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Abstract

Topological magnets represent a unique class of quantum materials in which a non-
trivial Berry curvature in real- or momentum-space couples to the magnetic properties of
the topological electronic or spin system. Magnetic skyrmions constitute one such class of
topological magnets, characterized by real space topological swirling spin-textures which
manifest as localized nanometric excitations in the magnetization field. These protected
quasi-particle objects possess a helical chiral structure which supports a diverse landscape
of states and defects, whose interactions with spins and electrons produce novel trans-
port properties and emergent dynamics controllable over a wide range of parameter space.
This spectrum of phenomena has inspired magnetic skyrmions as the forerunners for novel
spintronic high-density memory and ultra-low power logic device applications. As quasi-
particles, skyrmions may condense into crystalline orders, typically forming periodic lattice
arrangements which extend three-dimensionally in bulk materials. This enhanced dimen-
sionality opens the door to new stabilization pathways, configurational degrees of freedom,
and dynamical modes which offer unique functionalities to those of thin systems. For
practical applications, understanding skyrmion nucleation, annihilation, transition, and
organizational pathways is critical to realizing controllable dynamics and manipulation in
future devices.

In this thesis, we explore the development and application of various neutron scattering
tomography and structured neutron beam techniques for three-dimensional investigations
of bulk magnetic topological materials and their defect-mediated dynamical phenomena.
A combination of X-ray, magnetometry, and neutron scattering techniques are used to
first identify and characterize the disordered phase of an above room-temperature bulk
skyrmion material, Co8Zn8Mn4. Detailed small angle neutron scattering (SANS) measure-
ments are then performed over the entire temperature-magnetic field phase diagram of the
material as a function of a dynamic skyrmion ordering sequence. 2D SANS images in com-
bination with micromagnetic simulations reveal a novel disordered-to-ordered skyrmion
square lattice transition pathway which represents a new type of non-charge conserving
topological transition. This transition is characterized by a novel promotion of four-fold
order in SANS and a violation of the conservation of total skyrmion number. Dynamical
skyrmion responses in the metastable skyrmion triangular lattice phase showed an exotic
memory phase, with an ordered skyrmion signal persisting in spite of hysteresis protocols
involving field-induced saturation into the ferromagnetic phase.

Further studies of skyrmion stabilization mechanisms and their dynamical defect path-
ways were performed through the development of a novel SANS tomography algorithm,
applied to the ordered thermal equilibrium skyrmion triangular lattice phase of the bulk
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Co8Zn8Mn4 sample. Multi-projection neutron scattering datasets collected from the sam-
ple were used to generate the first three-dimensional visualizations of a bulk skyrmion lat-
tice. The reconstructions unveiled a host of exotic skyrmion features, such as branching,
segmented, twisting, and filament structures, mediated by three-dimensional topological
transitions through two different emergent monopole (MP)-antimonopole (AMP) defect
pathways.

Methods for the direct identification and determination of topological features and de-
fects of bulk micromagnetic materials, without a priori knowledge of the sample, can be
achieved through the incorporation of structured neutron beam methods to neutron scat-
tering experiments. Holographic approaches similar to those used in the development of
optical structured waves were implemented with neutrons to generate a method for the
selective tuning of single-valued neutron orbital angular momentum (OAM) states. A con-
ventional SANS setup was used to explore the diffraction of linear neutron waves input
on a microfabricated grating which consists of arrays of phase-gratings with q-fold fork
dislocations and nanometric spatial dimensions comparable to those of magnetic skyrmion
lattice periodicities. Far-field scattering images exhibit doughnut intensity profiles cen-
tered on the first diffraction orders, with q-dependent radii, thereby demonstrating the
tunable generation of topological neutron states for phase- and topology-matched studies
of quantum materials.

Together, these studies demonstrate the development and application of novel tools for
direct investigations of bulk topological magnetic materials, while uncovering a diverse col-
lection of skyrmion energetics, disorder-dependent dynamics, and three-dimensional topo-
logical transition defect pathways. Future works are proposed which explore the three-
dimensional formation and evolution of bulk skyrmion tubes under various temperature-
magnetic field trajectories and degrees of skyrmion order, using both tomographic, struc-
tured neutron beam approaches, and combinations thereof. In doing so, we may provide the
first standalone method of characterizing bulk magnetic sample topologies, defect densities,
and their correlations. These methods open the door to a new generation of neutron scat-
tering techniques for probing exotic topological interactions and the complete standalone
characterization of quantum materials.
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Chapter 1

Introduction

1.1 Skyrmions and Topology

Topology, order, and symmetry are inextricably linked, inducing non-trivial phases and
quasi-particle excitations which manifest exotic properties and new classification schemes
for novel states of quantum materials [1, 2, 3, 4]. Topological phases and their transitions in
condensed matter systems constitute a unique genre of quantum matter which transcend
the traditional Landau-Ginsburg framework of continuous phase transitions [5, 6]. No
longer marked by the onset of a spontaneously broken symmetry, these topological phases
exhibit an emergence of non-trivial physical properties that cannot be described by a local
order parameter, but must instead be described by a topological invariant [5, 7]. Perhaps
one of the most seminal examples of such a system is that of a two-dimensional electron gas.
When observed in a magnetic field applied normal to the gas plane, a vanishing longitudinal
conductance was observed, accompanied by a quantized hall conductance [8, 9, 10]. The
quantized hall conductance could only be described in terms of an integer which counts the
number of conducting chiral channels at the edges of the system [8, 11, 12, 13, 14, 15, 16].
The existence of such topological states inspired exotic classification schemes of matter
based on this new kind of topological order, where quantized observables are described by
discrete topological invariants [17, 18, 19, 7].

Since then, topological phenomena have been predicted and observed in a myriad of
systems spanning dislocations in condensed matter [19, 20] to skyrmions in particle physics
[21], manifesting across a variety of physical degrees of freedom such as spin, space, energy,
and momentum [22, 23, 24, 25, 26, 27]. Skyrmions, in particular, represent an especially
prolific topological object; originally proposed as a topologically protected quasi-particle
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to describe the stability of hadrons through a non-linear sigma model [21], they have since
been predicted and realized across diverse quantum states of matter such as supercon-
ductors [28, 29, 30], superfluids [31, 32], Bose-Einstein condensates [33, 34], liquid crystals
[35, 36, 37], and magnets [38, 39]. In quantum magnets, skyrmions manifest in the winding
degree of the magnetization, producing localized vortex-like spin configurations, charac-
terized by an integer mapping to the unit sphere (Fig. 1.1). The number of times the
physical space spanned by a 2D (x,y) plane of magnetization, R2, wraps the order param-
eter space of the surface of a 3D unit sphere, S2, denotes the topological charge of the
skyrmion [40]. This integer topological charge mathematically forbids a continuous change
of homotopy, introducing a finite energy barrier for topological transitions in a real physical
system [41]. These localized topological features give rise to a myriad of protected states,
non-equilibrium phenomena, and extreme dynamics [42, 43, 44, 45, 46, 47] with countless
applications across information, sensing, and energy technologies [48, 49, 50, 51, 52, 53].

Figure 1.1: Illustrations of Bloch, Neél, and antiskyrmion spin textures (left-to-right) of
polarity p = 1 and topological charge Q = 1 (left, middle) and Q = −1 (right). Their
corresponding inverse stereographic projections are shown on the unit sphere. Reproduced
from [54].

The local spin texture of an isolated skyrmion within a ferromagnetic background can
be visualized by considering a smooth π rotation between upward pointing spins at the
periphery, to downward pointing spins at the core, subtending a solid angle of 4π [55].
Integrating the magnetization density, n(r), over the solid angle defines the topological
charge of a skyrmion as:
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NSk =
1

4π

∫∫
S

n ·
(
∂n

∂x
× ∂n

∂y

)
d2r (1.1)

Here, n(r) = M
|M | , describes the unit vector order parameter pointing in the direction

of the magnetization, M . Referring to Fig. 1.1, we can see that the various skyrmion
configurations all wrap the unit sphere once, and so have a topological charge corresponding
to |NSk| = 1. In contrast, topologically trivial spin textures, such as ferromagnetic states
or helical configurations, would only map to one spin orientation or trace out a closed
radial loop of spin orientations on the unit sphere, respectively, thus endowing them with
a topological charge of 0. Structures possessing half-integer topological charges, so called
merons and antimerons, where n rotates by π

2
from its center to its periphery, have also

been observed in chiral lattice skyrmion hosting materials [56], in addition to a wide range
of higher-order topological structures such as biskyrmions [57], thus emphasizing the rich
zoology of topological spin textures and their transitions through fractionalization [58] and
hybridization [56] pathways in chiral magnets.

