
Update-Aware Information Extraction

by

Besat Kassaie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Besat Kassaie 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis.

External Examiner: AnHai Doan
Vilas Distinguished Achievement Professor
Gurindar S. Sohi Professor
Department of Computer Science
University of Wisconsin

Supervisor: Frank Wm. Tompa
Distinguished Professor Emeritus and Adjunct Professor
The David R. Cheriton School of Computer Science
University of Waterloo

Internal Members: Ihab Francis Ilyas
Professor
The David R. Cheriton School of Computer Science
University of Waterloo

Florian Kerschbaum
Professor
The David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Arie Gurfinkel
Professor
The Department of Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Information extraction programs (extractors) can be applied to documents to isolate
structured versions of some content by creating tabular records corresponding to facts
found in the documents. When extracted relations or source documents are updated, we
wish to ensure that those changes are propagated correctly. That is, we recommend that
extracted relations be treated as materialized views over the document database.

Because extraction is expensive, maintaining extracted relations in the presence of fre-
quent document updates comes at a high execution cost. We propose a practical framework
to effectively update extracted views to represent the most recent version of documents.
Our approach entails conducting static analyses of extraction and update programs within
a framework compatible with SystemT, a renowned extraction framework based on regular
expressions. We describe a multi-level verification process aimed at efficiently identifying
document updates for which we can autonomously compute the updated extracted views.
Through comprehensive experimentation, we demonstrate the effectiveness of our approach
within real-world extraction scenarios.

For the reverse problem, we need to translate updates on extracted views into corre-
sponding document updates. We rely on a translation mechanism that is based on value
substitution in the source documents. We classify extractors amenable to value substi-
tution as stable extractors. We again leverage static analyses of extraction programs to
study stability for extractors expressed in a significant subset of JAPE, another rule-based
extraction language. Using a document spanner representation of the JAPE program, we
identify four sufficient properties for being able to translate updates back to the documents
and use them to verify whether an input JAPE program is stable.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Frank Wm.Tompa,
for his unwavering guidance, insightful feedback, and constant support throughout the
journey of my PhD studies. His expertise and mentorship have been invaluable in shaping
the direction and quality of this work. I also thank other members of my committee, Prof.
AnHai Doan, Prof. Arie Gurfinkel, Prof. Ihab Francis Ilyas, and Prof. Florian Kerschbaum
for taking the time to review and improve this work.

The motivation for pursuing this research direction stemmed from the challenges we en-
countered while working with medical records from the School of Optometry and Vision
Science at the University of Waterloo. I extend my gratitude to Prof. Elizabeth Irving
for generously providing us with the dataset and for the valuable and fruitful discussions
during our frequent meetings.

Some of the results of this thesis have been published in the following papers:

Besat Kassaie and Frank Wm. Tompa. Predictable and consistent information extraction.
In Proceedings of the ACM Symposium on Document Engineering, pages 14:1–14:10, Berlin
Germany, 2019. ACM.

Besat Kassaie and Frank Wm. Tompa. A framework for extracted view maintenance. In
DocEng ’20: ACM Symposium on Document Engineering 2020, Virtual Event, CA, USA,
September 29 - October 1, 2020, pages 16:1–16:4. ACM, 2020.

Besat Kassaie and Frank Wm. Tompa. Autonomously computable information extraction.
Proc. VLDB Endow., 16(10):2431–2443, Aug 2023.

v

Dedication

This thesis is dedicated to Alireza Vazifedoost, whose patience, understanding, encour-
agement, and belief in my abilities have been a source of strength and inspiration.

To my dear Barzin and Ava, this thesis stands as a living proof that obstacles fade
when you choose not to acknowledge their presence.

vi

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivating Example I . 4

1.2 Motivating Example II . 5

1.3 Extracted Relations as Materialized Views 7

1.4 Information Extraction in the Era of Pre-trained Language Models 9

1.5 Novelty and Contributions . 9

1.5.1 Novelty . 9

1.5.2 Contributions . 10

vii

2 Related Work 12

2.1 Information Extraction . 12

2.1.1 Approaches Used for Information Extraction 12

2.1.2 Update-Aware Information Extraction 15

2.1.3 Rule-based versus LLM-based Extraction 17

2.2 Fine-grained Data Lineage. 18

2.3 Relational Materialized Views . 18

2.3.1 Materialized View Maintenance . 19

2.3.2 Updatability of Relational Views 21

2.4 Static Analysis of Programs Using Regular Languages 22

3 Maintenance of Extracted Views 23

3.1 Preliminaries . 24

3.1.1 Documents, Regular Expression, and Document Spans 24

3.1.2 Extractors Expressed by Document Spanners 25

3.1.3 Matching Model . 26

3.1.4 Restricted Extraction Formula . 29

3.1.5 Efficient Construction of Extractors 32

3.1.6 Contextualization of Extraction Formulas 32

3.1.7 Spanners for Basic Span Relationships 35

3.2 Document Update Model . 36

3.3 Irrelevant and Autonomously Computable Updates 40

3.4 Categorizing Document Updates . 43

3.4.1 Post-update Spanner . 44

3.4.2 Detecting Shiftability for Spanners 48

3.5 Practicality of Detecting Shiftable Updates 53

3.5.1 Verification System . 54

3.5.2 DataSets . 55

viii

3.5.3 Experiment Platform . 57

3.5.4 Extractors . 57

3.5.5 Updates . 60

3.5.6 Run-time Performance . 61

3.5.7 Role of Incremental Updates . 63

3.5.8 Potential of Parallelism . 64

3.5.9 Additional Updates . 64

3.6 Additional Related Work . 66

3.6.1 Document Spanners . 66

3.6.2 Regular Expression Matching . 66

4 Updatable Extracted Views 68

4.1 Overview of GATE and JAPE . 70

4.1.1 Core JAPE . 71

4.1.2 Tokenizer . 78

4.1.3 Gazetteer . 79

4.1.4 Relation Generator . 80

4.2 Spanner Representation of JAPE Program 81

4.2.1 Partially Functional Spanners . 81

4.2.2 JAPE Rule Spanner Representation 91

4.3 Characterization of Stable Information Extraction Programs 103

4.3.1 Extracted View Update Model . 103

4.3.2 Update Translation Mechanism . 104

4.3.3 Stable Extractors . 104

4.3.4 Verification . 105

4.4 Implementation Details . 115

4.4.1 Platform . 117

ix

5 Conclusions and Future Work 118

5.1 Summary . 118

5.2 Implications and Impacts . 119

5.3 Future Work . 120

5.3.1 Potential of Derivatives of Regular Expressions 122

References 123

x

List of Figures

1.1 Information extraction processes text and creates a structured representa-
tion of its content. 2

1.1 A sample input document and its updated versions are provided, with asso-
ciated offsets indicated beneath each character, starting from 1. 3

1.2 Extracted relations and their update versions for motivating examples. . . 5

1.3 Extraction system that supports updates to source documents as well as
extracted views. 8

2.1 A JAPE phase that marks the longest sequence of upperInitial tokens. . . 13

2.2 U is an update process. R(V) and R′(V ′) represent an instance of the
base table (a view) and the base table’s instance (a view’ instance) after
the update, respectively. For 2.2a finding an efficient mechanism to create
V ′ is a possible research problem. For 2.2b the research objective involves
determining how to effectively translate U to its most likely intended update
over R. 19

3.1 A sample input document D for our running example. 26

3.2 The extracted relation JγpartialDateK(D), where D is depicted in Figure 3.1. 27

3.3 Rewrite rules for extraction formulas . 36

3.4 A sample document D and its updated peer D′. Filled areas in D are marked
by the update variable to be updated. RepSpan maps [di, di+1⟩ to [d′i, d

′
i+1⟩. 39

3.5 The verifier statically analyzes an update expression and an extraction for-
mula to test sufficient conditions for being a shiftable update. 44

3.6 The proposed verification process for maintaining extracted views is realized
through five distinct tests. 53

xi

3.7 A sample document that contains bibliographic information for James F.
Allen. 56

3.8 A sample document that contains blog posts for a blogger. 57

4.1 Creating and accessing a private table. 69

4.2 BNF description of Core JAPE. 72

4.3 A simple JAPE program with four phases, continued below. 73

4.3 A simple JAPE program with four phases, cont’d. 74

4.4 A hypothetical annotation graph to show effects of Input in a phase. Stars
in gray are proxies of input characters. 76

4.5 For a given phase and an input string × · · ·×, where × represents any input
character, the figure visualizes the resulting matches after running the phase
and scanning the corresponding annotation graph. We label each match by
a capital letter. 77

4.6 The automaton Λ(p) corresponding to a path p ∈ Π(A) that has k transi-
tions: a star labelled ri corresponds to a sub-automaton matching regular
expression ri; the edge labelled S2 ∪S3 is added because the regular expres-
sion r3 matches ϵ. 85

4.7 extracted records for the sample text. 100

4.8 The proposed verification process for updatable extracted views is realized
through four distinct tests on the extractor’s spanner representation. . . . 115

xii

List of Tables

3.1 Allen’s interval relationships extended to spans. The abuse of notation in
the regex for lines 5 and 6 represents a spanner described by an automaton
with operators that open and close the variables X and Y as indicated. . 37

3.2 Primitive extractors. 58

3.3 Compound extractors. 58

3.4 Extraction Statistics (×1000) for DBLP corpus. 62

3.5 Extraction times (×1000 sec) for DBLP corpus. 62

3.6 Verification and shift times (sec) for all updates. 63

4.1 Summary of JAPE policies and their effects on Example in Figure 4.5. . . 77

4.2 Sample tokenizer rules. 79

4.3 Sample Gazzetter rules created for departments.lst. 80

4.4 Available Variables created for ST . 101

4.5 Available variables while/after creating S ′
tn. 102

4.6 Available variables while/after creating S ′
en. 103

xiii

Chapter 1

Introduction

Textual data is a convenient medium to communicate and store knowledge. There is a huge
body of research in developing techniques to process and understand text by computers.
Text understanding can be realized by tasks such as text sentiment analysis, designing a
mathematical model to represent the language in the text and producing similar text using
that model (language modeling), or finding pieces of a text that are of interest such as
mentions of people’s names. To perform these tasks, text can be represented in various
formats such as a bag/sequence of words, a graph, a relational table, or a combination of
the formats. In this thesis, we focus on one of the computationally convenient formats,
namely, relational tables.

Information extraction identifies and isolates words and phrases within documents and
stores them in relational tables in order to present the underlying data in a structured form
(Figure 1.1). When the semantics of the extracted tuples are predetermined through a rela-
tional schema, the extraction process is classified as closed information extraction. On the
other hand, information extraction techniques that do not rely on a predefined schema and
extract facts and their relationships in the form of a general tuple ⟨subject, predicate, object1,
· · · , objectn⟩ are referred to as open information extraction [76]. In this thesis, our focus
lies within the former category, and when we mention extractor, we are always referring to
a closed information extraction technique.

Research in the area of information extraction was first promoted through the Mes-
sage Understanding Conferences (MUCs) [44]. The extraction process has since evolved
to address specific concerns, such as efficiency and accuracy. Recent research in this area
includes designing new languages and extraction platforms [10, 43, 81], choosing an ap-
propriate algorithmic approach respecting the domain and the syntactic and semantic

1

properties of anticipated data sources and outputs [82], facilitating the incorporation of
human knowledge in algorithm design [20], and adapting existing extractors to deal with
new documents added to the system [22]. Despite many technical differences, most of

Figure 1.1: Information extraction processes text and creates a structured representation
of its content.

the proposed extraction approaches share a subtle and important assumption, which we
call “fading attachment.” The flow of information between the three main components
of information extraction—source documents, the extraction program, and the extracted
relations—is maintained during the development period but evaporates once the extrac-
tion program reaches a satisfactory level of accuracy and robustness. Once deployed, the
information extraction process ignores the relationship between the contents of the source
documents and the extracted relations.

We observe that the fading attachment assumption is inappropriate in many appli-
cations. Extracted relations might be modified due to privacy concerns [54] or for data
cleaning purposes [48] (for example, the collection of extracted records might disclose some
inconsistencies among the source documents), but thereafter they are inconsistent with
the contents of the source document. Consider, for example, the problem of maintaining
privacy for personal information contained in a document collection of electronic health
records. A feasible approach to protecting documents can be applying a suitable pertur-
bation algorithm to the table(s) obtained from a document collection through information
extraction. However, to keep the documents consistent with the tables, regardless of the
nature of updates to extracted relations, a mechanism is essential to translate updates on
relations to updates over source documents.

2

On 03/24 , we r e n t e d a n d wa t c hed ‘ A Man ’ .
1 2 3 4 5 6 7 8 9 10 111213 14 15 1617 18 19 20 21 22 23 24 252627282930313233 34 35 36 3738394041

I h i gh l y r e c ommen d i t a s an i n s p i r i n g and
42 43 44 45 4647484950 51 525354 55 56 5758 59 60 61 62 63 64 65 666768697071727374 75 76 77 7879808182

h umo r ou s f i l m t o e n j o y .
83 84 85 86 8788899091 92 939495 96 97 9899100101102103104105106

(a) Original document. The substrings in red and orange undergo updates for various
reasons.

On 0 3/ 2 4 , w e r en t e d a n d w a t c h e d ‘ A Man Wi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3738 39 40 41

t h Cat s ’ . I h i gh l y r e c o mm e n d i t a s a n i n s
42 4344 45 464748495051 52 53 54 55 565758 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 7879 80 81 82

p i r i ng and h umo r o u s f i l m t o e n j o y .
83 8485 86 878889909192 93 94 95 96 979899100101102103104105106107108109110111112113114115116

(b) Updated document I.

On 20 2 3/24/03 , we r e n t e d a n d wa t c hed ‘ A M
1 2 3 4 5 6 7 8 9 1011121314 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30313233343536373839 40 41

a n ’ . I h i gh l y r e c o mm e n d i t a s an i n s p i r i n
42 43 444546 47 4849 50 5152535455 56 5758 59 60 61 62 63 64 65 66 67 68 69 70 71727374757677787980 81 82

g a nd humo r ou s f i l m t o e n j o y .
83 84 858687 88 8990 91 9293949596 97 9899100101102103104105106107108109110111

(c) Updated document II.

Figure 1.1: A sample input document and its updated versions are provided, with associ-
ated offsets indicated beneath each character, starting from 1.

3

1.1 Motivating Example I

Consider a simple scenario. The goal is to extract all movie names within the collection of
documents, individually replace any shortened movie name with the corresponding full title,
and finally release the data. For simplicity, we consider a sequence of two, three, or four
upper-initial words as a movie name if it is surrounded by ‘ ’ 1 and appears in a sentence
with terms such as watched or rented ; words are considered in the same sentence if there
are no end punctuation characters such as { ? , . } between them. Let Σ represent the set
of Latin alphanumeric characters. The extraction semantics can be represented using a
regular expression with variables. We use the variable M to mark each matched substring:

γm =Σ∗ (watched ∨ rented)γbγ
∗
s ‘M{(γuγ∗l γuγ

∗
l) ∨ (γuγ

∗
l γuγ

∗
l γuγ

∗
l)∨

(γuγ
∗
l γuγ

∗
l γuγ

∗
l γuγ

∗
l)} ’ γbΣ∗

where γu = [A , Z], γl = [a , z], γb = ∨ , , and γs = Σ \ { ? , . }. Note that we adhere to
the ‘all matches’ semantic for regular expression matching. To simplify the process, we
assume that string values are assigned to variables and get extracted for every match.

After applying the extractor to the input text in Figure 1.1a, we replace the movie name
A Man in the extracted relation (Figure 1.2a) with its complete form A Man With Cats

resulting in Figure 1.2b. The key question is whether we can update the source document
(Figure 1.1a) in such a way that we will extract the new value if we repeat the extraction
process.

The central notion is that both extracted relation and source documents are two repre-
sentations of the same information, and they need to stay consistent. Consequently, when
updates are made to the extracted relations, a translation mechanism is required to reflect
these new values back into the source document. In this thesis, we adopt an intuitive
approach to the translation process: we replace the old values with the new values in their
corresponding positions within the source document.

After applying this simple update to the source document in Figure 1.1a, we get the
document in Figure 1.1b. Re-running the extractor over the updated document would
produce the updated relation (Figure 1.2b) because: I) A Man With Cats is extracted, II)
no new rows appear, and III) no rows disappear. It is important to note that in practical
scenarios, we often work with complex extractors that involve multiple, and potentially
conflicting, expressions. In this thesis, our objective is to establish whether, for a given

1Throughout this thesis, characters in Σ appearing in a formula are represented like this to distinguish
them from a regular expression’s meta-characters.

4

M
A Man

(a) Original extracted string relation.

M
A Man With Cats

(b) Updated string relation.
A T

[70, 79⟩ [93, 97⟩
[84, 92⟩ [93, 97⟩

(c) Original extracted relation.

A T
[75, 84⟩ [98, 102⟩
[89, 97⟩ [98, 102⟩

(d) Updated extracted relation.

Figure 1.2: Extracted relations and their update versions for motivating examples.

extractor, it is possible to update the relation and reflect the update back in the source
document for all possible source documents.

1.2 Motivating Example II

On the other hand, source documents might also be modified, perhaps for versioning pur-
poses or to accommodate updates that reflect the most recent data; but again the extracted
relations become inconsistent with the content in the source documents. For example, many
records are added, removed, or modified in the DBLP database monthly, see [1]. These
changes need to be reflected in extracted bibliographic profiles.

The objective now is to identify all occurrences of words attributing qualities, e.g.,
inspiring , to some movies. For simplicity, we define an attributing word associated with
a movie as one that appears in the same sentence as any of the terms: film , movie , or
flick . The pattern can be represented using the following regular expression:

γmv = Σ∗ A{ inspiring ∨ boring ∨ humorous }γbγ∗s T{ film ∨ movie ∨ flick }γbΣ∗

where subexpressions and the matching semantics are defined as illustrated in Example 1.1
and the variables A and T specify the fields to be extracted.

For this example, assume that instead of extracting the matching text, we instead extract
the offsets of matched substrings. Running this extractor on the text shown in Figure 1.1a
yields the extraction of two records, forming the relation in Figure 1.2c.

Assume now that we execute a global update as follows: within each document in the
database, we re-order Month and Day (separated by a slash) and insert 2023/ at the be-
ginning of each instance. We can represent the search part of the update using a regular

5

expression:
γdate = Σ∗ F{M{γdγd} /D{γdγd}} Σ∗

where γd = [0 , 9] and F marks those substrings in the input text that are replaced by new
values. Running γdate on the text presented in Figure 1.1a results in marking two substring
as M and D to form a record in the following update relation:

F M D
[4, 9⟩ [4, 6⟩ [7, 9⟩

Once we’ve located the regions of the text for update, we wish to replace all the substrings
marked as F by new values. The replacement semantics can be described by the following
expression:

Udate = 2023/ $(D) / $(M)

where $(D) and $(M) are named back-references, as defined in several programming lan-
guages. The result of the update is depicted in Figure 1.1c. Following document updates,
the extracted relation must again reflect the new values (Figure 1.2d). A natural solu-
tion is to run the extractor on the updated document. However, when we deal with many
documents the extraction process is prohibitively slow, a concern highlighted by various
researchers [22, 86].

In the current example, by considering γdate and Udate, we observe that every substring
marked as F expands by five character after the update. Leveraging this insight, rather
than re-running the extractor over the updated corpus (or, preferably, isolated parts of it
only), we can compute the updated extracted relation (Figure 1.2d) using only the expansion
factor, the update relation, and the original extracted relation.

More specifically, we can prove that there is no input document for which the extracted
regions (for this example marked as A and D) overlap with a potential update region
whether it contains the original value or the new value. This straightforward realization,
along with some other conditions discussed throughout the thesis, can be used to prove
that the updated relation can be computed for the current example, without re-extraction.
In this thesis, our approach involves a static analysis of the provided extraction expression,
the update expression, and the replacement specification. We are able to prove sufficient
conditions under which we can avoid re-extraction and, instead, simply update the ex-
tracted relation using a shift function for all possible input documents.

6

1.3 Extracted Relations as Materialized Views

In this thesis, we propose that an extracted relation can be treated as a materialized
view of the database of documents. To this end, we require extractors to have three
general characteristics: i) strict: for every possible input document the set of extracted
values in the corresponding record is a subset of words and phrases appearing in the
input. That is, each extracted value comes from a continuous span in the documents.
Hence, a hypothetical extractor that mines the input text and infers information that
does not appear explicitly in the document is not a strict extractor2; ii) computable: for
all possible input documents and corresponding extracted attributes, we have access to
positions from which the attributes are extracted. Some extraction mechanisms directly
extract positions from text while considering corresponding string values as by-products of
extraction process, whereas others do the reverse; iii) deterministic: for every possible set
of input documents, the set of extracted values remains consistent across multiple runs of
the extractor; some extractors, such as document spanners, are inherently deterministic,
but others, such as some written in JAPE, are not, as discussed on Section 4.3.4.

Treating extraction algorithms as a view mechanism will allow extractors to be adopted
in a broader range of applications. For instance, finding and repairing violations of con-
straints in a large corpus of uncleaned documents is a difficult problem: an extractor that
guarantees the preservation of consistency between the source text and the extracted re-
lations can be adopted to solve this problem. When extraction time is a bottleneck and
updates to source documents occur frequently, it has been proposed to apply incremental
update for the extracted relations [22]. From this perspective, the problem of updating
extracted views resembles the classical view update problem for relational databases [30],
and the problem of updating source documents resembles the problem of maintaining ma-
terialized views [46]. Both problems are well-motivated and thoroughly addressed in the
relational setting. However, due to the diverse range of extraction techniques and inherent
complexity in text processing and understanding, tackling these problems for databases of
documents introduces new challenges.

Our hypothetical extraction system supports updates to documents and extracted re-
lations. Thus, the system comprises five components: a collection of documents, a set of
extraction programs, a corresponding set of extracted relations, an instance of a document
update specification, and an instance of a view update specification (Figure 1.3). In this
thesis, we develop solutions for managing updates for rule-based information extraction

2We leave to future research the exploration of whether the extractor can still be considered to be
strict when the inference is realized through a bijective function, mapping words or phrases in the input
documents to other values present in the extracted table.

7

Figure 1.3: Extraction system that supports updates to source documents as well as ex-
tracted views.

systems, such as GATE [28] and SystemT [81], which are based on the theory of regu-
lar languages. We address the challenges associated with each problem using one of these
frameworks. Our aim is to demonstrate that our approach is not limited to a specific frame-
work but can be applied to any extraction mechanism developed based on the theory of
regular languages. SystemT benefits from a formal model, document spanners, which facil-
itates analysis of extraction programs. Unfortunately, GATE lacks such a mathematically
rigorous formalization, which hinders the study of the properties of extraction programs.
Consequently, a significant portion of Chapter 4 is devoted to devising a conversion mech-
anism from JAPE [29], a rule-based language underlying GATE, to document spanners,
bridging the gap and facilitating a more comprehensive study of properties for a JAPE
program.

8

1.4 Information Extraction in the Era of Pre-trained
Language Models

Pre-trained Language Models (PLMs) such as BERT [32] and particularly Large Language
Models (LLMs) [97, 102] have demonstrated impressive performance across a wide range
of text processing and understanding tasks, including question answering [91], code/text
generation [103], and relation extraction [18]. With such success, is it still necessary to
represent text in a well-structured form like relational tables?

There have been studies that indicate PLMs are not as proficient at handling certain
tasks, especially complex natural language queries that require non-trivial reasoning or ag-
gregation [93, 90]. One effective approach for harnessing the potential of LLMs is to treat
them as auxiliary tools rather than the central component of the system. This strategy
allows applications to accommodate the shortcomings of LLMs. The advances in LLMs
have not detrimentally impacted the relevance of other technologies, like Information Ex-
traction, for the majority of medium-scale applications. For instance, relational databases
have a strong reputation for handling complex and large queries with no strict limits on
input size. Furthermore, recent studies have demonstrated that LLMs excel at translating
natural language queries into SQL queries [80]. In a recent work [90], Tan envisions the
development of a hybrid system capable of seamlessly managing both simple and complex
queries, while harnessing the power of structured query answering (SQL) to address com-
plex natural language queries. The proposed approach involves the creation of a relational
lens over documents (information extraction), and leveraging LLMs to transform complex
natural language queries into SQL queries. Therefore, information extraction continues to
be a crucial component in many document processing pipelines.

1.5 Novelty and Contributions

1.5.1 Novelty

The fundamental realization that information extraction can be viewed as a mechanism
for document database management has not been previously recognized in the context of
unstructured data management. This new perspective facilitates a variety of improvements
in text processing similar to the ones identified in relational database views. Particularly,
the dual problems of efficiently maintaining materialized views (Chapter 3) and of updating
documents to reflect updates applied against extracted views (Chapter 4) open up many

9

opportunities for developing processing techniques that will ultimately lead to practical
solutions.

While the former problem has been explored within the research community, the for-
mulation adopted in this thesis introduces two novel perspectives:

1. We focus on global updates, which are expressed using a formal language and applied
to all documents in the database at once. The optimizer is fully aware of the affected
files, the updated regions in each document, and, most importantly, the semantics
of the update. This contrasts with earlier work by Chen et al. [22], who examined
updates in a setting that is agnostic to the type of update itself, choosing instead
to compare updated versions of documents to their original counterparts in order to
discover their points of difference. This thesis represents an innovative approach as
we take on the challenge of optimizing unstructured data management in the context
of global updates.

2. In this work, we consider the extraction program to be transparent, not as a blackbox
for which we must infer programs’ properties from their runtime behaviour. For in-
stance, Shen et al. [86] conducted blackbox analyses of extraction programs manually
to gain insights into their general characteristics, from which they could develop an
optimizer. Or Chen et al. [22] assume that such chracteristics (scope and context)
are given to the optimizer by the developers of the extraction program. We perform
static analyses on the extraction program to validate multiple sufficient conditions.
This approach ensures that the runtime of our optimizer remains independent of
the database size, which is highly advantageous, especially when dealing with large
databases.

In the context of unstructured data management, we are pioneers in identifying, formulat-
ing, and tackling the latter problem, namely, extracted view update. We anticipate that
the immediate application of our research will involve the identification and resolution of
numerous impactful research problems in the unexplored area of unstructured data quality.

1.5.2 Contributions

Our detailed contributions to both problems are summarized as follows:

1. For the extracted view maintenance problem:

10

• We introduce extracted view maintenance.

• We propose a document update model that is compatible with SystemT and
can express global insertions, deletions, and replacements across a document
collection.

• We formalize three categories of document updates for which we can preserve
consistency without repeating the extraction process: irrelevant, autonomously
computable, and shiftable updates.

• We propose polynomial algorithms to determine whether an update is shiftable
with respect to extractors expressed as document spanners, a formalism that
models the basis of the SystemT extraction system.

• We design and implement a verification system based on the proposed formalism.

• Finally, we conduct experiments to show the effectiveness of the proposed opti-
mization strategy in practice and to discuss opportunities for areas of improve-
ment.

2. For the extracted view update problem:

• We identify and formalize the extracted view update problem.

• We formalize a general view update model, i.e., domain preserving updates along
with an intuitive update translation mechanism.

• We introduce a sufficient property called stability for extraction programs for
which we are able to translate view updates to document updates.

• We propose a mechanism to convert a program in JAPE to its corresponding
document spanner.

• We present a verification process that can be applied to a JAPE program’s
spanner representation to determine whether the program is stable.

11

Chapter 2

Related Work

In this chapter, we thoroughly review the literature’s most relevant work, in conjunction
with the key factors that motivated our focus on specific systems.

2.1 Information Extraction

Information extraction is a crucial step in processing and understanding text. By identify-
ing strings of interest in unstructured or semi-structured data sources, extractors provide
selected data to populate relational records. For instance, an application can extract the
relationships between events, dates, and venues as described in a collection of documents.

Information extraction might be the main task or a sub-task in broader projects, such
as information retrieval and text analytics. For instance, Knowledge Panels [88], which
are used to improve the presentation of retrieval results in a commercial search engine, is
an application of information extraction in information retrieval systems.

2.1.1 Approaches Used for Information Extraction

Sarawagi presents a thorough review on information extraction [84]. There are two primary
approaches for developing information extraction systems:

Rule-Based Approaches. In rule-based systems, handcrafted rules (or sometimes learned
rules) are developed based on features of entities and possibly relationships between entites
that are derived from a training corpus. There are two classes of rule-based approaches:

12

Phase: Names
Input: Token
Options: control = appelt
Rule: capital
(({Token.orth==upperInitial})+):mark-->:mark.Capital={}

Figure 2.1: A JAPE phase that marks the longest sequence of upperInitial tokens.

• Grammar-based: Extraction systems that use rule-based languages, such as the
Common Pattern Specification Language (CPSL) [10], fall under this category. In
such systems, input texts are matched against user-defined rules. Extraction rules
may be organized into multiple phases, with each phase augmenting the text with
various annotations and passing it on to the next phase. For instance, in CPSL
and its extension JAPE [29], a rule consists of two parts: a pattern expressed as a
regular expression over lexical features of the input text (e.g., syntactic features like
noun, proper noun, verb, or orthographic features such as punctuation and capital-
ization), and an action specifying the interpreter’s response when the input matches
the pattern. Figure 2.1 depicts a JAPE phase containing a single rule.

The fundamental drawbacks of grammar-based systems have been highlighted in
some studies [86, 81] and primarily revolve around two aspects. First, the readability,
scalability and maintainability of extraction programs suffer as their complexity and
size increase. Grammar-based systems offer ad-hoc abstraction and modularization.
For example, developers can write their programs in multiple phases (modules) in
JAPE, but rules are applied procedurally (similar to procedural languages), making it
difficult to manage and understand large programs. Second, grammar-based systems
exhibit slow performance due to their sequential nature of evaluation. The sequential
evaluation process can be inefficient, especially when dealing with large volumes of
data. These systems often lack systematic potential for optimization, aside from
small opportunities for fine-tuning.

• Declarative Extraction Systems: To address shortfalls of pure grammar-based
systems, Shen et al. [86] propose a declarative approach to information extraction
using Datalog with embedded procedural predicates to express extractors. This en-
ables the composition of large extraction programs from small extraction modules.
Additionally, it supports the creation of execution plans for the extraction program
and deployment of cost-based optimization techniques similar to query optimization
in relational databases. Similarly, Reiss et al. [81] recommend using a declarative

13

language, AQL (used by SystemT), to be able to exploit query optimization strate-
gies.

Statistical Approaches: It is a common practice in natural language processing to
devise a statistical technique, perhaps a new machine learning pipeline, for tackling a
specific extraction task such as named entity recognition, event detection, and argument
extraction. In this work, we do not focus on any particular extraction task, instead, the
problems formulated in this thesis require only that the extractor is strict, computable,
and deterministic, as explained in Section 1.3. Verifying whether an extractor is strict is
straightforward; it is something that the designer decides beforehand. In the remainder of
this section, we review some extraction tasks that can be designed as strict extractors.

