60 40 90.30 36.90 29 44 10 10 8.67 0.00 137.87 10
60 60 141.60 31.20 22 44 7 10 8.15 0.00 239.35 10
80 20 60.70 43.70 36 53 10 10 1.52 0.00 105.99 10
80 40 122.00 39.90 30 50 5 10 4.38 0.00 286.17 10
80 60 194.20 28.40 16 40 3 10 7.55 0.00 189.76 10
80 80 252.30 20.20 10 26 3 10 7.04 0.00 145.30 10

100 25 94.50 51.30 40 68 5 10 0.75 0.00 310.30 10
100 50 172.10 41.40 34 49 0 10 2.49 0.00 491.01 10
100 75 284.60 23.80 15 34 1 10 4.46 0.00 276.44 10
100 100 385.00 16.50 12 24 1 10 4.03 0.00 174.80 10
200 50 386.50 56.60 49 71 0 10 0.00 0.00 1943.35 10
200 100 796.10 15.30 11 23 0 10 0.89 0.00 330.36 10
200 150 1187.80 3.70 1 9 7 10 0.00 0.00 49.39 10
200 200 1602.20 1.00 0 3 10 10 0.00 0.00 6.59 10

32:4 min with the 200×50 tables but achieved the optimum for all instances. For this 10 table set
the Cplex failed to solve all the integer problems due to memory limitations.

For the second set of instances we considered two weighting alternatives: �ij = aij and �ij = 1;
(i; j) ∈C\S1. When all cell weights are equal there are many diHerent solutions with the same value
and the search for an optimal solution is likely to be more arduous.
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Table 3
Results on the second set of tables with �ij = aij; (i; j) ∈C \ S1

m + 1 n + 1 p up minup maxup Cpl Lag IGap FGap T (s) Cpl+Lag

50 10 24.00 22.80 20 24 10 10 0.00 0.00 6.64 10
50 20 49.00 36.80 28 45 10 10 0.85 0.00 49.74 10
50 30 73.00 39.40 20 64 10 9 0.81 0.09 235.58 10
50 40 98.00 34.60 27 43 10 9 0.21 0.19 439.80 10
50 50 122.00 27.90 22 48 9 9 0.03 0.03 374.65 9
60 20 58.00 43.10 33 54 10 9 0.16 0.16 136.37 10
60 40 117.00 33.70 23 42 9 10 0.88 0.00 301.67 10
60 60 174.50 24.50 19 31 7 10 0.00 0.00 35.31 10
80 20 77.00 45.60 32 65 10 10 0.13 0.00 91.10 10
80 40 155.30 31.10 22 40 6 10 0.00 0.00 28.24 10
80 60 232.90 21.10 15 29 5 10 2.00 0.00 22.88 10
80 80 311.80 16.90 10 24 5 8 19.96 19.96 112.04 9

100 20 97.00 45.40 36 55 8 10 0.00 0.00 42.05 10
100 40 195.20 35.20 26 40 0 10 0.00 0.00 61.91 10
100 60 292.80 20.40 17 29 2 10 0.48 0.00 47.42 10
100 80 390.10 14.20 10 20 3 10 0.00 0.00 57.30 10
100 100 491.10 9.00 3 12 6 8 19.98 19.98 138.59 9

Table 4
Results on the second set of tables with �ij = 1 (i; j) ∈C \ S1

m + 1 n + 1 p up minup maxup Cpl Lag IGap FGap T (s) Cpl+Lag

50 10 24.00 22.80 20 24 3 10 2.20 0.00 14.83 10
50 20 49.00 36.80 28 45 2 10 11.23 0.00 92.18 10
50 30 73.00 39.40 20 64 4 3 27.89 5.95 304.86 5
50 40 98.00 34.60 27 43 3 0 36.99 10.03 461.29 3
50 50 122.00 27.90 22 48 6 3 47.58 8.89 355.28 8
60 20 58.00 43.10 33 54 3 10 5.81 0.00 99.41 10
60 40 117.00 33.70 23 42 5 1 21.09 5.51 281.20 5
60 60 174.50 24.50 19 31 7 1 41.34 9.31 292.75 7
80 20 77.00 45.60 32 65 5 10 1.62 0.00 93.50 10
80 40 155.30 31.10 22 40 4 9 11.92 0.63 202.58 10
80 60 232.90 21.10 15 29 1 5 33.29 3.59 274.28 5
80 80 311.80 16.90 10 24 0 7 43.58 2.91 218.64 7