While the topological charge of a skyrmion is paramount to its description, it is not suf-
ficient to uniquely characterize the skyrmion state given the large degeneracy of skyrmion
spin textures for a given topological charge. For the complete classification of a skyrmion
spin texture we turn to additional magnetic degrees of freedom, such as helicity, polarity,
and vorticity, which characterize the angle of the global rotation around the z-axis, the di-
rection of magnetization at the skyrmion center, and the rotation direction of the in-plane
spin components, respectively [54, 56]. These parameters distinguish various degenerate
topological charge skyrmion spin textures from one another, such as Bloch, Néel and an-
tiskyrmions (Fig. 1.1), which all possess a topological charge of |NSk| = 1 but maintain
different helicities, polarities, and vorticities [54, 51] We can define these quantities by
introducing polar coordinates, r = (r cosφ, r sinφ), and exploiting the circular symmetry
of the magnetization to express a skyrmion as:

n(r) = (cosΘ(φ)sinΦ(r), sinΘ(φ)sinΦ(r), cosΦ(r)) . (1.2)

Inserting this expression into equation 1.1, we obtain the skyrmion topological charge
which can be evaluated in terms of r and φ as:

NSk =
1

4π

∫ ∞

0

dr

∫ 2π

0

dφ

(
∂Θ(r)

∂r
× ∂Φ(φ)

∂φ

)
(1.3)

NSk = [cos Θ(r)]r=∞
r=0 [Φ(φ)]φ=2π

φ=0 (1.4)
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Here, the topological charge is a function of both the out-of-plane, Θ, and in-plane,
Φ, magnetization. Accordingly, one can define a skyrmion by supposing the spins point
up at r → ∞ and point down at r = 0, evaluating the first portion of equation 1.4 as
[cos Θ(r)]r=∞

r=0 = 2. Determining Φ(φ), however, requires the introduction of helicity, γ,
and vorticity, m. The vorticity is defined by the integer, m = [Φ(φ)]φ=2π

φ=0 . Therefore, the
topological charge is determined by the product of the vorticity, m, and polarity, P , as
NSk = m · P . The helicity represents the phase difference that can appear in the rotation
of the magnetization, Φ(φ), modeling the chirality of the magnetization as:

Φ(φ) = mφ+ γ. (1.5)

Whereas the polarity and vorticity assume integer skyrmion values, the helicity is a
continuous parameter which allows for skyrmions as intermediate states between Bloch
and Néel spin textures. Using these quantities, we can rewrite the magnetization defined
in equation 1.2 as:

n(r) = (sin(mφ+ γ)cosΦ(r), sin(mφ+ γ)sinΦ(r), cosΦ(r)) . (1.6)

Together, these parameters uniquely define a host of skyrmion spin textures belonging to
Bloch, Néel, and antiskyrmion configurations with various chiralities [51]. By homotopy
theory and conservation of topological charge, it is apparent that topological transitions
between skyrmion states and their competing helical, conical, and ferromagnetic NSk = 0
states, requires the presence of a topological defect to introduce a discontinuity into the
material field. The discontinuous transition from NSk = 1 to NSk = 0 and vice versa,
poses a topological energy barrier associated with the production of such a singularity. In
real skyrmion systems, these defects are thought to be associated with magnetic Bloch
points [59, 60] which may arise due to underlying crystalline or magnetic disorder, thermal
fluctuations, and magnetic field tuning. This topological energy barrier associates stability
and robustness against energetic perturbations which might otherwise disrupt topologically
trivial states. As a result, skyrmions are said to be topologically protected, exhibiting
exceptionally robust states, exotic emergent dynamics, and novel transport properties ideal
for spintronic applications.

Magnetic skyrmions were originally predicted to spontaneously form in [61] chiral
magnets through competing exchange interactions, namely ferromagnetic interactions and
Dzyaloshinskii–Moriya interactions (DMI), within a finite temperature window. As a re-
sult, a range of cubic B20 helimagnets with non-centrosymmetric crystal structures, capable
of stabilizing twisted magnetic states, were proposed as skyrmion-hosting candidate mate-
rials. Their discovery in real materials was marked by the small angle neutron scattering
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(SANS) measurements performed in the A-phase of a bulk chiral itinerant-electron magnet
MnSi [62]. Here, the broken inversion symmetry from the B20 crystal structure, belong-
ing to symmetry class P213, and the resultant spin-orbit coupling, generates a DMI. The
Hamiltonian is then comprised of three hierarchically ordered magnetic interaction terms
with well separated interaction energies, since the latter two interactions are second- or
higher-order perturbation terms of the spin-orbit interaction [63]. The competition between
the strongest ferromagnetic exchange interaction, which favors co-linear spin arrangements,
and second strongest antisymmetric DMI, which favors perpendicular alignment of the spin,
stabilizes a spiral spin state with a periodicity decoupled from the underlying atomic lat-
tice [62]. This long-range helimagnetic order is defined by a helical propagation vector, Q,
pinned along the cubic space-diagonal < 111 > by higher order spin-orbit coupling terms
which represent the weakest interaction—anisotropic exchange. Application of a magnetic
field unpins the helical propagation vector, Q, and aligns it parallel to the magnetic field,
forming a triangular lattice skyrmion phase within a certain temperature-magnetic field
(T-H) envelope [62]. Since then, magnetic skyrmions have been realized in variety of sys-
tems and forms, including artificial lattices [64], thin films at ambient conditions [65], and
centrosymmetric systems stabilized by additional magnetic contributions such as geometric
frustration or four-spin interactions mediated by itinerant electrons [66, 67, 68].

1.2 Skyrmion Stabilization

Skyrmion stabilization mechanisms are predominantly determined by the interplay of
the systems various exchange interactions with additional contributions arising from the
sample’s dimensionality and geometry, such as coupling to surfaces/interfaces, skyrmion-
skyrmion interactions, demagnetization, and confinement effects [69, 70, 71, 72, 73]. In
noncentrosymmetric helimagnets, skyrmions are typically stabilized through competing
DM and magnetic exchange interactions which stabilize helical ground states and skyrmion
states in the respective absence and presence of an external magnetic field [40, 74]. These
skyrmion states exist in a small region of the T-H phase diagram, stabilized by thermal fluc-
tuations in equilibrium pockets just below the Curie temperature, Tc [62, 38, 75, 76, 77, 43].
In bulk systems, broken inversion symmetry of the underlying crystal lattice serves as the
origin for the DMI, whereas in thin film systems an interfacial DMI arises from a lack of in-
version symmetry at dissimilar interfaces of magnetic multilayers or from strong spin–orbit
coupling at heterointerfaces [78]. However, skyrmions are not unique to acentric mag-
nets; more recently, skyrmions have been observed in centrosymmetric systems that are
not endowed with macroscopically subsisting DMI. In these cases, the skyrmions may
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be stabilized via alternative microscopic mechanisms such as geometrical frustration or
multiple-spin interactions involving itinerant electrons [68, 79].

The diversity of skyrmion stabilization mechanisms has lead to their formation across
a multitude of lengthscales, energetic phases, lattice structures, dimensions, magnetic or-
ders, topologies, vorticities, and helicities, encompassing a rich collection of exotic topolog-
ical magnetic configurations ranging from braided superstructures to topologically trivial
skyrmioniums [80, 81, 82, 83, 84, 85]. Skyrmions may exist as isolated structures [86, 87]
or form lattice arrangements in both two and three dimensions [59, 88]. Three-dimensional
skyrmions may be visualized through the homogeneous extension of the two-dimensional
skyrmion magnetization sheets into tube-like structures along the direction of the exter-
nal magnetic field. These tube-like structures typically fall into two regimes on the basis
of their sample thickness and surface-to-volume effects, exhibiting fundamentally differ-
ent energetics, structures, and defects. In thin and confined systems, where the sample
thickness is comparable to—or slightly greater than—the helical period, geometric con-
straints and reduced dimensionality imposed by a samples shape and thickness, have been
shown to mediate a variety of surface and boundary related effects. Surface induced in-
teractions/coupling, such as magnetic anisotropy and demagnetization effects, have been
shown to affect skyrmion stability in cubic helimagnets [89, 90], while surface/boundary
induced distortions like chiral twists, axial tube modulations, and pronounced edge states
that have been observed to pin, nucleate, and destroy skyrmions across a myriad of systems
[91, 70, 69, 73, 92, 93, 94, 95, 96, 97]. In contrast, bulk systems, where the sample thickness
is much larger than the helical period, tend to be dominated by volume effects which favor
skyrmion-skyrmion interactions and stabilization via the three-dimensional proliferation of
defects [59]. As a result, bulk systems exhibit drastically different skyrmion shapes, struc-
tures, trajectories, defects, topological transition energy barriers and dynamics compared
to confined systems [60]. Their added degrees of freedom, offer new skyrmion orienta-
tions and spatial morphologies, in addition to exotic transition pathways and emergent
dynamics. Bulk systems have also been shown to host metastable skyrmion objects via
rapid quenching of the equilibrium skyrmion phase [98, 99, 100]. These metastable objects
exist over a drastically enhanced T-H window with unprecedented lifetimes and persistent
memory effects [101, 71, 102]. This collection of properties make bulk skyrmion systems
promising candidates for information carriers in future spintronic devices. For the purposes
of this work, we will be primarily concerned with DMI stabilized skyrmion-hosting bulk
cubic helimagnets.

The magnetic properties of solids originate from the spin degrees of freedom of electrons
and their associated rotational motions. These two forms of rotation represent two distinct
types of angular momentum. In the former, an intrinsic angular momentum is responsible
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for the electron spin, s, while the latter represents an extrinsic form which generates an
orbital angular momentum, l. These forms of motion couple through spin-orbit interactions
and generate magnetic moments whose collective contributions give rise to magnetism
in samples. In accordance with quantum mechanics, we can associate magnetic dipole
moments of µl = µBl and µs = −gµBs with the spin and orbital components, where
g = 2.0023 is the relativistic gyromagnetic ratio of the electron and µB = ℏe/2me represents
the Bohr magneton, given an electron charge e and mass me. The total angular momentum
for a free magnetic atom or ion is then given by

J = S + L =
∑
i

li +
∑
i

si, (1.7)

where quantum numbers J, L, and S can assume half-integer or integer values. This leads
to a total magnetic moment of

M = −

〈∑
i

(li + 2si)µB

〉
, (1.8)

where ⟨∼⟩ represents the quantum mechanical expectation value.