Various machine learning algorithms are applied in the information extraction domain.
Some techniques, such as conditional random fields [60] and LSTM [47], are sensitive to
the sequential nature in text. Other techniques such as Support Vector Machines [27] are
trained based on word level features to identify named entities [50]. Furthermore, deep
learning techniques have demonstrated their efficacy in information extraction tasks, par-
ticularly when trained on large corpora. The deep learning models learn complex patterns
and generalize well, leading to accurate extraction of information from diverse sources [75],
and they are appealing when the reasoning behind particular data being extracted does
not need to be explained. Advances in devising PLMs, based on transformer architecture,
such as BERT [32], GPT3 [14], and GPT4 [16], have significantly enhanced various natural
language processing tasks, including information extraction.

• Pre-trained Language Models: Three strategies have been taken in adopting
PLMs for information extraction: I) Fine-tuning : a model is initially trained on a
large volume of unlabeled data to initialize its parameters. Subsequently, these pa-
rameters are adjusted using labeled data specific to a downstream task in a process
known as fine-tuning. It is important to note that each downstream task typically
involves separate fine-tuned models, even though they all start with the same pre-
trained parameters. For instance, Obuchowski et al. [77] fine-tune a pre-trained Polish
language model for entity extraction in medical reports written in Polish. In another
work, for an underrepresented natural language, a language model is constructed
and then fine-tuned for named entity detection and part-of-speech tagging [98]. II)
In-context learning(ICL): the extraction task is formulated as a language generation
task1: given a sequence of one or more inputs, i.e., prompts, the model generates
the most likely output [14]. Unlike in fine-tuning, parameters of the model are not

1The model generates human-readable text, based on certain input.

14

updated in ICL. For a given task, the research is devoted to forming an appropriate
input format, i.e., prompt tuning. Agrawal et al. [7] explore the potential of ICL
for clinical extraction tasks such as biomedical evidence extraction and coreference
resolution. To perform named entity detection, Li et al. [63] propose to generate a
code-style representation of the input text, Python-like code, and prompt a LLM
trained specifically for code, i.e., Code-LLMs, such as Codex [23]. III) Hybrid : in
hybrid settings both fine-tuning and in-context learning are used. Josifoski et al. [52]
use LLMs to generate many synthetic labeled samples, which can subsequently be
used to fine-tune a PLM. Yubo et al. [67] propose to combine a LLM with a small
PLM for multiple extraction tasks, including named entity detection and event/event
argument detection. They propose to use LLMs when the PLM exhibits low confi-
dence in its responses, an approach that can be adopted for various tasks.

There are hybrid approaches that aim to leverage the strengths of both rule-based
systems and statistical methods to improve extraction accuracy and performance. For
instance, Califf and Mooney have designed a machine learning model to learn extraction
rules [19].

2.1.2 Update-Aware Information Extraction

Expectations from extractors have risen as requirements have become more diversified,
from the point that there were no criteria to evaluate their performance [42] to the point
that extraction algorithms need to work under various stresses such as noisy data, low
response time, and diverse types of input and output [84]. In this section we review related
work to an update-aware information extraction mechanism.

Efficient Information Extraction

Extraction time can be a bottleneck for many applications [86, 81], and therefore efficient
processing is an important consideration for information extraction. Some optimization
approaches are general and can be deployed in any system for specifying extractors. For
instance, Chandel et al. [21] propose an efficient algorithm for dictionary-based entity
recognition, which can be used on many extraction platforms. Iperotis et al. [49] deal
with many documents by keeping only “promising” documents for the extraction process.
As previously mentioned, Shen et al. [86] and Reiss et al. [81] leverage the advantages of
declarative languages to design efficient extraction mechanisms.

15

Considering extractions within larger applications, Jain et al. [51] treat information ex-
traction and subsequent relational queries as an integrated system and propose optimiza-
tions that takes into account the characteristics of extractors, document retrieval methods,
and join algorithms on the extracted relations.

However, none of these strategies consider that an extraction might need to be re-
computed to keep extracted information synchronized with source documents as they are
updated. Recognizing this situation, Chen et al. have developed an approach for incremen-
tally updating extracted relations [22]. They do not assume that a description of the update
is available, but instead compare each updated document with the previous version to find
regions that have not changed. Then, based on user-provided properties of the extractor,
they decide which of the extracted items from those regions can be reused. Doleschal et
al. [34] explore conditions for determining that a spanner is split-correct, that is, if the ex-
tracted relation can be computed by combining the extractions from sub-documents. If so,
extractions from various sub-documents can be run in parallel, but additionally incremental
update is applicable: re-extraction after an update can be avoided for those sub-documents
that are not altered. With a different prespective, Lerman et al. [61] propose continuous
adaptation of extractors as their information sources changes. Lerman et al. monitor up-
dates to information sources for a specific class of extraction algorithms (wrappers) and
rebuild the extractor if the extractor’s performance (precision and recall) decreases due
to the updates over their sources. For our application of interest concerning translating
updates on extracted views to updates to source documents, we identify extractors that
can tolerate supervised updates over the sources without applying any adjustments to the
extractor itself.

Updatable Extracted Views

The body of research related to the problem of updatable views over unstructured data is
relatively limited. However, we can draw insights from existing work on updatable views
over semi-structured data, such as XML, which is slightly relevant to our study. Similar to
the relational setting, creating views over XML databases can provide various advantages,
including faster query processing and convenient access control over specific sections of a
larger XML database [6]. Kozankiewicz et al. [59] propose to incorporate information about
forseeable updates over views into the view definition. Therefore, the ultimate affects of
updates are specified solely by the query designer which, if not verified, might leave the
XML database in an incorrect state .

16

2.1.3 Rule-based versus LLM-based Extraction

The interpretability of rules makes rule-based information extraction systems suitable for
domains in which a user’s confidence in the validity of the extraction algorithm is critical.
Chiticariu et al. [26] have identified the advantages of rule-based systems, namely easy
comprehension and maintainability, that make them appealing for commercial uses. There
are several disadvantages that come with PLMs, including LLMs, which make them less
appealing, specifically when they are used in critical domains such as legal or medical fields:

• Computable Extractor: Being a strict extractor implies that the extracted items
must occur in the input text, and computability requires that the extraction process
is capable of generating the necessary provenance. Because, not all instances of a
term or phrase in the source document may correspond to those that are extracted,
we require a mechanism for identifying the corresponding positions, i.e., fine-grained
data lineage. Extractors written in certain rule-based extraction languages, such as
AQL (used in SystemT) and JAPE (used in GATE), are inherently computable, i.e.,
the lineage of extracted items are available as a by-product of the extraction process.
However, extractors expressed as PLMs do not come with these inherent capabilities.
PLMs are complex and perceived as black-box solutions. As a result, a significant
body of research is dedicated to inventing novel techniques to explain how PLMs
operate [101]. The fine-grained lineage of extracted items can be considered a local
explanation mechanism2, which aims to provide insight into how a model responds
to a specific input instance. Several techniques belong to this category, among which
explanations based on attribution might offer a viable mechanism for pinpointing
corresponding positions in the input. An attribution-based explainer assigns a rele-
vancy score to each input word, highlighting its contribution to generating the output
(extracted items, in the extraction case). In our work, computability is treated as a
non-probabilistic property, whereas lineage based on attribution is inherently proba-
bilistic [100], so current PLMs do not meet our requirement for computability.

• Deterministic Extractor: The generated outputs in PLMs are the outcomes of a
combination of multiple stochastic and/or heuristic steps. Consequently, running a
PLM multiple times for the same input can yield different responses [94, 5], which
characterizes LLMs as non-deterministic extractors. Again they do not meet the
requirements required for update-aware information extraction.

In addition to these major drawbacks for our purposes, today’s LLMs have a few other
disadvantages. PLMs are not knowledge-bases themselves; they are probabilistic models of

2For a comprehensive overview of explainability, refer to [101].

17

knowledge-bases. Therefore, they have the potential to generate non-factual answers [33].
They also have limitations when it comes to their input size3. Furthermore, they are
costly [4] and rely on extensive data. Therefore, it is not likely that average-sized enterprises
will be able to develop their own LLMs, making them reliant on external sources, which
potentially contain outdated data.

2.2 Fine-grained Data Lineage.

Data lineage, or provenance, has been defined and formalized for structured and semi-
structured data [17, 24]. Given a value that is the outcome of executing a well-defined
query over some data sources, often relational tables, provenance determines three aspects
related to the value: data points in the source that contribute to form the value, the
way that data points collaborate to produce the value, and the exact location(s) in the
data source from which the value originates. The last aspect is similar to the notion of
lineage that we use in this work, i.e., we require the extractor to provide the positions in
a document from which a value is extracted.

Provenance-based techniques have also been applied to information extraction prob-
lems. Roy et al. [83] propose a provenance-based technique to improve the quality of
extraction by refining the dictionaries that are used in a rule-based extraction system. A
set of entries from the dictionaries that have been involved in generating the output are
analyzed to determine which should be removed to improve the extractor’s performance
most. In other work, Liu et al. [66] use provenance techniques to determine the most ef-
fective rule refinements, i.e., those that result in removing undesirable tuples and keeping
correct ones. Chai et al. [20] examine the provenance of a multi-stage extraction program
that can include relational operators on intermediate tables. Users’ feedback is expressed
as updates over tuples that appear at any stage of the extraction process, and these updates
are translated into modifications of the corresponding extraction program.

2.3 Relational Materialized Views

In the relational setting, a view is a relation that is derived from base tables. Since
views need to be reconstructed with each access, they may be materialized to provide fast

3Currently, the input character limit for ChatGPT is 2048 characters, taken from
https://chatgptdetector.co/chatgpt-character-limit/.

18

access to data. A plethora of problems have been identified and studied in the relational
setting. They range from deciding whether to materialize a view to designing efficient
strategies for utilizing and maintaining materialized views. In this thesis, we propose to
treat extracted relations from documents as views. From this point of view, we deal with
two problems: how to efficiently maintain the content of an extracted view when the content
of source documents is updated? how to translate updates on tuples in extracted views to
updates on documents? In the following two subsections we review some influential work
concerning similar research questions in the relational setting. The reader may refer to
other work [25, 46, 40] for a thorough review of all aspects of research in the domain of
relational materialized views.

Possible actions that invalidate a relational materialized view include: altering the
schema of associated base tables or the definition of views, updating the content of cor-
responding base tables, and updating the content of views independent from base tables.
The last two problems are directly related to our research questions, see Figure 2.2.

(a) View maintenance (b) Updatability of views

Figure 2.2: U is an update process. R(V) and R′(V ′) represent an instance of the base
table (a view) and the base table’s instance (a view’ instance) after the update, respectively.
For 2.2a finding an efficient mechanism to create V ′ is a possible research problem. For
2.2b the research objective involves determining how to effectively translate U to its most
likely intended update over R.

2.3.1 Materialized View Maintenance

For the first research question, we deal with a system in which updates on documents are
already completed, and there is a need to efficiently bring the views’ content up-to-date.
Similarly, in the relational setting, a view definition, expressed in relational algebra, along

19

with tuples to be inserted or removed from base tables provides information that is utilized
to maintain the content of a view without recomputing it from scratch [13, 45]. Blakeley
et al. address this problem where the definition of materialized views written as a Select-
Project-Join (SPJ) expression and the update involves insertion or deletion of a set of tuples
into/from one base relation at a time. Blakeley et al. derive a Boolean expression from the
selection predicate in the view definition. The predicate’s attributes that are involved in
an insertion or deletion are substituted by associated values taken from an update tuple.
The unsatisfiability of the composed Boolean expression implies that regardless of the
database instance the view is not affected by the insertion or deletion of tuples into the
base relation. They give a sufficient and necessary condition on the irrelevancy of an update
which is stronger than our work proposing only sufficient conditions. For a particular class
of Boolean expressions, their proposed algorithm is polynomial in the number of attributes
present in the view. Furthermore, they formalize a stronger method for materialized view
maintenance, differential view update. For the differential view update, Blakeley et al.
require one more piece of information: the content of associated base relations before the
updates. For a view written as an SPJ expression, they utilize a truth table with 2k rows,
where k is the number of updated base relations that participate in a view, to determine
sub-expressions in the view definition that need to be re-evaluated. For instance, take a
view v that is created by SPJ on two base relations with current instances denoted as a
and b. Assume that a set of tuples T are inserted to a. To update the view, Blakeley et al.
first compute a partial view using T instead of a in the view definition, this needs access to
the content of b. Then they take the union of the partial view and the old view to generate
the update-to-date view.

In follow-up work [12] in addition to insertion, Blakeley et al. handle i) deletion which
is expressed as a select condition over base tables; ii) modification of base tables defined
as a selection of tuples along with an update function that determines how to modify
each associated attribute using attributes in the base table that is to be modified. Some
necessary and sufficient conditions are devised for detecting irrelevant and autonomously
computable updates on relational views. The essence of the proposed approach is to test
the satisfiability of specific Boolean expressions that are derived from the view and update
description. Particularly for modification, they recommend five properties for various con-
structed Boolean expressions to be able to autonomously compute the new values in the
view after modification to base tables. Similarly, one of our contributions is formalizing a
specific kind of autonomously computable update called shiftable update for which modifi-
cations to source documents can be applied to the extracted views using a predefined shift
function. The main caveat of both studies [12, 13] is that they require testing satisfiability
of Boolean expressions that in general is NP-Complete. However, both works present ex-

20

periments to show the applicability of the approaches in practical scenarios despite being
NP-Complete.

2.3.2 Updatability of Relational Views

Our second research question involves translating updates on the content of an extracted
view to updates on the content of the associated document. This is similar to the problem
of updatability of relational views that is thoroughly studied in relational databases [40,
41, 57, 69, 70].

In the relational setting, the problem of a view updates is defined as finding a transla-
tion of a view update (denoted by U in Figure 2.2b) to a database update (denoted by
? in Figure 2.2b) such that running the same view definition query on R′ produces V ′

regardless of the database instance. Interesting research challenges are raised from this
definition such as how to deal with the problem of multiple possible translations? Are
views always updatable? if not how to identify views that cannot be updated? how to
derive a specific translation mechanism for a given view definition, database schema, and
update specification?

Two general approaches are proposed for updatability of relational views. First, along
with a view definition, all authorized updates and their corresponding translations should
be provided. However, the provided translation mechanism also needs to be verified. The
second approach is to exploit the information provided by the view definition, the update
mechanism, and database constraints to derive conditions on the legitimacy of a translator.
For example, the view dependency graph that is constructed using only the view definition
and database schema is used to verify a translator for some classes of deletions, insertions,
and replacements [31]. Our solution to the extracted view updates is aligned with the
latter approach. We limit ourselves to a class of view updates that is realized by a domain-
preserving function that maps each extracted value to a value from the same domain,
similar to perturbing values of a table to protect privacy. However, we do not impose any
constraints on the input documents. We pick the most natural translation which is to
substitute old values in the source document with new values, and we expect to see them
extracted by running the same extractor (Figure 2.2).

In summary, applying solutions proposed in the relational setting to the information
extraction domain poses significant challenges. The relational setting benefits from various
constraints, including schema-based constraints such as data types, referential integrity
constraints, key constraints, and functional dependency constraints, among others. These
constraints serve to structure and regulate the problem space. However, in the context

21

of information extraction, such constraints are generally not present: there are usually no
inherent limitations on the content of the source documents.

2.4 Static Analysis of Programs Using Regular Lan-
guages

For both research problems, we use an extended form of finite-state automata to statically
analyse the extraction program and update mechanism. Similar static analyses of regular
expressions or deterministic finite automata have been used in diverse areas, including ac-
cess control, feature interactions, and vulnerability detection of programs. For example,
Murata et al. [73] propose an automaton-based access control mechanism for XML database
systems. Regular expressions are derived from given queries, access-control policies, and
schemas. Based on the characteristics of the derived automata, element/attribute level
access requests by queries are determined to be either granted, denied, or statically inde-
terminate, independently of any actual input XML documents. An event-based framework
is introduced by Kin et al. [58] for developing and maintaining new gestures that can be
used in multi-touch environments. Using that framework, application developers express
each gesture as a regular expression over some predefined touch events. Regular expressions
associated with gestures are then statically analyzed to identify possible conflicts between
various gestures. Yu et al. [99] present a method for detecting security vulnerabilities in
programs that use string manipulation operators such as concatenation and replacement.
In essence, their approach involves constructing DFAs to represent the program’s data de-
pendency graph. Subsequently, they perform static analysis on the provided attack pattern,
expressed as a DFA, and the graph’s DFAs to detect potential vulnerabilities. Dynamiclly
generated SQL queries can enhance the flexibility of programs, written in JAVA or other
languages, by allowing them to adapt to changing conditions and requirements without the
need to write multiple static queries. However, the host compiler, i.e., JAVA compiler, does
not test the generated query strings for possible errors such as type errors. To this end,
Wassermann et al. [95] propose a static analyzer to verify the correctness of dynamically
constructed SQL queries embedded in programs. Their approach involves creating a DFA
representation of the generated query strings and performing static analysis on the DFA.

22

Chapter 3

Maintenance of Extracted Views

We consider an extracted relation to be a materialized view of the document corpus. From
this perspective, in this chapter, we address the problem of keeping extracted relations
in sync with the document corpus when the corpus is updated, i.e., extracted view main-
tenance. The natural way to reflect changes in source documents is to wipe out any
extracted relations and repeat the extraction process. Although this approach guaran-
tees the preservation of consistency between the source text and the extracted relations,
as in the relational database context, extracting relations from scratch can be costly. For
instance, in some applications where updates to source documents occur frequently, extrac-
tion time might be a bottleneck or, in a distributed setting in which extracted relations and
source documents reside in different physical sites, the communication cost for repeatedly
transferring newly extracted relations might be significant. Thus, avoiding re-extraction
is sometimes highly desirable. That is, we wish to translate updates over documents into
differential updates over extracted relations. Although the problem can be studied for
various extraction languages, we focus on extractors expressed as document spanners. In
this chapter

• We introduce the extracted view maintenance problem.

• We propose a match-and-replace document update model where replacement values
depend on the strings being replaced.

• We formalize three categories of document updates for which we can preserve consis-
tency without repeating the extraction process: irrelevant, autonomously computable,
and shiftable updates.

23

• We propose a new algorithm to verify that an update is shiftable with respect to
an extractor and prove that it runs in polynomial time via three theorems. The
algorithm relies on four external tests (two for verifying the precondition and two
tests for independence) that are each proven to execute in polynomial time.

• Finally, we show experimentally that our algorithm is practical: it can be used ef-
fectively in realistic update and extraction scenarios, and it runs far faster than the
time needed for re-extraction. If this approach is combined with incremental update,
the overhead is relatively small, and it will often perform much faster.

3.1 Preliminaries

3.1.1 Documents, Regular Expression, and Document Spans

In order to develop specific algorithms, we assume that extracted views are defined using
SystemT, an information extraction platform that benefits from relational database con-
cepts to deal with text data sources [81]. SystemT models each document as a single string
and populates relational tables with spans, directly extracted from the input document.
With SystemT users encode extractors with a SQL-like language, i.e., Annotation Query
Language (AQL), to manipulate tables. AQL offers operators to work directly on text or
on the extracted tables (standard relational operators that accept span predicates).

The underlying principles adopted by SystemT have been formalized as document span-
ners by Fagin et al. [37]. Most of the material in this section has been introduced in that
work, which contains additional details.

Given a finite alphabet Σ, regular expressions over Σ conform to the grammar:

γ := ∅ | ϵ | σ | (γ ∨ γ) | (γ • γ) | (γ)∗ (3.1)

where σ is shorthand for the disjunction of all characters in Σ. A set of strings that is
recognized by a regular expression conforming to grammar 3.1 forms a regular language
denoted by L(r). Given a regular expression r, the corresponding regex tree T (r) represents
the hierarchical structure of r, in which the tree’s leaves have labels ∅, ϵ, or σ ∈ Σ and
internal nodes have labels •, ∨, or ∗. For convenience of notation, when writing a regular
expression, we follow common practice in allowing the following shorthand: omission of
parentheses, relying instead on left associativity of all operations and precedence of ∗ over
• over ∨; omission of the operator •; and use of Σ to represent the disjunction of all
characters in Σ.

24

A document D is a finite string that is generated by Σ, i.e., D ∈ Σ∗ (Figure 3.1). A
span of D, denoted [i, j⟩ (1 ≤ i ≤ j ≤ |D| + 1), specifies the start and end offsets of a
sub-string in D, which is in turn denoted D[i,j⟩, and extends from offset i through offset
j − 1.

Example 3.1.1

In the document presented in Figure 3.1, D[86,132⟩ represents the sub-string “Maintain-
ing Knowledge about Temporal Intervals”.

If i = j, this denotes an empty span at offset i. Spans s1 = [i1, j1⟩ and s2 = [i2, j2⟩ are
identical if and only if i1 = i2 and j1 = j2. If S is the set of all spans of D, then a span
relation R is a relation that contains spans of D, that is, R ⊆ S × ...× S.

3.1.2 Extractors Expressed by Document Spanners

Regular expressions extended using variables chosen from a set V are called regular expres-
sions with capture variables and conform to γ in the grammar GS(Σ, V) as follows:

γ := ∅ | ϵ | α | Σ | (γ ∨ γ) | (γ • γ) | (γ)∗ | x{γ}
α := β | δ
β := σ | [σ, σ]
δ := Σ | δ − β

(3.2)

where the terminal symbol Σ is now explicitly included (since documents typically use very
large character sets), σ represents the disjunction of characters in Σ, α extends individual
characters in Σ, and x represents the disjunction of variables in V . Also to allow proper
subsets of Σ, [σ, σ] represents the disjunction of characters having their encoding between or
equal to the encoding of the first and second character in the pair and Σ−β represents the
disjunction of all characters except for those in β, i.e., exclusion. Note that exclusion takes
precedence over ∗, •, and ∨ . This expression may also be represented as (extended) regex
trees, and they may also use the usual shorthand conventions for regular expressions. The
use of a sub-expression of the form n{g} is to denote that whenever the regular expression
matches a string, sub-strings matched by g are to be marked by the capture variable n ∈ V .
If E is a regular expression with capture variables, then we denote the set of capture
variables in E as SVars(E). We distinguish two classes of variables based on their relative

25

< a r t i c l e k e y = " c a c m / A l l e n 8 3 " m d a t e = " 2 0 1 1 - 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

6 - 0 7 " > < a u t h o r > J a m e s F . A l l e n < / a u t h o r > < t i t
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

l e >M a i n t a i n i n g K n o w l e d g e a b o u t T e m p o r a l I
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100101102103104105106107108109110111112113114115116117118119120121122123

n t e r v a l s . < / t i t l e > < / a r t i c l e >
124125126127128129130131132133134135136137138139140141142143144145146147148149150

Figure 3.1: A sample input document D for our running example.

positioning. A variable x ∈ SVars(E) is exposed if is not enclosed in any other variables,
otherwise is nested. We use GS in place of GS(Σ, V) whenever Σ and V are immaterial
or understood from the context. Throughout this thesis, characters in Σ appearing in a
formula are represented like this to distinguish them from a regular expression’s meta-
characters.

Example 3.1.2

Let Σ be the set of Latin alphanumeric, punctuation and space characters (the last repre-
sented by). Note that this is the setting for all future examples unless otherwise stated.
γdate is a regular expression with capture variables

γdate = Σ∗ mdate=" F{Y {γdγdγdγd} -M{γdγd} -D{γdγd}} "Σ∗

where γd = [0 , 9] and SVars(E) = {F, Y,M,D}. F is the only exposed variable in
SVars(E). For every successful matching of γdate against a string, a sub-string matching
γdγdγdγd is marked by the capture variable Y . Matching γdate against the document pre-
sented in Figure 3.1, 2011 is marked as Y . We extend conventional set notation to write
Y ⊂ F and - ∈ F .

3.1.3 Matching Model

Just as determining whether or not a string is in a regular language L(r) can be accom-
plished by executing a finite state automaton corresponding to r, determining membership
in a language defined by a regular expression with capture variables can be accomplished

26

by executing a corresponding variable-set automaton or vset-automaton. A vset-automaton
is a non-deterministic finite automaton augmented with a set of variables denoted as V ,
a designated set, and two variable operators. These two specific operators defined on a
variable x ∈ V include: x ⊢ (“open x”) and ⊣ x (“close x”), which symbolize inserting
and removing the variable x into/from a designated set, respectively. Besides the standard
character transitions, a vset-automaton has operation transitions to operate on variables
without consuming the input string. An input string is accepted by a vset-automaton if,
after scanning the whole input, we end up in a final state given that every variable has
been inserted in and removed from the designated set exactly once. For a thorough review
of vset-automata, the reader may refer to the description by Fagin et al. [37].

Applying an information extractor to a document D produces a span relation, i.e., a
relation that contains spans of D. To this end, if E is a regular expression with capture
variables, it specifies a document spanner, denoted JEK, which is a function mapping strings
over Σ∗ to span relations. In particular, for a given document D, the spanner specified by
E produces a span relation JEK(D) in which there is one column for each variable from V
appearing in E, each row corresponds to a matching of E against D when the variables are
ignored, and the value in a row for the column corresponding to x ∈ V is the span marked
by x. To ensure that the extracted relation is in first-normal form with no null values, we
restrict our attention to a specific class of document spanners, namely functional document
spanners, that assign exactly one span to each variable for all produced rows, regardless of
the input document D.

Example 3.1.3

Let γd be as defined in Example 3.1.2. Applying the spanner represented by

γpartialDate = Σ∗F{M{γdγd} -D{γdγd}}Σ∗

to the document in Figure 3.1 results in the span relation in Figure 3.2.

F M D
[38, 43⟩ [38, 40⟩ [41, 43⟩
[41, 46⟩ [41, 43⟩ [44, 46⟩

Figure 3.2: The extracted relation JγpartialDateK(D), where D is depicted in Figure 3.1.

27

Definition 1 Throughout this chapter, a functional document spanner used for the purpose
of information extraction is called an extraction spanner or simply an extractor, the regular
expression with capture variables defining it is called an extraction formula, and the span
relation produced for a document is called an extracted relation.

For extraction spanners an algebraic operator is defined as a function that maps one (for
unary operators) or two extraction spanners (for binary operators) to exactly one extraction
spanner. Let D be an input document and let E, E1, and E2 be extraction spanners, where
the last two are union-compatible, i.e., E1 = ∅ ∨ E2 = ∅ ∨ SV ars(E1) = SV ars(E2),
and S ⊆ SV ars(E). The algebraic operators essential for our work are defined as:

• The projection of E is a spanner represented as πS(E). For any arbitrary D,
πS(E)(D) is obtained by restricting the domain of E(D) to S.

• For two union compatible extraction spanners, E1 ∪E2 represents the union spanner
where SV ar(E1 ∪E2) = SV ars(E1)∪ SV ars(E2). For an arbitrary input document
we have E1 ∪ E2(D) = E1(D) ∪ E2(D).

• The join spanner is represented as E ▷◁E1 where SV ar(E ▷◁E1) = SV ars(E1) ∪
SV ars(E). For an input document the span relation associated with the join spanner,
E ▷◁E1(D) is the cross product of E(D) and E1(D). However, similar to relational
algebra if SV ars(E1) ∩ SV ars(E) ̸= ∅, tuples must have identical spans assigned to
the common variables to be included in E ▷◁E1(D).

• The spanner resulting from a binary string selection operator is denoted as ζ=x,yE
where x, y ∈ SV ars(E). For an arbitrary input document D ζ=x,yE(D) is obtained
by restricting records of E(D) to those that string values corresponding to x and y
are identical.

In this thesis, we hypothesize systems that include a document database D and a set
of extractors {E1, · · · ,Ee} that run independently over D. The union of span relations
produced by an extractor Ek against the document database is stored in a relation Tk that
includes an additional column to associate each document identifier with the spans for the
corresponding span relation (Figure 1.3). These tables serve as materialized views of the
document database. In this chapter, we assume each Ek is an extraction program written
using the core of SystemT’s AQL a.k.a. core spanner. A core spanner is an element in the
closure of extraction formulas under the algebraic operations projection, join, union, and
string selection.

28

3.1.4 Restricted Extraction Formula

For reasons that become clear later on, we are interested in a restricted form of extraction
formulas which are defined below. A restricted extraction formula conforms to γ̄ in the
grammar GS(Σ, V, v):

γ̄ := (γ̄ ∨ γ̄) | (γ′ • γ̄) | (γ̄ • γ′) | v{γ′′} (3.3)

where γ′ is a standard, variable-free regular expression (grammar 3.1), γ′′ is a regular
expression with capture variables V (grammar 3.2), and v is the only exposed variable.
Note that v encloses all other capture variables. The extraction formula presented in
Example 3.1.2 conforms to γ̄ and F is the exposed variable.

Definition 2 An extraction formula E conforming to GS(Σ, V, v) is in normalized form
with regard to v if it is written as

∨k
i=1 Ei where each Ei is a formula conforming to γ̂:

γ̂ := (γ′)? v{γ′′} (γ′)?

where ‘?’ denotes optional and γ′ and γ′′ are defined in grammars 3.1 and 3.2, respectively.

In short, to normalize a formula conforming to grammar 3.3 with regard to v, all disjunc-
tions that have v in their disjuncts1 can be “pulled up” over concatenations in the extended
regex tree to create separate disjuncts at the outermost level of the formula.

Example 3.1.4

The extraction formula γDOI conforms to grammar 3.3:

γDOI =Σ∗ <ee> (F{ https://doi.org/C{(γword)
∗(γword ∨ / ∨ .)∗}} ∨

F{ doi:C{(γword)
∗(γword ∨ / ∨ .)∗}}) </ee>Σ∗

where SV ars(γDOI) = {F,C}, F is an exposed variable, and γd = [0 , 9], γupper = [A , Z], and
γlower = [a , z], γword = γlower ∨ γupper ∨ γd.

The corresponding normalized form with respect to F is:

γDOI =Σ∗ <ee>F{ https://doi.org/C{(γword)
∗(γword ∨ / ∨ .)∗}} </ee>Σ∗

∨ Σ∗ <ee>F{ doi:C{(γword)
∗(γword ∨ / ∨ .)∗}} </ee>Σ∗

1Because the formulas are functional, if a capture variable appears in one disjunct, it must appear in
all disjuncts.

29

Lemma 1 Given any functional extraction formula g conforming to GS(Σ, V, v), Algo-
rithm 1 normalizes it by producing the list of disjuncts ∆(g, v) in time that is polynomial
in |g|, where |x| denotes the length of x.

Proof. Proof by induction on the height of the expression tree h:
Base Case : h = 1: g is v{σ} or v{ϵ} which is in normal form and returned after executing
line 6.
Induction Step: Assume the algorithm generates ∆(g, v) for all functional formulas con-
forming to grammar 3.3 with expression tree having height h < n. The expression tree Th

of height h for a regular formula g based on the grammar GS(Σ, V, v) can be written as a
root and subtrees of height less than h. Each subtree either has no variables, or it has all
the capture variables except for v, or (by the induction hypothesis) it can be rewritten in
the desired form. Now consider the root of Th:

1. The root is ∨. The tree must include v and because g is functional both subtrees must
include v. Therefore, by the induction hypothesis, each subtree can be rewritten in
the desired form, so when lines 9 and 10 are executed and the result added to the
disjunct list, the list of normalized disjuncts for the whole expression is returned.