100 20 97.00 45.40 36 55 6 10 1.05 0.00 113.41 10
100 40 195.20 35.20 26 40 0 10 3.48 0.00 209.84 10
100 60 292.80 20.40 17 29 0 10 8.14 0.00 123.32 10
100 80 390.10 14.20 10 20 2 10 27.09 0.00 136.40 10
100 100 491.10 9.00 3 12 2 10 30.00 0.00 46.19 10

Table 3 reports the results obtained with �ij = aij; (i; j) ∈C \ S1. The problem was solved to
optimality in all instances. With Cplex 71% of the instances were solved. With the Lagrangian
procedure 95.3% in-proven optima were obtained. Only 3 9nal incumbents were neither in-proven
nor out-proven optima. As an attempt to 9nd out whether or not they were optimal, the lower
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and upper bounds generated by the Lagrangian procedure were used to add two new constraints to
formulation (PN ) and Cplex was set to run the resulting formulations. With the new constraints the
memory limitations were overcome and all three incumbents were proved to be optimal.

Table 4 reports the computational results obtained for the same tables with �ij = 1; (i; j) ∈C \
S1. With the unitary costs criterion the proposed methodologies showed to be less eHective as
expected. The problem was solved to proven optimality in 140 out of the 170 instances. Only 53
integer problems were solved with Cplex. The Lagrangian approach produced 119 in-proven and
12 out-proven optima. All the nonoptimal initial incumbents were improved along the Lagrangian
procedure. When comparing the optimal solutions obtained with Cplex with the incumbents without
in-proven optimality we found out that there were nine proven nonoptimal incumbents: one with
three more complementary suppressions than the optimal number and eight with this gap equal
to one. For the set of 30 tables for which no guaranteed optimal solution was achieved we used
the lower and upper bounds of the Lagrangian procedure to add diHerent constraints to the integer
formulations in search of more information on the incumbent solutions’ quality. We concluded that
13 incumbents were optimal and that one incumbent had one more complementary suppression than
the optimal. We were left with 12 incumbents with one more complementary suppression than the
Lagrangian lower bound on their number, two incumbents with this gap equal to 2, one with gap
equal to 3 and another one with gap equal to 4. As whenever the lower bound is not tight this gap
must be at least one, we suspect that many of the 16 solutions without proven optimality would be
out-proven optimal, had we been able to compute the corresponding integer optimum with Cplex.

6. Final remarks

In this work we addressed the exact disclosure problem with no constraints other than those
resulting from the table structure. Some extra conditions, imposed by other authors, may easily be
incorporated in our models. To impose that all subtotals must be published, as in [4], one may simply
drop the variables associated with cells (i; n+ 1); i∈R, and (m+ 1; j); j∈C and the corresponding
constraints, reducing the model’s dimensions. If no zero cells may be suppressed then formulation
(P) may be used 9xing some variables at zero as detailed in the previous section. This additional
condition is mentioned in [5] for frequency count tables and is imposed by some authors in their
computational experience.

If the values of some nonsensitive cells are considered especially important to the user community
one may assign them very large weights �ij avoiding their inclusion in S2 unless no other alternative
exists. If the weight modi9cation is done cell by cell it gives an assessment of the extra loss of
noncon9dential information due to the publication of the corresponding cell value.

Weights may also be altered for another purpose. The eHective protection given by any feasible
solution of (PN ) to a sensitive cell (ik ; jk) is bounded from below by the value of the smallest
positive suppressed cell in the path that links nodes ik and jk , de9ned either by the yk or by the
wk variables. To generate a near optimal solution with a protection range for (ik ; jk) with width at
least equal to a given threshold % one can assign very large weights to all cells with value smaller
than % in the shortest path computations for cell (ik ; jk).

When traditional protection intervals of the form [ak − lk ; ak + uk] are de9ned for each sensitive
cell k, more than one circuit of suppressions may be required to protect each cell, because it must
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be possible to send a Kow of value uk from jk to ik and a Kow of value lk from ik to jk in the
solution support graph. Substituting the binary path variables for nonnegative Kow variables it is
easy to deduce from (PN ) a valid compact formulation for the traditional interval protection version
of the cell suppression problem. However, as in this case the coupling constraints link binary and
nonnegative variables, the LP bound is much weaker. To strengthen it two tracks are being tried.
The 9rst track retrieves the path approach in (PN ): to be able to send a positive Kow from a source
node to a sink node it is necessary to have a directed path with positive capacity from the source
to the sink. Combining path variables with Kow variables in the coupling constraints cuts oH some
poor solutions of the linear relaxation of the Kow-based model. The second track is to derive lifted
versions of the conditions on the xij variables proposed in [8] to act directly on the binary suppression
variables in the combined Kow-path model.
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Appendix A.