The interaction energies of the magnetic moments are governed by the Hamiltonian
of the system. Various interactions can arise depending on the composition, symmetry,
and environment of the system. A magnetic moment, µ, in an external magnetic field, B,
will experience a Zeeman interaction which tends to align the magnetic moment along the
direction of the external field, as described by the Zeeman Hamiltonian below:

HZe = −µ ·B. (1.9)

A combination of electrostatic forces and the Pauli exclusion principle gives rise to the
Heisenberg exchange interaction,

HEx = Jex Si · Sj. (1.10)

Perhaps one of the most prolific interactions in magnets, this interaction favors collinear
spins, S, with positive and negative exchange constants, Jex, corresponding to parallel
and antiparallel spin alignments in ferromagnets and antiferromagnets, respectively. Since
this interaction is short-ranged, typically one only needs to consider interactions between
nearest neighbour spins. Together, these two interactions are sufficient to describe the
behavior of ferromagnets and antiferromagnets.
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To generate chiral spin textures, an additional term is needed which effectively twists the
spin texture over some period. A combination of spin-orbit coupling and broken inversion
symmetry produces a competing exchange interaction, known as the DMI, which favors
perpendicular spin arrangements given by

HDM = Dij · (Si × Sj) (1.11)

Dij is the coupling vector which depends on the type of relativistic spin-orbit coupling
present in the system, and therefore the symmetry of the magnetic exchange path be-
tween the two involved nearest neighbour spins [103]. Transverse and longitudinal DMI
are responsible for Néel versus Bloch type skyrmion magnetizations [104]. Together, these
energy contributions stabilize incommensurate magnetic ordering, such as helical, conical,
and skyrmion states in bulk cubic helimagnets. In particular, the competition of the ex-
change and DM interactions favors canted spin ground states, stabilizing incommensurate
spiral modulations just below Tc in zero field. These helical textures are characterized
by a continuous rotation of spins orthogonal to a propagation vector, q, forming single-
harmonic modes with their rotation sense determined by the sign of the DM constant, D.
The reduced strength of the DM interaction relative to the Heisenberg exchange interac-
tion acts like a perturbation on the underlying dominant collinear spin structure, yielding
modulated spin structures with propagation vectors much greater than the dimensions of
the crystallographic unit cell. As a result the spin texture is said to be decoupled from its
underlying atomic lattice. The helical periodicity may be defined from the helical wave-
vector |q| = D/J , which is related to the helical wavelength, λ, by q = 2π/λ. These states
are continuously degenerate with respect to the helical propagation directions, where q is
typically pinned by magnetic anisotropy to lie along the easy axes [63, 105], such as the
body diagonals in MnSi or the cubic axes in FeGe or Cu2OSeO3 [106].

Application of a magnetic field lifts the degeneracy, stabilizing conical modulations
which acquire a canted angle as the magnetization vector rotates along the surface of the
cone, combining the properties of the helical and ferromagnetic states. Reorientations
of these chiral modulations have been observed upon changes in temperature and field
[107, 108, 106, 109], mediating a variety of tilted one-dimensional spiral states and low-
temperature skyrmion lattice states [110, 106, 111]. Competition between the Zeeman and
magnetic anisotropy energies determines the critical field of the transition from the helical
to conical spiral states [106]. Further increase in the magnetic field induces a transition
from the conical state to a field-saturated ferromagnetic state above some critical value,
while an increase in temperature above Tc produces a transition to a paramagnetic state
(Fig. 1.2).

While the ferromagnetic, DM, and Zeeman interactions are on their own sufficient to
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Figure 1.2: Typical temperature-magnetic field (T-H) phase diagram of a bulk DMI
skyrmion lattice (SkL) material, illustrating the thermal equilibrium skyrmion lattice
pocket just below the Curie temperature, Tc.

stabilize a skyrmion state, magnetocrystalline anisotropy has been shown to mediate ex-
otic skyrmion ordering and domain dynamics [112, 113, 114], structural lattice transitions
[115, 116, 99, 100], in addition to stabilizing a variety of novel low-temperature chiral
and skyrmion states as mentioned above [117, 110, 111, 118, 106]. Magnetocrystalline
anisotropy is rooted in spin-orbit coupling, where it represents the amount of energy re-
quired to overcome the coupling between the spin and the orbital motion of the electron
while rotating a spin away from the easy axis of the magnetisation. Its energy density for
a cubic system can be written as:

E

V
= K0 +K1(α

2β2 + β2γ2 + γ2α2) +K2α
2β2γ2 + O4, (1.12)

where K0, K1, and K2 are anisotropy parameters, α, β, and γ are the directional cosines,
and O4 represents higher order terms. The relative strengths and signs of K1 and K2

determine the easy axis of the magnetic system [119]. Therefore, the delicate balance of
these anisotropy constants, together with additional contributions such as magnetic dis-
order, effectively pin the helical propagation vectors, setting the orientation of the helical
ground state relative to the crystal axes. Shape anisotropy effects arising from demagne-
tizing effects due to the shape of the sample have also been shown to influence skyrmion
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formation, shape, and stability [111, 72, 71].

These interactions can be modelled using the classical continuum model [40]:

H =

∫ [
Jex
2

[∇n(r)]2 +D n(r) · [∇× n(r)] −B · n(r) +KE

]
dr. (1.13)

Here, D/J is small and the skyrmion size is sufficiently greater than the underlying atomic
lattice period. As a result, we may treat the spin texture as a local spin texture, n(r),
rather than individual spins. The first term represents the Heisenberg exchange interaction,
with exchange constant Jex, followed by the DM term, whose strength is given by the
constant D. The third and fourth terms represent the Zeeman and anisotropy interactions,
respectively. The ground state of equation 1.13 is a helical state, where the spin plane is
perpendicular to q, thereby minimizing the energy [40]. The triangular lattice skyrmion
state can be viewed as a hybridized triple-q state consisting of the superposition of three
helices perpendicular to the external magnetic field, each offset by 120 degrees relative to
each other [40], satisfying the relation

3∑
i=1

qi = 0. (1.14)

The local spin texture, n(r), can be expressed as a sum of the background uniform ferro-
magnetic state and the helices as

n(r) ≈ nuniform(r) +
3∑

i=1

nqi(r + ∆ri), (1.15)

where nqi(r) = A [ni1 cos (qi · r) + ni2 sin (qi · r)] represents the magnetization of a single
helix of amplitude A and wavevector qi, possessing a phase qi · ∆r. The two-dimensional
Fourier transform of this magnetic structure manifests a hexagonal pattern, with the norm
of the hexagon given by |q|. As a result, the triangular lattice skyrmion phase has a distinct
scattering signature in reciprocal space techniques, like SANS, for geometries where the
skyrmion lattice is on the plane normal to the incident neutron wavevector.

1.3 Skyrmionic Topological Transitions Through De-

fects

Conduction electrons coupled to non-collinear spin textures acquire quantum mechanical
phases [38]. In the case of skyrmions, this phase can be identified as a Berry phase that
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Figure 1.3: Three-dimensional visualisations of Bloch-point mediated skyrmion annihila-
tion mechanisms through the helical (H) and conical (C) states from simulations (a,b).
The grey contours represent the z-component of magnetization, sz = 0. The back right
surface of each simulation has been coloured according to the local sz or sx components
respectively, highlighting the orientation of the surrounding helical and conical structures.
Visualisations of the skyrmion to helical (SkL → H), and skyrmion to conical (SkL → C)
annihilation mechanisms (c), showing the nucleation of a pair of Bloch points where either
the SkT connects to the local helical structure (left, H+ and H−), or breaks in two to
form the conical state (right, C+ and C−). d) Cross-sections of the spin texture around
the Bloch-point structures shown in c). Insets display the local spin arrangement around
each Bloch point. Colours indicate the mz component. Reproduced from [60].

the spin of a conduction electron accumulates when following the magnetic texture adi-
abatically [59, 120]. This phase can be rewritten as an effective Aharonov–Bohm phase,
associated with ‘emergent’ magnetic and electric fields, Be and Ee:
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Be =
ℏ
2
εijkn̂ · (∂jn̂× ∂kn̂) (1.16)

Ee = ℏn̂ · (∂in̂× ∂tn̂) . (1.17)

These emergent fields produce measurable phenomena such as the Topological Hall ef-
fect, ulta-low current drive of skyrmions, and emergent electromagnetic induction, making
skyrmions objects easily controllable and manipulable for future spintronic applications
[38]. Since the emergent fields measure the solid angle for an infinitesimal loop in space
and space–time, n̂ = (r, t), ∂i = ∂ri , and εijk is the totally antisymmetric tensor. In-
tegration of the skyrmion spin over the unit sphere associates one quantum of emergent
magnetic flux with each skyrmion tube, where∫

Be dσ = 4πℏ,

=
−2πℏ
|qe|

.
(1.18)

The convention used here associates 1/2 (-1/2) charges with the conduction electrons of the
majority (minority) bands. Because the emergent flux that defines skyrmions is quantized,
their nucleation and termination is mediated by emergent magnetic charges that must also
be quantized [59]. These emergent magnetic monopoles (MP)/ antimonopoles (AMP) can
be identified as the source terms for the emergent magnetic field. As a result, any changes
in topology are therefore thought to take place via emergent magnetic (anti)monopoles
along the tubes depth, which act as sources or sinks for the quantized emergent magnetic
skyrmion flux. In particular, the formation of monopoles at skyrmion branching and seg-
menting points and their motion along the tubes length in response to changes in external
parameters, such as field or temperature conditions, have been proposed to drive a change
in skyrmion topology through the unwinding of individual skyrmions [121, 60] and the
zipping/unzipping of neighboring skyrmion tubes [59, 122, 60]. The emergent magnetic
(anti)monopoles can be identified with real-space Bloch point magnetic defects which con-
stitute topological singularities represented by points of vanishing magnetization where the
magnetization rotates by 180 degrees in the space of a single spin. Since total emergent
charge is conserved, skyrmionic transitions can only take place in three dimensions when
emergent (anti)monopoles are either pinned to a material defect or jammed in place and
unable to overcome the activation energy required to travel to the material surface or reach
an oppositely-charged monopole to annihilate [123, 122, 69].
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While skyrmions may conceptually extend uninterrupted along the entire depth of the
crystal, real systems at non-zero temperatures contain a finite density of defects which
disrupt the tubes propagation. Topological defects, like Bloch point magnetic defects, nat-
urally occur on material defects and surfaces but are otherwise energetically-unfavorable
in skyrmion-hosting material. These pre-existing topological defects may be associated
with impurities or site-occupancy disorder which introduces local variations in exchange
parameters. The variations may act as nucleating and pinning defects, stabilizing jammed
states comprised of labyrinth and orientationally disordered chiral phases [112]. In the
absence of such defects, there exists a finite energy barrier for (anti)monopole creation,
owing to the discontinuous change in topology. Tuning the free energy contributions of
external parameters to exceed the original spin-exchange interaction energy overcomes the
topological energy barrier for MP/AMP creation, serving as an additional pathway for
defect creation[124]. These free energy contributions may be thermal or field induced,
creating (anti)monopoles in opposing pairs within the system or uniquely at the system’s
surface. While MP/AMP nucleation and propagation is known to stabilize thermody-
namic skyrmion phases through thermal fluctuations, this mechanism was more recently
used to explain the disentangling of jammed states during a magnetic field rotation ordering
sequence [112]. Here, the proliferation of the MP/AMP pairs along various angular trajec-
tories is thought to break up labyrinth states, with the final order of the skyrmion phase
determined by the degree to which the monopoles propagated along the depth of the ma-
terial. The final ordered phase would therefore be marked by the complete MP/AMP pair-
annihilation or surface annihilation, leaving behind minimal (anti)monopole defect densi-
ties. In addition to magnetic field orientation, magnetic field magnitudes which are detuned
above or below the ideal skyrmion value may also nucleate (anti)monopoles. Skyrmion
annihilation upon field-increasing and field-decreasing conditions is thought to occur via
disparate transition pathways, nucleating segmentation and branching monopoles, respec-
tively [59].