2. The root is a •. Functionality of g implies that exactly one of the subtrees must
have v, which by the induction hypothesis can be written in the desired form, so
the other subtree does not have any variable. Therefore, by standard distribution of
concatenation over disjunction, we get the desired form ∆(g, v) by executing either
line 14 or line 17 as appropriate.

3. The root is v. Since g is functional, the subtrees cannot include v. Thus, the
expression is already in the desired form and line 6 is executed to return the (already)
normalized expression.

Complexity Analysis :
The expression tree can be constructed in linear time in the input expression length.
To normalize the expression, the expression tree is traversed top-down, which has time
complexity that is linear in the input length. For each occurrence of v a new expression is
added to the list, which makes the output size O(m ∗ n) where n = |g| and m < n is the
number of occurrences of v in g. □

30

Algorithm 1 to normalize a restricted formula g with respect to exposed variable v.
Input: restricted extraction formula g, exposed variable v
Output: list of disjuncts ∆(g, v)
Precondition: g is functional

1: T ← ExpressionTree(g)
2: return normalize(T, v)
3: procedure normalize(T : expressiontree, v : variable)

Precondition: v is in T
4: ∆(g, v)← list()
5: if T.root == v then
6: ∆(g, v).add(toRegExp(T))
7: end if
8: if T.root == ∨ then
9: ∆(g, v).add(normalize(T.left, v)) ▷ normalize left subtree

10: ∆(g, v).add(normalize(T.right, v)) ▷ normalize right subtree
11: end if

▷ if v occurs in the right/left subtree normalize right/left subtree and concatenate
every expression in the ∆(g, v) with the right/left expression

12: if T .root == • then
13: if v in subtree(T.right) then
14: ∆(g, v).add(normalize(T.right, v))
15: toRegExp(T.left) •∆(g, v)
16: else
17: ∆(g, v).add(normalize(T.left, v))
18: ∆(g, v) • toRegExp(T.right)
19: end if
20: end if
21: return ∆(g, v)
22: end procedure

31

3.1.5 Efficient Construction of Extractors

Inputs to our proposed verifier are expressed as extraction formulas conforming to gram-
mar 3.2. We utilize various algebraic operations defined for spanners to statically analyze
input programs. Specifically, we convert the inputs to a special automaton representa-
tion proposed by Morciano [72], i.e, extended variable-set automaton or eVset-automaton.
EVset-automaton is a variant of variable-set automaton with the same expressivity [37]. By
proposing some properties on eVset-automata, namely, well-behaved, pruned, and operation-
closed, Morciano [72] designed polynomial algorithms to construct eVset-automata that
simulate algebraic operators on eVset-automata. Further, Morciano [72] proves that given
an extraction formula, the corresponding eVset-automaton can be created in polynomial
time. We denote the eVset-automaton accepting ∅ by A∅. If E is an eVset-automaton, E1,
and E2 are union-compatible eVset-automata (i.e., E1 = A∅ ∨ E2 = A∅ ∨ SV ars(E1) =
SV ars(E2)), and S ⊆ SV ars(E), then there are automata πS(E), E1 ∪ E2, and E ▷◁E1

that can be created in polynomial time such that for any document D

• JπS(E)K(D) = πS(JEK(D)),

• JE1 ∪ E2K(D) = JE1K(D) ∪ JE2K(D), and

• JE ▷◁E1K(D) = JEK(D) ▷◁ JE1K(D).

It is trivial to show that renaming variables can also be done in polynomial time, so if
E defines a spanner, x ∈ SV ars(E), and y /∈ SV ars(E) then ρx→y(E) defines a spanner
such that for any document D, Jρx→y(E)K = ρx→y(JEK(D)), that is, the column in JEK(D)
named x is instead named y.

3.1.6 Contextualization of Extraction Formulas

In general, an extraction formula matches a complete document, and certain strings must
appear either inside and outside the regions marked by capture variables. If a document
is updated, we wish to know whether the extracted content or any of the strings that
specify required contextual information is disrupted in any way. To this end, given the
specification of a document spanner E, we define a corresponding regular formula Cv(E) in
which all contextual expressions are also marked with capture variables. For any document
D, JCv(E)K produces the same spans for the capture variable v as does JEK, but it also
captures all spans of characters that cannot be replaced arbitrarily by other sub-strings.

32

Algorithm 2 Algorithm to capture contexts.
Input: extraction formula E, vk ∈ SV ars(E)
Output: modified extraction formula Cvk(E)
Precondition: vk is an exposed variable

1: Dc ← emptyList()
2: D ← ∆(E, vk) ▷ produce the disjunctive form using Algorithm 1
3: for all d ∈ D do
4: Tc ← cover(ExpressionTree(d), k)
5: Tm ← mergeV ars(Tc, k) ▷ merge consecutive variables
6: Dc.add(toRegExp(Tm))
7: end for
8: result ← ϵ
9: ▷ ensure that each disjunct has all the variables to produce a functional result

10: for all d ∈ Dc do
11: Tvk ← findSubtree(d , vk) ▷ find node with vk
12: for all y ∈ getAllVars(Dc) and y /∈ getAllVars(d) do

▷ change v{· · · } to v{y{· · · }} in the current disjunct
13: setParent(setParent(Tvk .child , newNode(y)),Tvk)
14: end for
15: result← result ∨ d
16: end for
17: return result

18: procedure cover(T : expressiontree, i : int)
19: Tc ← emptyTree()
20: if T.root == ∗ then
21: if IsUnigram(T.root.left) then
22: Tc = T ▷ found a Σ̂∗ so do not cover
23: else
24: Tc ← setParent(T.root, newNode(vi))
25: end if
26: end if
27: if T.root == ∨ then
28: Tc ← setParent(T.root, newNode(vi))
29: end if
30: if varNode(T.root) then
31: Tc = T ▷ already covered
32: end if ▷ cont. in the next page

33

Algorithm 2 Algorithm to capture contexts cont.
33: if T.root == • then
34: T.left← cover(T.left, i)
35: i′ = max (T.left) ▷ returns max of i in T.left or zero if there is no vi
36: if i ≤ i′ then
37: i = i′ + 1
38: end if
39: T.right← cover(T.right, i)
40: Tc ← T
41: else
42: Tc ← setParent(T.root, newNode(vi)) ▷ a leaf containing a letter
43: end if
44: return Tc

45: end procedure

In this work, we allow only subexpressions with the form of X∗
i , where L(Xi) is a regular

language that only has strings of length 1, i.e, unigrams, to remain uncovered.

Example 3.1.5

Let Σ be defined as in Example 3.1.2. Σ, γd, and Σ− γd are examples of Xi.

In fact, in an extraction formula conforming to grammar 3.2, we retain all sub-expressions
representing arbitrary strings in a smaller alphabet, Σ̂ ⊂ Σ, uncovered.

Lemma 2 Given an extraction formula E and v ∈ SV ars(E), Algorithm 2 returns Cv(E)
in quadratic time.

Proof. By induction on the height of the expression tree of E it is straightforward to
show that Algorithm 2 covers all sub-expressions except for sub-expressions written as
Σ̂∗. IsUnigram(T.root.left) explores the subtree, and if there is no • or ∗, the subtree
represents a Σ̂. Note that since missing variables are added to each disjunct (line 13), the
resulting Cv(E) is functional.

Complexity analysis :
Given an input expression E, the expression tree can be constructed in linear time in the

34

input expression length O(|E|). The normalization has time complexity that is linear in
the input length (Lemma 1). cover() and mergeV ars() perform a top-down traversal over
the expression tree, which has time complexity that is linear in the input length O(|E|).
For an input expression E with m < |E| occurrences of vk, cover() and mergeV ars()
are called m times, which makes the time complexity of the loop (line 3) O(|E| ∗m) The
time complexity of the loop on line 10 is O(m). Consequently, the time complexity of the
algorithm is O(m ∗ |E|), and the output size is |Cv(E)| = O(m ∗ |E|). □

Example 3.1.6

Applying Algorithm 2 to γtitle results in Cv0(γtitle):

γtitle = (Σ∗ <booktitle> ∨ Σ∗ <title>)T{γtitle}(</title>Σ∗ ∨ </booktitle>Σ∗)

where v0 = T, γpunct = ; ∨ , ∨ ; ∨ ! ∨ . ∨ ‘ , and γtitle = (γlower∨ ∨γupper∨γpunct∨ (∨) ∨ -)∗

Cv0(γtitle) = v1{(Σ∗ <booktitle> ∨ Σ∗ <title>)}T{γtitle}v2{(</title>Σ∗ ∨ </booktitle>Σ∗)}

To be most effective in identifying contexts, we wish to identify as many instances of
Σ̂∗ as we can, since they indicate portions of the document that are almost irrelevant to
the extractor. To this end, we note a few rewrite rules for regular expressions that can
be applied even in the presence of capture variables, where R and Ri are any regular
expressions with capture variables, R0 is any regular expression without capture variables,
σ ∈ Σ, and x{} specifies a capture variable (Figure 3.3).

Example 3.1.7

Applying Algorithm 2 to the extraction formula in Example 3.1.6 after applying rewrite
rules (Figure 3.3) results in:

Cv0(rewrite(γtitle)) = Σ∗v1{(<booktitle> ∨ <title>)}T{γtitle}v2{(</title> ∨ </booktitle>)}Σ∗

3.1.7 Spanners for Basic Span Relationships

A substantial portion of our work is based on investigating various relationships between
spans. Allen has defined a set of 13 possible relationships between non-empty intervals [8].

35

R1 ∨ R2 → R2 ∨ R1 (R∗
0)

∗ → R∗
0

(R1 ∨ R2)R3 → R1R3 ∨ R2R3 R1(R2 ∨ R3)→ R1R2 ∨ R1R3

Rϵ→ R ϵR→ R

(Σ̂∗)∗ → Σ̂∗ Σ̂∗Σ̂∗ → Σ̂∗

L(R0) ⊆ L(Σ̂∗) =⇒ Σ̂∗ ∨ R0 → Σ̂∗

(Σ̂∗R1) ∨ (Σ̂∗R2)→ Σ̂∗(R1 ∨ R2) (R1Σ̂
∗) ∨ (R2Σ̂

∗)→ (R1 ∨ R2)Σ̂
∗

(Σ̂∗RΣ̂∗)∗ → (Σ̂∗R)∗Σ̂∗

Σ ∨ σ → Σ (Σ− σ) ∨ σ → Σ

∅R→ ∅ R∅→ ∅
∅ ∨ R→ R

∅∗ → ∅ x{∅} → ∅

Figure 3.3: Rewrite rules for extraction formulas

These can be extended to capture the same basic relationships among spans (including
empty spans) as summarized in Table 3.1. All possible relationships among spans can be
described by disjunctions of these basic relationships; for example, “X is disjoint from Y”
can be expressed as the disjunction of the first four basic relationships (Γ(X<Y) ∨ Γ(X>Y) ∨
Γ(XmY) ∨ Γ(XmiY)), which purposely differs from that of Fagin et al. [37] when X is a
nonempty substring at [i, j⟩ and Y is at [i, i⟩2. “X is not equal to Y” can be similarly
expressed as the disjunction of the first 12 basic relationships.

3.2 Document Update Model

Updates can add documents to or delete documents from the database D, or they can
change documents already in D. In this chapter, we concentrate on the latter form of
update, where sub-string replacement, deletion, and insertion are basic update operations
over documents. A change to the text is typically preceded by some browsing activities

2The definition of overlapping spans in [37] is asymmetric for empty spans, i.e., given a span [i, j⟩ the
empty span at [i, i⟩ is considered overlapping with [i, j⟩ while the empty span at [j, j⟩ is considered disjoint
from [i, j⟩ but we treat both as overlapping, as expressed in Γ(XsY), Γ(XsiY), Γ(XfY), and Γ(XfiY).

36

1 Γ(X<Y) X precedes Y
}
Σ∗X{Σ∗}Σ+Y {Σ∗}Σ∗

2 Γ(Y >X) Y is preceded by X

3 Γ(XmY) X meets Y
}
Σ∗X{Σ+}Y {Σ+}Σ∗

4 Γ(YmiX) Y is met by X

5 Γ(XoY) X overlaps with Y
}
Σ∗(X ⊢)Σ+(Y ⊢)Σ+(⊣ X)Σ+(⊣ Y)Σ∗

6 Γ(Y oiX) Y is overlapped by X

7 Γ(XsY) X starts Y
}
Σ∗Y {X{Σ∗}Σ+}Σ∗

8 Γ(Y siX) Y is started by X

9 Γ(XdY) X during Y
}
Σ∗Y {Σ+X{Σ∗}Σ+}Σ∗

10 Γ(Y diX) Y contains X

11 Γ(XfY) X finishes Y
}
Σ∗Y {Σ+X{Σ∗}}Σ∗

12 Γ(Y fiX) Y is finished by X

13 Γ(X=Y) X is equal to Y Σ∗X{Y {Σ∗}}Σ∗ ∨ Σ∗X{ϵ}Y {ϵ}Σ∗

Table 3.1: Allen’s interval relationships extended to spans. The abuse of notation in the
regex for lines 5 and 6 represents a spanner described by an automaton with operators that
open and close the variables X and Y as indicated.

37

or search operations to locate update positions in a target document. In this section we
describe the proposed formal model for document update.

Target points of change in a document are specified using patterns over the input string,
expressed as a document spanner with one special variable called the update variable.
Specifically, an update expression is a regular expression with capture variable defined by
γ̄ in grammar 3.3 or GS(Σ, V, x) where x is called the update variable.

The functional document spanner that is represented by an update formula g maps
every document D to a span relation, which we call the update relation and denote as
JgK(D). Our model of update is global : all documents in the database are matched against
the update formula and to generate the associated span relation. When the spanner is
used for updating a document D, sub-strings of D associated with the spans in the update
relation are simultaneously replaced by new values specified by U .

Definition 3 An instance of an update specification with an update spanner specified by
g ∈ L(GU) and replacement value specified by a string U ∈ ((Σ−$)∪ ($(SVars(g))))∗ is
called an update expression and denoted by Repl(g, U). Given a document D and applying
Repl(g, U) to D produces a new document Repl(g, U)(D) that is identical to D except that
each sub-string si ∈ D corresponding to a span marked by UV ar(g) is replaced by the
string U but with every occurrence of a sub-string ‘$(νk)’ in U replaced by the string in si
corresponding to the span marked by νk.3

Note that if U is the empty string, then the update results in the deletion of the
sub-strings corresponding to spans marked by UV ar(g); otherwise, wherever an empty
span [i, i⟩ is marked by UV ar(g), the replacement, in effect, inserts a string before the ith

character (or at the end of the string if i = n+ 1).

An update yields a specific functional mapping between the original and updated doc-
uments: ReplSpan(g, U)([i, j⟩) → [i′, j′⟩ which is a mapping from spans to spans. This is
properly defined when [i, j⟩ is disjoint from all spans marked by UV ar(g) or when [i, j⟩ is
a span that is exactly matched by g as x (Figure 3.4). If [i, j⟩ is disjoint from all spans
marked by UV ar(g) when updating D, then D′

[i′,j′⟩ = D[i,j⟩.

3This corresponds to the use of named back-references in replacement text, as defined in several pro-
gramming languages.

38

Example 3.2.1

The spanner represented by the following extraction formula appends the string new to
the end of any non-empty input document.

γappend = Σ∗F{Σ}

where F is the update variable and U = $(F) new .

Definition 4 An update spanner specified by g is said to be well-defined if the following
two properties hold for each document and each pair of accepting runs: (1) if the pair of
spans for UV ar(g) are not equal, they must not overlap, and (2) if the pair of spans for
UV ar(g) are equal, then for each variable appearing in U , the pair of spans marked for
that variable must be equal.

Figure 3.4: A sample document D and its updated peer D′. Filled areas in D are marked
by the update variable to be updated. RepSpan maps [di, di+1⟩ to [d′i, d

′
i+1⟩.

Theorem 1 Whether or not an update spanner specified by g is well-defined can be verified
in polynomial time.

Proof. Given an update spanner specified by g and symbols X /∈ SV ars(g) and Y /∈
SV ars(g), we can create the spanner

conflicts(g) = πX(ρUV ar(g)→X(JgK)) ▷◁ JΓ(X�Y)K ▷◁ πY (ρUV ar(g)→Y (JgK))

39

where Γ(X�Y) is the disjunction of the fifth through the twelfth basic relationships in Ta-
ble 3.1; that is, spans in πUV ar(g)(JgK(D)) could include two distinct spans that cover iden-
tical sub-spans. If conflicts(g) = ∅, then g satisfies the first condition. Morciano [72] has
shown that the time complexity to join two operation-closed well-behaved eVset-automata
is quadratic in the size of inputs, i.e., the number of states and transitions. Also for both
projection and rename operations, we need to scan transitions and rename/remove some
variables, which makes the time complexity of both operations linear in the number of
transitions.

Similarly, given an update spanner specified by g, symbols X /∈ SV ars(g) and Y /∈
SV ars(g), and Z ∈ SV ars(g) \ {UV ar(g)}, we can create the spanner

ambig(g, Z) = π{UV ar(g),X}(ρZ→X(JgK)) ▷◁ JΓ(X ̸=Y)K ▷◁ π{UV ar(g),Y }(ρZ→Y (JgK))

where Γ(X ̸=Y) is the disjunction of the first 12 basic relationships in Table 3.1; that is, spans
in JgK(D) could include two rows that match on UV ar(g) but do not match on Z. If for
all Z ∈ SV ars(g) \UV ar(g), ambig(g, Z) = ∅, then g satisfies the second condition. Join,
rename, and projection operators have been applied to create ambig(g, Z); thus, the time
complexity of checking this property is polynomial in the size of the input. □

Example 3.2.2

It is easy to verify that the spanner represented by the extraction formula in Example 3.1.3
is not well-defined since conflicts(g) ̸= ∅.

Example 3.2.3

The spanner represented by the following extraction formula is not well-defined since
ambig(γ′

date, Z) ̸= ∅ where Z ∈ {Y,M,D}:

γ′date = Σ∗ mdate= U{Y {γ∗d}M{γ∗d}D{γ∗d}} >Σ∗

3.3 Irrelevant and Autonomously Computable Updates

As defined above, applying an update expression Repl(g, U) to an input document D,
where g specifies a well-defined update spanner, returns a new document D′ in which the

40

contents of each span identified by JgK is replaced by the string specified by U . Given
an update expression and an extraction spanner, we wish to determine, for all potential
input documents, whether the extracted materialized view can be kept consistent with the
updated source documents without running the extractor after updating the documents
in the database. This problem is similar to filtering out irrelevant updates or applying
updates autonomously to relational materialized views [13].

Definition 5 An update expression Repl(g, U) is irrelevant with respect to an extractor
JEK if for every input document, applying JEK to Repl(g, U)(D) produces a span relation
that is identical to applying JEK to D. That is, if D′ = Repl(g, A)(D), then JEK(D′) =
JEK(D).

Even if an update expression is relevant with respect to an extractor, it may be that the
modification to the extracted relation can be computed without re-running the extractor.

Definition 6 An update expression Repl(g, U) is autonomously computable with respect
to an extractor JEK if for every input document, applying JEK to Repl(g, U)(D) can be com-
puted from the update expression, the update relation, the extraction formula that defines
the extraction spanner, and the extracted relation.4

Interestingly, even if an update only appends text to a document, it might not be
autonomously computable with respect to all extractors: the appended text might include
spans that could be extracted, depending on whether the required context is provided by
the original document, or it might provide the context needed for matching additional
spans in the original text.

There is an important distinction between the problems of updating traditional rela-
tional views and updating materialized extractions. Span relations contain pairs of offsets
from input documents, not document content. Thus a span relation might be affected by
an update even if the replaced text is not within an extracted span. In particular, replac-
ing a string of one length by a string of another length somewhere in the document might
cause a span somewhere else in the document to shift, even if the content of that span is
unaffected.

More specifically, given a document D and the corresponding updated document D′,
if span S in D is disjoint from all spans produced by the well-defined update spanner

4Autonomous computability for updates is analogous to determinacy [74] for queries.

41

JgK, let shift(g, U)(S) represent the corresponding span in D′, i.e., the new location of the
content of S in D′. shift(g, U)(S) is shifted from S by an amount that is dependent on
the lengths of all spans in the update relation that precede S in D and the length of the
strings specified by U , as captured by Algorithm 3. For every extracted span, Algorithm 3
simply scans through the update relation to compute the amount of shift applicable to
the current span. There is potential for an efficient implementation of this function. For
example, the changes to the length of the updated spans need to be computed only once.
Furthermore, an update affects the extracted spans with larger offsets, thus sorting might
speed up the shift function.

Algorithm 3 Shift Algorithm.
Input: update relation RU , U , span S = [i, j⟩
Output: span S ′ = [i′, j′⟩ = shift(g, U)(S)
Precondition: RU contains no duplicates and no span that overlaps S or any other
span in RU

1: shift , l ← 0
2: for tuple ∈ RU do
3: [m,n⟩ ← tuple[x] ▷ span for the update variable
4: if m < i then
5: l ← computeLength(U, tuple)
6: shift ← shift + (n−m)− l
7: end if
8: end for
9: return [i− shift , j − shift⟩

Definition 7 Update expression Repl(g, U) is shiftable5 with respect to an extraction span-
ner JEK if for every input document, applying JEK to Repl(g, U)(D) produces a span relation
that is identical to applying JEK to D except to replace each span S by shift(JgK(D), U, S).
That is, if D′ = Repl(g, U)(D), then JEK(D′) = {S ′ | ∃ S ∈ JEK(D), S ′ = shift(JgK(D), U, S)}.

Thus, a shiftable update is a special case of an autonomously computable update. By
definition, if an update expression is irrelevant with respect to an extraction spanner, then
it is also shiftable with respect to that spanner.

In this work, extractors are expressed as a function in the closure of extraction spanners
under algebraic operators, i.e., core spanners. Next, we show that shiftability of an update
w.r.t. an extraction spanner is a property that propagates through algebraic operators.

5This was previously named pseudo-irrelevant [55, 56].

42

Theorem 2 Let ERepl(g,U) represent the set of extraction spanners for which Repl(g ,U) is
shiftable. ERepl(g,U) is closed under union, projection, natural join, and string selection.

Proof. The proof can be derived according to Lemmas 3, 4, 5, and 6. □

Lemma 3 If JE1K ∈ ERepl(g,U) and JE2K ∈ ERepl(g,U) then JE∪K ∈ ERepl(g,U) where JE∪K =
JE1 ∪ E2K and JE1K and JE2K are union compatible .

Proof. By definition, for every input string D, JE∪K(D) = JE1K(D) ∪ JE2K(D). Suppose
there exists an input string D such that D′ = Repl(g ,U)(D) and JE∪K(D′) ̸= {S ′ | ∃ S ∈
JE∪K(D), S ′ = shift(JgK(D), U, S)}. Thus we have JE1K(D′) ̸= {S ′ | ∃ S ∈ JE1(DK), S ′ =
shift(JgK(D), U, S)} or JE2K(D′) ̸= {S ′ | ∃ S ∈ JE2K(D), S ′ = shift(JgK(D), U, S)}, which is
a contradiction. □

Lemma 4 If JEK ∈ ERepl(g,U), then JΠYEK ∈ ERepl(g,U) where Y ⊆ SV ars(E).

Proof. As JΠYEK(S) is obtained from JEK(S) by removing the columns in V ars(E) \Y ,
so the update stays shiftable for the remaining spans from JEK(S). □

Lemma 5 If JE1K ∈ ERepl(g,U) and JE2K ∈ ERepl(g,U), then JE▷◁K ∈ ERepl(g,U) where JE▷◁K =
JE1K ▷◁ JE2K.

Proof. By contradiction, similar to the proof for Lemma 3. □

Lemma 6 If JEK ∈ ERepl(g,U) then JζRY EK ∈ ERepl(g,U) where Y ⊆ SV ars(E).

Proof. By definition, for every input S, string selection selects some rows from the ex-
tracted spans JEK(S). Those rows have been shifted correctly. □

3.4 Categorizing Document Updates

Given an extracted relation, an update relation (spans for strings that will be replaced),
and the update expression (from which the amount of shift can be computed), the relation

43

Figure 3.5: The verifier statically analyzes an update expression and an extraction formula
to test sufficient conditions for being a shiftable update.

that would be extracted post-update can be computed if it were known that the update
expression is shiftable with respect to the extractor. The essence of our approach is to
inspect various kinds of overlap between an update expression and an extractor to ascertain
whether or not the update expression is shiftable independently of input documents. The
proposed process verifies some sufficient conditions for irrelevant, autonomously deletable,
and shiftable updates.

If an update changes the content length of an extracted span, then it will be relevant;
the extractor should be re-executed.6 However, even without changing an extracted value,
an update could change the context for determining that a span should be extracted.
First, updated spans, with new values, could form new matches for the extraction spanner,
which would create new rows in the extracted view if we re-run the extractor. Second, some
extracted spans might no longer match after the update, and therefore the associated rows
would disappear when the extractor is re-run after the update.7

After introducing a few required constructs, we present a sound, but not necessarily
complete, mechanism to determine whether an update expression, specified by the update
formula g and replacement specifier U , is shiftable with respect to a document spanner
specified by an extraction formula E (Figure 3.5).

3.4.1 Post-update Spanner

Our proposed approach requires some conditions on documents that are the result of up-
dates. Even if an oracle supplies the update relation and the amount to shift each extracted
tuple, we still require knowledge about the specifications of the resulting documents to de-
termine shiftability. We utilize information provided by the update expression to construct

6We leave for future work the determination and detection of conditions under which the extracted
relation after update might be autonomously computable even when the update causes an extracted region
to change length.

7These effects are not mutually exclusive.

44

the post-update spanner which represents updated documents as well as spans of those doc-
uments corresponding to the new values.

Definition 8 An update expression Repl(g, U) is durable if: (1) JgK is a well-defined
update spanner and (2) spans marked by the update variable and spans marked by context
variables by its peer spanner JCUV ar(g)(g)K are disjoint.

Proposition 1 Testing whether a well-defined update spanner is durable can be performed
in polynomial time.

Proof. Given a well-defined update spanner specified by g with update variable x, Cx(g)
can be constructed in polynomial time. Let xi represent the ith variable marking the
context in Cx(g) and construct a spanner pi(g):

pi(g) = πx(JCx(g)K) ▷◁ JΓ(x ⋔ xi)K ▷◁ πxi
(JCx(g))K

where Γ(X ⋔ Y) is the disjunction of the fifth through thirteenth basic relationships in Ta-
ble 3.1. Γ(X ⋔ Y) represents the universal spanner that contains spans marked as X and Y
where any span that is marked by X has at least one span in common with spans marked
by Y . Therefore, p(g) represent all documents that can be updated while spans marked as
update variable have at least one span in common with the set of spans marked as context.
Therefore, if, for all i where xi is outside x in g, pi(g) = ∅, then JgK is durable.

Complexity analysis :
The algebraic operators utilized to construct pi have been shown to have polynomial time
complexity in the size of automaton representing the input. Converting a regular expression
with capture variables to an automaton and checking its emptiness is also polynomial [72].
□

For a given specification of an update spanner we derive a new spanner to match
documents that result from an update. Some sub-strings in an updated document come
from the replacement specifier U and some come from the document before it is updated,
either from outside the regions matched by the update variable or from the use of references
to other variables inside U .

Given a replacement specifier U and an update spanner specified by g, U implicitly
describes a language L(U), but uses back references to variables in g. We define a regular
language ♢(U, g) that contains L(U) and for which ♢(U, g) \ L(U) is fairly small.

Proposition 2 Given a replacement specifier U and a well-defined update spanner repre-
sented by g, Algorithm 4 outputs ♢(U, g) in polynomial time in the input length.

45

Algorithm 4 Algorithm to build ♢(U, g)

Input: update spanner specification g, update specification U
Output: ♢(U, g)

1: Tg ← ExpressionTree(g) ▷ get tree representation
▷ retrieve all back-references and their positions from U

2: bkrefs [< bkref , pos >]← getBkrefs(U)
3: for all < bkref , pos > in bkrefs do
4: subexps []← getSubexp(Tg, bkref) ▷ retrieve all sub-strings associated with bkref

▷ append all sub-string, with a valid disjunction symbol between every two sub-string
5: resultStr ← append(toString(subexp[]), “ ∨ ”)

▷ enclose by parenthesis and add to the list
6: resultStrs [<,>]←< “(” + resultStr + “)”, pos >
7: end for
8: U ← replace(U, resultStrs []) ▷ substitute each bkref with corresponding string
9: ♢(U, g)← toRegExp(U) ▷ convert string U to regular expression

10: return ♢(U, g)

Proof. The proof is by construction. Given U = u1 · · · ui$(vi)ui+1 · · · uj$(vj)uj+1 · · · un

and g, Algorithm 4 scans U and g and substitutes each back-reference variable $(vi) of U
with the disjunction of all expressions marked with that variable in g: (expvi1 ∨exp

vi
2 ∨· · ·),

omitting other variables enclosed by vi. The update spanner specified by g is functional,
which implies that in every run exactly one of the expressions marked as variable vm in g
is replaced by its associated back-reference in U .8 The resulting regular expression is:

♢(U, g) =u1 • · · · • ui • (expvi1 ∨ expvi2 ∨ · · ·) • ui+1 • · · · • uj • (exp
vj
1 ∨ exp

vj
2 ∨ · · ·)•

uj+1 • · · · • un = Ui • (expvi1 ∨ expvi2 ∨ · · ·) • Uj • (exp
vj
1 ∨ exp

vj
2 ∨ · · ·) • · · · • Un

where expvm
k is a regular expression marked by vm ∈ SV ars(g).

Complexity Analysis :
To build ♢(U, g), Algorithm 4 scans U to retrieve all back-referenced variables. Then the
expression tree of g is scanned to substitute back-references in U with associated regular
expressions taken from g, which makes the complexity polynomial in |g| and |U |.

□
8Note that eliminating other capture variables inside vi to create expvi

k does not affect the set of strings
marked as vi.

46

Definition 9 Given an update spanner specified by g and a replacement specifier U , a
spanner that matches the updated documents and marks all updated spans is called a post-
update spanner and its specification is denoted by ∇(g, U).

Algorithm 5 Algorithm to build ∇(g, U)

Input: update expression Repl(g, U), update variable x
Output: ∇(g, U)
Precondition: JgK is durable, Repl(g, U) respects the alphabets in Cx(g)

1: D ← ∆(g, x) ▷ get the disjunctive form running Algorithm 1
2: ∇(g, U)← ∅
3: for all gi ∈ D do ▷ process each disjunct gi in ∆(g, x)
4: T ← ExpressionTree(gi)
5: Tl ← get_left(T, x) ▷ get sub-expressions on left of update variable
6: Tr ← get_right(T, x) ▷ get sub-expressions on right of update variable
7: ∇(g, U)← ∇(g, U) ∨ toRegExp(Tl) • x{♢(U, gi)} • toRegExp(Tr)
8: end for
9: return ∇(g, U)

Definition 10 Given an extraction formula E with exposed variable v, an update expres-
sion Repl(g, U) respects the alphabets in Cv(E) if, for every expression of the form Σ̂∗ not
covered in Cv(E), the update neither deletes nor inserts a symbol in (Σ− Σ̂).