Consider the undirected bipartite graph G = (V;E) de9ned at the end of Section 2. De9ne in G,
p paths C1;C2; : : : ;Cp, such that Ck is a path linking nodes ik and jk that does not include edge
(ik ; jk), for k = 1; : : : ; p.

The minimum cost set of paths that yields a cycle for each sensitive edge (ik ; jk) is an optimal
solution of the following binary problem:

(U ) min
∑

(i; j)∈(R×C)\S1

�ijxij

s:t:

for k = 1; : : : ; p; (A.0)∑
i∈R

vkijk = 1; (A.1)

∑
j∈C

vkik j = 1; (A.2)

∑
j∈C

vkij = 2 ki ; i∈R \ {ik}; (A.3)

∑
i∈R

vkij = 2!k
j ; j∈C \ {jk}; (A.4)

vkij6 xij; (i; j) ∈ (R×C) \ S1; (A.5)

 ki ∈ {0; 1}; i∈R \ {ik}; (A.6)

!k
j ∈ {0; 1}; j∈C \ {jk}; (A.7)
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vkij ∈ {0; 1}; (i; j) ∈R×C; (A.8)

xij ∈ {0; 1}; (i; j) ∈ (R×C) \ S1; (A.9)

where

xij
(i; j)∈(R×C)\S1

=
{

1 if cell (i; j) is suppressed;

0 otherwise;

vkij
(i; j) �=(ik ; jk)
i∈R;j∈C

=

{
1 if edge (i; j) is included in path Ck ;

0 otherwise;

 ki
i∈R\{ik}

=

{
1 if node i is included in path Ck ;

0 otherwise;

!k
j

j∈C\{jk}
=

{
1 if node j is included in path Ck ;

0 otherwise:

As G is a bipartite graph every path Ck must include at least one node in R, at least one node in
C and at least three edges. If an edge is included in a path so are its end nodes. So, the following
inequalities are valid for (U ):∑

i∈[R\{ik}]

 ki ¿ 1; k = 1; : : : ; p; (A.10)

∑
j∈[C\{jk}]

!k
j ¿ 1; k = 1; : : : ; p; (A.11)

∑
(i; j)∈[(R×C)\{(ik ; jk)}]

vkij¿ 3; k = 1; : : : ; p; (A.12)

vkij6  ki ; i∈R \ {ik}; j∈C; k = 1; : : : ; p; (A.13)

vkij6 !k
j ; j∈C \ {jk}; i∈R; k = 1; : : : ; p: (A.14)

As in any feasible solution of ( QU ), the LP relaxation of (U ), the following equalities hold:∑
i∈[R\{ik}]

 ki =
∑

j∈[C\{jk}]

!k
j ; k = 1; : : : ; p;

inequalities (A.10), (A.11), (A.12) are equivalent in ( QU ). In ( QU ) any feasible solution ( QX ; QV ; Q ; Q!)
satisfying (A.13) and (A.14) also satis9es them.

Let (RU ) be the binary problem de9ned by (A.0), (A.1)–(A.9), (A.13) and (A.14), and (RU ) its
LP relaxation.

For ( QP), the linear relaxation of directed formulation (P) de9ned in Section 3, there is always an
optimal solution, say ( QX ; QY ) that veri9es the following conditions:

Qyk
ij× Qyk

ji = 0; (i; j) ∈ [(R×C) \ {(ik ; jk)}]; k = 1; : : : ; p;
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∑
j∈C

Qyk
ji =

∑
j∈C

Qyk
ij6 1; i∈R; k = 1; : : : ; p;

∑
i∈R

Qyk
ij =

∑
i∈R

Qyk
ji6 1; j∈C; k = 1; : : : ; p:

A feasible solution of (RU ) may then be built from QY setting

Qvkij = Qyk
ij + Qyk

ji; (i; j) ∈ (R×C); k = 1; : : : ; p;

Q ki =
1
2

∑
j∈C

( Qyk
ij + Qyk

ji); i∈R \ {ik}; k = 1; : : : ; p;

Q!k
j =

1
2

∑
i∈R

( Qyk
ij + Qyk

ji); j∈C \ {jk}; k = 1; : : : ; p:

So the optimum of ( QP) is always greater than or equal to the optimum of (RU ). For some tables
this inequality is strict.
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