A variety of Bloch-point mediated topological structures have been proposed and ob-
served, ranging from interrupted segmenting and branching skyrmion string structures
[59, 60, 122], to localized skyrmion filaments [125]. In the latter case, these localized
skyrmion states may manifest as chiral bobbers [80] and magnetic torons [118, 109, 125]
which represent surface-localized skyrmion stacks with continuously reducing diameters
and finite penetration depths marked by termination on a Bloch point, and skyrmion
fragments cupped by Bloch points on either end, respectively. However, existing stud-
ies of skyrmions and their defects are primarily limited to micrmomagnetic investigations
and static imaging measurements in confined systems. Two-dimensional examinations
of skyrmions have revealed a myriad of in-plane skyrmion string deformations including
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elongated structures [59] and bent skyrmion strings which terminate on the surface [92]
or form at edges [69], in addition to chiral bobbers at the surface of FeGe lamellae [80].
Three-dimensional imaging in confined systems has revealed axial modulation of skyrmion
tubes [70], while a recent study [126] confirmed the presence of interrupted and merging-
type skyrmion strings in a sparsely populated micrometer sized thin plate needle-shaped
sample of Mn1.4Pt0.9Pd0.4Sn using scalar magnetic X-ray tomography. The observations,
however, are limited to individual skyrmion strings in a sample thickness only a few times
the skyrmion tube diameters, whose confined geometry and thickness gradient fundamen-
tally alters the skyrmions shape and behaviour; bulk lattice skyrmion behavior has yet to
be experimentally observed.

1.4 Bulk Co-Zn-Mn Skyrmion Compounds

Practical implementation of skyrmions in future spintronic devices entails their stability
and efficient control over a wide range of temperatures and fields, most notably room tem-
perature and zero field. Integral to this, is a complete understanding of their dynamics
and stabilization through defects in three dimensions as there should exist some optimal
thickness and defect density for skyrmion stability and manipulation in three dimensions.
While thin films have been shown to exhibit enhanced skyrmion equilibrium pockets owing
to destabilized conical phases [76, 77], thicker regimes have revealed drastically reduced
skyrmion drive current densities and impurity effects [91]. Defect-related pinning has simi-
larly shown to play a critical role in skyrmion dynamics and stability, with disorder effects
mediating a wide range of exotic phenomena and stabilization pathways. In particular,
static persistent skyrmion signals/memory effects, and extended lifetimes have been as-
sociated with magnetic defects/disorder [118], whereas pinning has been shown to both
facilitate and inhibit dynamics [46, 127, 128, 129, 130, 122], particularly topological tran-
sitions [59, 122, 60]. This competition between disorder and elasticity generates a complex
energy landscape which promotes diverse skyrmion states with exotic dynamics. Charac-
terization of the interplay of topological stability and skyrmion dynamics with disorder
could be used to establish ideal defect densities for enabling skyrmion reorientations and
enhancing stability, guiding the tailoring of future material parameters for spintronic ap-
plications.

The chemically doped CoxZnyMn20−x−y compositional series presents a unique platform
to investigate skyrmion behaviour, owing to it’s interplay of magnetic anisotropy, site dis-
order, and frustration, which generates diverse topological phases and lattice forms across
thermal equilibrium and metastable minima in the free energy landscape at a variety of
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temperatures including room temperature [116, 99, 56, 75, 131, 132]. The Co-Zn-Mn alloys
belong to the β-Mn-type family of cubic chiral magnets [75], with a different chiral space
group from that of the traditional B20-type skyrmion-hosting compounds [40]. This family
of intermetallics belongs to the P4132 or P4332 cubic chiral space group, depending on its
handedness [133], and exhibits diverse properties and skyrmion phases depending on the
degree of Mn-doping. The pure β-Mn compositional family has a unit cell which consists
of 20 atoms distributed across 2 crystallographic sites; Co atoms occupy the 8c site, while
and both Co and Zn atoms occupy 12d sites [133, 75, 134]. The chemically substituted
ternary Co-Zn-Mn alloy system has been reported to be stable in a wide composition
range CoxZnyMn20−x−y from Co10Zn10 to Mn20, with Tc dependent on the composition
ratio [134]. The end β-Mn system is a well established spin liquid arising from magnetic
frustration amongst antiferromagnetically coupled Mn spins in the hyperkagome network
of the 12d sites [135, 136]. The other end member binary Co10Zn10 alloy is a ferromagnet
with Tc around 460 K, stabilizing a helimagnetic ground state under ambient conditions
with a magnetic periodicity of 185 nm [75]. Partial substitution of Mn produces a rapid
reduction in the magnetic modulation period and the paramagnetic-to-helimagnetic tran-
sition temperature, Tc [116], developing a spin-glass state in an x-region 3 < x < 6 due
to a combination of magnetic frustration inherent to β-Mn and magnetic disorder from
competing ferromagnetic and antiferromagnetic Co and Mn spins [116, 137, 138]. Notably,
Co8Zn8Mn4 hosts a thermal equilibrium phase just above room temperature, making it an
ideal candidate for spintronic applications under ambient conditions.

The properties of the chiral spin textures are set by the interplay of the magnetic
energy terms which govern the system, in addition to various contributions such as dis-
order and shape effects. Tuning this complex energy landscape may be accomplished via
changes in temperature, magnetic field, and/or chemical substitution, revealing a variety of
skyrmion phases and lattice types. For example, the relative influence of the ferromagnetic
exchange, DM, and anisotropic interactions can be varied via the manipulation of degrees
of magnetic disorder through chemical substitution. Mn-doping in the Co-Zn-Mn inter-
metallic series has been shown to influence magnetic disorder, frustration and anisotropy,
mediating skyrmion lattice transitions between triangular, rhombic, square, and disordered
types. In particular, the cooperative enhancement of magnetocrystalline anisotropy and q
value drives a triangular-square structural lattice skyrmion transformation in Co7Zn7Mn6,
Co8Zn8Mn4, and Co9Zn9Mn2 upon cooling [116, 99, 115] (Fig. 1.4). Magnetic frustration
arising from the antiferromagnetic correlations of Mn spins dominates at lower tempera-
tures, producing spin-glass states in Co7Zn7Mn6 and Co8Zn8Mn4 compounds, in addition
to the stabilization of a disconnected thermal equilibrium phase in Co7Zn7Mn6 [139, 140]
far below Tc.
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Figure 1.4: Summary of temperature-magnetic field (T-H) phase diagrams for equilibrium
and metastable skyrmion states for (b) Co10Zn10, (c) Co9Zn9Mn2, (d) Co8Zn8Mn4, and
(e) Co7Zn7Mn6, produced from measurement processes illustrated by the state diagrams
in (a). The following notations are used: H, helical; C, conical; F, ferromagnetic; E,
equilibrium; M, metastable; T, triangular; R, rhombic; S, square; SkX, skyrmion crystal;
DSk, disordered skyrmions; and RSG, reentrant spin glass. Reproduced from [116].

Rapid field-cooling (FC) processes, by way of the equilibrium skyrmion phase pocket,
have been shown to stabilize metastable skyrmion states across triangular, rhombic, and
square lattice types. Similar to glass transitions in liquids, these skyrmions exist in
quenched states which kinetically avoid the skyrmion-to-conical transition pathway, form-
ing metastable skyrmion strings. Metastable skyrmion phases have been universally found
in skyrmion materials spanning MnSi to Cu2OSeO3 [100, 141, 122, 59, 118, 110, 142, 98, 38],
exhibiting disorder dependent cooling rates and lifetimes governed by both the height of
the decay energy barrier and the density of pinning sites [141, 101]. Since this state is not
the energy minimum of the system, and so has a finite lifetime, there exists a topological
energy barrier that must be overcome for skyrmion annihilation processes. This energy
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barrier scales with temperature, leading to observed skyrmion lifetimes in excess of a week
[143, 141], with much greater lifetimes predicted theoretically [101, 116]. Defect pinning
also serves to enhance skyrmion lifetimes and decrease cooling rates by inhibiting the pro-
liferation of magnetic Bloch points—the mechanism by which skyrmions are proposed to
decay. Whereas nominally disorder-free systems such as MnSi require rapid cooling rates
on the order of hundreds of Kelvin per second to minimize any thermal fluctuations which
could overcome the activation energy of topological transition between skyrmion-lattice
and conical states [100, 141], doped systems such as Cu2OSeO3 and the Co-Zn-Mn se-
ries require only moderate cooling temperatures on the order of Kelvin per minute, owing
to enhanced skyrmion stability through their pinning to impurities/defects [99, 71, 101].
Moreover, metastable supercooled states belonging to the Co-Zn-Mn alloys have also been
demonstrated in thin-plate samples, showing L-shaped elongated skyrmions [117]. Similar
exotic skyrmion structures in thin-plate Co-Zn-Mn skyrmion samples have been observed
spanning smectic liquid-crystalline arrangements of skyrmions in Co8.5Zn7.5Mn4 [144], to
in-plane string defects in Co9Zn9Mn2 [92], to skyrmion chains and meron-antimeron square
lattices in Co8Zn9Mn3, stabilized by in-plane shape anisotropy [56]. Together, this collec-
tion of exotic defects, structures, dynamics, and tunable energetics makes the Co-Zn-Mn
a rich platform from which to study, guiding the future development and manipulation of
skyrmions for spintronic applications.
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Chapter 2