If Repl(g, U) does not respect the alphabets in Cv(E), tuples might be inserted into or
deleted from an extracted relation JEK(D), as will be illustrated by Example 3.4.1.

Example 3.4.1

Consider the wh-word extractor specified by

Σ∗ Q{ Wh γ+
lower} (Σ− . − ! − ?)∗ ? Σ∗

If an update replaces semicolons by periods, a wh-question that matched before the update
might no longer match the specification, and therefore a tuple might be deleted from the
extracted relation. If it instead replaces periods by semicolons, a newly formed wh-question
might be created, and thus a tuple might be inserted into the extracted relation. If it
replaces “ere” by “y”, “Where” could be replaced by “Why” and thus the extracted relation
might change by more than a simple shift.

47

Lemma 7 For a durable update expression Repl(g, U) that respects the alphabets in Cv(g),
Algorithm 5 outputs ∇(g, U) in polynomial time in the input length.

Proof. The proof is by contradiction. Take an arbitrary string D that has m regions
marked by x = UVar(g) when processed by JgK. Let D′ denote the result of updating D
by Repl(g, U). Let us assume that there are some problematic regions of D that are marked
by x but do not have correctly marked corresponding regions when running J∇(g, U)K on
D′. Let s4 as depicted in Figure 3.4 be the leftmost problematic region of D. Because
the update spanner is durable all sub-expressions in g identified as contexts as well as any
instances of Σ̂∗ that match to the left of s4 must correctly match the regions preceding s′4,
i.e., s′1, s′2, and s′3. Based on Proposition 2, the region s′4 must match ♢(g, U). Thus D[d0,d4⟩
corresponds correctly to D′

[d′0,d
′
4⟩

. Therefore, there cannot be a any problematic region.

Complexity Analysis :
The time complexity of creating ∆(g, x) and any expression tree, and to traverse the
expression tree to extract right and left context is O(|g|) (lines 1, 4, 5, and 6). Finally,
the time complexity of constructing ♢(U, gi) is polynomial for (line 7). Since the loop
runs m ∈ O(|g|) times where m is the number of disjuncts in ∆(g, x) (line 3), the time
complexity of algorithm is also polynomial. □

3.4.2 Detecting Shiftability for Spanners

We first describe two simple special cases:

1. If E ▷◁ g = ∅, the update is irrelevant: there is no document on which both E and g
match, and therefore any document that is updated cannot have extracted content.

2. If E ▷◁ g ̸= ∅ but E ▷◁∇(g, U) = ∅, there exist documents on which both E and g
match, but if such a document is updated, the span relation produced by the extractor
becomes empty. Although the update is relevant, it is autonomously computable:
every extracted tuple from the updated relation is deleted.

Clearly, if a document update changes some or all of the content of an extracted span
or any span specifying a contextual constraint, it will in general change the extracted
span relation. Similarly, after an update, the replacement text might cause one or more
additional spans to be matched, so that the span relation includes tuples that did not meet
the extraction condition before the update. By examining Definition 7, we can deduce

48

three possibilities that could cause an update (changing document D to become D′) to
fail to be shiftable with respect to an extractor: (1) a span s extracted from D fails to be
extracted from D′; (2) a span s′ extracted from D′ does not correspond to any extracted
span from D prior to the update; and (3) a span s extracted from D changes to become s′

extracted from D′, but it is not a simple shift.

We leave it to future work to determine under what conditions an update that overlaps
extracted spans or its contexts happens to be shiftable. Instead, we determine when there
can be no overlap, and then under which further conditions an update is shiftable.

Definition 11 Given extraction formulas E and E ′, JEK is independent of JE ′K if for
every document D, JCv(E)K(D) where v ∈ SV ars(E), includes no span that overlaps with
a span in JE ′K(D). Otherwise, we say that JEK depends on JE ′K.

Proposition 3 Given two extraction formulas, dependency of their corresponding span-
ners can be verified in polynomial time.

Proof. Given E and E ′ where SV ars(Cv(E))∩SV ars(E ′) = ∅, X, Y /∈ SV ars(Cv(E))∪
SV ars(E ′), Z ∈ SV ars(Cv(E)), and Z ′ ∈ SV ars(E ′) we construct the following spanner:

depends(E,E ′, Z, Z ′) = πX(ρZ→X(JCv(E))K) ▷◁ JΓ(XΞY)K ▷◁ πY (ρZ′→Y (E
′)

where Γ(XΞY) is the disjunction of the fifth through thirteenth basic relationships in Ta-
ble 3.1. Γ(X Ξ Y) represents the universal spanner that contains spans marked as X and Y
where any span that is marked by X has at least one span in common with spans marked by
Y . That is, depends(E,E ′, Z, Z ′) ̸= ∅ if there exists at least one span in πZ(JCv(E)K) which
overlaps or equals at least one span in πZ′(JE ′K). Therefore, if for all Z ∈ SV ars(Cv(E))
and Z ′ ∈ SV ars(E ′) depends(E,E ′, Z, Z ′) = ∅, E is independent of E ′.
Complexity Analysis :
Given E with m occurrences of v and E ′, the cost of constructing Cv(E) is O(m ∗
|E|)(Lemma 2). All the algebraic operators used in depends(E,E ′, Z, Z ′) have polyno-
mial time complexity in the input size ([72]). The number of variables in Cv(E) is k < |E|
and in E ′ is k′ which makes the whole cost polynomial. □

Theorem 3 A durable update expression Repl(g, U) is shiftable with respect to an extrac-
tion spanner represented by E if JEK is independent of JgK and J∇(g, U)K and Repl(g, U)
respects the alphabets in Cv(E).

49

Proof. Take an arbitrary document D which has m regions marked by JgK to be updated,
such as s2 and s4 in Figure 3.4. Let D′ denote D’s updated peer which has m′ ≥ m regions
marked by J∇(g, U)K, among which m regions are the result of an update (like s′2 or s′4 in
Figure 3.4). Assume that some spans of D are marked by JEK to be extracted. To prove
that an update is shiftable w.r.t. an extractor we must prove three properties:

• For every extracted region in D there is a corresponding region in D′ that will be
extracted, i.e., no span disappears from the span relation after the update. Assume
by contradiction that there exist extracted spans that disappear after the update,
i.e., their corresponding regions are not extracted from D′. There are two possible
reasons that a span does not match after an update:

– the subexpression associated with the extracted span, does not match after
getting updated. Since JEK is independent of JgK the extracted regions in D
occur at spans between regions marked by JgK, like s1 and s3 and s5, which have
not changed. This case therefore is not possible.

– at least one of the other associated sub-expressions does not match after the
update. Since the extractor spanner is independent of the update spanner,
regions marked by the update variable, s2 and s4, must match against only those
sub-expressions of E that are identified as Σ̂∗, where Σ̂ ⊆ Σ. However, since
Repl(g, U) respects the alphabets in Cv(E), any update expression matching Σ̂∗

includes a replacement specification U that also matches Σ̂∗. The unmodified
regions match either local contexts or Σ̂∗ which will match after the update.
Therefore, this case is not possible either.

• For every region extracted from D′ there is a corresponding region extracted from D,
i.e., no new span appears in the span relation due to update. Assume by contradiction
that there are some spans that appear after the update in the span relation. The
possible reasons that these spans are not extracted before the update can be:

– the sub-expression associated with the extracted span did not match before the
update but matched after the update. This implies that the extracted span
must overlap the region marked by J∇(g, U)K like s′2 or s′4. This is not possible
due to independence between JEK and J∇(g, U)K. Therefore these new spans
can only reside in regions between the regions marked by J∇(g, U)K.

– at least one of the other associated sub-expressions did not match before but
matches after the update. Due to independence, the region marked by J∇(g, U)K
can only match the sub-expression identified as Σ̂∗ where Σ̂ ⊆ Σ. This implies

50

that local contexts match regions marked by J∇(g, U)K but not regions marked
by JgK. This is not possible since Repl(g, U) respects the alphabets in Cv(E),
and any update expression matching Σ̂∗ includes a replacement specification U
that also matches Σ̂∗. Thus every span found after the update must have a
corresponding span found before the update.

• For extracted spans RepSpan is realized as a shift function. Because of independence,
the length of the extracted regions remains the same after the update, since no
update can occur inside extracted regions. But other regions preceding an extracted
region that are identified as Σ̂∗ can be updated, which makes the starting offset of an
extracted region to move back/forth. Since the length of the extracted region is fixed,
the end offset moves by the same amount, which is indeed a shift of the extracted
region.

□

Proposition 4 Shiftability of a durable update spanner can be verified in polynomial time
in the input size.

Proof. It is trivial to see that given a durable update expression Repl(g, U) and an
extraction formula E Algorithm 6 verifies shiftability of g in polynomial time. □

In summary, the proposed verifier performs three tests on the update expression and two
tests on the extractor, considering the update and post-update expressions (Figure 3.6).
After those tests, rows in the extracted table may need to be shifted if the update is
shiftable, and otherwise (at least some) re-extraction is required. As a result, Text, the
time to re-extract, is O(Te ∗ |R|) and Tdiff , the time to test for shiftability and to perform
the shifts when an extraction is found to be shiftable, is O(Tv + Ts ∗ |R|), where R is the
extracted relation, Te is the time to extract one row, Ts is the time to apply the shift for
one row, and Tv is the time to verify shiftability which is polynomial in the input size. In
the next section, we shall see that Text ≫ Tdiff in practice.

51

Algorithm 6 Verify Shiftability of Update Spanner
Input: extraction program P , update expression Repl(g, U), update variable x
Output: Boolean
Precondition: JgK durable, Repl(g, U) respects the alphabets in Cx(g)

1: R← ∅
2: for all Ei ∈ P do ▷ verify all regular formulas Ei in P
3: for all Z ∈ SV ars(C(Ei)) do
4: R← depends(Ei, g, Z, x) ∪ depends(Ei,∇(g, U), Z, x)
5: if R ̸= ∅ then
6: return false
7: end if
8: end for

▷ test for conflicting symbols (i.e., respecting alphabets)
9: for all uncovered Σ̂∗ in Ei do

10: A← {σ | σ ∈ x and σ outside all capture variables back-referenced in U}
∪{σ | σ ∈ U}

11: if A ∩ (Σ \ Σ̂) ̸= ∅ then
12: return false ▷ σ might be removed or added
13: end if
14: end for
15: end for
16: return true

52

Figure 3.6: The proposed verification process for maintaining extracted views is realized
through five distinct tests.

3.5 Practicality of Detecting Shiftable Updates

We have designed experiments with two goals in mind:

1. All the proposed algorithms for extracted view maintenance such as normalization,
contextualization, and property verification have polynomial time complexity. How-
ever, we are interested in showing that our optimization strategy is beneficial in
realistic situations dealing with practical extraction scenarios from real-world large
datasets.

2. We have identified sufficient conditions for shiftability of document updates expressed
as regular formulas with respect to extractors expressed as core AQL queries. We wish
to demonstrate practical update cases that can be expressed using our specification.

53

In addition, we point out some cases for which the proposed sufficient conditions are
not met despite updates being shiftable.

3.5.1 Verification System

We have developed a system in Scala that verifies an extraction program expressed as a
core AQL query. If the program passes the test, the extracted view content is updated by
running a shift algorithm. If it does not pass the test the extractor needs to be executed
from scratch. Through experimentation, we show the run-time overhead imposed by our
verifier in practice. Also, we compare the run-time of differential maintenance of the
extracted views and re-executing the extraction program. Our system is developed on top
of the engine proposed and implemented by Marciano [72]9. Therefore, in this section we
first review the main functionalities offered by that engine, and second we describe how we
exploit each functionality in the experiments. Marciano’s engine operates in two modes:

• compilation mode: given a core AQL query, various polynomial construction al-
gorithms are used to construct a well-behaved eVset-automaton that simulates the
input AQL query. As shiftability of an update with regard to an extractor in closed
under algebraic operators (Theorem 2) our verifier needs to test only regex formulas
in a AQL query. However, the verifier operates on two different spanner represen-
tations: 1) regular expressions with capture variable for contextualizing the regex
formula, constructing post-update spanners, and respect for alphabet test 2) well-
behaved eVset-automata to test the durability and independence properties. The
verifier uses the compiler to construct the required automaton for the latter purpose.

• evaluation mode: In this mode, the engine evaluates a well-behaved eVset-automaton
on an input string and produces the corresponding span relation. Morciano [72] shows
that in the absence of optimization techniques, compiling the AQL into its equivalent
eVset-automaton and matching against documents can be faster than first matching
extraction formulas and then applying algebraic operator on the span relations, simi-
lar to the approach taken in SystemT. For experiments, wherever we need to evaluate
a spanner against an input string, we use Morciano’s engine.

To assess the feasibility of our verifier in practice, we would ideally like to report formal
metrics (such as precision, recall, and F-measure) for the number of the updates that are

9The runtime system designed by Morciano is available at: https://github.com/ae-mo/master-
thesis/tree/master/project_sbt/arc

54

determined to be shiftable and to evaluate the performance of our system. Unfortunately,
no benchmark of information extractors with associated updates is available to perform
such experiments. We therefore describe two data sets with realistic extractors and updates
against which we can evaluate our system experimentally.

3.5.2 DataSets

We use two datasets in our experiments, namely DBLP [1] and Blog Authorship [85]. We
have designed specific extractors for each dataset. DBLP extractors exploit structure in
the data by being sensitive to XML tags. However, Blog authorship extractors merely use
the unstructured content of documents.

DBLP

DBLP is an open bibliographic dataset containing information about major computer sci-
ence journals and proceedings. DBLP is an evolving semi-structured dataset with frequent
updates to add new records, edit existing records, and delete records [1]. In DBLP, bib-
liographic records are stored as a single large XML file DBLP.xml with a fairly simple
schema [62]. Since, our hypothetical system, similar to SystemT (Figure 1.3) follows the
document-at-a-time processing paradigm, we split DBLP.xml to create a realistic docu-
ment database. For this corpus, we utilized APIs prepared by the DBLP team to process
DBLP.xml [3]. We create a distinct file for each author and include all bibliographic records
for that author, one per line (i.e., what users of DBLP <https://dblp.org/> see when look-
ing up an author, but exporting XML for each record). We have downloaded the latest
available dataset at the time of running our experiments [2]. The size of this snapshot of
DBLP.xml is 3.5 GB. The size of the resulting document database is 7.9 GB with 3, 091, 270
documents representing 20, 021, 301 publications, Each publication can take various forms,
including articles, inproceedings, proceedings, books, incollection, PhD theses, and Mas-
ter’s theses. Note that each publication is counted as many times as the number of its
authors.

Blog Authorship Corpus

The Blog Authorship Corpus [85] is a collection of unstructured blogs used by Morciano
to assess his RunTime system. This corpus has 19,320 documents, one per blogger (Fig-
ure 3.8). There are 681,288 posts in the corpus, which consumes 8.1 MB in total.

55

<record>
<person key="homepages/a/JFAllen" mdate="2022-03-30">
<author>James F. Allen</author>
<note type="affiliation">University of Rochester, New York, USA</note>
<url>http://www.cs.rochester.edu/~james/</url>
...
</person>
...
<article key="journals/cacm/Allen83" mdate="2011-06-07">
<author>James F. Allen</author>
<title>Maintaining Knowledge about Temporal Intervals.</title>
<pages>832-843</pages>
<year>1983</year>
<volume>26</volume>
<journal>Commun. ACM</journal>
<number>11</number>
<url>db/journals/cacm/cacm26.html#Allen83</url>
<ee>http://doi.acm.org/10.1145/182.358434</ee>
</article>
...
<inproceedings key="conf/um/BlaylockA05" mdate="2017-05-21">
<author>Nate Blaylock</author>
<author>James F. Allen</author>
<title>Generating Artificial Corpora for Plan Recognition.</title>
<pages>179-188</pages>
<year>2005</year>
<crossref>conf/um/2005</crossref>
<booktitle>User Modeling</booktitle>
<ee>https://doi.org/10.1007/11527886_24</ee>
<url>db/conf/um/um2005.html#BlaylockA05</url>
</inproceedings>
...
</record>

Figure 3.7: A sample document that contains bibliographic information for James F. Allen.

56

<Blog>
...
</post>
<date>03,August,2004</date>
<post>
Hey all. Just felt that i needed a change, so i have deleted all previous posts.
they were boring, anyway. My grandmother is in the hospital again. she’s been ...
don’t know exactly what’s wrong with her. so much for modern technology.
Read the Da Vinci Code by Dan Brown. interesting book. it argues that Jesus was
not divine, and that the church invented his divinity. Also argues that Jesus was
married to Mary Magdalene. well i’m not going to go in depth to argue anything,
but i think Dan Brown made lots of mistakes in his assumptions. for example,
he writes that Peter was the one in the picture " The Last Supper " who was
making threatening gestures. apparently that man is Judas Iscariot, not Simon
Peter. that explains a lot about the hand gestures. Anyways, there’s a reason why
the book is under the fiction section in book shops and libraries. Thinking of
getting a new cpu. Thinking of you, too. Bye all.
</post>
...
</Blog>

Figure 3.8: A sample document that contains blog posts for a blogger.

3.5.3 Experiment Platform

The verifier, shift algorithm, and extraction system are all single-threaded programs in
Scala 2.11.2 together with Java SE 11. All experiments are performed on a AMD EPYC
7502P 32-Core Processor under Ubuntu 20.04.1 LTS (Focal Fossa). The source code and
all performance details of the experiments can be found at the project’s Git repository.10

3.5.4 Extractors

We have designed several realistic extractors (Tables 3.2 and 3.3) to show the applicability
of our optimization strategy in practice. For the Blog corpus, we adapted the extractors
defined by Morciano. Each of his primitive extractors uses a specially designed operator
X ▷◁d Y to match

⋃
i≤d(XΣiY). Because the use of such operators will cause our verifier to

10https://github.com/Besatkassaie/Differential-Maintenance-Engine

57

deem all updates to be relevant (the replacement text may cause the string to exceed the
maximum length), we replace them with X(Σ− ? − .)∗Y to require instead that matches
to X and Y appear in the same sentence.

Table 3.2: Primitive extractors.

Primitive extractors from Blog corpus
Q1 = JΣ∗ A{γAction}γbγ∗

sT{γfilm}Σ∗K e.g., Saw ... "ET" in one sentence
Q2 = JΣ∗ A{γAttribute}γbγ∗

s T{γMovie}γbΣ∗K e.g., worst ... flick in one sentence
QRN = JΣ∗ A{γRole}γbγ∗

sT{γname}Σ∗K e.g., actor ... Brad Pitt in one sentence
Q10 = JΣ∗ A{γAction}γbγ∗

sT{γfilm}γ∗
s B{γAttribute}γbΣ∗K e.g., Saw ... "ET" ... clever in one sentence

Q12 = JΣ∗ A{γSentiment}γbγ∗
s T{γGenre}γbγ∗

s B{γMovie}γbΣ∗K e.g., like ... crime ... film in one sentence
Primitive extractors from DBLP corpus

SJrn = JΣ∗ <title>T{γtitle} </title><pages>P{(γd)∗ - (γd)∗} </pages><year> article title, pages, year, volume, and journal
Y {γdγdγdγd} </year><volume>V {γ∗

d} </volume><journal> J{γtitle} </journal>Σ∗K from journal articles
SMod = JΣ∗ mdate="2015 (Σ− \n)∗ <title>T{γtitle} </title>Σ∗K titles of publications last modified in 2015
SAA+ = JΣ∗ "><author>A{γauthor} </author><author>Σ∗K first authors of pubs with 2+ authors
S2010 = JΣ∗ <title>T{γtitle} </title> (Σ− \n)∗ <year>2010</year>Σ∗K titles of publications from 2010

SV LDB = JΣ∗ "><author>A{γauthor} < (Σ− \n)∗ first authors of publications from VLDB
<booktitle>B{γtitle VLDB γtitle} </booktitle>Σ∗K

Table 3.3: Compound extractors.

Compound extractors from Blog corpus
Q5 = Q1 ∪Q2 ∪QRN union of binary extractors
Q13 = Q10 ∪Q12 union of ternary extractors

Compound extractors from DBLP corpus
SV AA+ = SV LDB ▷◁ SAA+ multi-author VLDB articles
SJ2010 = πJ(SJrn ▷◁ S2010) journal titles from 2010
S2010∆ = S2010 ∪ SMod titles from 2010 or updated in 2015

For readability, the primitive extractors are built on top of some simple grammar build-
ing blocks.
character sets:

γu = [A , Z] γl = [a , z]

γd = [0 , 9] γb = ∨ ,

γw = (γu ∨ γl ∨ γd) γs = (Σ− ? − .)

γp = (: ∨ , ∨ ; ∨ ! ∨ . ∨ ?) γt = (γw ∨ γp ∨ -)

basic patterns:

58

γname =γuγ
∗
l γuγ

∗
l (∨ γp)

γfilm =((" γw) ∨ (' (γu ∨ γd))) (γ∗
t ∨ γ∗

t γ∗
t ∨ γ∗

t γ∗
t γ∗

t

∨ γ∗
t γ∗

t γ∗
t γ∗

t ∨ γ∗
t γ∗

t γ∗
t γ∗

t γ∗
t)(' ∨ ")

Morciano’s extractors use several small word lists (for which we use names starting with
upper case letters), including:

γAction = (S ∨ s) aw ∨ (W ∨ w) atch ∨ (R ∨ r) ent

γAspect = visual ∨ plot ∨ script ∨ dialogue ∨ acting ∨ actor ∨ cast ∨ special

∨ effect ∨ shot ∨ scene ∨ sequence

γAttribute = funny ∨ better ∨ worst ∨ worse ∨ awful ∨ boring ∨ entertaining ∨ inspiring

∨ clever ∨ interesting ∨ smart ∨ cool ∨ dope ∨ quirky ∨ hilarious

∨ amazing ∨ well-done ∨ rushed

γGenre = action ∨ adventure ∨ children ∨ family ∨ comedy ∨ crime ∨ documentary ∨ drama

∨ fantasy ∨ noir ∨ horror ∨ musical ∨ mystery ∨ romance ∨ sci-fi ∨ science fiction

∨ thriller ∨ war ∨ western ∨ gangster ∨ epic ∨ historical

γMovie = feature ∨ dvd ∨ film ∨ movie ∨ flick

γPlotClue = plot ∨ about ∨ tell ∨ story ∨ begins ∨ ends ∨ finally ∨ final ∨ beginning ∨ middle

γRole = protagonist ∨ character ∨ director ∨ actor ∨ role ∨ characters ∨ critics

γSentiment = love ∨ like ∨ hate ∨ enjoy ∨ cringe ∨ cry ∨ cried ∨ recommend ∨ laugh

To avoid having spurious matches to these words (such as matching fractions when
intending to match action , or aware when intending to match war), our extractors include
additional context to require that any match to a word from a word list must be preceded
by a blank () and followed by either a blank or a comma (γb). His compound extractors
fall into two classes: Q5 - Q9 are unions of binary joins and Q13 - Q16 are unions of ternary
joins. For our experiments, we have chosen the first extractor from each class.

For the DBLP corpus we designed five primitive extractors and three compound ex-
tractors (also shown in Tables 3.2 and 3.3) that complement those for the other corpus,
and are built on basic patterns for authors’ names and titles:

γauthor =γu(γu ∨ γl ∨ - ∨ ∨ .)∗

γtitle =(γt ∨)∗

59

The compound extractors select records on multiple conditions, using spans in common to
enforce conjunctive conditions.

3.5.5 Updates

In this section we present a few realistic update scenarios and discuss various aspects of
them. In the following sections, for an update spanner denoted as γS, the update variable
is denoted by F and the corresponding replacement specifier is denoted by US.

Classifying Hashtags

A blog might include hashtags such as #photooftheday and #naturephotography, and
there may be interest in annotating a subset of these as belonging to some class, such as
follows, where γh = γl ∨ γd (any lower case letter or digit):

γhashtag =Σ∗F{ # γ∗
h(photo ∨ selfie)γ∗

h}γbΣ∗

Uhashtag =$(F) (photography)

The verifier confirms that this update is shiftable for all our extractors for both corpora.

Enabling URLs

URLs appear in both corpora under consideration, and these can be updated to become
clickable links:

γURL =Σ∗F{ http://T{(Σ− < − > − − " − ')∗}}
(< ∨ > ∨ ∨ " ∨ ')Σ∗

UURL = $(T) <a/>

This time, the verifier reports that the update is shiftable with respect to Q1, Q2, Q10,
and Q12 (and therefore also Q13) and also that it is shiftable with respect to all the DBLP
extractors. However, the verifier reports that the update is not shiftable with respect to
QRN (and therefore Q5). The problem is that an updated span F can overlap the extraction
of a name marked by T , thus, for example, changing actor ... http://Brad Pitt ... to
actor ... Brad Pitt After executing this update, QRN and

Q5 would need to be re-extracted to accommodate such possible instances.

60

Reversing Month and Day in Dates

The DBLP corpus includes a modification date on each record, and it might become nec-
essary to convert from yyyy-mm-dd to yyyy-dd-mm, as follows:

γdate =Σ∗ mdate=" γdγdγdγd -F{M{γdγd} -D{γdγd}}Σ∗

Udate =$(D) - $(M)

This update is reported to be shiftable with respect to all the DBLP extractors. When
tested against the primitive Blog extractors, it is found to be shiftable with respect to all
but Q1 and Q10, where the string mdate= could immediately precede a film title beginning
"2015-01-03 ..." . This update, however, demonstrates an aspect of our verifier that could
be improved: although the update could apply inside regions that are extracted by Q1 and
Q10, there would be no change to the lengths of the extracted regions, and thus no reason
to re-extract (nor even to shift). In fact, this is an unrecognized irrelevant update with
respect to those two extractors.

Changing DOIs

The DBLP corpus also includes references to DOIs in a field containing a link to an exter-
nal electronic resource, using two different formats. An update to convert one format to
the other is as follows:

γDOI =Σ∗(<ee> ∨ <ee type=" γlγl ">)F{ https://doi.org/ }Σ∗

UDOI = doi:

Again, the update is found to be shiftable with respect to all the DBLP extractors.
However, because . ∈ F , it is not shiftable with respect to any of the Blog extractors
(it does not respect their alphabets); the removal of the period might cause any of the
extractors to find additional matches. (The same is true when the update is reversed: the
verifier detects . ∈ U , which might result in fewer matches after the update.)

3.5.6 Run-time Performance

We use the DBLP corpus to show that the run-time overhead imposed by our verifier is
acceptable in practice and that the run-time is much less than that of re-executing an
extraction program, even if performed incrementally. First we tried to run the extractors

61

Table 3.4: Extraction Statistics (×1000) for DBLP corpus.

Spanner No. of Extracted Documents No. of Extracted Records
SJrn 1,422.1±6.713 10,887.48±164.507
SMod 17.820±1.17 47.480±3.872
S2010 302.38±5.045 1,264.36±32.876
SAA+ 2,304.22±3.891 23,011.44± 419.184
SV LDB 1.860±0.405 5.360±0.862
SV AA+ 1.680±0.347 4.920±0.729
SJ2010 132.36±2.409 380.08±9.480
S2010∆ incomplete incomplete

Table 3.5: Extraction times (×1000 sec) for DBLP corpus.

Spanner Extraction Time Spanner Extraction Time
SJrn 122.1±5.7 SV LDB 11.0±0.1
SMod 8.4±0.7 SV AA+ 10.2±0.2
S2010 26.3±3.6 SJ2010 22.1±0.8
SAA+ 156.4±26.1 S2010∆ >450

to completion on the whole DBLP dataset, but most extractors took an excessive amount
of time and did not finish within a four day window. Therefore, we report estimates of
related statistics over random samples. We took five simple random samples with sample
rate of 1%. Note that standard deviations are reported with 95% confidence.

Table 3.4 summarizes the number of documents with extracted content as well as the
number of extracted records in thousands from DBLP corpus. This table confirms that
we have extractors with different selectivities. Table 3.5 shows how many thousands of
seconds each extractor requires, ranging from 2.3 hours to 43.4 hours and with the final
extractor requiring more than 125 hours. The minimum time saved for SJrn and SMod

when documents are updated by γDOI is 32.2 hours and 2.0 hours, respectively. Undoubt-
edly, various optimization techniques adopted by mature products such as SystemT can
accelerate the extraction process, and these were not implemented on our research-based
system. We note, however, that Chen et al. [22] report that the fastest extractor they
tested on a Wikipedia corpus of 35 MB requires 100 seconds (using different hardware and
software), which implies an extraction time of more than 6 hours when scaled to the size
of DBLP. Elsewhere, Shen et al. [86] report a complex, but optimized extractor taking 61
minutes for a corpus smaller than 2% of the size of DBLP! Thus, we are convinced that

62

our extraction times are indicative of the times needed for extractors more generally.

Table 3.6 shows how many seconds are required for verifying shiftability for each up-
date, displaying the minimum, average, and maximum times over all five primitive DBLP
extractors. The table also shows the minimum, average, and maximum times required
for shifting the tables extracted for the first seven extractors. It is far faster to verify
shiftability than to re-execute the corresponding extractor: verification times are at most
3.5 minutes per primitive extractor independently of the database size, and simply shifting
extracted relations is far faster than re-extracting them, especially when the extractions
are highly selective.

Table 3.6: Verification and shift times (sec) for all updates.

Update Verification Shift
min’m avg max’m min’m avg max’m

Hashtags 20 64.0 127 0.2±0.4 10.2 39.2±76.8
URLs 36 108.4 212 1.1±0.1 67.1 239.3±1.8
Dates 1 33.6 64 1.5±0.2 78.7 273.5±6.5
DOIs 18 58.2 110 1.2±0.2 72.4 252.4±7.6

3.5.7 Role of Incremental Updates

Chen et al. [22] have proposed re-using extracted data when it has clearly not been af-
fected by an update. The approach requires three steps: (1) determining which pieces of
documents have been updated, (2) re-executing the extractor on portions of the updated
documents where changes to the extracted data or to its context (specified as a window
around each extracted region) might change the results of extraction, and (3) copying over
previous extractions guaranteed to be unaffected by the update, but shifting their offsets
so as to be able to determine overlaps with the next update.

We note first that incremental re-extraction is orthogonal to determining shiftability.
An update might be provably shiftable with respect to JEK even if it changes data very
near each extracted region, such as is true for γdate with respect to SMod. On the other
hand, if an update is not provably shiftable, such as γURL with respect to QRN , incremental
extraction can be applied rather than naively re-executing the extractor on the complete
document.