Theoretical Formalism and
Experimental Techniques

2.1 The Neutron and Its Interactions

The neutron possesses a unique collection of properties that endows it with extraordinary
sensitivity and novel probing abilities, making it an ideal test particle of fundamental/exotic
physics and an unmatched tool for material investigations. The neutron is a composite spin
1/2 particle, which has a mass of 1.674928(1) × 10−27kg and carries a magnetic moment
of -1.9130427(5) nuclear magnetons. While electrically neutral, the neutron is composed of
charged quarks with an asymmetric distribution which generate a radial charge distribu-
tion [145] that lends itself to fundamental studies of nucleon dynamics [145]. Free neutrons
are unstable with a lifetime of approximately 15 minutes, after which time they undergo β
decay into a proton, an electron, and an antineutrino, mediated by the weak interaction.
Studies of the neutron lifetime have powerful implications for physics beyond the standard
model, with measurements ranging from verification of Big-bang nucleosynthesis (BBN)
through predictions of primordial light element abundances [146], to examinations of V-
A structure of the weak interaction and the quark-mixing Cabibbo–Kobayashi–Maskawa
(CKM) matrix [147]. In matter, neutrons are subject to short-range nuclear forces, scatter-
ing from nuclei primarily through the strong force. Longer range dipole-dipole interactions
between the magnetic moment of the neutron and unpaired electrons produce magnetic
scattering interactions on the same order of magnitude as the nuclear contribution [148].
We will neglect contributions from additional electromagnetic interactions as they are typ-
ically two orders of magnitude smaller than the magnetic dipole interaction. Neutrons
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therefore provide experimental access to all of the four fundamental forces, with promise
of sensitivity to a fifth force [149], spanning an extraordinary range of lengthscales and
timescales with a unique hierarchy of energies. This collection of properties makes neu-
trons an invaluable tool for interferometric, spectroscopic and scattering investigations of
fundamental physics and quantum materials, unrivaled in their sensitivity and diversity of
interactions. Existing studies encompass foundational tests of quantum mechanics, such
as entanglement [150, 151] and the 4π symmetry of fermions [152, 153], to hypothetical
beyond-standard-model interactions and dark sector models [154, 155, 156], to explorations
of emergent and exotic magnetism [157, 158, 59]. Additionally, neutrons have demonstrated
unique promise in quantum information models of dynamical diffraction, enabling new ap-
proaches to complex diffraction problems and the design of novel neutron optical elements
[159, 160, 161, 162, 163].

According to the wave-particle duality, the de Broglie wavelength of the neutron with
mass m and momentum p, is given by:

λ =
h

p
, (2.1)

where h represents Plank’s constant. Alternatively, a neutron with wavevector k = 2π/λ
may be expressed in terms of its momentum,

p = ℏk, (2.2)

where ℏ = h/2 is the reduced Plank’s constant. The energy of the neutron can then be
expressed in terms of these quantities as:

E =
p2

2m
=

h2

2mλ2
=

ℏ2k2

2m
. (2.3)

Neutron matter wave fields Ψ(r, t) can be described by the Schrödinger equation:

HΨ(r, t) =

(
− ℏ2

2m
∇2 + V (r, t)

)
Ψ(r, t) = iℏ

∂ψ(r, t)

∂t
, (2.4)

where H is the Hamiltonian and V (r, t) is the external potential. This is a linear equation
which can be solved in free space using the plane wave Ansatz

Ψ(r, t) = ei(k·r−ωt), (2.5)

where ω = E/ℏ. For purposes of this thesis, we will be concerned only with stationary
situations in which there are time-independent potentials, V (r). In these cases, equation
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2.4 can be solved using the method of separation of variables, where Ψ(r, t) = ψ(r)ψ(t).
This yields solutions of the form

Ψ(r, t) = ψ(r)e
−iE
ℏ t, (2.6)

where ψ(r) satisfies the the time-independent Schrödinger equation given by:(
− ℏ2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r). (2.7)

The exponential term represents the unitary time-evolution operator. This equation is a
Helmholtz scalar wave equation which can be re-written in close mathematical analogy to
the optics of electromagnetic waves as

∇2ψ(r) +K2(r)ψ(r) = 0. (2.8)

K(r) is the spatially dependent wavevector in the region of the potential, defined by

K2(r) =
2m

ℏ2
[E − V (r)] . (2.9)

As mentioned earlier, the neutron interacts via all four fundamental forces, therefore a
variety of potentials may exist in equation 2.7 ranging from gravitation to Coriolis [164].
Neutron-matter interactions, are typically dominated by short-range strong nuclear forces
which can be described by the point-like Fermi pseudopotential for each nucleus at site rj,
such that

Vnuc(r) =
∑
j

2πℏ
m

bc δ (r − rj), (2.10)

where δ is the three-dimensional Dirac delta function. Here, the true strong neutron in-
teraction is replaced by a small interaction potential which leads to a correct s-scattering
amplitude in the first Born approximation. This approximation is valid for thermal neu-
trons in which the range of the strong nuclear force, which roughly corresponds to the
nuclear radius R and is typically on the order of fm, is much smaller than the de Broglie
wavelength, λ. In such cases, the scattering interaction is characterized by a single param-
eter, bc, which describes the scattering length. Expanding this potential to a real material
which consists of an assembly of nuclei— averaging over a macroscopic volume—the po-
tential scales to an effective optical potential,
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Vnuc(r) =
2πℏ2

m
bcN, (2.11)

where N is the atom density and bc is the scattering length density of the material. Note
that in the case of absorption processes, the scattering length density becomes complex
valued. This optical potential generates a material index of refraction at a vacuum-solid
interface as governed by Snell’s Law,

n =
k

k0
=

v

v0
=
sin(γ0)

sin(γ)
, (2.12)

where an incident ray of wavevector k0 makes an angle γ0 with the surface normal, and
the refracted ray inside the medium of wavevector k makes an angle γ with the surface
normal. Expressing this equation in terms of material properties, given the definition of k
in equation 2.9 yields:

n =

√
1 − V

E
, (2.13)

This can also be directly seen from a first order expansion of the refractive index n, in
terms of neutron momentum,

n =
p

p0
=

√
p20 − 2mV0

p20
. (2.14)

Neutron optical potentials are typically on the order of 100 nV, while cold neutrons have
kinetic energies on the order of 10 meV. Using Ekin = 106 × V0, the first order expansion
of equation 2.14 yields

n ≃ 1 − V0
2Ekin

= 1 − λ2Nbc
2π

. (2.15)

From here, we observe that the refractive index n is very close to unity, with n ∼ 1−10−6 for
cold neutrons and n ∼ 1−10−5 for thermal neutrons. This is in stark contrast to photons in
the optical regime, which exhibit refractive indices upwards of 1.5 for insulating materials
[164]. While this property makes refraction at large angles unfeasible, the exceptional
precision and control of neutron deflection at small angles is realizable, through refracting
prisms for example [165, 166]. Total external reflection at surfaces for angles less than the
critical angle θc is another consequence of equation 2.15. For thermal neutrons, this angle
is typically less than 0.3◦, while for ultra-cold neutrons the critical angle can reach 90◦

[164], enabling neutron storage and trapping methods for times which are only limited by
the neutrons β decay lifetime [167]. These devices have expansive applications for particle
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physics and cosmology, namely involving precision measurements of the neutron lifetime
and electric dipole moment (EDM) [147, 168, 169].

Until now, we have excluded magnetic-based neutron interactions, however, the rela-
tively large intrinsic magnetic moment of the neutron couples to unpaired electrons from
the magnetic atoms. In magnetic materials, the neutron interacts with the magnetic in-
duction field, B, via its magnetic dipole moment, µ, by

Vmag(r) = −µ ·B(r) = −µσ ·B(r), (2.16)

where we have expressed magnetic dipole moment of the neutron in terms of the Pauli spin
operator σ = (σx, σy, σz). Expanding equation 2.16 in terms of the Pauli spin matrices
and magnetic dipole momentum µ = −γµNσ, where µN is the nuclear magneton and
γ = 1.832 × 108 T−1s−1 is the neutron gyromagnetic ratio, yields:

Vmag(r) =
−ℏγ

2
(σxBx + σyBy + σzBz) , (2.17)

where the Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.18)

This potential underpins the magnetic-neutron interaction, serving as the basis for mag-
netic neutron scattering as we shall see in section 2.1.4.

2.1.1 Quantum Phase Shifts

Phase is a universal quantum property of a wavefunction, required for the existence of
interference and diffraction effects. The neutron wavefunction can be modified in phase
by various means, involving nuclear, magnetic, electric, or gravitational potentials. This
feature serves as the basis of perfect crystal neutron interferometry and grating interferom-
etry techniques [170, 171, 172, 173, 174, 175, 176, 177, 178]. The quantum phase Φ(x, t) of
a matter wave evolving in space and time can be defined according to the Feynman-Dirac
path integrals along trajectories defined in classical mechanics. This is equivalent to the
eikonal approximation used in geometrical optics, which states that neutron rays are the
classical trajectories of neutrons, and is valid for neutrons when the potential is slowly
varying compared to the neutron wavelength. The neutrons phase can then be expressed
as the path integral over the Lagrangian, L, in space-time, given by
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Φ(x, t) =
1

ℏ

∫
Ldt′. (2.19)

The Lagrangian, L, is related to the Hamiltonian H by a Legendre-transformation,

L = p · v −H. (2.20)

Substituting equation 2.20 into equation 2.19 yields

Φ(x, t) =
1

ℏ

∫ x

x0

p · ds− 1

ℏ

∫ t

t0

Hdt′ =

∫ x

x0

k · ds−
∫ t

t0

ωdt′. (2.21)

Here, we consider only energy conserving potentials and ignore the second term which
results in a global phase. A stationary phase shift is represented by a potential V (x),
which changes the momenta in accordance with energy conservation as

(p+ δp)2

2m
+ V (x) = E ⇒ v · δp ≈ −V (x) (2.22)

given a the “golden rule” of small perturbations. The relative phase shift ∆ϕ, which
corresponds to the induced phase shift in the material relative to the phase shift in free
space, becomes

∆ϕ =
1

ℏ

∫ t

t0

δp · vdt′ ≈ −1

ℏ

∫ t

t0

V dt′ = − 1

ℏv

∫ x

x0

V dx. (2.23)

As per convention, we shall use ϕ to denote ∆ϕ. Equivalently, using equation 2.11 for a
generalized scattering length, the phase shift can be expressed as

ϕ = λ

∫
dl⟨b⟩, (2.24)

where ⟨b⟩ is the scattering length density of the sample. Therefore the nuclear phase shift
that a neutron accrues when traveling along the ẑ direction through a material is given by

ϕ =
2πNbcD

kz0
. (2.25)

The corresponding evolution of the neutron wavefunction is found by integrating over the
potential as follows:

Ψout(z) = ψin(z)

∫ ∞

−∞
e

−i
ℏ

∫ t
t0

V dt
dkz = ψin(z)

∫ ∞

−∞
e−iNbcD2π

kz dkz ≈ ψin(z)e
−iNbcD2π

kz0 = ψin(z)eiϕ.