To determine the cost of using the approach proposed by Chen et al., we measure the
time to execute a simple matcher for the DBLP corpus on the same hardware used in our

63

other experiments. In particular, by running Unix’s diff against 20% of the DBLP corpus
we find that the program requires between 27 ms and 68 ms (mean = 49 ms) per file. This
implies that the first step alone requires over 42 hours to execute. Even if the computation
is distributed across 32 processors running in parallel, the execution time is excessive for
updates that can be determined to be shiftable.

3.5.8 Potential of Parallelism

The previous section presents execution statistics, including extraction, verification, and
shift times, all on a single-threaded machine. We have noted that incremental updates
can be parallelized. In practice, document-at-a-time extraction, update, and shift can also
easily be parallelized, so a system with 32 processors could reduce overall elapsed time
in Table 3.5 to 12 minutes or so. The most costly operation in an extraction process
is pattern matching, as highlighted by Shen et al. [86], which limits the effectiveness of
multithreading for processing a single document. Therefore, as the number of documents
increases we need to add more processors. However, there is a threshold at which scaling
this approach becomes cost-prohibitive in terms of hardware or cloud service expenses.

Furthermore, the verification algorithm consists of five distinct tests (Figure 3.6), each
of which can be executed independently in parallel. As a result, the verification time
depends on the most time-consuming test. In the experiments conducted for the DBLP
extractors, the tests of independence between extractors and update spanners and post-
update spanners are equally the most time consuming tests.

The update and extracted relations should reside in the same server to eliminate the
data transfer cost. Unfortunately, distributing the update relation over several servers will
slow down the shift algorithm because the amount to shift a span depends on all updates
to the document appearing before that span.

3.5.9 Additional Updates

Expansion

γExpd replaces FOCS appearing as book title or journal name with the string Foundations of
Computer Science.

γExpd =Σ∗ <booktitle>U{ FOCS } </booktitle>Σ∗ ∨ Σ∗ <journal>U{ FOCS } </journal>Σ∗

UγExpd
= Foundations of Computer Science

64

DBLP Extractors : The verifier finds that JSJrnK depends on JγExpdK since the update
modifies the extracted span marked by J . In fact the length of the extracted region
is modified by γExpd and the shift function cannot compute the updated extracted span
autonomously. The verifier stops once it finds a conflict, but if the verifier continued
it would find dependency between JSJrnK and J∇(γExpd, UγExpd

)K too. The verifier finds
JγExpdK to be shiftable for JSModK, JSAA+K, JS2010K, and JSV LDBK, consequently for JSV AA+K
and JS2010∆K.
Blog Extractors : The verifier finds that JγExpdK is shiftable w.r.t JQ1K, JQ2K, JQRNK, JQ10K,
and JQ12K, consequently for JQ5K and JS13K.

Rectify Space

This update rectifies a formatting issue for space character.

γspace = Σ∗U{ }Σ∗

Uγspace =

DBLP Extractors : γspace is determined to be not shiftable for any of the extractors. Since
is a character showing up in γtitle and γauthor all the primitive extractors depends on

J∇(γspace, Uγspace)K and a new row might appear after rectifying the space character.
Blog Extractors : γspace is determined to be not shiftable for any of the extractors. Since

is a character showing up in the context preceding variables like A, T , and B also it
appears in γname, γfilm, and γGenre therefore there is dependency between the extractors
and J∇(γspace, Uγspace)K which might cause a new row appear after the update.

Money

γmoney = Σ∗ $ (γd ∨ .)∗F{ billion }Σ∗

Uγmoney = B

DBLP Extractors : γmoney is determined to be shiftable w.r.t all extractors in this category.
Blog Extractors : γmoney is determined to be shiftable w.r.t JQ1K, JQ2K, JQ10K, and JQ12K,
and consequently JQ13K. γmoney is not shiftable w.r.t JQRNK since JQRNK depends on
J∇(γmoney, Uγmoney)K: after update, B can form a string in γname.

65

Time Format

γtimeFormat = Σ∗ F{T{(γd ∨ γdγd)}D{((am ∨ pm)) ∨ am ∨ pm }E{ ∨ γp}}Σ∗

UγtimeFormat
= $(T) :00 (D)(E)

The verifier finds γtimeFormat to be not durable. Consider the input string · · · 14 pm · · ·
JCUV ar(g)γtimeFormatK in one match marks 14 pm as F and in another match marks the
second as context. For a none-durable update our construction process for the post-
update spanner fails.

3.6 Additional Related Work

3.6.1 Document Spanners

Document spanners, defined in Section 3.1, have been proposed to model extractors defined
by the core of SystemT [37]. Researchers have addressed many problems using the docu-
ment spanner model, including how to deal with documents with missing information [68]
and how to eliminate inconsistencies from extracted relations [36]. Others have studied the
complexity of evaluating spanners and computing the results of various algebraic operations
over span relations [9, 38, 78, 79].

Freydenberger and Thompson [39] have investigated the complexity of incrementally
re-evaluating spanners in the presence of updates. However, their update model assumes
that a document is encoded as a fixed-length word structure in which (essentially) there
is a special character that represents ϵ and the only operation is replacing one character
from Σ ∪ {ϵ} by another.

3.6.2 Regular Expression Matching

Thompson [92] has shown how to evaluate an automaton on a string. He keeps track of
the states that are reached by consuming each character and discarding the path that is
explored to reach the states. Therefore, for an input string s and a regular expression
r, the time complexity of Thompson’s approach is O(|r| ∗ |s|). To evaluate an evset,
instead of keeping only a set of states on every offset of the input, Morciano keeps a set

66

of configurations. Each configuration contains the state that is reached, the history of
variable operations, whether they have been opened/ closed as well as the unused variables
to reach the state, and the current offset on the input for the corresponding configuration.
Thus, Morciano’s time complexity is O(|A|2 ∗ |s|2∗|V |) for an eVset with |A| states and |V |
variables.

We are interested in knowing how variables are assigned to sub-strings for each accepting
path. This is similar to the notion of regular expression parsing that determines how
a string matches a regular expression, i.e., parsing. The latest work on this problem
presented by Bille and Gørtz [11] shows that a parsing can be found in O(|s| ∗ |r|) with
space complexity of O(|s|+ |r|). The proposed method finds only one parsing, but it might
be feasible to design an efficient method that works for our application, i.e., finding all
possible parsing.

67

Chapter 4

Updatable Extracted Views

In this chapter, our interest is in determining how changes to entries in an extracted table
are reflected back to source documents. More specifically, given a collection of documents
and an information extraction program, we wish to determine under what conditions chang-
ing a single word or phrase p to p′ in a document will cause exactly the expected entry in
the extracted table to change from p to p′, leaving the rest of the table unchanged.

We were motivated to answer this question by the problem of applying privacy trans-
formations to documents. Consider, for example, the problem of maintaining privacy for
personal information contained in a collection of electronic health records when publishing
research results derived from those records. It has been shown that simply avoiding the
publication of identifiers does not protect the privacy of individuals: in the presence of
other publicly available data, anonymization is vulnerable to linkage attacks [89]. The
solution to this problem has been to apply differential privacy [35], which has been studied
quite extensively in the context of relational tables. We are interested in the variant of
differential privacy in which the data owner applies a randomized algorithm to map records
in a table T to records in T ′, which has the same schema as T [53]. Thereafter, T can
be removed from the system, leaving researchers with full access to the synthesized table
T ′, a synthetic derivative of the input table (Figure 4.1). To preserve the table’s utility,
the synthetic values are created in such a way that a set of specified analyses on T ′, such
as histogram or counting queries, produce outcomes that are indistinguishable from those
that would be obtained on T .

Our approach to protecting documents is to apply differential privacy to the table(s)
obtained from a document collection through information extraction. We assume that
each document D (e.g., an individual’s health record) in the collection produces some rows

68

Figure 4.1: Creating and accessing a private table.

in the extracted table T and then apply a differential privacy algorithm to form T ′, thus
protecting each individual document in the collection (as in Figure 4.1). The modified
tables can be published and analyzed by untrusted parties without fearing the loss of
privacy for individuals whose data is stored in the document collection. For example, to
protect writers’ identity, Weggenmann et al. [96] replace extracted terms from the training
dataset with their synonym provided by WordNet [71] and run the authorship attribution
task over updated values.

We further assume that the researchers who are preparing tables for publication have
no wish to violate individuals’ privacy, but may do so unintentionally; they are assumed to
be “semi-trusted.” Furthermore, those researchers wish to be able to read the documents
that correspond to rows in extracted tables so as to be able to interpret and validate those
tables, and they are not experts on differential privacy. We, therefore, wish to present to
those researchers a set of documents that would have produced the modified table had the
same information extraction procedure been applied to them.

Henceforth, we are not concerned with the particulars of differential privacy, but we
merely assume that entries in the extracted table are to be replaced by new values. In
fact, changing a value in an extracted table might not be for privacy reasons at all, but
simply as part of a data cleaning process [48] (for example, the collection of extracted
records might disclose some inconsistencies among the source documents). Thus, we are
interested in detemining whether extracted views are updatable. Specifically, if p is to be
replaced in the table by another value p′ chosen from some domain of possible values,
we wish to replace p by p′ in the corresponding location of the document that produced
that entry. Under what conditions does this change to the document produce exactly the
expected change to the table with no other table entries affected? We say that a given
extraction algorithm is stable if it is resilient to such modifications of text for all possible
input document collections, all entries in the extracted table, and all values in each entry’s
domain.

69

In this work, we formalize stable extraction algorithms. Given an extraction program,
we then need to verify whether it satisfies those properties required for stability; that is,
whether the extractor is stable. Although the ideas cultivated in this thesis are general
and independent of the extraction mechanism, we again focus on rule-based information
extraction systems to realize the ideas.

In this chapter, we give an overview of a significant part of GATE and its underlying
language JAPE, called Core JAPE. Then, we propose an approach for creating an equiv-
alent spanner representation for an extraction program written in Core JAPE. Next, we
present a mechanism to determine whether an extracted view expressed as a Core JAPE
program is updatable. We statically analyze the spanner representation of the extraction
program to verify sufficient conditions for being an updatable view.

4.1 Overview of GATE and JAPE

GATE [28] is a commonly used rule-based information extraction system that identifies
critical pieces of a document using a grammar written in JAPE [29]. JAPE evolved from the
Common Pattern Specification Language (CPSL) [10], a rule-based information extraction
language based on regular expressions. GATE extractors include the following stages:

1. First a tokenizer and gazetteer work directly on the input characters. The tokenizer
constructs a linear annotation graph in which the edges correspond to sequential
spans of text (e.g., words). However the output of the gazatteer might be a nonlinear
annotation graph, i.e., a span of text can be annotated by more than one gazatteer
annotation, and two different gazatteer annotations can start and end at the same
position at text. We describe these two components in detail in Sections 4.1.2 and
4.1.3. A JAPE program then describes how to traverse and modify the annotation
graph.

2. Running a JAPE program involves executing a set of matching rules, written as
regular expressions over annotations that label edges in a rooted directed acyclic
graph. Rules are organized into a sequence of phases that run consecutively in the
order that they appear in the program. In each phase, JAPE interprets the rules
in that phase to traverse the annotation graph (from its unique source), identifying
possible matches. Each phase might modify the annotation graph by adding and/or
removing annotations. This is explained in further detail in Section 4.1.1.

70

3. In general, the output of a JAPE program in GATE is highly customizable and can
be tailored to the specific requirements of the application at hand. For the purpose of
our analyses, we design a special phase called the relation generator, which is always
the final phase to be executed after all phases. It is an ordinary JAPE phase and
composed of JAPE rules, except that on the right hand side of every rule there is a call
to a JAVA function which forms and outputs a record, as described in Section 4.1.4.

4.1.1 Core JAPE

We describe Core JAPE, the essence of JAPE covered in this work. The Backus-Naur
Form (BNF) description of Core JAPE is presented in Figure 4.2.1 Unless otherwise
stated, throughout the remainder of this monograph, we use JAPE and Core JAPE in-
terchangeably. A JAPE program is organized as a sequence of consecutive phases. Each
phase accepts an annotation graph as input, modifies it, and outputs the modified graph.
A simple JAPE program with four phases is adopted from ANNIE [28], a ready-to-use IE
bundle that is implemented and distributed with GATE, and shown in Figure 4.3.2

Given an input text, three factors of a phase specify whether a rule fires: the rule’s
constraints, the phase’s policy, and available annotations. In this section, we explain the
constituents of a phase including: user-provided JAPE rules, Input (available annotations),
and Policy.

JAPE Rules: Each JAPE rule is composed of a pattern and an action, as in Equa-
tion 4.1.1. The pattern appears to the left of the separator −−> and describes a regular
expression over annotation constraints (or simply constraints). These regular expressions
are converted to finite state transducers, which consume the input and assign spans of text
to binding variables. We assume that the match for each binding variable is unique in the
scope of the left-hand sides of rules.

pattern −−> action (4.1)

A constraint can be as simple as presence of an annotation in the annotation graph.
For example, three instances of such simple constraints exist in Rule:Url1 of Figure 4.3b

1For a comprehensive description about additional capabilities of JAPE read the documentation [28].
2The corresponding copyright is: Copyright (c) 1998-2004, The University of Sheffield. This file

is part of GATE (see http:gate.ac.uk), and is software, licenced under the GNU Library General
Public License, Version 2, June 1991 (in the distribution as file licence.html, and also available at
http:gate.ac.ukgatelicence.html). Diana Maynard, 19 April 2001 $Id: url_pre.JAPE 5921 2004-07-21
17:00:37Z akshay

71

⟨SinglePhaseTransducer⟩ |= phase: ⟨ident⟩
(input: (⟨ident⟩)∗)?
(Options:control= ⟨ident⟩)?
(⟨Rule⟩) ∗

⟨Rule⟩ |= Rule: ⟨ident⟩
(priority= ⟨integer⟩)?
⟨LHS⟩ - -> ⟨RHS⟩

⟨LHS⟩ |= ⟨ConstraintGroup⟩
⟨ConstraintGroup⟩ |= (⟨PatternElement⟩) + (| (⟨PatternElement⟩)+) ∗
⟨PatternElement⟩ |= ⟨BasicPatternElement⟩ | ⟨ComplexPatternElement⟩

⟨BasicPatternElement⟩ |= { ⟨Constraint⟩(, ⟨Constraint⟩) ∗ }

⟨ComplexPatternElement⟩ |= (⟨ConstraintGroup⟩) (⟨integer⟩)?
(: ⟨ident⟩)?

⟨Constraint⟩ |= ⟨ident⟩(. ⟨ident⟩ = ⟨AttrVal⟩)?
⟨AttrVal⟩ |= ⟨string⟩
⟨RHS⟩ |= ⟨Action⟩(, ⟨Action⟩) ∗
⟨Action⟩ |= ⟨AssignmentExpression⟩

⟨AssignmentExpression⟩ |= : ⟨ident⟩ . ⟨ident⟩ = {

(⟨ident⟩ = ⟨AttrVal⟩(,)?) ∗ }

Figure 4.2: BNF description of Core JAPE.

72

Phase: UrlPre
Input: Token SpaceToken
Options: control = appelt
Rule: Urlpre
((({Token.string=="http"} | {Token.string=="ftp"})
{Token.string==":"}{Token.string=="/"}{Token.string=="/"}
)|({Token.string=="www"}{Token.string=="."})):urlpre -->

:urlpre.UrlPre = {rule = "UrlPre"}

(a) UrlPre phase defined in ANNIE’s url_pre.JAPE

Figure 4.3: A simple JAPE program with four phases, continued below.

including: {Token}, {UrlPre}, and {SpaceToken}. A constraint might instead specify
the value of static attributes like {Token.kind==punctuation} (Figure 4.3b) or dynamic
attributes like {Token.string==“ftp”} (Figure 4.3a).

Core JAPE provides two operators for constraints: i) string equality operator, such as
{Token.string==“ftp”} to match a Token annotation whose string attribute’s value is ftp ;
ii) regular expressions operator, such as {Token.string ==∼ “[Ff]tp”} to match a Token
annotation whose string attribute’s value is either ftp or Ftp .

According to the grammar (Figure 4.2), simple constraints can be combined in a Con-
straintGroup. A ConstraintGroup may include the disjunction and sequencing of Pattern-
Elements, each of which specifies one or more constraints.

A BasicPatternElement is interpreted as a constraint (or a conjunction of constraints)
which have to be satisfied at a particular point in the annotation graph. We only al-
low multi-constraint statements in which all constraints are associated with exactly one
annotation and zero or more of its attributes.

Example 4.1.1

The following rules have single and multiple constraints respectively 3:

Rule: Unknown
Priority: 50
({Token.category == NNP}):unknown -->

:unknown.Unknown = {kind = "PN",rule = Unknown}

3taken from https://gate.ac.uk/sale/tao/splitch8.html

73

Phase: Url
Input: Lookup SpaceToken Token UrlPre
Options: control = appelt
Rule: Url1
Priority: 50
({UrlPre}({Token})[1,7]):urlAddress ({SpaceToken}) -->

:urlAddress.Url = {kind="urlAddress",rule="Url1"}
Rule: Url2
Priority: 100
({UrlPre} ({Token})[1,7]{Token.string=="."}
{Lookup.majorType==country_code}):urlAddress -->

:urlAddress.Url = {kind="urlAddress",rule="Url2"}

(b) Url phase defined in ANNIE’s url.JAPE

Phase: Names
Input: Token
Options: control = appelt
Rule: capitalized
(({Token.orth==upperInitial})[1,10]):mark -->

:mark.Capitalized={rule="capitalized"}

(c) Spans of capitalized words

Phase: NameAndURL
Input: Capitalized Url
Options: control = first
Rule: final
({Capitalized}):name ({Url}):page -->

:name.Name={rule="final"},:page.Page={rule="final"}

(d) Collocations of names and URLs

Figure 4.3: A simple JAPE program with four phases, cont’d.

74

Rule: Surname
({Lookup.majorType == "name", Lookup.minorType == "surname"}):surname

-->:surname.Surname = {}

The following rule has constraints on two different annotations Lookup and Token:

Rule: Surname
({Lookup.majorType == "name", Lookup.minorType == "surname", Token}):surname

-->:surname.Surname = {}

A PatternElement may be repeated a finite number of times, and it may be bound to
a binding variable. Binding labels make the corresponding part of the annotation graph
available on the action part of a rule (appearing after −− >), for further processing.
Consider, for example, the phase in Figure 4.3c. If the annotation graph is as depicted in
Figure 4.4, the binding variable mark makes the span associated to three Tokens available
on the right-hand side to get annotated as Capitalized.

For simplicity, the only legitimate action permitted is to include instructions to associate
annotations and possibly some attributes with the spans of text that are marked by binding
labels and add them to the annotation graph. We require that every binding variable be
associated with exactly one annotation and its corresponding attributes. We assume that
every rule once fired modifies the annotation graph: at least one binding variable exists
for each possible firing of a rule.

Definition 12 An assignment expression corresponding to an annotation’s attribute is
called an attribute expression.

Similar to programming languages, we distinguish two kinds of attribute expressions: static
ones whose value can be determined at compile time and do not change during runtime,
and dynamic ones whose value depends on the input string.

Attribute expressions for each annotation represent a partial function from a set of
attributes to a set of values. For example, for rule URL1 in Figure 4.3b, the attribute
expression is realized by a function with two mappings: kind=“urlAddress” and rule=“Url1” ;
These attribute expressions are static. Possible dynamic attribute expressions are string-
=“example” or length=7 which are determined from processing the input text.

75

Figure 4.4: A hypothetical annotation graph to show effects of Input in a phase. Stars in
gray are proxies of input characters.

In addition to rules, two declarations for a phase are essential to our work: Input and
Policy. Input enumerates the annotation types that are available to the rules in a phase:
only those edges in the annotation graph that are labelled by input types are visible to the
rules in each phase. Thus, for example, two annotations are deemed to be adjacent if they
cover two spans of text with no annotation in the Input list covering a span that starts
between them. Consider, for example, the phase in Figure 4.3d. If the annotation graph’s
state is as depicted in Figure 4.4, according to the phases’ input, Rule:final matches the
graph and fires. However, if Token was also listed as input, the rule would not fire for this
annotation graph because Capitalized would no longer appear to be adjacent to Url.

A policy specifies the order in which spans of text are considered and where scanning
resumes after a rule is fired. Thus the policy determines the strategy to be taken to pick a
match when more than one span can be matched and when matches might overlap. JAPE
offers five policies: Once, First, Appelt, Brill, and All.

With the Once and First policies, spans are tested from the leftmost shortest to longest;
whenever a match for a rule is found, the rule matching that span is fired and the corre-
sponding span is marked with the relevant annotation. Thus longer matches are ignored.
In the Once policy, the phase exits after firing of a rule (so scanning for the next phase
resumes from the root of the annotation graph), whereas the First policy continues to
search for additional matches in the current phase, starting from the end of the matched
span. For both policies, if more than one rule matches the same shortest span, the JAPE
processor arbitrarily chooses one of them to be fired and the others are ignored. Multiple
runs over the same input could therefore produce non-identical extractions.

With the Appelt policy, spans, starting at some point, are tested from longest to short-
est, and the longest matched span causes a rule to be fired. (Thus shorter matches are
ignored.) When multiple rules in a phase can be fired for the same longest span of text,
JAPE chooses a rule based on priority. A rule’s priority with respect to other rules is de-
termined first from the declared priority number in the rule (higher numbers having higher

76

priority). If several matching rules have the same priority number, the rule that appears
earlier in the phase fires. After firing a rule, scanning for additional matches in the current
phase starts from the end of the matched span.

The Brill policy allows all the rules that match a span of any length starting from some
point to be fired. As a result, overlapping annotations can be created within a single phase.
After firing all matching rules, scanning for additional matches in the current phase starts
from the end of the longest matched span.

Finally, the All policy allows all possible rules to fire, regardless of the starting point
and the span of text that matches. Table 4.1 summarizes JAPE policies along with the
outcome of polices once applied to Figure 4.5 that presents all possible matches for a
hypothetical JAPE phase.

× ×

A B

C D

E

F G

H

Figure 4.5: For a given phase and an input string × · · ·×, where × represents any input
character, the figure visualizes the resulting matches after running the phase and scanning
the corresponding annotation graph. We label each match by a capital letter.

Table 4.1: Summary of JAPE policies and their effects on Example in Figure 4.5.

Policy Start Node Priority After Match Next Node Result
First start of leftmost match shortest stay in curr. phase end of shortest match A D G
Once start of leftmost match shortest exits curr. phase start of annot. graph A
Appelt start of leftmost match longest stay in curr. phase end of longest match B E
Brill start of leftmost match all matches stay in curr. phase end of longest match A C B E

G
All start of leftmost match all matches stay in curr. phase start of next leftmost A B C D

match E F G H

The first phase shown in Figure 4.3 has one rule that matches Tokens and SpaceTokens
and uses the Appelt policy (longest match). It recognizes the strings http:// , ftp:// , and
www. as common indicators of the start of a URL, and annotates these as UrlPre. The
second phase has two rules that match the annotations created during the first phase, as

77

well as Lookup (a match in the gazetteer), Token, and SpaceToken, and again uses the
Appelt policy. URLs that start with a string recognized in the first phase, followed by one
to seven tokens with no intervening spaces, and possibly ending with either a SpaceToken
or a period and a country code found in the dictionary are recognized by the first two rules.
The third phase uses the Appelt policy to find maximal sequences of alphabetic tokens that
begin with an uppercase letter followed by zero or more lowercase letters. The final phase
uses the First policy (shortest match) to find strings that look like names followed by a
URL (ignoring all annotations that are neither Capitalized nor Url).

4.1.2 Tokenizer

In a JAPE phase, rules only have access to annotations; the input’s characters are not
available. Thus, there needs to be a tokenization step in all JAPE programs which scans
the input characters and, based on their lexical features, adds initial annotations. For
simplicity, we design the tokenizer as a special JAPE phase with a predefined set of JAPE
rules that have access to the input characters and where the outputs of the phase are Token
and SpaceToken and the underlying policy is All. In each rule, the subexpression associated
with the binding label is a non-empty regular expression. Both Token and SpaceToken have
an attribute called kind. For Token, based on the characteristics of the input, four values
are possible for kind including: word, number, symbol, and punctuation. The attribute
kind belonging to Token has sub-category attributes. For instance, a Token that is a word
(kind==word) has an attribute called orth for which four values are possible: upperInitial,
allCaps, lowerCase, and mixedCaps. For SpaceToken two values are possible for kind : space
and control. The sole preprocessing applied to all input text involves attaching two special
characters, $b at the beginning and $e at the end.

For readability, the tokenizer rules are built on top of some simple grammar building
blocks. Also, there are in fact many other character sets and control characters that have
not been included in Table 4.2.
character sets:

γu = [A , Z] γl = [a , z]

γd = [0 , 9] γc = ∨ CR ∨ LF

γbSp = (γl ∨ γu ∨ γd ∨ $b ∨ γp ∨ CR ∨ LF) γaSp = (γl ∨ γu ∨ γd ∨ $e ∨ γp ∨ CR ∨ LF)

γbDg = (γl ∨ γu ∨ $b ∨ γc ∨ γp) γaDg = (γl ∨ γu ∨ $e ∨ γc ∨ γp)

γbW = (γd ∨ $b ∨ γc ∨ γp) γaW = (γd ∨ $e ∨ γc ∨ γp)

γp = (: ∨ , ∨ ; ∨ ! ∨ . ∨ ?)

78

Table 4.2: Sample tokenizer rules.

R1 : γbSp(
∗
): STγaSp → ST .SpaceToken = {kind = space}

R2 : γbDg(γdγ
∗
d): TγaDg → T .Token = {kind = number}

R3 : γbW (γuγ
∗
l): TγaW → T .Token = {kind = word , orth = upperInitial}

R4 : γbW (γlγ
∗
l): TγaW → T .Token = {kind = word , orth = lowercase}

R5 : γbW (γuγuγ
∗
u): TγaW → T .Token = {kind = word , orth = uppercase}

R6 : γbW ((γu ∨ γl)(γl(γu ∨ γl)
∗γu(γu ∨ γl)

∗ ∨ γu(γu ∨ γl)
∗γl(γu ∨ γl)

∗)): TγaW →
T .Token = {kind = word , orth = mixedCaps}

After removing duplicate annotations for each span, the outcome of the tokenizer is a linear
annotation graph over the input string.

4.1.3 Gazetteer

In a JAPE phase we have access to a gazetteer which represents a predefined set of en-
tities such as names of cities, organizations, days of the week, among others. In ANNIE,
the gazetteer consists of multiple files representing set of entities, i.e., file_name.lst. For
instance, there can be a list for departments, departments.lst, that contains following
strings:

departments.lst
Agriculture Department
Commerce Department
Department of Agriculture
Department of Health and Human Services
Department of Housing and Community Development
Department of Interior

There is a simple index file, i.e., lists.def, to access list files. In the index file, each file
is associated with attributes including: Annotation Type (for all lists its value is lookup),
MajorType, and MinorType. Based on the semantics of each list, meaningful values are
assigned to attributes. For departments.lst three attributes are defined: Annotation-
Type= lookup, MajorType=Organization, and MinorType=government. We assume that
the gazetteer used in our extraction environment is a special JAPE phase that is cre-
ated before the program starts. For each .lst in lists.def a set of rules are created and
added to the phase. The phase policy is All and its only output is Lookup. We follow the

79

wholeWordsOnly matching paradigm of ANNIE. Therefore, rules corresponding to the
gazetteer are designed in such way that a Lookup annotation is created only if the entire
gazetteer entry matches as in Table 4.3. Note that a span of text can be annotated by
more that one Lookup.

Table 4.3: Sample Gazzetter rules created for departments.lst.

R1 : (γp ∨ γc ∨ $b)(Agriculture Department) : L(γp ∨ γc ∨ $e)→
L.Lookup = {MajorType = Organization,MinorType = goverment}

R2 : (γp ∨ γc ∨ $b)(Commerce Department): L(γp ∨ γc ∨ $e)→
L.Lookup = {MajorType = Organization,MinorType = goverment}

R3 : (γp ∨ γc ∨ $b)(Department of Agriculture): L(γp ∨ γc ∨ $e)→
L.Lookup = {MajorType = Organization,MinorType = goverment}

4.1.4 Relation Generator

The relation generator is a special JAPE phase that runs after all regular phases and is
denoted by PE. Every JAPE rule has a JAVA function call on the right hand side. We
denote the function as makeRow(args) where args are all the binding labels on the left
hand side of the corresponding rule. The only action that is allowed by makeRow(args)
is to form and output a row for every individual match of the rule without altering the
annotation graph. Thus, the extracted relation has a column for each binding label. For
every record in the output relation, attributes are populated with the values from input D
which are matched by a JAPE rule in PE or null if no span is bound to a corresponding
label. Also, the output relation has a column that contains a unique id for every match.

Example 4.1.2

Consider the following phase as the relation generator in a JAPE program. As a result
we have a relation with three columns: urlAddress, countryCodeFar, and countryCodeClose.

Phase: Url_Relation
Input: Lookup SpaceToken Token UrlPre
Options: control = appelt

Rule: Url1

80

Priority: 50
({UrlPre}({Token})[1,7]):urlAddress ({SpaceToken}) --> makeRow("urlAddress")

Rule: Url2
Priority: 100
({UrlPre} ({Token})[3]{Token.string=="."}

({Lookup.majorType==country_code}):countryCodeClose):urlAddress |
({UrlPre} ({Token})[5]{Token.string=="."}
({Lookup.majorType==country_code}):countryCodeFar):urlAddress
--> makeRow("urlAddress", "countryCodeFar", "countryCodeClose")

4.2 Spanner Representation of JAPE Program

In this section, we overview how a Core JAPE program can be modelled by spanners.

4.2.1 Partially Functional Spanners

Transforming a JAPE program into a corresponding spanner might result in its execution
producing a spanner relation in which some of the attributes have a null value. In this
study, the interpretation of null values aligns with the notion of “nonexistent” [64]. That is,
comparisons involving null are treated as if null were a specific value (i.e., NULL == NULL
is true and NULL == anything else is false). In this section, first we generalize functional
spanners defined in Section 3.1.3 to accommodate null values; second, we slightly modify
the spanner algebra to support null values; finally, we provide a construction algorithm for
the difference spanner that will be used in Algorithm 10.

Definition 13 A document spanner is partially functional if its associated span relation
i) is in first normal form , but possibly with null values ii) does not contain any record
with null values for all attributes. Applying such a spanner to a document produces a
span relation in which each row defines a non-empty partial function from attributes to the
non-null values stored in that row.

81

Partially Functional Spanner Algebra

Let D be an input document, and let E, E1, and E2 be partially functional spanners where
the last two are union-compatible, i.e., E1 = ∅ ∨ E2 = ∅ ∨ SV ars(E1) = SV ars(E2),
and S ⊆ SV ars(E). The algebraic operators essential for our work are then defined as:

• The projection of E is a spanner represented as π̃S(E). For any arbitrary D,
π̃S(E)(D) is obtained by i) restricting the domain of E(D) to S and ii) eliminat-
ing any record for which all attributes have null value.

• For two union compatible partially functional spanners, the union spanner simply
extends union as defined in Section 3.1.3 to partially functional spanners.