(2.26)
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Similarly, the phase accumulated by a neutron with magnetic dipole moment, µ, in a
magnetic field, B, is given by

ϕ = λ⟨bM⟩
∫
dl σ ·B. (2.27)

We can consider the case of the neutron spin aligned parallel and anti-parallel to the
external magnetic field, in which case equation 2.27 reduces to

ϕ = ±uNBmnλl

2πℏ2
, (2.28)

where the ± sign is due to Zeeman splitting of the spin-up and spin-down states, mn is the
mass of the neutron, and l is the path length through the magnetic field. The corresponding
unitary operator which describes the time evolution of the neutron spin in a magnetic field
can be computed from equations 2.16 and 2.23, as

Ûm = e
− i

ℏ
∫ t
t0

Vmag dt′
= ei

γt
2
σ·B. (2.29)

Alternatively, the operator can be computed from the exponential term in equation
2.26,

Ûm = T {e−i
∫
H dt′}, (2.30)

where T {...} denotes the time-ordered product. Taking the first order term in the Dyson
series expansion of equation 2.30 yields the infinitesimal time evolution operator:

Ûm = 1 − iHdt. (2.31)

2.1.2 Topological Phase Shifts

Topological states, characterized by phase singularities, such as vortices, are inherent to
any wave phenomena spanning light [179, 180, 181, 182, 183] to electrons [184, 185]. These
states manifest helical wavefronts with phase singularities that describe a quantized form
of azimuthal motion, known as orbital angular momentum (OAM). Therefore, just as
quantum particles, such as photons and electrons, can possess linear and spin angular
momentum, they are also capable of hosting a quantized topological genre of momentum,
OAM. Note that this form of OAM is not to be confused with the OAM associated with the
motion of electrons around the atomic nucleus in atoms and molecules [186]. This twisted
property can be expressed as an azimuthal phase dependence in which the wavefunction
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varies as eilϕ, yielding quantized values of OAM equal to lℏ, where l is the OAM value
which corresponds to the topological charge of the centre phase singularity and ϕ denote
the azimuth around the propagation axis [186, 187]. The topological charge of the phase
is given by

l =
1

2π
×
∮
C

∇φ(r)dr, (2.32)

which counts the number of 2π phase jumps for a tiny closed loop surrounding the singu-
larity, C. This phase singularity produces a ring-like “doughnut” intensity pattern upon
propagation to the far field [186].

Figure 2.1: Illustrations showing the conversion from incident plane wavefronts to helical
wavefronts using a spiral phase plate. Adapted from [188].

These states present novel avenues for the generation of selective probes, providing
unprecedented access to structures and interactions spanning nuclear physics to vision
sciences [189, 190, 191, 192, 193]. For neutrons, the realization of OAM states provides
a new degree of freedom and subspace from which to explore fundamental interactions
and topological material properties, spanning gravity to magnetism. This mode also of-
fers topological protection from noise, inspiring various applications for non-trivial neutron
propagation techniques and quantum information science. The coherent control of neu-
tron OAM holds special promise for the study of topological structures and excitations
in materials. Here, the coherent diffraction and interference of neutron OAM states from
topological material states across imaging and scattering techniques could serve as a direct
and novel route of characterizing defect densities, topological charge, correlation lengths,
and phase transitions for a myriad of systems. Moreover, examining the dynamics of
topological-to-neutron sample interactions and incorporating spin couplings could unveil
exotic interactions and excitations such as magnon-OAM transfer and controlled rotations
of bulk nanometric magnetic structures.
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The generation of neutron OAM states was recently accomplished through a spiral
phase plate (SPP) in which the thickness of the device varies uniformly as a function of
the plate’s azimuthal angle, ϕ, as h = h0 + hsϕ/2π, where h0 is the base height and hs is
the step height (see Figure. 2.1) [194]. Given equation 2.25, the azimuthal phase shift can
be calculated as

ϕ = −Nbcλ (h0 + hsϕ/2π) . (2.33)

The wavefunction after passing through the SPP, Ψ′, can therefore be expressed as Ψ′ =
eiϕΨ. Using this technique, the average OAM of the beams was measured for various topo-
logical charges using a perfect-crystal neutron interferometer to image the phase profile
[194]. Since then, numerous demonstrations of neutron OAM have been proposed and
performed [195, 196], including generations of spin-orbit coupled neutron beams and their
lattices [197, 198]. These beams present unique opportunities to study quantum materials
which exhibit similar correlations between spin and OAM, such as magnetic topological
materials like skyrmions. However, existing techniques entail the manipulation of the av-
erage neutron OAM value, with the creation of a neutron state with helical wavefronts
dominated by a single OAM value remaining elusive. Moreover, current generation tech-
niques suffer limitations in the production of OAM lengthscales below hundreds of microns,
severely restricting the accessible lengthscales that can be probed and making these tech-
niques incompatible with nanometric studies of quantum materials. Overcoming these
challenges is critical to realizing tunable implementations for quantum material character-
ization applications.

2.1.3 Neutron Scattering

Neutron scattering is a powerful experimental technique ideally suited for structural and
dynamical studies of condensed matter by way of the neutrons nuclear/magnetic properties
and its broad tunability in energy. The weak interactions and electric neutrality of the
neutron enables high penetration depths into materials, making neutron scattering a non-
destructive bulk probe of materials unparalleled by X-rays or electrons. While this property
is clearly desirable for studies of quantum materials, it is also quite attractive for the
fabrication of complex sample environments. Since neutrons penetrate robust materials
such as silicon, quartz, and sapphire, and heavy elements like aluminum and titanium,
we may utilize demanding and bulky setups with sizeable amounts of material in the
beam, such as in cryogomagnets and rheological devices—setups that are non-trivial for
conventional electron and X-ray diffractive techniques. The implementation of these vast
sample environments enables in situ real-time investigations of soft and hard materials
spanning temperatures from 35 mK - 2270 K, magnetic fields exceeding 13 T, and a range
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of high-pressure environments, electric fields and current pulses, and internal stresses,
amongst others.

Since the neutron interacts weakly with matter, each neutron normally only scatters
once in the sample volume such that it is strong enough to be measured, while still being
weak enough so as to not disturb the system too severely. The de Broglie wavelength of
thermal neutrons is on the order of the interatomic distances in solids, while its energy and
momenta match the atomic and magnetic excitations in condensed matter, making inter-
ference effects possible [199]. The high tunability of the energy of neutrons through mod-
eration processes, spanning 0.1 meV to 100 meV for cold to thermal neutrons, respectively,
[200], enables nuclear and magnetic structural investigations across angstrom to microm-
eter lengthscales. While discussions of neutron scattering applications to soft matter are
excluded in this thesis, it should be noted that small angle scattering techniques are partic-
ularly suited for microstructure investigations of soft materials [201, 202, 203, 204]. These
studies range from characterizing the structural parameters of particulate systems like sur-
factants and polymers [205], to uncovering diffusive motions of biological macromolecules
[205]. Furthermore, the isotopic sensitivity of the neutron enables contrast matching stud-
ies through selective deuterium labelling which may be used to highlight structural details
or tag molecules to study dynamic processes [205] such as phase behavior and molecular
conformation, in both solutions and the bulk [206]. Therefore, neutrons are able to provide
deep insights into the nuclear and magnetic structural and dynamical properties of bulk
materials, endowing it as a highly versatile tool across a wide range of systems and sample
environments.

Scattering Geometry and Cross-sections

A typical neutron scattering experiment involves preparing an incident beam of neutrons
with a well-defined wavevctor ki and flux ϕi(ki), through various collimation and monochro-
mating techniques, to scatter from a sample of interest. The scattered neutron properties
such as energy and momentum may be analyzed to deduce the structural and dynamical
properties of the interacting sample. The incident neutron flux is defined as the number of
neutrons, n, passing through a unit area per second (typically expressed in n/cm2s), with
the surface area being perpendicular to the incident neutron beam. This can be nicely
represented by the differential scattering cross-section, which describes the phase space
density of the scattered current. Disregarding changes in energy and momentum, we can
define the systems collective ability to scatter neutrons using the total neutron scattering
cross section given by σtot = 1/ϕi (which has units of area). However, the interaction of
the beam with the sample will scatter the neutrons into a small volume of the phase space,
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at a wavevector kf . As a result, we must introduce the differential scattering cross-section,
which is defined by the the ratio of this scattered current density to the incident neutron
flux density and incorporates the angular dependence of the scattered state in terms of a
solid angle dΩ in the direction θ and ϕ. For elastic scattering, the differential scattering
cross-section is defined as

dσ

dΩ
=

C

ηΦ∆Ω
, (2.34)

where C is the measured count rate at the detector which subtends a solid angle of ∆Ω,
with an efficiency η. For inelastic scattering, we use a double differential cross-section,

d2σ

dΩdEf

=
C

ηΦ∆Ω∆Ef

, (2.35)

which describes the scattering interaction in terms of a final energy, Ef , and the interval
of energy transfer in the detector, ∆Ef . The scattering geometry, and various scattering
processes are illustrated below in Fig. 2.2. The phase space element in a beam can then be
defined as the product of the collimation solid angle, the width of the energy distribution,
and the beam cross-section.

Figure 2.2: Schematics depicting typical neutron scattering modalities, such as elastic
neutron scattering (a), and inelastic scattering with neutron energy loss (b) and gain (c).
Reprinted with permissions from [207].

The changes in neutron energy and momentum are governed by conservation laws,

Q = ki − kf , (2.36)

E = Ef (ηf ) − Ei(ηi), (2.37)

E =
ℏ2

2mn

(k2
i − k2

f ), (2.38)
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which determine the scattering triangles of Fig. 2.2. An intuitive understanding of neu-
tron diffraction from crystalline materials may be given in the context of Bragg’s Law,
in which constructive interference of waves scattered from adjacent planes of atoms at a
scattering angle, θ, only occurs when the path length difference is an integer multiple of
wavelength, λ. Bragg’s Law is mathematically expressed as nλ = 2dsin(θ), where n is an
integer and d is the lattice plane spacing. Alternatively, this may be derived by consid-
ering the scattering triangle given by Q = 4π

λ
sin(θ), in combination with the condition

for constructive interference given by Q d = 2πn, where Q is perpendicular to the two
scattering planes. Neutron diffraction therefore produces Bragg peaks which correspond
to each set of lattice planes, denoted by three Miller indices (h, k, l), yielding information
on the microscopic structure of the material. These need not be limited to atomic-scale
structures; neutrons can diffract from a variety of periodic nuclear and magnetic struc-
tures, exceeding micrometer lengthscales, limited by the lower energy limit of conventional
moderation processes.

The total cross-section, σtot, is therefore obtained upon integration of equations 2.34
and 2.35:

σtot =

∫
dσ

dΩ
dΩ =

∫∫
d2σ

dΩdEf

dΩdEf =
C

ηΦ
, (2.39)

It should also be noted that in this discussion we have considered ideal beams of neutrons,
whereas in real-life experiments we must consider distributions in neutron energy and
momentum, centered on some mean value. Optimization of these beams depends on the
competition between the resolution requirements and flux/counting time considerations of
the experiment. Too strict of collimation, and therefore resolution, will lead to a fruitless
loss of neutrons and degradation of statistics. Conversely, while a reduction in collimation
offers enhancements in flux, the loss in instrument resolution can smear the signal. Recent
advancements in high-transmission neutron optical focusing methods have been made using
micro-machined triangular array refractive prisms [208], however, these devices are not yet
ready for widespread implementation on SANS beamlines.

Scattered State

This section largely follows from Sears [148]. The scattered neutron state can be computed
as a simple solution of the Schrödinger equation involving perturbation theory, as described
here. We begin with equation 2.4. Considering only time-independent potentials, we
arrive at stationary solutions of the form shown in equation 2.6. The task of determining
the scattered state therefore equates to finding the eigenfunctions, ψ(r), which satisfy
equation 2.7. Since the incoming and outgoing neutron particles are free, we can neglect
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bound states of the potential. The incoming neutron wavefunction of the state |k⟩, with
wavevector k, can be described by a complex plane wave Ψi(r) = ei(ki·r). This follows from
the time-independent version of equation 2.5 with the normalization factor excluded since
the differential cross-section depends only on the ratio of the scattered wave amplitude to
that of the in-going wave. When the interaction potential is adiabatically switched on, the
scattered state, Ψk, can be constructed as an integral equation using the retarded Green
function, G, and transition operator, T , as

Ψk(r) = (1 +GT ) |k⟩. (2.40)

Note, the transition operator determines the transition rate from the incoming plane wave
state to the scattered state. Here, the free particle energy dependent outgoing Green’s
function, G, is given by

G = (E + iε−H0)
−1 , (2.41)

where H0 represents the neutron free-particle Hamiltonian satisfying

H0|ϕ⟩ = E|ϕ⟩. (2.42)

Here, |ϕ⟩ is the zero mode eigenket of H0 with the energy eigenvalue E. Since H0 has
a continuous spectrum that will include E, we can express E as a complexified energy
E + iε. The exact purpose of this “iε” prescription becomes apparent when solving the
Green’s function in momentum space using an integral representation over k′. In doing
so, a singularity is present when k′2 = k2. Performing contour integration and taking the
limit as ε → 0 shifts the poles slightly off of the real k′ axis, distorting the contour to a
semicircle on which the wavefunctions vanish. As a result, the integral is given as a sum
of the residues at the various poles.

We recognize equation 2.40 as a Lippmann-Schwinger equation which has a unique
solution satisfying the given boundary conditions of the incident plane wave wavevector,
k, and purely outgoing scattered waves. Expressing 2.41 in the coordinate representation
and taking the limit as ε→ 0+, we get

⟨r|G|r′⟩ = − m

2πℏ2
eik|r−r′|

|r − r′|
. (2.43)

This equation represents an outgoing spherical wave of the form G(r) = eikr

r
; incoming

spherical waves, identical to equation 2.43, with an opposite sign in their exponent are
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produced in the limit as ε → 0−. Expressing the scattered wave, Ψk, in the coordinate
representation yields

Ψk(r) = ψk(r) +

∫
dr′⟨r|G|r′⟩⟨r′|T |k⟩. (2.44)

This represents a coherent superposition of the incident plane wave ψk(r) and a spherical
scattered wave ⟨r|G|r′⟩ from every point r′ where ⟨r′|T |k⟩ ≠ 0. In small angle neutron
scattering geometries where the neutron detector position is much larger than the range of
the potential (i.e., in the limit as r → ∞), we can take the asymptotic behavior of Ψk(r)
for r ≫ r′, reducing the scattered waves, ⟨r|G|r′⟩, to a single spherical scattered wave.
This transforms the above equation to

Ψk(r) = {eik·r + f(θ)
eikr

r
}, (2.45)

which describes the potential as a source of perturbation to the incident plane wave. There-
fore, the scattered state is the sum of an incident plane wave and outgoing spherical wave,
yielding asymptotic and stationary solutions to the Schrödinger equation. The quantity
f(θ) gives the amplitude of the scattered wave relative to the incident wave and is defined
according to

f(θ) = −4π2m

ℏ2
⟨k′|T |k⟩. (2.46)

Thus, the challenge of solving the Schrödinger equation for the scattered state, reduces to
finding the transition operator, T .

Following from the Lippmann-Schwinger equation 2.40, the transition operator is de-
fined as

T = V (1 −GV )−1 . (2.47)

T must then satisfy the equation T = V + TGV , the iterated solution of which gives the
Born series,

T = V + V GV + V GV GV + ... (2.48)

The physical origin of equation 2.48 arises from the fact that the scattered spherical waves
become sources of scattering in their own right. Therefore, the neutron-matter interaction
produces an infinite series of scattering processes and can be expressed as a von Neumann
series of the form

T = V

(
1 +

∑
n

(GV )n

)
. (2.49)
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This can be viewed as a multiple scattering expansion, where the first term represents the
contribution from single scattering. Unlike nuclear interactions, the magnetic interaction
is a weak long-range interaction which may be treated by retaining only the first time in
the expansion, such that T = V and b = − m

2πℏ2V , which follows from equation 2.10. In this
case, the scattering process is so weak that terms with non-zero angular momentum can
be neglected, resulting in a scattered wave which has spherical symmetry with respect to
the scattering centre. This is known as the s-wave or Born approximation and is valid for
thermal/cold neutron scattering processes, excluding neutron reflectivity. The solution for
the scattered wave therefore reduces to the problem of calculating the transition matrix
element of the interaction potential. Operating in the Born approximation and using the
relations for the scattering wavevector given by Q = k′−k, equation 2.46 can be expressed
as

f(θ) =
−m
2πℏ2

∫
d3r′ eiQ·r′ V (r′). (2.50)

Therefore, the scattering amplitude is simply the Fourier transform of the interaction
potential, V (r′). Looking at equations 2.10 and 2.50, we see that f(θ) = −b.

The incoming neutron flux may be expressed as Φin = |Ψin|2v = |A|2v, where v is the
neutron velocity and A is the amplitude of the function. Similarly, the scattered flux at a

distance, r, from the scattering nucleus can be written as Φout = |Ψout|2v = |A|2vb2
r2

. The
total cross-section can therefore be defined as the total flux passing through a sphere of
radius, R, around the nucleus, divided by the incoming flux

σs =
|Ψout|2 v 4 π R2

|Ψin|2v
. (2.51)

This yields the following expressions for the differential scattered cross-section and scat-
tered cross-section:

dσ

dΩ
= |f(θ)|2 = |b|2,

σs =

∫
4π

|f(θ)|2dΩ = 4π|b|2,
(2.52)

where b = b0 + b′ + ib′′ is the scattering length which is a sum of the length associated with
the potential scattering (b0), and the real (b′) and imaginary (ib′′) parts of the resonance
scattering [199]. Alternatively, using equations 2.10 and 2.50 we may define the scattering
amplitude as

A(q) ∝
∑
j

f(q)e2πiq·rj (2.53)
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and express the differential scattered cross-section as

dσ

dΩ
= |
∑
j

−bjeiQrj |2, (2.54)

given the atomic scattering length, bj, from an individual nucleus, j. Note, equation 2.54
is proportional to the scattered intensity, I(Q).