• The join spanner is represented as E ▷̃◁ E1 where SV ar(E ▷̃◁ E1) = SV ars(E1) ∪
SV ars(E). For an input document, the span relation associated with the join spanner
E ▷̃◁ E1(D) is defined similarly to E ▷◁ E1(D) except it includes also tuples that
have matching nulls for common variables.

• For two union compatible (partially) functional spanners, the difference spanner is
represented as E1 \E2 where SV ars(E1 \E2) = SV ars(E1). For an input document
E1 \ E2(D) = E1(D) \ E2(D).

For the sake of simplicity, we drop the tilde ˜ from these algebraic operators when there
is no possibility of confusion. Next, we revise Morciano’s well-behaved property and the
algorithms for operating on functional spanners to accommodate null values.

Definition 14 An eVset-automaton A is partially well-behaved if, for every complete path
p in A we have: 1) every variable opens and closes at most once, 2) each variable opens
before it is closed , and 3) at least one variable opens and closes in p.

Proposition 5 A spanner represented by a partially well-behaved eVset-automaton is par-
tially functional.

Proof. By definition. □

Join: Construction proposed by Morciano for join works for partially well-behaved eVset-
automaton, the resulting eVset-automaton is partially well-behaved.

82

Union: The construction proposed by Morciano works and the output is partially well-
behaved.

Projection: We develop Algorithm 7 below based on Morciano’s construction algorithm,
Theorem 4.1 [72].

Proposition 6 Given a partially well-behaved eVset-automaton A and Y = {y1, · · · , yn} ⊆
SV ars(A), Algorithm 7 produces a partially functional spanner that represents πY JAK.

Proof. Applying projection to a partially well-behaved eVset-automaton might result in
an all-null record. The join in Line 4 keeps only those records that have at least one
none-null value. □

Algorithm 7 Projection for Partially functional Spanners.
Input: eVset-automaton A, Projected Variables Y ⊆ SV ars(A)
Output: Spanner S
Precondition: A is partially well-behaved.

1: S ← ∅
2: A′ ← MCons(A, Y) ▷ Call Morciano’s projection algorithm
3: for all yi ∈ Y do
4: S ← S ∪ JΣ∗yi{Σ∗}Σ∗K ▷◁ JA′K
5: end for
6: if VOp(S) == ∅ then
7: return ∅ ▷ There is no variable operation in S
8: end if
9: return S

Difference: Morciano [72] does not include an implementation of difference, even though
Fagin et al. [37] proved that the operation is supported by variable-set automata. We follow
Fagin et al.’s proof that variable-set automata are closed under difference and Morciano’s
construction for joins to show how difference can be supported by automata. We first
define a variant type of transition, adapted from the definition of vset-path introduced by
Fagin et al. [37]:

Definition 15 Given a set of states Q, a set of symbols Σ, and a set of variables V , a
regex-transition t is of the form (qi, rS, qj) where {qi, qj} ⊆ Q, r is a regular expression
over Σ, and S is a (possibly empty) set of open and close operations over V . If x ⊢∈ S, we

83

say that t opens x and if ⊣ x ∈ S, we say that t closes x; also, if T is a set of transitions,
we say that T opens/closes x if any transition t ∈ T opens/closes x. A regex-transition
graph is a sextuple (Σ, V,Q, q0, qf , δ) where q0 ∈ Q is the initial state, qf ∈ Q is the final
state, and δ is a set of regex-transitions over Σ and V .

Next, given an automaton A = (Q, q0, qf , δ) defined over alphabet Σ and V = SV ars(A),
and continuing to adapt the construction of vset-paths, we define a similar set of paths
Π(A) as follows:

1. Initialize the set Q′ = Q and δ′ = δ. Then,

• If q0 has any incoming transitions, create a new state q′0, add it Q′, and add
(q′0, ϵ, q0) to δ′; otherwise, let q′0 = q0.

• Replace any empty operator transition (qi,∅, qj) ∈ δ′ by (qi, ϵ, qj).

• For each state qj ∈ Q such that there is at least one incoming non-empty
operator transition and at least one incoming character or ϵ transition, create a
new state q′j, add it to Q′, add the transition (q′j, ϵ, qj) and replace all operator
transitions (qi, S, qj) by (qi, S, q

′
j).

• Finally create a new state q′f , add it Q′, and add (qf ,∅, q′f) to δ′.

Now we can split the set Q′ into two subsets: Q′
s for which all incoming transi-

tions are character transitions and Q′
v for which all incoming transitions are operator

transitions.

2. Using the state-removal approach described by Linz [65] for converting finite state au-
tomata into regular expressions, create the regex-transition graph rx(A) = (Σ, V,Q′′,
q′0, q

′
f , δ

′′) by removing all states in Q′
s \ {q′0, q′f} and modifying the transitions to and

from those states accordingly.

3. Finally, define Π(A) = {(Σ, V,Q′′
p, q

′
0, q

′
f , δ

′′
p) | p is a path in rx(A) from q′0 to q′f} 4.

Proposition 7 Given a spanner defined by a partially well-behaved automaton A, on each
path p ∈ Π(A), at least one variable is opened and closed, each variable in SV ars(A) is
opened and closed at most once, and a variable is always opened before or at the same time
as it is closed. Thus each path has at most 2|SV ars(A)|+ 1 edges. Furthermore, only the
final transition in p opens no variables and closes no variables.

4It is easy to show that |Π(A)| can be exponential in the number of capture variables.

84

r1start r2 r3 r3 · · · rk
S1 S2

S2 ∪ S3

S3 ∅

Figure 4.6: The automaton Λ(p) corresponding to a path p ∈ Π(A) that has k transitions:
a star labelled ri corresponds to a sub-automaton matching regular expression ri; the edge
labelled S2 ∪ S3 is added because the regular expression r3 matches ϵ.

Proof. The input automaton is partially well-behaved, and since the construction does
not modify the order of variable transitions and creates a transition with the same opera-
tions, if we need to add a new state the proposition holds. □

Given a regex-transition graph g = (Σ, V,Qg, q
0
g , q

f
g , δg) with labels of the form rS

where r is a regular expression over Σ and S is a set of operations over V , let Λ(g)
be the automaton that results from converting regex-transitions in g into corresponding
sub-automata (first matching the regular expression and then the set of open and close
operations) followed by state pruning and operation closure (Figure 4.6).

Proposition 8 Given automaton A, JAK = J
⋃

p∈Π(A)

Λ(p)K.

Proof. This corresponds to vset-path unions (Lemma 4.2) as described in the paper by
Fagin et al. [37]. □

Given automaton E and a path p = (Σ, V,Qp, q
0
p, q

f
p , δp) in Π(E), let pi be a subpath in p

on which the regular expression for every transition matches ϵ, where q0i is the first state in
pi, qfi is the last state in pi, δi is the set of transitions in pi, and Si is the union of all open and
close operations on transitions in pi. Define cl(p, pi) = δp∪{(q, rS∪, q

f
i) | (∃S0)(q, rS0, q

0
i) ∈

δp ∧ S∪ = S0 ∪ Si} and cl(p) =
⋃
pi

cl(p, pi).

Lemma 8 Given two union-compatible automata E1 and E2 and two paths p1 ∈ Π(E1) and
p2 ∈ Π(E2), there is an automaton ⊖(p1, p2) such that for any document D, J⊖(p1, p2)K(D) =
JΛ(p1)K(D) \ JΛ(p2)K(D). Moreover, this automaton can be created in polynomial time.

85

Proof. Let p1 = (Σ, V,Q1, q
1
0, q

1
m, δ1) and p2 = (Σ, V,Q2, q

2
0, q

2
n, δ2). Denote a path pass-

ing through states Q1 = {q1j | 0 ≤ j ≤ m} in increasing numerical order by p1δ =
{(q1j−1, r

1
jS

1
j , q

1
j) | 1 ≤ j ≤ m}, and let p2δ = {(q2j−1, r

2
jS

2
j , q

2
j) | 1 ≤ j ≤ n} be a path

passing through states Q2 = {q2j | 0 ≤ j ≤ n} in increasing numerical order. Let q′f be
distinct from all q ∈ Q2 and Q = Q1×(Q2∪{q′f}). Create A = (Σ, V,Q, (q10, q

2
0), (q

1
m, q

′
f), δ)

where δ is the union of the following sets of transitions over Q:

{((q1i , q2i), rS,(q1j , q2j)) | (∃r1, r2)
[(q1i , r1S, q

1
j) ∈ cl(p1δ) ∧ (q2i , r2S, q

2
j) ∈ cl(p2δ) ∧ L(r) = L(r1) ∩ L(r2)]} (4.2)

{((q1i , q2i), rS,(q1j , q′f)) | (∃r1, r2)
[(q1i , r1S, q

1
j) ∈ cl(p1δ) ∧ (q2i , r2S, q

2
j) ∈ cl(p2δ) ∧ L(r) = L(r1) \ L(r2)]} (4.3)

{((q1i , q2i), r1S, (q1j , q′f)) | (q1i , r1S, q1j) ∈ cl(p1δ) ∧ (∄q ∈ Q2)(∄r2)[(q2i , r2S, q) ∈ cl(p2δ)]} (4.4)
{((q1i , q′f), r1S, (q1j , q′f)) | (q1i , r1S, q1j) ∈ cl(p1δ)} (4.5)

Finally ⊖(p1, p2) = Λ(A).

Given an arbitrary input string D = s1s2...sk, we need to show (i) J⊖(p1, p2)K(D) ⊆
JΛ(p1)K(D) \ JΛ(p2)K(D) and (ii) JΛ(p1)K(D) \ JΛ(p2)K(D) ⊆ J⊖(p1, p2)K(D).

• if : Given a row in J⊖(p1, p2)K(D), let the sequence of configurations ρ =< ((q10, q
2
0), 1)

, · · · , ((q1i , q2j), k), · · · , ((q1m, q′f), |D|+1) > represent the corresponding accepting run
of A for D. ρ can be decomposed into two parallel runs, namely, ρ1 =< (q10, 1),
· · · , (q1i , k), · · · , (q1m, |D| + 1) > and ρ2 =< (q20, 1), · · · , (q2j , k), · · · , (q′f , |D| + 1) >.
By construction, ρ1 is an accepting run of Λ(p1) consuming D with an identical
sequence and positions for all variable operations. Thus an identical row will occur
in JΛ(p1)K(D). However, by construction q′f is an error state for Λ(p2) thus there
is no row in JΛ(p2)K(D) with the identical sequence and positions for all variable
operations.

• only if : Given an arbitrary input string D we show that JΛ(p1)K(D) \ JΛ(p2)K(D) ⊆
JAK(D). Thus if a row r shows up in JΛ(p1)K(D) and not in JΛ(p2)K(D) it shows up
in JAK(D), otherwise r does not show up in JAK(D). There are multiple cases:

– Λ(p1) recognizes the input string D with the corresponding run ρ1 = (q10, 1),
· · · , (q1i , k), (q1i+1, k + 1), · · · , (q1m, |D| + 1) but Λ(p2) does not recognize D and

86

cannot proceed starting from offset k on D, with the corresponding run ρ2 =
(q20, 1), · · · , (q2j , k). Based on the construction (case 2) these two runs repre-
sent an accepting run of A ρ = ((q10, q

2
0), 1), · · · , ((q1i , q2j), k), ((q1i+1, q

′
f), k + 1),

· · · , ((q1m, q′f), |D| + 1). Furthermore, all variable operations of ρ are consistent
with ρ1. Thus ρ1 represents a row in JAK.

– Λ(p1) recognizes the input string D with the corresponding run ρ1 = (q10, 1),
· · · , (q1i , k), (q1i+1, k), · · · , (q1m, |D|+ 1), which includes some variable operations
S at offset k of D. Now assume Λ(p2) cannot proceed at offset k on D do-
ing the same variable operations S, and let the corresponding run be ρ2 =
(q20, 1), · · · , (q2j , k). Based on the construction (case 3) these two runs rep-
resent an accepting run of A ρ = ((q10, q

2
0), 1), · · · , ((q1i , q2j), k), ((q1i+1, q

′
f), k),

· · · , ((q1m, q′f), |D| + 1). Furthermore, all variable operations of ρ are consis-
tent with ρ1. Thus ρ1 represents a row in JAK with no corresponding run of
Λ(p2).

– Λ(p1) recognizes the input string D with the corresponding run ρ1 = (q10, 1),
· · · , (q1i , k), (q1i+1, k + 1), · · · , (q1m, |D| + 1), and Λ(p2) recognizes D with the
corresponding run ρ2 = (q20, 1), · · · , (q2j , k) · · · , (q2n, |D|+1). Let all the variable
operation of ρ2 be consistent with ρ1 so both runs represent an identical row
in JΛ(p1)K and JΛ(p1)K. Based on the construction (case 1) these two runs
represent a failed run of A which starts at initial state (q10, q

2
0), consumes the

input, and ends up in a non-final state (q1m, q
2
n) and by the construction of the

regex-transition graph, there is no outgoing edges from qn and qm, thus this row
will not appear in JAK(D).

Complexity Analysis: In the worst case, there is a path between each pair of states with ϵ on
all its transitions. Thus, we add O(m) transitions to each state in p1 and O(n) transitions
to each state in p2. There are O(m2n2) of [(q1i , q

2
j), (q

1
i′ , q

2
j′)] thus we do 2 × O(m2n2)

comparisons to construct ⊖(p1, p2). □

Proposition 9 Given two union-compatible automata E1 and E2, for any document D,
JE1 \ E2K(D) = JE1K(D) \ JE2K(D) where

E1 \ E2 =
⋂

pj∈Π(E2)

⋃
pi∈Π(E1)

⊖(pi, pj)

Proof. Let ΥΣ
V represent the universal spanner [37] where Σ is the alphabet and V

represents the set of variables.

∀ρ ∈ ΥΣ
V where V = SV ars(E1), ρ ∈ JE1 \ E2K ⇐⇒ ρ ∈ JE1K ∧ ρ /∈ JE2K (by definition),

87

JE1K = J
⋃

p1i∈Π(E1)

Λ(p1i)K =
⋃

p1i∈Π(E1)

JΛ(p1i)K where 1 ≤ i ≤ m, (proposition 8),

ρ ∈ JE1K ⇐⇒ ρ ∈
⋃

p1i∈Π(E1)

JΛ(p1i)K ⇐⇒ ρ ∈ JΛ(p11)K ∨ ρ ∈ JΛ(p12)K ∨ · · · ∨ ρ ∈ JΛ(p1m)K,

JE2K = J
⋃

p2j∈Π(E2)

Λ(p2j)K =
⋃

p2j∈Π(E2)

JΛ(p2j)K where 1 ≤ j ≤ n, (proposition 8),

ρ /∈ JE2K ⇐⇒ ρ /∈
⋃

p2j∈Π(E2)

JΛ(p2j)K ⇐⇒ ρ /∈ JΛ(p21)K ∧ ρ /∈ JΛ(p22)K ∧ · · · ∧ ρ /∈ JΛ(p2n)K,

ρ ∈ JE1K ∧ ρ /∈ JE2K ⇐⇒
(
ρ ∈ JΛ(p11)K ∨ ρ ∈ JΛ(p12)K ∨ · · · ∨ ρ ∈ JΛ(p1m)K

)
∧
(
ρ /∈ JΛ(p21)K

∧ ρ /∈ JΛ(p22)K ∧ · · · ∧ ρ /∈ JΛ(p2n)K
)
⇐⇒(

(ρ ∈ JΛ(p11)K) ∧ ρ /∈ JΛ(p21K) ∨ · · · ∨ (ρ ∈ JΛ(p1m)K ∧ ρ /∈ JΛ(p21)K)
)
∧ · · · ∧(

(ρ ∈ JΛ(p11)K ∧ ρ /∈ JΛ(p2n)K) ∨ · · · ∨ (ρ ∈ JΛ(p1m)K ∧ ρ /∈ JΛ(p2n)K)
)
⇐⇒(

ρ ∈ ⊖(p11, p21) ∨ · · · ∨ ρ ∈ ⊖(p1m, p21)
)
∧ · · · ∧

(
ρ ∈ ⊖(p11, p2n) ∨ · · · ∨ ρ ∈ ⊖(p1m, p2n)

)
⇐⇒

ρ ∈
⋂

p2j∈Π(E2)

⋃
p1i∈Π(E1)

⊖(p1i , p2j).

□

Handling of Spanner’s Capture Variables

JAPE programs use annotations and binding labels to distinguish and mark specific parts
of the input text which conform to predefined rules. These parts are then available for
further processing on the right-hand side of the rule or in the next phases. In a Core JAPE
program, binding labels and annotations serve three roles that are essential for our work:
in a regular phase 1) annotations represent constraints on the annotation graph 2) they
represent the new annotations that are going to be added to the annotation graph once
the rule is fired; in an extraction phase 3) binding labels specify parts of the text to be
extracted. Similarly, document spanners rely on capture variables to mark spans of input
text. We rely on creating, retrieving and manipulating capture variables to represent
binding variables, annotations and corresponding features that appear in JAPE phases.
In converting JAPE programs to document spanners, whenever an annotation and its
attributes appear in a rule, we represent it by a specific type of capture variable in the

88

corresponding spanner. Four classes of capture variables are defined for a corresponding
spanner that is denoted by S:

Created by reference: whenever an annotation (or attribute expression) is used in
a constraint, a reference variable represents it in the associated spanner. The set
containing all reference variables of a spanner in denoted by Vr(S).

Created by addition: a variable that represents an annotation or an annotation-
attribute-value triple that is added by a rule. The corresponding set is denoted
by Va(S).

Created by extraction: in the relation generator phase a variable that represents a
binding label extracted as a column is an extraction variable. The corresponding set
is denoted by Ve(S).

Created to mark cover: cover variables are used to mark the whole region of text that
is consumed by a rule, in the associated spanner (see Line 37 of Algorithm 9). These
variables are used for overlap analysis. The corresponding set is denoted by Vc(S).

Thus, for a given spanner S representing a JAPE program, the set of variables is V (S) =
Vr(S) ∪ Vc(S) ∪ Va(S) ∪ Ve(S).

We use two global tables, accessible in the scope of the JAPE program, to manage
variables and their metadata 1) Throughout a JAPE program, a repeated capture variable
is assigned to identical annotations. However, two identical attribute expressions in two
different annotations have different variables assigned. The first table, denoted as MTable,
maintains a bidirectional mapping from annotations and attributes to their equivalent
variables; 2) Every capture variable has a canonical name and zero or more aliases. For
each variable, VTable records the corresponding spanner, name, category (above classes),
and whether the label is an alias. If it belongs to the cover class, we keep the associated
rule identifier and disjunct dentifier too. If it is an alias, its associated canonical name
is recorded. Various primitive functions are designed to work with variables and their
counterparts.

• toVar(A): For the input set of annotation(s) or attribute expression(s), A, returns
corresponding variables stored in MTable, where the variables are unique for each
annotation or annotation-attribute-value triple.

Example 4.2.1

89

In Figure 4.3b a capture variable will be defined for Url which is added to the
annotation graph by all the rules in the phase. Url determines scope for attributes
such as kind=“urlAddress” , rule=“UrlContext” , or rule=“UrlGuess” . A single capture
variable is defined for all instances of kind=“urlAddress” of Url and distinct capture
variables are also defined for each of rule=“UrlContext” and rule=“UrlGuess” .

• getAnnots(I): extracts the set of annotations from the input and materialize the
required mappings.

• getAttrExprs(I): extracts the set of attribute expressions (possibly empty) along with
corresponding annotations from the input.

• getVar(A): returns a variable associated to input annotation A.

• VarConf (regex1, regex2): renames all variables in regex2 that occur in regex1 and
return the modified regex2. The new variables are given alias names. Finally, VTable
is updated to add the new variables and their metadata.

Tokenizer and Gazetteer as Spanner

Proposition 10 Given the tokenizer or gazetter phase I, Algorithm 8 constructs a span-
ner S that 1) is partially functional 2) marks exactly the same spans marked by I for all
input documents where the capture variables marking the spans represent annotations and
corresponding attributes.

Proof. 1) By construction every disjunct in the resulting regular expression is partially
functional because every rule in I has exactly one regular expression and one annotation.

2) All substrings of the input document that are matched by I are matched by the
spanner because the regular expression of every rule in I shows up as one disjunct of
the output spanner, and concatenating Σ∗ in Line 9 models the unanchored matching
of JAPE. Annotations and their associated attributes can be restored from capture vari-
ables because, for each rule, Line 6 encloses the left-hand side subexpression bound to the
binding label with variables that correspond to the annotation and attributes on the right-
hand side. Consider the left-hand side expression of R3 in Table 4.2, the formed string
is γbWv1v2v3{{{γu(γl)∗}}}γaW where {v1} ← toV ar({Token}), {v2} ← toV ar({orth =
upperInitial}), and {v3} ← toV ar({kind = word}). □

90

Algorithm 8 Tokenizer/Gazetteer to Spanner Algorithm.
Input: Tokenizer/Gazetteer Phase I
Output: Spanner S
Precondition: alphabet of Token and SpaceToken is disjoint in Tokenizer.

1: S ← ∅ ▷ define an empty spanner
2: rgxStr ← “” ▷ define an empty string
3: for all R ∈ I do ▷ for each I’s rule
4: Va ← toV ar(getAnnts(R)) ∪ toV ar(getAttrExps(R))
5: L← LHS(R) ▷ retrieve left-hand side string

▷ enclose the subexpression covered by the binding label in L by capture variables
6: L← encloseBoundExp(L, Va)

▷ append L, with a valid disjunction symbol to the resulting string
7: rgxStr ← append(L, “ ∨ ”, rgxStr)
8: end for

▷ append Σ∗ with a valid concatenation symbol to beginning and end of rgxStr
9: rgxStr ← append(“Σ∗”, “ • ”, rgxStr, “ • ”, “Σ∗”)

10: S ← JtoRegExp(rgxStr)K
11: return S

4.2.2 JAPE Rule Spanner Representation

Syntactically, the left-hand side of a JAPE rule can be viewed as a regular expression with
capture variables. The use of a sub-expression of the form (e) : A in a JAPE rule, where
e is a regular expression over constraints, is similar to A{e} in a variable regex, where e
is a regular expression over input characters. However, in JAPE whenever the enclosed
regular expression matches a sub-string, that sub-string is made available through the
associated binding variable to undergo further processing on the right-hand side, whereas
in the spanner formalism the substring’s start and end offsets are merely assigned to the
capture variable.

We rely on phases’ input and policies, along with the rules’ structures, to construct
equivalent spanner representations for a JAPE program. A phase relies on the output of
some preceding phases and perhaps the tokenizer and/or gazetteer.

Definition 16 For a given JAPE phase P with input I = {Ai|Ai is an annotation}, a
preceding phase P ′ is called a relevant phase with relevant annotations Ir where P ′ outputs
I ′ and Ir = I ′ ∩ I ̸= ∅. Furthermore, the spanner representation of a relevant phase is
called a relevant spanner.

91

Example 4.2.2

Consider the phase NameAndURL in Figure 4.3d: Name and Ulr are relevant phases
with relevant annotations of Capitalized and Url respectively.

We design Algorithm 9 to create an equivalent spanner for a JAPE phase. The impor-
tant steps are explained below:

• Line 10 calls a procedure to transform the left-hand side of the rule into a spanner
using recursive descent based on the Core JAPE grammar (Figure 4.2).

• Line 119: if a variable is already used, we rename the repeated variables and both
global tables are modified accordingly.

• Line 81: allComb(E,Φ) generates all valid combinations of variables in Vr(E) and
corresponding relevant spanners: For each element β = {< vr, va, S

′ >}, returned
by the function, |β| = |Vr(E)| and β describes a total function from Vr(E) to Va(S

′)
and spanner S ′ corresponds to previous phases that could have produced values for
Vr(E).

• Line 92: Filler(annots : List) constructs a regular expression that recognizes any
strings that might appear between two consecutive annotations.

Remark 1 The left outer join (▷◁ in Line 86) is accomplished with a minor adjustment
to Morciano’s join algorithm.

Proposition 11 For a JAPE phase Pi, Algorithm 9 constructs a spanner Si in such a
way that for each binding label l in Pi, there is a corresponding capture variable in Si that
marks a region if that region is marked by l.

Proof. Consider Pi to be a phase in a sequence: {PT , PG}, P0, · · · , Pi−1, Pi, · · · , Pn where
PT and PG stand for the Tokenizer and the Gazetteer, respectively. At least one of {PT , PG}
must be executed before the user-provided program runs. In any phase four conditions need
to be met for a rule to fire:

92

1. There must be an ordering of the phase’s visible annotations in the annotation graph
consistent with the order in which those annotations are used on the left-hand side
of the rule.

2. If two visible annotations are considered adjacent by the rule, based on the phase’s
visible annotations, they might not be adjacent over input characters. For example, if
SpaceToken is invisible, two adjacent annotations might be separated by any number
of characters.

3. The constraints over annotations must match the annotations present in the graph.

4. The constraints over input characters (dynamic attribute expressions) must match
the input.

After these conditions are fulfilled, the corresponding annotations from the right-hand
side of the rule are appended to a section of the annotation graph that is bound to the
associated label. We reason that every rule in Pi is simulated by a spanner, generated by
Algorithm 9, which fulfills equivalent conditions to match the input.

Base cases: PT and PG are correctly converted to spanners ST and SG, respectively
(Proposition 10).

Inductive step: Assume that every phase before Pi is correctly converted to a spanner.
This implies that every span marked by a capture variable in any previous phase has a
binding label, consequently an associated annotation on the annotation graph with the
same offsets in the input text. Therefore the input to Si matches the input to Pi. For
every rule a regular expression with capture variables is created (Line 10) in such a way
that every annotation on the left side of the rule is represented by a variable that encloses
Σ∗. By construction, the ordering of visible annotations and corrsponding variables is
identical. An additional variable corresponding to each binding variable encloses those
variables to match the rule. If two variables are supposed to be adjacent in a phase where
the annotation graph is partially visible, they might not be adjacent over the complete
annotation graph. FILLER creates a regular expression that recognizes strings (possibly
some invalid strings too) that might show up between those variables. Therefore if two
annotations are considered adjacent in the annotation graph, their corresponding variables
after matching a string will not be separated by any unwanted substrings. By joining
the created spanner with the previously defined spanner (Line 86), we ensure that the
subexpressions enclosed by the variables match the constraints expressed in terms of regular
expressions in the earlier phases. It is important to note that if a constraint is defined on a
dynamic attribute expression, the corresponding regular expression language is constructed

93

and explicitly enclosed by an associated variable in Line 54. This ensures that the dynamic
attribute expression is properly represented and considered during the matching process.
The spanner that results meets the conditions of the proposition. □

Corollary 1 Given a JAPE program comprising n standard phases P0, · · ·Pn−1, a tok-
enizer PT , a gazetteer PG, and a relation generator PE with associated spanners generated
by Algorithm 9 as S0, · · ·Sn−1,SE, ST , and SG, SE extracts all spans extracted by PE.

Proof. The extracted regions marked by PE are associated with regions marked by SE

using extraction variables (Lines 6 and 68). Subsequently, SE are projected on cover and
extraction variables (Line 16). □

94

Algorithm 9 JAPE Phase to Spanner Algorithm.
Input: Phase Pi

Output: Spanner Si
Precondition: Tokenizer, gazetteer, and all preceding phases are transformed

1: Si ← ∅, V (Si)← ∅ ▷ define an empty spanner
2: rgxStr ← “”
3: for all R ∈ Pi do
4: L ← LHS(R) ▷ get expression on left-hand side of rule
5: if Pi is ordinary phase then
6: Va(E)← toV ar(getAnnots(R)) ∪ toV ar(getAttrExprs(R))
7: else
8: Ve(E)← toV ar(L.getBindingLabels()) ▷ relation generator phase
9: end if

▷ produce the string representation of the regex of the lefthand side
10: E ← transform(L)

▷ append E, with a valid disjunction symbol to the resulting string
11: rgxStr ← append(E, “ ∨ ”, rgxStr)
12: end for

▷ append Σ∗ with a valid concatenation symbol to beginning and end of rgxStr
13: rgxStr ← append(“Σ∗ • ”, rgxStr, “ • Σ∗”)
14: Si ← JtoRegExp(rgxStr)K
15: Si ← PushDown(Si)

▷ keep cover and addition or extraction variables of the current phase
16: Si ← π{Vc(Si)∪Va(Si)∪Ve(Si)}Si
17: return Si

18: procedure transform(L : String)
19: S ← ConstraintGroup(L)
20: S ← S.kpExpdV ars(getCoverV ar(S)) ▷ keep exposed cover variables
21: return S
22: end procedure

▷ cont. in the next page

95

Algorithm 9 JAPE Phase to Spanner Algorithm. cont.
23: procedure ConstraintGroup(cg : String)
24: rgxCGstr ← “”
25: Vc ← ∅ ▷ def. an empty set of cover variables
26: ptrnElms← getP tnElms(cg) ▷ split cg by highest level <bar>
27: for all pes ∈ PtnElms do
28: ps[1 · · ·n]← getP tnElms(pes) ▷ sep. consecutive pattern elements
29: rgxStr ← “”
30: for all p ∈ ps[1 · · ·n] do
31: tmpRgxStr ← PatternElement(p)
32: annots← Pi.getV isibleAnnots()
33: F ← toString(Filler(annots))
34: rgxStr ← append(rgxStr, “ • ”, F, “ • ”,VarConf(rgxStr, tmpRgxStr))
35: end for
36: Vc ← Vc ∪ {Wpes} ▷ def. a cover var.
37: rgxStr ← enclose(rgxStr, {Wpes}) ▷ enclose with cover var.
38: rgxStr ← append(rgxStr, “ ∨ ”, rgxCGstr)
39: end for
40: return rgxCGstr
41: end procedure

42: procedure PatternElement(bpe : String)
43: if IsBasicPatternElement(bpe) then
44: returnBasicPatternElement(bpe)
45: else
46: returnComplexPatternElement(bpe)
47: end if
48: end procedure ▷ cont. in the next page

96

Algorithm 9 JAPE Phase to Spanner Algorithm. cont.
49: procedure BasicPatternElement(bpe : String)
50: V ← ∅
51: Cs← getConstraints(bpe) ▷ split by < comma >
52: if Cs has dyn. attr. then ▷ e.g. {Token.string=="sample"}
53: dynCs← getDynAttr(CS)

▷ conjunction of corresponding regular expressions
54: rgxStr ← toRegexStr(dynCs)
55: else
56: rgxStr ← “Σ∗”
57: end if
58: V ′ ← getV ars(Cs)
59: rgxStr ← enclose(rgxStr, V ′)
60: Vr ← Vr ∪ V ′

61: return rgxStr
62: end procedure

63: procedure ComplexPatternElement(cpe : String)
64: CG← getCGroup(cpe)
65: rept← cpe.getRep() ▷ get corresponding repetition if exists 0 otherwise
66: labels← cpe.getBindingLables() ▷ get corresponding binding labels if exist
67: if phase is relation generator then
68: Vtmp ← getV ar(labels)
69: else ▷ an ordinary phase
70: Vtmp ← getV ar(getAnnots(labels)) ∪ getV ar(getAttrExprs(labels))
71: end if
72: rgxStr ← (ConstraintGroup(CG))
73: i← 1, exStr ← rgxStr
74: while i < rept do ▷ apply repetition
75: exStr ← append(exStr, “ • ”,VarConf(exStr, rgxStr))
76: i← i+ 1
77: end while
78: return enclose(VarConf(Vtmp, exStr), Vtmp)
79: end procedure

97

Algorithm 9 JAPE Phase to Spanner Algorithm. cont.
80: procedure PushDown(E : rgx)
81: B ← allComb(E) ▷ < v, va, spanner >
82: H ← ∅ ▷ define an empty spanner
83: for all β ∈ B do
84: G ← JEK
85: for all < v, va,S ′ >∈ β do ▷ v is refered by E; va is added by S ′

86: G ← G ▷◁ ρva→vπva(S ′) ▷ perform a left outer join
87: end for
88: H ← G ∪H
89: end for
90: return H
91: end procedure

92: procedure Filler(annots : set)
93: if {Token, spaceToken} ⊆ annots then
94: return ∅
95: end if
96: c← {Token, spaceToken} ∩ annots
97: if c ̸= ∅ then ▷ either Token or spaceToken is missing
98: tmp← {Token, spaceToken} \ c
99: v ← getV ar(tmp)
100: sp← V Table.getSp(v) ▷ get spanner having v
101: exps[]← sp.enclosedBy(v)
102: resultStr ← append(toString(exps []), ” ∨ ”)
103: rgx← toRegExp(resultStr)
104: ▷ only the expression accepting arbitrary number of missing initial annotation

can fill the gap
105: return rgx∗

106: else
107: return Σ∗ ▷ we do not know what can appear in between in terms of initial

annotations
108: end if
109: end procedure

98

Algorithm 9 JAPE Phase to Spanner Algorithm. cont.

110: procedure VarConf(rgxStr : String, tmpRgxStr : String)
111: if rgxStr represents a Regex then
112: CurrV ars← getV ars(rgxStr)
113: else
114: CurrV ars← rgxStr
115: end if
116: CurrV ars← getV ars(rgxStr)
117: tmpV ars← getV ars(tmpRgxStr)
118: if tempV ars ∩ CurrV ars ̸= ∅ then
119: tmpRgxStr, Cfs← renV ars(tmpRgxStr, tmpV ars ∩ CurrV ars)
120: end if
121: update(MTable, Cfs)
122: update(V Table, Cfs)
123: return tmpRgxStr
124: end procedure

125: procedure AllComb(e : Regex)
126: i← 1
127: for all vr ∈ e.Vr do ▷ for every variable that is used in e
128: li ← newList[< var, var, spanner >]()
129: vrc ← V Table.getCanonicalLabel(vr)
130: for all r ∈ V Table do ▷ for all records
131: if r.var == vrc ∧ r.var ∈ Va then
132: li.add(< vr, r.var, r.spanner >)
133: end if
134: end for
135: i← i+ 1
136: end for
137: return l1 × l2 · · · × li ▷ returns all combinations as a list of lists
138: end procedure

Example

We present a Core JAPE program and outline the essential steps involved in converting
the program into spanners. The simplistic program extracts instances of forenames, middle

99

names, and last names from the input text using a simple tokenizer, a JAPE phase, and
a relation generator. Figure 4.7 is the resulting relation if the extractor is applied to
Two notable musicians from Germany are Johann Sebastian Bach and Till Lindemann who

FN MN LN
Johann Sebastian Bach

Till null Lindemann

Figure 4.7: extracted records for the sample text.

For simplicity, we consider a tokenizer with only two rules that add only one type of
annotation to the graph, i.e., Token.

Tokenizer
Rule: R3

γbW (γu(γl)
∗) : TγaW --> T.Token={orth=upperInitial,kind=word}

Rule: rule2
γbW (γl(γl)

∗) : TγaW --> T.Token={orth=lowercase,kind=word}

Phase: tag_names
Input: Token
Options: control = appelt
Rule: Name1
{Token.orth = lowercase}(({Token.orth = upperInitial}):fname

({Token.orth = upperInitial}):lname){Token.orth = lowercase}
--> :fname.Fname = {rule="Name1"}, :lname.Lname = {rule="Name1"}

Rule: Name2
{Token.orth = lowercase}(({Token.orth = upperInitial}):fname

({Token.orth = upperInitial}):mname ({Token.orth = upperInitial}):lname)
{Token.orth = lowercase}
--> :fname.Fname = {rule="Name2"},mname.Mname={rule=Name2},
:lname.Lname = {rule="Name2"}

Phase: extract_names
Input: Fname Mname Lname
Options: control = appelt
Rule: Two-part-Name
({Fname.rule="Name1"}):FN ({Lname}):LN --> makeRow("FN","LN")
Rule: Three-part-Name
({Fname.rule="Name2"}):FN ({Mname}):MN ({Lname}):LN--> makeRow("FN", "MN","LN")

100

The spanner representing the tokenizer is:

ST = Σ∗(γbWV1V2V3{{{γu(γl)∗}}}γaW ∪ γbWV1V3V4{{{γl(γl)∗}}}γaW)Σ∗

where V = {V1, V2, V3, V4}. Table 4.4 shows the variables that are created while converting
the tokenizer to ST .

Table 4.4: Available Variables created for ST .

Variable Annot./Attr. Var. Type
V1 Token addition
V2 Token.orth = upperInitial addition
V3 Token.kind = word addition
V4 Token.orth = lowercase addition

Next, we convert the JAPE phase to a spanner. The initial spanner created for the
phase tag_names and before pushdown is:

S ′
tn = SName1 ∪ SName2

where SName1 and SName2 are spanners created for rules Name1 and Name2 respectively5:

SName1 =Σ∗V7{V4{Σ∗}V5V51{{V2{Σ∗}}}V6V61{{V ′
2{Σ∗}}}V ′

4{Σ∗}}Σ∗

SName2 =Σ∗V9{V4{Σ∗}V5V52{{V2{Σ∗}}}V8V82{{V ′′
2 {Σ∗}}}V6V62{{V ′′′

2 {Σ∗}}}V ′′
4 {Σ∗}}Σ∗

After pushdown we end up with the following spanner:

Stn =πV

(
S ′
tn ▷◁ πV2ST ▷◁ πV4ST ▷◁ (ρV2→V ′

2
πV2ST) ▷◁ (ρV4→V ′

4
πV4ST)

▷◁ (ρV2→V ′′
2
πV2ST) ▷◁ (ρV2→V ′′′

2
πV2ST) ▷◁ (ρV4→V ′′

4
πV4ST)

)
where V = {V5, V51, V52, V6, V61, V62, V7, V8, V82, V9}. Note that, in our simplified approach,
the phase policy is not applied to the spanner representation. As a result, the correspond-
ing spanner represents each phase under the assumption that all phase rules have the
opportunity to fire and mark the input text.

Table 4.5 shows the variables that are available or created when converting tag_names.
Next, the relation generator phase is converted to its spanner representation. The initial

5We use color coding to differentiate variable types: red for cover variables, gray for variables with alias
names, and black for all other variables.

101

Table 4.5: Available variables while/after creating S ′
tn.

Variable Annot./Attr. Var.Type Rule Alias? Canon.Name Origin Phase
V1 Token addition −−− no −−− Tokenizer
V2 Token.orth = upperInitial addition −−− no −−− Tokenizer
V3 Token.kind = word addition −−− no −−− Tokenizer
V4 Token.orth = lowercase addition −−− no −−− Tokenizer
V5 Fname addition −−− no −−− tag-names
V51 Fname.rule = ”Name1” addition −−− no −−− tag-names
V52 Fname.rule = ”Name2” addition −−− no −−− tag-names
V6 Lname addition −−− no −−− tag-names
V61 Fname.rule = ”Name1” addition −−− no −−− tag-names
V62 Fname.rule = ”Name2” addition −−− no −−− tag-names
V8 Mname addition −−− no −−− tag-names
V82 Mname.rule = ”Name2” addition −−− no −−− tag-names
V2 −−− reference −−− no −−− tag-names
V4 −−− reference −−− no −−− tag-names
V ′
2 −−− reference −−− yes V2 tag-names

V ′′
2 −−− reference −−− yes V2 tag-names

V ′′′
2 −−− reference −−− yes V2 tag-names
V ′
4 −−− reference −−− yes V4 tag-names

V ′′
4 −−− reference −−− yes V4 tag-names
V7 −−− cover Name1 no −−− tag-names
V9 −−− cover Name2 no −−− tag-names

spanner for the relation generator before pushdown is:

S ′
en = S2P ∪ S3P

where

S2P =Σ∗V10{FN{Σ∗V51{Σ∗}Σ∗}LN{Σ∗V6{Σ∗}Σ∗}}Σ∗

S3P =Σ∗V11{FN{Σ∗V52{Σ∗}Σ∗}MN{Σ∗V8{Σ∗}Σ∗}LN{Σ∗V6{Σ∗}Σ∗}}Σ∗

After pushdown the final spanner is:

Sen = πV

(
S ′
en ▷◁ πV51Stn ▷◁ πV6Stn ▷◁ πV8Stn ▷◁ πV52Stn

)
where V = {FN,MN,LN, V10, V11}. The final set of variables are listed in Table 4.6.

102

Table 4.6: Available variables while/after creating S ′
en.

Variable Annot./Attr./BLabel Var.Type Rule Alias? Canon.Name Origin Phase
V1 Token addition −−− no −−− Tokenizer
V2 Token.orth = upperInitial addition −−− no −−− Tokenizer
V3 Token.kind = word addition −−− no −−− Tokenizer
V4 Token.orth = lowercase addition −−− no −−− Tokenizer
V5 Fname addition −−− no −−− tag-names
V51 Fname.rule = ”Name1” addition −−− no −−− tag-names
V52 Fname.rule = ”Name2” addition −−− no −−− tag-names
V6 Lname addition −−− no −−− tag-names
V61 Fname.rule = ”Name1” addition −−− no −−− tag-names
V62 Fname.rule = ”Name2” addition −−− no −−− tag-names
V8 Mname addition −−− no −−− tag-names
V82 Mname.rule = ”Name2” addition −−− no −−− tag-names
V7 −−− cover Name1 no −−− tag-names
V9 −−− cover Name2 no −−− tag-names
V51 −−− reference −−− no −−− extract-names
V6 −−− reference −−− no −−− extract-names
V52 −−− reference −−− no −−− extract-names
V8 −−− reference −−− no −−− extract-names
FN FN extraction −−− no −−− extract-names
MN MN extraction −−− no −−− extract-names
LN LN extraction −−− no −−− extract-names
V10 −−− cover Two-part-Name no −−− extract-names
V11 −−− cover Three-part-Name no −−− extract-names

4.3 Characterization of Stable Information Extraction
Programs

In this section, we define stable information extraction programs. We show that if an
information extraction program is stable, we can alter the document in such a way that
the synthetic version of an extracted table can be extracted directly from the altered text
using the same extraction program. We propose a verifier that tests sufficient conditions
on core JAPE programs to determine whether the program is stable.

4.3.1 Extracted View Update Model

In addition to the extracted span relation we assume that an extracted string relation is
produced and is available for update. An extracted string relation contains string values
associated with cells in the extracted span relation . In the string relation, R, we denote
the domain of the ith attribute Ai by Wi. Our update model enables the replacement of
a cell’s value with another valid value from the domain associated with its corresponding

103

attribute in the extracted string relation. Therefore, we define the update function as
follows. Let F be an indexed set of domain preserving functions so that F = {fi|fi : Wi →
Wi} where i ∈ [1 . . . T] and Wi is the domain for attribute Ai. If r = ⟨v1, . . . , vT ⟩ is a
record in R, we denote the corresponding record in which the jth attribute is modified as
F (r, j) = ⟨v′1, . . . , v′T ⟩, where

v′k =

{
fk(vk) if k = j,

vk otherwise.

In our update model, it is possible to update a whole record by repeatedly updating its
cells. Therefore, we extend this notation to let F (r) = ⟨f1(v1), . . . , fT (vT)⟩.

4.3.2 Update Translation Mechanism

In order to ensure consistency between an extracted view and the source document, it is
essential to have a mechanism for translating updates made to the view back to the source
document, similar to relational databases. In this work, we propose a straightforward and
intuitive translation mechanism: we replace the old value corresponding to the modified
cell with the new value in the document.

Let X be a strict and computable extractor (as defined in Chapter 1), D be a document,
Aj be an extracted attribute with value vj, and [aj, bj⟩ denote a span in D from which vj
of record r is extracted. We define gr(D, j) to be the result of substituting fj(vj) for vj in
the span identified by [aj, bj⟩. Formally, gr(D, j) = D[1,aj+1⟩ • fj(vj) •D[bj ,|D|+1⟩.

4.3.3 Stable Extractors

Definition 17 An information extraction algorithm X is stable if for any document D,
∀j ∈ [1 . . . T], and ∀r ∈ R we have

X (D) = R =⇒ X (gr(D, j)) = {r′|r′ ∈ R ∧ r′ ̸= r} ∪ F (r, j)

where R is the extracted string relation.

Thus, with a stable extractor, changing a value in the appropriate position in a docu-
ment affects only the expected cell in the extracted table. Our extraction process operates
on a document-at-a-time basis, guaranteeing that other records extracted from other doc-
uments are not affected due to the update to an individual cell. Therefore, we focus on

104

studying possible effects on the records extracted from the source document corresponding
to an updated cell.

Theorem 4 Consider a stable extractor X , any indexed set of domain preserving functions
F = {fi|fi : Wi → Wi, where i ∈ [1 . . . T]}, and any document D. For all j ∈ [1 . . . T] and
r ∈ R, substituting fj(vj) for vj in [aj, bj⟩ produces DP

F in such a way that F (X (D)) =
X (DP

F).

Proof. X is strict, therefore all vj in r occur in D. Being a computable extractor, [aj, bj⟩
is known for every vj in r. So the locations of all spans in D that need to be modified
is accessible to the procedure. Finally, X is stable, so any substitutions corresponding to
each attribute vj affect only the jth attribute in r. □

If the extractor is stable, then the program outputs a string relation that allows us to
translate updates made to the extracted relation back to the source documents.

4.3.4 Verification

Given a JAPE program and a collection of domain preserving functions, the verifica-
tion process determines whether the JAPE program satisfies the proposed properties, i.e.,
whether the extractor is stable. As was true for the previous chapter, our verification
process studies sufficient conditions for a stable extractor.

When updating a cell’s value in the extracted view, we replace the old value with the
new value in the corresponding position of the source document. We expect the previously
extracted view to remain the same after re-extraction, except for the updated cell which
should contain the new value. Hence, if modifying an individual cell results in changes in
the values of other cells (either within the record associated with the updated cell or other
records) when the extractor is re-executed, it indicates that the extractor lacks stability.

An extractor may not be stable for any of four reasons. First, instability may arise when
the extraction program itself is inherently unpredictable, resulting in random outcomes.
Second, if the new value does not fall within the domain defined by the extractor for the
associated attribute, instability can occur. Third, instability may arise when the updated
region overlaps with other extracted or marked regions or when the updated region overlaps
with its own or other marked regions’ context.

In the remainder of this section, we thoroughly examine each of these reasons and
express them as conditions within a Core JAPE program. Additionally, we develop a

105

diagnostic tool capable of analyzing an extraction program to verify its stability. We
denote the input Core JAPE program by P , its spanner representation by S, the relation
generator phase by PE and its spanner representation by SE, the binding label of PE

corresponding to the updated cell by Lj, and its corresponding variable in SE by Vj.

Deterministic JAPE program

Definition 18 A JAPE phase P is deterministic if for any arbitrary input document
annotated regions by P stay unchanged across all possible correct implementations of a
JAPE processor engine.

Example 4.3.1

Consider the following JAPE phase:

Phase: phase1
Input: Token
Options: control = appelt
Rule: R1
(({Token.string == "thing"}):f{Token}|

{Token.string == "thing"}({Token}):s) -> :f.F={rule=R1},:s.S={rule=R1}

This phase is not deterministic. If R1 matches a region of the input text there are al-
ways two possible annotations, one of which will be selected based on a factor that is
implementation dependent.

Definition 19 A JAPE program is deterministic if all of its phases are deterministic.

A JAPE phase with either All or Brill policy is deterministic since there is no need
for arbitrary choosing an alternative match. For simplicity we consider JAPE phases
which deal with ambiguity based on explicit priority declarations or order of rules not
deterministic.

To study whether a JAPE phase, with policies other than All or Brill, is deterministic
we generalize ambig(g, Z) constructed in the proof of Theorem 1 in Chapter 3. Given

106

a spanner specified by S representing a JAPE phase, symbols X /∈ V (S), Y /∈ V (S),
Z ∈ Va(S) ∪ Ve(S), and Wi,Wj ∈ Vc(S) we create the spanner:

ambig(S,Z,Wi,Wj) = π{W,X}(ρZ→X,Wi→W (S)) ▷◁ JΓ(X ̸=Y)K ▷◁ π{W,Y }(ρZ→Y,Wj→W (S))

where Γ(X ̸=Y) is the disjunction of the first 12 basic relationships in Table 3.1; that is, spans
in S(D) could include two rows that match on cover variables but do not match on Z.

Proposition 12 If for all Z ∈ Va(S)∪Ve(S) and for all Wi,Wj ∈ Vc(S), ambig(S,Z,Wi,Wj) =
∅ ∨ π{Wi}ambig(S,Z,Wi,Wj) = ∅6, then S represents a deterministic JAPE phase.

Proof. Similar to the proof of Theorem 1 in Section 3.1.7. □

Domain Consistency

The view update function replaces the value in a particular cell with another value chosen
from the domain of its associated attribute. Generally, the set of possible values for an
extracted binding label implicitly is defined by the extraction program. We require that,
for each domain-preserving function in F , the domain of fj is a subset of the domain
formed by the rule constraints associated with the binding variable Lj in PE. Specifically,
in a JAPE rule a ConstraintsGroup of a ComplexPatternElements is bound to Lj which
determines the possible values for Lj. However, we might have multiple instances of such
ConstraintsGroup in PE, since multiple rules in PE might output the same label. We require
that all instances of ConstraintsGroups specify the same set of possible values or simply
define the same domain, so that changing the value cannot affect which rule is matched.
By representing a JAPE program as a spanner, we express ConstraintsGroup using regular
expressions over input characters. In other words, all regular languages that are designated
as Lj must be identical. Algorithm 10 determines whether ConstraintsGroups associated
with Lj all specify an identical domain.

Non-Conflicting Extractor

We need to find whether re-running a JAPE program over updated document, gr(D, j),
for all j ∈ [1, . . . , T], extracts correctly modified records. Unwanted side-effects include
extracting an unexpected value for the updated cell and extracting a modified value for

6Testing instead for π{Wj}ambig(S,Z,Wi,Wj) = ∅ is equally valid.

107

Algorithm 10 Algorithm for Domain Consistency Test.
Input: Relation generator PE

Output: Boolean
Precondition: P is deterministic

1: JSEK← toSpanner(PE) ▷ use Algorithm 9
2: for all Vj ∈ Ve(JSEK) do
3: JS ′K← πVj

JSEK
4: rgxL← emptyList()
5: for all p ∈ Π(S ′) do ▷ see Section 4.2.1
6: rgxL.add(getEnclosedRegEx(p, Vj)) ▷ retrieve regular expression enclosed by

Vj in p
7: end for
8: for all r ∈ rgxL do
9: for all r′ ∈ rgxL do

10: if r \ r′ ̸= ∅ then
11: return False
12: end if
13: end for
14: end for
15: end for
16: return True

108

any other cell in the extracted relation including gaining or losing rows in the table. The
reason that such side-effects might occur is overlaps between extracted spans of the input
text with other determining pieces of the text. In this section, we categorize the problematic
overlaps and propose a mechanism to verify a sufficient condition for a given JAPE program
to be conflict-free.

Assume the entire program has been converted to its spanner representation. Given a
JAPE program, let PE represent the relation generator phase and SE represent its equiv-
alent spanner. The final spanner SE has various categories of variables:

1. The set of variables associated with extracted labels, denoted by Ve(SE). In the
example on page 99, Ve(SE) = {FN,MN,LN}.

2. For each column Cj in the extracted relation and its corresponding variable in SE,
Vj, the set of all cover variables for rules that extract Cj, denoted by Vc(SE, Vj). In
the example on page 99, Vc(SE,MN) = {V11}. Note that in spanner SE each cover
variable in Vc(SE, Vj) encloses one Vj.

3. The set of cover variables that are created to mark the cover of rules in the extraction
phase PE denoted by Vc(SE) = {Vc(SE, Vj)|Vj ∈ Ve(SE)}; In the example on page 99,
Vc(SE) = {V10, V11}.

4. The set of all cover and extraction variables that are created for PE when transforming
PE to SE, denoted by V (SE) = Vc(SE)∪Ve(SE); In the example on page 99, V (SE) =
{FN,MN,LN, V10, V11}.

Two classes of conflicts are defined based on the column that is affected by them.

Local Conflicts: Local conflicts occur when, within a given column, Cj, of the ex-
tracted relation, there are two distinct cells, c and c′, in which the spans associated with
their values overlap but are not equal, are equal, or are disjoint but c overlaps the cover of
a rule in PE that is marked c′.

We construct three spanners to examine whether a deterministic and domain consistent
JAPE program might have local conflicts. For all three spanners we first remove records
that have null for Vj:

S̄ = πVj
SE ▷◁ SE

109

Case I

Sometimes an extracted cell shares some data in the underlying document with another
cell from the same column. Consider the following very simple relation generator with two
rules that aim to extract names that comprise two or three words.

Example 4.3.2

Phase: RelationGenerator
Input: Token
Options: control = Brill
Rule: Two-Part
({Token.orth = upperInitial}{Token.orth = upperInitial}):name -> makeRow("name")
Rule: Three-Part
({Token.orth = upperInitial}{Token.orth = upperInitial}

{Token.orth = upperInitial}):name -> makeRow("name")

Running the extractor over Ken Michael Johnson conducted the research study. results in
a relation with overlapping spans in the column name.

Given an extraction variable Vj, we construct CaseI(SE, Vj):

CaseI(SE, Vj) = πX(ρVj→X S̄) ▷◁ JΓ(X � Y)K ▷◁ πY (ρVj→Y S̄)

where Γ(X�Y) is the disjunction of the fifth through the twelfth basic relationships in Ta-
ble 3.1.

Lemma 9 Given a deteministic JAPE program with consistent domain and Vj ∈ Ve(SE)
if CaseI(SE, Vj) = ∅ then spans extracted as Vj are non-overlapping unless they are equal.

Proof. Similar to the proof of Theorem 1 in Section 3.1.7. □

110

Case II A value might appear in more that one record as Vj. Consider the following
example:

Example 4.3.3

Phase: RelationGenerator
Input: Token
Options: control = Brill
Rule: Two-Part
({Token.orth = upperInitial}{Token.orth = upperInitial}):name -> makeRow("name")
Rule: name-lastname
({Token.orth = upperInitial}{Token.orth = upperInitial}):name

({Token.orth = upperInitial}):lastname -> makeRow("name","lastname")

Running the extractor over Ken Michael Johnson conducted the research study. results in
a relation with two rows in which Ken Michael shows up in the column name, once with
null and once with Johnson under lastname. We construct the following spanners to detect
similar situations:

CaseII(SE, Vj, Z) = πX,Vj
(ρZ→X S̄) ▷◁ JΓ(X ̸= Y)K ▷◁ πY,Vj

(ρZ→Y S̄)

C∅(SE, Vj, Z) = πX,Vj
(ρZ→X S̄) ▷◁ πY,Vj

(ρZ→Y S̄)

where Γ(X ̸=Y) is the disjunction of the first 12 basic relationships and Z ∈ V (SE) \ Vj.

Lemma 10 Given a deteministic JAPE program with consistent domain and Vj ∈ Ve(SE)
if ∀Z ∈ V (SE) \ Vj CaseII(SE, Vj, Z) = ∅ and

(
πXC

∅(SE, Vj, Z) ▷◁C
∅(SE, Vj, Z)

)
=(

πYC
∅(SE, Vj, Z) ▷◁C

∅(SE, Vj, Z)
)

then there exist no two distinct rows of the extracted
relation in which the spans associated with values extracted as Vj are identical.

Proof. Similar to the proof of Theorem 1 in Section 3.1.7. □

Case III

An extracted value as Vj might have problematic overlap with its own cover or the cover
of other values extracted as Vj. Consider the following program with two phases that aims
to extract items similar to Q1 of the blog corpus (Table 3.2):

111

Example 4.3.4

Phase: action-movie
Input: Token
Options: control = All
Rule: tag-action
({Token.string = "see"}|{Token.string = "See"}|{Token.string = "watch"}|

{Token.string = "Watch"}):action -> :action.Action={}
Rule: tag-movie
{Token.string="}({Token.orth = upperInitial}|({Token.orth = upperInitial}

{Token.orth = upperInitial})):movie {Token.string="} -> :movie.Movie={}

Phase: RelationGenerator
Input: Action Movie
Options: control = All
Rule: movie-review
({Action}):ac({Movie}):mv -> makeRow("ac","mv")

Running the extractor on I might see "The Watch" and "Inception" today!! the span for
Watch is marked as ac in one record and overlaps with the cover of the span for see marked
as ac in a different record. Let S ′ represent a span relation in which each row corresponds
to two firings of the rules extracting disjoint spans as Vj:

S ′ = (ρVj→XπVj
S̄) ▷◁ JΓ(X dis Y)K ▷◁(ρVj→Y S̄)

where Γ(X dis Y) is the disjunction of the first four basic relationships in Table 3.13.1. The
following spanner finds any overlap such as the one in Example 4.3.4:

CaseIII(SE, Vj, Q) = πXS
′ ▷◁ JΓ(X ⋔ Y)K ▷◁(ρQ→Y (ρY→WS ′)).

Γ(X ⋔ Y) is the disjunction of the fifth through thirteenth basic relationships in Table 3.13.1
and Q ∈ Vc(SE, Vj).

Lemma 11 For a given deterministic and domain consistent JAPE program, if ∀Q ∈
Vc(SE, Vj), CaseIII(SE, Vj, Q) = ∅, then there is no problematic overlap between the spans
extracted as Vj and covers associated with Vj.

112

Proof. Similar to the proof of Theorem 1 in Section 3.1.7. □

Corollary 2 An input JAPE program is free of the local conflicts if ∀Vj ∈ Ve(SE), ∀Z ∈
V (SE)\Vj, and ∀Q ∈ Vc(SE, Vj) CaseI(SE, Vj) = CaseII(SE, Vj, Z) = CaseIII(SE, Vj, Q) =
∅ and

(
πXC

∅(SE, Vj, Z) ▷◁C
∅(SE, Vj, Z)

)
=

(
πYC

∅(SE, Vj, Z) ▷◁C
∅(SE, Vj, Z)

)
.

Proof. The proof can be derived according to Lemmas 9, 10, and 11. □

Global Conflicts: Global conflicts occur when the value of a cell, c, in the extracted
relation overlaps or is equal to the underlying text that is consumed by a rule in PE except
for the rules that mark the column associated with c.

We construct the following spanner:

conflict(SE, Vj, V) = πX(ρVj→X S̄) ▷◁ JΓ(X ⋔ Y)K ▷◁ πY (ρV→Y S̄)

where V ∈ Vc(SE) \ Vc(SE, Vj) and S̄ is the same as defined for the local conflicts.

Lemma 12 If ∀V ∈ Vc(SE) \ Vc(SE, Vj), conflict(SE, Vj, V) = ∅ then the input program
does not have any global conflicts w.r.t Vj.

Proof. Similar to the proof of Theorem 1 in Section 3.1.7. □

Corollary 3 A JAPE program is global conflict-free if ∀Vj ∈ Ve(SE) and ∀V ∈ Vc(SE) \
Vc(SE, Vj), conflict(SE, Vj, V) = ∅.

Proof. The proof can be derived according to Lemma 12. □

Theorem 5 If a deterministic JAPE program P with a consistent domain is free of local
and global conflicts, then P is stable.

Proof. The proof is by contradiction. Assume that the value of a cell, c, within column
Cj and row r is updated from v to v′ and the source document is updated accordingly. Let
R denote the rule responsible for extracting v. Assume that P is not stable. If we execute
the extraction program over gr(D, j) two cases might occur:

113

1. r has changed in an unexpected manner. Unexpected effects might be one or more
of the following possibilities:

I) At least one cell other than c, say c′, has changed in r. This implies that update
to c has modified the context or value of c′ both of which are in the cover of Cj. But
P is free of local conflicts (CaseIII). This case is not possible.

II) c has a value other than v′. Since v′ has the same domain as v and P has a
consistent domain, the match associated with r before the update needs to match
after the update. This case is not possible.

III) r has disappeared. Possibilities are: 1) The cover of R does not match the
region when v′ is in place of v, but as in Case 1.II, having a consistent domain makes
this impossible. 2) some other match takes precedence. Since P is deterministic
it must have been the policy causing this, but the priority of the match could not
have changed after the update. Because the update stays in the domain, P has a
consistent domain, and P is free of local and global conflicts, the update could not
have changed the extent of other matches in D.

2. A row other than r, say r′, has changed after the update. There are three possibilities:

(a) r′ is a new row that has appeared as a result of the update. There are two
possible causes:
I) The match corresponding to r′ existed in D but was ignored. As for Case 1.III.2
the priority of matches cannot have changed, so this is impossible.
II) The value of one or more extracted cells in r′ or the underlying value of the
cells’ covers essential in forming the match of r′ did not form a match in D
but does form one in gr(D, j). Because the extractor is free of local and global
conflicts v′ could not have modified the values of those underlying values, thus
this scenario is not possible.

(b) r′ is a row that has disappeared due to the update:
I) The match corresponding to r′ exists in gr(D, j) but is ignored. A similar
argument to Case 1.III.2 can be made to discard this case. II) The value of one
or more extracted cells in r′, the underlying value of the cells’ covers, essential in
forming a match of r′ did form a match in D but does not form one in gr(D, j).
A similar argument to Case 2a.II can be made to rule out this possibility.

(c) r′ is a row that has at least one extracted value changed due to the update.
Because the extractor is free of local and global conflicts v′ could not have
modified the extracted values.

114

□

The complete verification process including JAPE to Spanner conversion is shown in
Algorithm 11 and Figure 4.8.

Figure 4.8: The proposed verification process for updatable extracted views is realized
through four distinct tests on the extractor’s spanner representation.

4.4 Implementation Details

We developed a verification system, named U2V (Update-to-View), mainly to ensure the
correctness of the proposed algorithms. Our validation process involves two key factors: I)
annotated regions: For each input document, the set of annotated regions within the input
text must be a subset of the regions annotated by the corresponding spanner representa-
tions; II) stability: the verifier must identify all unstable programs as unstable.

U2V comprises three main components:

• Convertor: The convertor converts an input program, written in Core JAPE, into its
spanner representation. Each program consists of multiple files, including a tokenizer,
gazetteer’s files, and a file containing user-defined phases. The convertor generates an

115

Algorithm 11 Algorithm to determine Updatablity of extracted view
Input: Core JAPE Program [P1, · · · , Pn], Tokenizer T , Gazetteer G, relation gen. PE

Output: Boolean
Precondition: JAPE program is deterministic with consistent domain

1: SG ← GzToSpn(G) ▷ convert gazetteer to spanner (Alg. 8)
2: ST ← TkrToSpn(T) ▷ convert tokenizer to spanner (Alg. 8)
3: S ← list()
4: for all Pi ∈ [P1, · · · , Pn] do
5: S.append(phToSpn(Pi, S, SG, ST)) ▷ convert phase to spanner (Alg. 9)
6: end for
7: SE ← relGenToSpn(PE, S, SG, ST) ▷ convert relation gen to spanner (Alg. 9)
8: for all Vj ∈ Ve(SE) do
9: if CaseI(SE, Vj) ̸= ∅ then

10: return False
11: end if
12: for all Z ∈ V (SE) \ Vj do
13: if CaseII(SE, Vj, Z) ̸= ∅ then
14: return False
15: end if
16: if

(
πXC

∅(SE, Vj, Z) ▷◁C
∅(SE, Vj, Z)

)
̸=

17:
(
πYC

∅(SE, Vj, Z) ▷◁C
∅(SE, Vj, Z)

)
then

18: return False
19: end if
20: end for
21: for all Q ∈ Vc(SE, Vj) do
22: if CaseIII(SE, Vj, Q) ̸= ∅ then
23: return False
24: end if
25: end for
26: end for ▷ free of local conflict
27: for all Vj ∈ Ve(SE) do
28: for all V ∈ Vc(SE) \ Vc(SE, Vj) do
29: if conflict(SE, Vj, V) ̸= ∅ then
30: return False
31: end if
32: end for
33: end for ▷ free of global conflict
34: return True ▷ program is updatable

116

individual spanner for each phase, tokenizer, and gazetteer, as well as one spanner for
the entire program. Furthermore, the convertor is responsible for creating, updating,
and persisting the global tables, i.e. MTable and VTable.

• Operation Engine: The operation engine performs all spanner algebraic operators
used by the convertor and verifier. The implementation is based on Marciano’s
engine [72] engine. Because that engine supports operators on functional spanners,
and our task involves partially functional spanners, we have added an additional layer
on top to make the necessary adjustments.

• Verifier Engine: The verifier determines the stability of the input JAPE program
through four tests (Section 4.3.4). For each test the verifier relies on relational oper-
ators provided by the operation engine as well as spanner representations provided
by the convertor.

4.4.1 Platform

The verifier is a single-threaded program written in Scala 2.11.2 together with Java SE
11. All experiments are performed on an AMD EPYC 7502P 32-Core Processor under
Ubuntu 20.04.1 LTS (Focal Fossa). The source code, all performance details, and data can
be found in the project’s Git repository.7

7https://git.uwaterloo.ca/bkassaie/updatableviews

117

Chapter 5

Conclusions and Future Work

5.1 Summary

We have introduced two enhancements to extraction systems: 1) extracted relations should
be considered as materialized views over documents; 2) updating source documents and ex-
tracted views should be viewed as an integral part of any extraction system (see Figure 1.3).
Within this context, we have tackled two research challenges.

1. Efficiently maintaining materialized extracted views (Chapter 3):

Given a program defined as a document spanner and an update specification, we
determine sufficient conditions for autonomously re-computing which spans of an
updated document are extracted. In particular, we propose three sufficient conditions
for shiftability of updates with respect to an extraction program, namely, durability,
independence, and respect for alphabets. We prove that we require time and space
that are polynomial in the size of the extraction program and the update specification
to perform the five required tests (Figure 3.6) to determine that the revised extracted
relation can be computed autonomously.

The sufficient conditions introduced for this problem cover intuitive and natural cases.
For instance, durability is likely a practical condition, but there could be an update
that modifies its own context and can be proven to be shiftable.

We also designed some practical extractors and conducted experiments on two real-
world datasets to conclude that the runtime overhead imposed by our verification is
small in practice when compared to re-evaluating extractors, even if the re-evaluation

118

is performed incrementally. Furthermore, because it uses static analysis, verification
is independent of database size.

2. Translating updates to extracted views into updates to documents (Chapter 4):

We propose a conversion mechanism that constructs a spanner representation for a
given program, written in a significant subset of the JAPE language. We characterize
extraction algorithms that are resilient to changes in their source documents intended
to reflect predetermined changes to the extracted table, i.e., stable extractors. We
further propose a straightforward algorithm that modifies the input document con-
sidering the stable extractor and a set of domain preserving functions. The modified
document can be fed into the extractor to produce the expected updated table. More-
over, we propose a verification process to ensure the stability of programs written
in the JAPE language. The verifier first converts the input JAPE program into its
spanner representation and then tests four sufficient conditions (Figure 4.8). The
sufficient conditions are most likely to hold in practice. However, a key limitation of
our method is that we have not incorporated phase policies into the spanner repre-
sentation. This could lead to the misclassification of numerous stable extractors as
unstable.

5.2 Implications and Impacts

The problems addressed in this thesis can be formulated for alternative extraction settings
such as those based on other declarative or imperative languages such as Datalog or JAVA,
or based on machine learning models. The approach we have taken involves understanding
and analyzing the extractors. Having tried ideas in two separate extraction frameworks,
we believe that similar mechanisms can be adopted to other extraction systems based on
regular languages and their extensions. However, devising a similar approach to other
settings requires a level of understanding of the extraction mechanisms. For example,
if an extractor is expressed as a deep learning model, research questions such as “what
information can be gained from the model to perform similar static analyses?” or “can we
use some information from the training step to build another model capable of deciding
whether we need to re-extract after an update to the source documents?” might arise.

One crucial aspect of Core AQL queries that enabled our approach is the composability
of Core AQL programs. Specifically, shiftability with respect to a given update can be
inherited from basic queries expressed as regular expressions to complex queries. We believe
that this property could prove valuable in devising solutions for other settings as well. By

119

leveraging composability, complex extraction mechanisms can be broken down into smaller
pieces and their outcomes can be propagated to the whole system.

Additionally, our work makes a significant contribution by explicitly establishing the
connection between updates in the information extraction setting and view update and
view maintenance in the relational setting. We firmly believe that this connection will lead
to the formulation and resolution of numerous intriguing problems, ultimately having a
meaningful impact on text processing and understanding. For example, text summariza-
tion, text translation, image captioning and other applications of NLP may also be able
to benefit from treating the output as materialized views. By bridging these two domains,
we open up new avenues for research and development, fostering advancements that can
revolutionize how we handle and interpret textual data.

5.3 Future Work

For the extracted view maintenance problem, we have established some sufficient conditions
for updates to be shiftable with regard to extractors expressed in Core AQL, but we
have not yet investigated whether there are necessary conditions nor whether there are
additional sufficient conditions that would be especially useful in practice. For example,
we have already seen that if the string in an extracted span is replaced by a string of the
same length and it is also extractable, the update is not only shiftable, but also irrelevant.
Furthermore, we have not yet investigated other autonomously computable conditions,
such as those that might result in span modifications or insertions of extracted tuples.
AQL is a broad language with many more operators and features beyond what is covered
in this work.

Our model for document updates is also quite limited. First of all, only one variable is
used to identify spans that can be updated, even though correlated updates might require
multiple related variables to update. Secondly, the substitute value is limited to being
constructed based on the substring matched by the update variable, whereas real world
applications might need to use various values based on some factors, such as the relative
position of the update, some associated string values, or the contexts of matched spans.
Thirdly, for each document, all intended spans are updated once and simultaneously, a
fundamental assumption that can be violated in practical situations. Loosening any of
these restrictions creates new research challenges for verifying shiftability or other update
properties.

In this work, we assume that specific constraints on documents are unspecified. How-
ever, a document may be required to conform to a schema involving elements such as title

120

and abstract. Given an extractor expressed as a regex, E, and a document update, g
expressed in GS(Σ, V, x), if the document constraints are provided as a regular expression
RD (i.e., D ∈ L(RD) ⊂ Σ∗), our view maintenance algorithms and results remain valid
even if we substitute E and g with E ▷◁RD and g ▷◁RD, respectively, throughout.

For updatable extracted views, we have made some simplifying assumptions in our
work, each of which can be modified or eliminated to expand the class of programs deemed
to be stable. For example, we have assumed independence between extracted attributes,
thus requiring that at most one extracted value can be affected by each change in the
source document. What if instead we are given constraints among the attributes, such as
A2 and A5 must be identical or must have (computably) dependent values? We have also
assumed that each table attribute can be given a value from a single span in the input
document. What if several words or phrases from multiple places can be combined to
create an extracted value? Loosening our simplifying assumptions might result in being
able to verify more useful extractors.

We have presented a property verification process applicable to programs expressed
by a subset of JAPE. We have designed the complete verification process and proved its
correctness. However, we have not addressed other JAPE capabilities, such as allowing
annotations to be removed from the graph or using Java code to describe a rule’s actions
(which, in general, will make stability undecidable). Furthermore, when creating the corre-
sponding spanner representation, we did not take into account the phase policy, potentially
leading to the misidentification of a stable program as unstable. We plan to incorporate
the policy into the spanner representation to enhance the accuracy of identifying stable
programs.

We have developed a set of sufficient properties for stable JAPE programs, but again we
have not investigated which properties might be necessary. We might also wish to explore
whether some programs that cannot be verified as stable can be transformed into ones that
possess the required properties of stability.

A natural extension for both problems involves formulating each problem in the other
language; specifically, maintaining extracted views for JAPE programs and ensuring the
updatability of extracted views for AQL. We wish to enrich both verifiers with the capa-
bilities of providing developers with insights for designing autonomously computable and
stable extractors. Finally, we are interested in developing verification tools (for both prob-
lems) for other forms of extractors, including those based on machine learning technology.

121

5.3.1 Potential of Derivatives of Regular Expressions

Our approach to extracted view maintenance works on a restricted set of document span-
ners that satisfy certain sufficient conditions. To verify other sufficient or necessary con-
ditions one probably will need to deal with a variety of Boolean combinations of regular
expression constraints such as complement and intersection. These combinations in the
worst case end up constructing automata that have exponential space blowup. To avoid
such a blowup, Brzozowski [15] avoids building up the whole state space at once. Therefore,
a constraint such as:

S ∈ R

where R is a regular expression and S = s0s1 · · · sn is a concrete string S ∈ Σ∗ is reduced
to:

s1s2 · · · sn ∈ Ds0(R)

where Da(R) is the derivative of the regular expression with respect to a character a.
Da(R) returns a regular expression representing the suffix of R. With this approach, only
the states that are needed are explored, as opposed to the conventional technique that
builds the complete state upfront.

In practice, regular expressions used as extractors have a large alphabet, the natural
language alphabet, which requires some considerations. In recent work, Stanford et al. [87]
deal with the regular expression’s derivative symbolically to solve regular expression con-
straints such as:

s ∈ R

where s is an uninterpreted string and R is a boolean combination of regular expression
constraints. For example, R might be a constraint on the data value:

date ∈ \d{4}-[a− zA− Z]{3}-\d{2} ∩ (date ∈ 2019Σ∗ ∪ date ∈ 2020Σ∗)

and we wish to know whether there is at least one string that conforms to the constraint [87]:
R ̸= ∅. To date, this construction of derivatives is the most efficient approach to solving
complex regular expression constraints that might be created for extended shiftability
verification or view updatability.

122

References

[1] dblp: Statistics: https://dblp.org/statistics/index.html.

[2] The dblp team: dblp computer science bibliography. Monthly snapshot release of
October 2022 https://dblp.org/xml/release/dblp-2022-10-02.xml.gz.

[3] The dblp team: the sources for the org.dblp.mmdb package
https://dblp.org/src/mmdb-2019-04-29-sources.jar.

[4] Insider Inc. https://www.businessinsider.com. Accessed: 2023-11-02.

[5] Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed: 2023-11-02.

[6] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L. Wiener.
Incremental maintenance for materialized views over semistructured data. In Ashish
Gupta, Oded Shmueli, and Jennifer Widom, editors, VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 38–49. Morgan Kaufmann, 1998.

[7] Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, and David A. Son-
tag. Large language models are few-shot clinical information extractors. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022, pages 1998–2022. Association
for Computational Linguistics, 2022.

[8] James F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[9] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-
delay enumeration for nondeterministic document spanners. In Pablo Barceló and

123

https://www.businessinsider.com
https://openai.com/blog/chatgpt

Marco Calautti, editors, 22nd International Conference on Database Theory, ICDT
2019, March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 22:1–22:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[10] Douglas E. Appelt and Boyan A. Onyshkevych. The common pattern specification
language. In TIPSTER TEXT PROGRAM PHASE III: Proceedings of a Workshop
held at Baltimore, MD, USA, October 13-15, 1998, Baltimore MD USA, 1998.

[11] Philip Bille and Inge Li Gørtz. From regular expression matching to parsing. Acta
Informatica, pages 1–16, 2022.

[12] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating derived relations:
Detecting irrelevant and autonomously computable updates. ACM Transactions on
Database Systems, TODS, 14(3):369–400, 1989.

[13] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently updating
materialized views. In Ashish Gupta and Iderpal Singh Mumick, editors, Materialized
Views: Techniques, Implementations, and Applications, pages 163–175. MIT Press,
Cambridge MA USA, 1999. (reprinted from ACM Sigmod ‘86, pp. 61-71).

[14] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

[15] Janusz A Brzozowski. Derivatives of regular expressions. Journal of the ACM
(JACM), 11(4):481–494, 1964.

[16] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha
Nori, Hamid Palangi, Marco Túlio Ribeiro, and Yi Zhang. Sparks of artificial general
intelligence: Early experiments with GPT-4. CoRR, abs/2303.12712, 2023.

[17] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A char-
acterization of data provenance. In Proceedings of 4th Int. Conference on Database
Theory (ICDT 2001), pages 316–330, 2001.

124

[18] Pere-Lluís Huguet Cabot and Roberto Navigli. REBEL: relation extraction by end-
to-end language generation. In Marie-Francine Moens, Xuanjing Huang, Lucia Spe-
cia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational
Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20
November, 2021, pages 2370–2381. Association for Computational Linguistics, 2021.

[19] Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match
rules for information extraction. In Jim Hendler and Devika Subramanian, edi-
tors, Proceedings of the Sixteenth National Conference on Artificial Intelligence and
Eleventh Conference on Innovative Applications of Artificial Intelligence, July 18-22,
1999, Orlando, Florida, USA, pages 328–334. AAAI Press / The MIT Press, 1999.

[20] Xiaoyong Chai, Ba-Quy Vuong, AnHai Doan, and Jeffrey F. Naughton. Efficiently
incorporating user feedback into information extraction and integration programs.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 87–100, Rhode Island USA, 2009. ACM.

[21] Amit Chandel, P. C. Nagesh, and Sunita Sarawagi. Efficient batch top-k search
for dictionary-based entity recognition. In Ling Liu, Andreas Reuter, Kyu-Young
Whang, and Jianjun Zhang, editors, Proceedings of 22nd International Conference
on Data Engineering, ICDE, pages 28:1–28:10, Atlanta, April 2006. IEEE Computer
Society.

[22] Fei Chen, AnHai Doan, Jun Yang, and Raghu Ramakrishnan. Efficient information
extraction over evolving text data. In Proceedings of the 24th International Con-
ference on Data Engineering, ICDE, pages 943–952, Cancún, Mexico, 2008. IEEE
Computer Society.

[23] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,

125

Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam Mc-
Candlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021.

[24] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[25] Rada Chirkova, Jun Yang, et al. Materialized views. Foundations and Trends® in
Databases, 4(4):295–405, 2012.

[26] Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. Rule-based information extrac-
tion is dead! long live rule-based information extraction systems! In Proceedings of
2013 Conference on Empirical Methods in Natural Language Processing. (EMNLP
2013), pages 827–832, 2013.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[28] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj
Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, et al. Developing language processing components with gate version 8. Uni-
versity of Sheffield Department of Computer Science, 2014.

[29] Hamish Cunningham, Valentin Tablan, and Diana Maynard. JAPE: a Java anno-
tation patterns engine. Research Memorandum CS–00–10, Department of Computer
Science, University of Sheffield, 43, 2000.

[30] Umeshwar Dayal and Philip A. Bernstein. On the updatability of relational views.
In Fourth International Conference on Very Large Data Bases, pages 368–377, West
Berlin Germany, 1978. IEEE Computer Society.

[31] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update
operations on relational views. ACM Transactions Database Systems, 7(3):381–416,
1982.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,

126

June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[33] Thomas G. Dietterich. What’s wrong with llms and what we should be building
instead. ValgrAI Scientific Council Forum, 2023.

[34] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank
Neven. Split-correctness in information extraction. In Dan Suciu, Sebastian Skritek,
and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019, pages 149–163. ACM, 2019.

[35] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[36] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Cleaning
inconsistencies in information extraction via prioritized repairs. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 164–175, Snowbird UT USA, 2014. ACM.

[37] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Docu-
ment spanners: A formal approach to information extraction. Journal of the ACM,
62(2):12:1–12:51, 2015.

[38] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and
Domagoj Vrgoc. Efficient enumeration algorithms for regular document spanners.
ACM Transactions Database Systems, 45(1):3:1–3:42, 2020.

[39] Dominik D. Freydenberger and Sam M. Thompson. Dynamic complexity of document
spanners. In Carsten Lutz and Jean Christoph Jung, editors, 23rd International Con-
ference on Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Den-
mark, volume 155 of LIPIcs, pages 11:1–11:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[40] Antonio L. Furtado and Marco A. Casanova. Updating relational views. In Query
Processing in Database Systems, pages 127–142. Springer, 1985.

[41] Antonio L. Furtado, Kenneth C. Sevcik, and Clesio Saraiva dos Santos. Permitting
updates through views of data bases. Information Systems, 4(4):269–283, 1979.

127

[42] Robert Gaizauskas and Yorick Wilks. Information extraction: Beyond document
retrieval. Journal of Documentation, 54(1):70–105, 1998.

[43] Robert J. Gaizauskas, Hamish Cunningham, Yorick Wilks, Peter J. Rodgers, and
Kevin Humphreys. GATE: an environment to support research and development
in natural language engineering. In Eigth International Conference on Tools with
Artificial Intelligence, ICTAI ’96, Toulouse, France, November 16-19, 1996, pages
58–66. IEEE Computer Society, 1996.

[44] Ralph Grishman and Beth Sundheim. Message understanding conference- 6: A
brief history. In Proceedings of 16th International Conference on Computational
Linguistics (COLING 1996), pages 466–471, 1996.

[45] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration using
self-maintainable views. In Peter M. G. Apers, Mokrane Bouzeghoub, and Georges
Gardarin, editors, Proceedings of Advances in Database Technology - EDBT’96, 5th
International Conference on Extending Database Technology, volume 1057 of Lecture
Notes in Computer Science, pages 140–144, Avignon, March 1996. Springer.

[46] Ashish Gupta and Iderpal Singh Mumick, editors. Materialized Views: Techniques,
Implementations, and Applications. MIT Press, Cambridge, MA, USA, 1999.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[48] Ihab F. Ilyas and Xu Chu. Data Cleaning. Morgan and Claypool, 2019.

[49] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. To-
wards a query optimizer for text-centric tasks. ACM Transactions Database Systems,
32(4):21:1–21:46, 2007.

[50] Hideki Isozaki and Hideto Kazawa. Efficient support vector classifiers for named
entity recognition. In 19th International Conference on Computational Linguistics,
COLING 2002, Howard International House and Academia Sinica, Taipei, Taiwan,
August 24 - September 1, 2002, 2002.

[51] Alpa Jain, Panagiotis G. Ipeirotis, and Luis Gravano. Building query optimizers for
information extraction: the sqout project. SIGMOD Record., 37(4):28–34, 2008.

[52] Martin Josifoski, Marija Sakota, Maxime Peyrard, and Robert West. Exploiting
asymmetry for synthetic training data generation: Synthie and the case of informa-
tion extraction. CoRR, abs/2303.04132, 2023.

128

[53] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam D. Smith. What can we learn privately? SIAM Journal on Computing,
40(3):793–826, 2011.

[54] Besat Kassaie and Frank Wm. Tompa. Predictable and consistent information ex-
traction. In Proceedings of the ACM Symposium on Document Engineering, pages
14:1–14:10, Berlin Germany, 2019. ACM.

[55] Besat Kassaie and Frank Wm. Tompa. A framework for extracted view maintenance.
In DocEng ’20: ACM Symposium on Document Engineering 2020, Virtual Event,
CA, USA, September 29 - October 1, 2020, pages 16:1–16:4. ACM, 2020.

[56] Besat Kassaie and Frank Wm. Tompa. Autonomously computable information ex-
traction. Proceedings of the VLDB Endowment, 16(10):2431–2443, Aug 2023.

[57] Arthur M. Keller. The role of semantics in translating view updates. Computer,
19(1):63–73, 1986.

[58] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: mul-
titouch gestures as regular expressions. In ACM Conference on Human Factors in
Computing Systems, pages 2885–2894, 2012.

[59] Hanna Kozankiewicz, Jacek Leszczylowski, and Kazimierz Subieta. Updatable XML
views. In Leonid A. Kalinichenko, Rainer Manthey, Bernhard Thalheim, and Uwe
Wloka, editors, Advances in Databases and Information Systems, 7th East European
Conference, ADBIS 2003, Dresden, Germany, September 3-6, 2003, Proceedings,
volume 2798 of Lecture Notes in Computer Science, pages 381–399. Springer, 2003.

[60] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In
Carla E. Brodley and Andrea Pohoreckyj Danyluk, editors, Proceedings of the Eigh-
teenth International Conference on Machine Learning (ICML 2001), Williams Col-
lege, Williamstown, MA, USA, June 28 - July 1, 2001, pages 282–289. Morgan Kauf-
mann, 2001.

[61] Kristina Lerman, Steven Minton, and Craig A. Knoblock. Wrapper maintenance:
A machine learning approach. Journal of Artificial Intelligence Research (JAIR),
18:149–181, 2003.

[62] Michael Ley. DBLP - some lessons learned. Proceedings of the VLDB Endowment,
2(2):1493–1500, 2009.

129

[63] Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and
Xipeng Qiu. Codeie: Large code generation models are better few-shot information
extractors. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 15339–15353. Association for Computational Linguistics, 2023.

[64] Y Edmund Lien. Multivalued dependencies with null values in relational data bases.
In Fifth International Conference on Very Large Data Bases, 1979., pages 61–66.
IEEE, 1979.

[65] Peter Linz. An introduction to formal languages and automata, 5th Edition. Jones
and Bartlett Publishers, 2012.

[66] Bin Liu, Laura Chiticariu, Vivian Chu, HV Jagadish, and Frederick R. Reiss. Auto-
matic rule refinement for information extraction. Proceedings of the VLDB Endow-
ment, 3(1-2):588–597, 2010.

[67] Yubo Ma, Yixin Cao, YongChing Hong, and Aixin Sun. Large language model is not
a good few-shot information extractor, but a good reranker for hard samples! CoRR,
abs/2303.08559, 2023.

[68] Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. Document spanners for
extracting incomplete information: Expressiveness and complexity. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 125–136, Houston TX USA, 2018. ACM.

[69] Claudia Bauzer Medeiros and Frank Wm. Tompa. Understanding the implications
of view update policies. Algorithmica, 1(3):337–360, 1986.

[70] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Reverse data manage-
ment. Proceedings of the VLDB Endowment, 4(12):1490–1493, 2011.

[71] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, 1995.

[72] Andrea Morciano. Engineering a runtime system for AQL. Master’s thesis, École
Polytechnique de Bruxelles, Université Libre de Bruxelles, 2016.

[73] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. XML access
control using static analysis. ACM Transactions on Information and System Security
(TISSEC), 9(3):292–324, 2006.

130

[74] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and
rewriting. ACM Transactions on Database Systems, 35(3):21:1–21:41, 2010.

[75] Thien Huu Nguyen. Deep Learning for Information Extraction. PhD thesis, New
York University, USA, 2018.

[76] Christina Niklaus, Matthias Cetto, Andre Freitas, and Siegfried Handschuh. A survey
on open information extraction. In Proceedings of the 27th International Conference
on Computational Linguistics, 2018. 27th International Conference on Computa-
tional Linguistics, COLING 2018 ; Conference date: 20-08-2018 Through 26-08-2018.

[77] Aleksander Obuchowski, Barbara Klaudel, and Patryk Jasik. Information extraction
from polish radiology reports using language models. In Proceedings of the 9th Work-
shop on Slavic Natural Language Processing 2023 (SlavicNLP 2023), pages 113–122,
2023.

[78] Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, and Markus Kröll.
Complexity bounds for relational algebra over document spanners. In Dan Su-
ciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 320–334. ACM,
2019.

[79] Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld. Recursive
programs for document spanners. In Pablo Barceló and Marco Calautti, editors,
22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal, volume 127 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[80] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou,
Xinbing Wang, Quanshi Zhang, and Zhouhan Lin. RASAT: integrating relational
structures into pretrained seq2seq model for text-to-sql. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 3215–3229. Association for Computational
Linguistics, 2022.

[81] Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, and Shiv-
akumar Vaithyanathan. An algebraic approach to rule-based information extraction.

131

In Proceedings of the 24th International Conference on Data Engineering, ICDE,
pages 933–942, Cancún, Mexico, 2008. IEEE Computer Society.

[82] Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. Named entity recognition in
tweets: An experimental study. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pages 1524–1534, Edinburgh UK,
2011.

[83] Sudeepa Roy, Laura Chiticariu, Vitaly Feldman, Frederick R Reiss, and Huaiyu Zhu.
Provenance-based dictionary refinement in information extraction. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD,
pages 457–468. ACM, 2013.

[84] Sunita Sarawagi. Information extraction. Foundations and Trends in Databases,
1(3):261–377, 2008.

[85] Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W. Pennebaker. Ef-
fects of age and gender on blogging. In Proceedings of 2006 AAAI Spring Symp. on
Computational Approaches to Analyzing Weblogs, pages 199–205, 2006.

[86] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan. Declar-
ative information extraction using datalog with embedded extraction predicates. In
Proceedings of the 33rd International Conference on Very Large Data Bases, Univer-
sity of Vienna, Austria, September 23-27, 2007, pages 1033–1044. ACM, 2007.

[87] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. Symbolic boolean derivatives
for efficiently solving extended regular expression constraints. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pages 620–635, 2021.

[88] Danny Sullivan. A reintroduction to our knowledge graph and knowledge panels.
https://blog.google/products/search/about-knowledge-graph-and-knowledge-
panels, May 2020.

[89] Latanya Sweeney. Weaving technology and policy together to maintain confidential-
ity. The Journal of Law, Medicine & Ethics, 25(2-3):98–110, 1997.

[90] Wang-Chiew Tan. Unstructured and structured data: Can we have the best of both
worlds with large language models? CoRR, abs/2304.13010, 2023.

132

[91] Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin
Qi. Evaluation of chatgpt as a question answering system for answering complex
questions. CoRR, abs/2303.07992, 2023.

[92] Ken Thompson. Regular expression search algorithm. Communications of the ACM
(CACM), 11(6):419–422, 1968.

[93] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Y. Levy. From natural language processing to neural databases. Proc.
VLDB Endow., 14(6):1033–1039, 2021.

[94] Logesh Kumar Umapathi, Ankit Pal, and Malaikannan Sankarasubbu. Med-halt:
Medical domain hallucination test for large language models. CoRR, abs/2307.15343,
2023.

[95] Gary Wassermann, Carl Gould, Zhendong Su, and Premkumar T. Devanbu. Static
checking of dynamically generated queries in database applications. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 16(4):14, 2007.

[96] Benjamin Weggenmann and Florian Kerschbaum. Syntf: Synthetic and differen-
tially private term frequency vectors for privacy-preserving text mining. CoRR,
abs/1805.00904, 2018.

[97] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent
abilities of large language models. Trans. Mach. Learn. Res., 2022, 2022.

[98] Hailemariam Mehari Yohannes and Toshiyuki Amagasa. Named-entity recognition
for a low-resource language using pre-trained language model. In Jiman Hong,
Miroslav Bures, Juw Won Park, and Tomás Cerný, editors, SAC ’22: The 37th
ACM/SIGAPP Symposium on Applied Computing, Virtual Event, April 25 - 29,
2022, pages 837–844. ACM, 2022.

[99] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. Automata-based sym-
bolic string analysis for vulnerability detection. Formal Methods in System Design,
44(1):44–70, 2014.

[100] Xiang Yue, Boshi Wang, Kai Zhang, Ziru Chen, Yu Su, and Huan Sun. Automatic
evaluation of attribution by large language models. CoRR, abs/2305.06311, 2023.

133

[101] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, and Mengnan Du. Explainability for large language
models: A survey. CoRR, abs/2309.01029, 2023.

[102] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language
models. CoRR, abs/2303.18223, 2023.

[103] Li Zhong and Zilong Wang. A study on robustness and reliability of large language
model code generation. CoRR, abs/2308.10335, 2023.

134

	Examining Committee Membership
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivating Example I
	Motivating Example II
	Extracted Relations as Materialized Views
	Information Extraction in the Era of Pre-trained Language Models
	Novelty and Contributions
	Novelty
	Contributions

	Related Work
	Information Extraction
	Approaches Used for Information Extraction
	Update-Aware Information Extraction
	Rule-based versus LLM-based Extraction

	Fine-grained Data Lineage.
	Relational Materialized Views
	Materialized View Maintenance
	Updatability of Relational Views

	Static Analysis of Programs Using Regular Languages

	Maintenance of Extracted Views
	Preliminaries
	Documents, Regular Expression, and Document Spans
	Extractors Expressed by Document Spanners
	Matching Model
	Restricted Extraction Formula
	Efficient Construction of Extractors
	Contextualization of Extraction Formulas
	Spanners for Basic Span Relationships

	Document Update Model
	Irrelevant and Autonomously Computable Updates
	Categorizing Document Updates
	Post-update Spanner
	Detecting Shiftability for Spanners

	Practicality of Detecting Shiftable Updates
	Verification System
	DataSets
	Experiment Platform
	Extractors
	Updates
	Run-time Performance
	Role of Incremental Updates
	Potential of Parallelism
	Additional Updates

	Additional Related Work
	Document Spanners
	Regular Expression Matching

	Updatable Extracted Views
	Overview of GATE and JAPE
	Core JAPE
	Tokenizer
	Gazetteer
	Relation Generator

	Spanner Representation of JAPE Program
	Partially Functional Spanners
	JAPE Rule Spanner Representation

	Characterization of Stable Information Extraction Programs
	Extracted View Update Model
	Update Translation Mechanism
	Stable Extractors
	Verification

	Implementation Details
	Platform

	Conclusions and Future Work
	Summary
	Implications and Impacts
	Future Work
	Potential of Derivatives of Regular Expressions

	References