2.1.4 Magnetic Neutron Scattering

The magnetic interaction potential between a neutron in a spin state σ, and a moving
electron of momentum, p, charge −e, and spin s can be described by equation 2.16. The
magnetic flux density, B, may be separated into two contributions: the first is due to the
interaction of the neutron with the spin magnetic moment of the electrons, Bs, and the
second is due to the interaction of the neutron magnetic field with the electric current
produced by the electron’s orbital motion, Bl. The magnetic dipole moment for a neutron
at position rn gives rise to a vector potential at the position of an electron, re, according
to

An(re, rn) = µN × r

r3
, (2.55)

where r = re − rn and r = |r|. The magnetic interaction Hamiltonian from equation 2.16
between a neutron and a single electron, neglecting diamagnetic terms of second order in
µN , becomes

Hint(re, rn) =
1

2m

(
p +

e

c
(Ae + An)

)2
− 1

2m

(
p +

e

c
Ae

)2
+ 2µBs ·Bn

= 2µB

(
1

ℏ
An · p′ + s · (∇×An)

)
,

(2.56)

where Ae denotes the additional contribution to the total vector potential from the sur-
rounding electrons, or an external magnetic field. If Ae is nonzero, then p′ becomes p+ e

c
Ae.

From equation 2.56 we see that the interaction potential is given by

V (r) = −γµN2µBσ ·
[
∇×

(
s× r

r2

)
+

1

ℏ
p× r

r2

]
, (2.57)

which consists of the following spin and orbital contributions to the magnetic flux density:

Bs(r) = −2µB
µ0

4π
∇×

(
σ × r

r3
,

)
(2.58)
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Bl(r) = −2µB
µ0

4π

1

ℏ
p× r

r3
. (2.59)

In order to calculate the magnetic scattering cross-section from a material which con-
tains many unpaired electrons, we must calculate the transition matrix element of the
interaction potential given by,

⟨k1σ1λ1 |V |k0σ0λ0⟩. (2.60)

The first matrix element ⟨k1 |V |k⟩ for a sample containing many unpaired electrons is
given by the sum

∑
i

⟨k1 |V |k0⟩ = 4πγµN2µBσ ·M⊥(k1 − k0), (2.61)

where M⊥ is the magnetic interaction operator given by

M⊥ =
∑
i

{Q̂×
(
si × Q̂

)
+

i

ℏQ

(
pi × Q̂

)
}eiQ·ri . (2.62)

This operator can be expressed in terms of its spin and orbital components as

M⊥ = M⊥S + M⊥L = Q̂×
(
M × Q̂

)
, (2.63)

where

M = MS + ML = − 1

2µB

M (Q). (2.64)

This operator M represents the Fourier transform of the real-space magnetization, M (r),
given by

M (Q) =

∫
M(r)eiQ·rdr (2.65)

and M⊥ is the projection of M(Q) onto the plane perpendicular to Q̂, given by

M⊥ = M −
(
M · Q̂

)
Q̂. (2.66)

This equation corresponds to the magnetic selection rule and shows that magnetic scat-
tering is only sensitive to components of the magnetization that lie perpendicular to the
direction of the momentum transfer, Q. For elastic scattering, the magnetic cross section
is therefore given by

dσ

dΩ
=

(
γr20
2µB

)2

|⟨M⊥(Q)⟩|2 . (2.67)
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Equation 2.67 illustrates the relationship between the the Fourier transform of the sample
magnetization to the scattered intensity, while highlighting the magnetic configurations
that can be accessed from different geometries. For example, on page 10 we noted that
the triangular lattice skyrmion pattern manifests as a hexagon in SANS when probed with
the incident neutron wavevector normal to the lattice plane. Conversely, the conical spin
phase with the wavevector parallel to the magnetic field and incident neutron wavevector
generates no pattern on this plane. Therefore, conical and other chiral magnetic states
whose propagation wavevectors lie parallel to the incident neutron wavevector, must be
probed from perpendicular geometries.

2.2 Magnetometry

Superconducting Quantum Interference Device (SQUID) magnetometry is an extremely
sensitive and invaluable characterization technique that enables the determination of a
samples bulk magnetic magnetic properties, given the direct measurement of its magnetic
flux [209]. Since SQUIDs rely on the measurement of magnetic flux, they are capable
of measuring any physical quantity that can be converted into a magnetic flux, such as
magnetic fields, magnetic field gradients, current, voltage, displacement, and magnetic
susceptibility, making it a versatile interdisciplinary technique spanning the detection of
tiny magnetic signals from the brain/heart in biomagnetism, to the search for axions in
cosmology [210, 211]. In general, the device consists of 3 main components, the pick-up
circuit, the SQUID volume, and the feedback electronics [212]. At the heart of the SQUID
is a superconducting loop interrupted by either one or two Josephson junctions for the
RF or dc SQUID, respectively [210]. In the works presented here, measurements were
performed on a a Quantum Design MPMS 5 RF SQUID. From here on, we will therefore
limit our discussions of SQUID’s to those of RF types. For a single-junction loop driven
by an AC current, the current-voltage curve exhibits discrete steps whose separation is
given by integer multiple of fϕ0, where f is the frequency of the AC current. In an RF
SQUID, the loop is inductively coupled to the inductor of an LC-resonant circuit via a
mutual inductance M, and is driven by an RF current spanning tens of megahertz to
several gigahertz [210], producing an RF voltage which is periodic in the flux applied to
the SQUID. Since the amplitude of the oscillating voltage across the resonant circuit is
periodic in the applied flux, with a period of one flux quantum, Φ0 = h

2e
[213], its detection

capabilities are on the order of ≈ 10−5Φ0 [213, 210].

Measurement of a samples magnetic properties is accomplished via the inductive cou-
pling of the loop to a local external magnetic field, combining the physical phenomena
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of flux quantization and Josephson tunneling [210] to produce an output voltage that is
periodic in the applied magnetic flux. In direct current (DC) operation mode, the sample
is magnetized by a superconducting magnet and is moved through the pick-up coils, induc-
ing a change of a magnetic flux threading the loop, which is converted to a voltage [214].
These detection coils constitute a second-order gradiometer shown in Fig. 2.3, thereby
eliminating noise effects due to spatially homogeneous fields and fields that vary linearly
with distance [213]. This output voltage corresponds to the voltage required to keep the
SQUID flux-locked at the desired working point as a function of distance. From here, the
magnetic moment of the sample is given in emu from comparison to carefully calibrated
voltage curves for a known magnetic sample, yielding a DC magnetization curve M(H).

Figure 2.3: Illustration of a DC SQUID measurement for an RF SQUID showing the
sample movement through the detection coil (orange), the SQUID (black), and the single
Josephson junction (red X). Adapted from [215].

.

While DC measurements employ static fields to measure a constant magnetic moment,
AC measurements may be performed to measure the AC magnetic moment, providing
information on the magnetization dynamics of the sample. In AC measurement mode,
the sample is held in the center of the detection coil and a small AC drive magnetic
field is superimposed on the DC field, producing a time-dependent moment in the sample
without sample motion. For small drive frequencies, in the measurement regime most
closely resembling that of DC measurements, the moment of the sample follows the M(H)
curve that would be measured in a DC experiment. For a small AC field with an amplitude
of HAC and driving frequency ω,the induced AC moment is given by

MAC =

(
dM

dH

)
·HACsin (ωt) . (2.68)
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The amplitude of the observed MAC signal, or equivalently the slope of the M(H)
curve, is given by a quantity known as the magnetic susceptibility, defined as χ = dM/dH.
The sensitivity of this term to differential changes in M is responsible for the unparalleled
sensitivity of this technique, detecting small magnetic shifts even when the absolute mo-
ment is large. At higher drive frequencies, the magnetization of the sample may lag behind
the drive field, yielding a phase shift ϕ, relative to the drive signal. The susceptibility can
therefore be separated into a real in-phase component, χ′, and an imaginary out-of-phase
component, χ′′ given by

χ′ = χcos(ϕ)

χ′′ = χsin(ϕ),
(2.69)

where χ is given by
√
χ′2 + χ′′2 and ϕ = arctan(χ′′/χ′). In the low frequency limit, similar

to DC measurements, the real component is equivalent to the susceptibility; the imaginary
component indicates dissipative dynamic processes such as relaxation and irreversibility
in spin-glasses, domain wall motion in ferromagnets, and phase transitions and their dy-
namics across a wide variety of samples and magnetic states from skyrmions [216, 101] to
superconductors [217, 218, 219].

2.3 X-ray Diffraction

X-ray diffraction serves as a valuable technique which provides complementary informa-
tion to neutron diffraction. X-rays interact with matter primarily through electromagnetic
interactions with the electron cloud of atoms, yielding information on electron distribu-
tions inaccessible by neutrons. This also leads to a predictable scattering cross section
for elements, proportional to their electron density, enabling a different contrast between
elements. As a result, combining neutron and X-ray scattering techniques leads to a more
detailed interpretation of the scattering patterns as compared to a single-contrast experi-
ment.

X-ray diffraction experiments in particular, enable the determination of fundamen-
tal parameters of a crystalline sample, such as the positions, arrangements, and size of
the constituent crystals. In monochromatic single crystal diffraction under the von Laue
formalism, incident X-rays with wavevectors k, will undergo diffraction if the following
condition is met:

e2πi(k−k′)·R = 1, (2.70)
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where R represents the set of Bravais lattice vectors [220] which satisfy R ·(k − k′) = 2πm
for integral m. An equivalent formulation derives from Bragg’s Law where constructive
interference occurs when the path difference between two X-rays specularly reflected from
an incident angle θ via successive parallel planes of ions spaced a distance d apart, must
equal an integral number of wavelengths λ for their constructive interference,

nλ = 2dsin(θ). (2.71)

The equivalence of these two criteria for the constructive interference of X-rays can be
seen by considering the Laue condition for constructive interference, where the change in
wavevector K = k − k′ must be a vector of the reciprocal lattice. This condition can be
reformulated entirely in terms of the incident wavevector k as k · K̂ = 1

2
K, which states

that an incident wavevector k will satisfy Laue’s condition if the tip of the vector lies in
a plane corresponding to the perpendicular bisector of a line joining the origin of k-space
to a reciprocal lattice point K. From here, it is apparent that the origin of the diffraction
peaks in both the Laue and Bragg formalism’s arises from parallel planes, namely from
the k-space Bragg planes in the Laue case, and a family of direct lattice planes in the
Bragg case [220]. Since the Laue condition assumes elastic scattering, it follows that the
incident and scattered wavevectors make the same angle θ with the plane perpendicular
to K. Therefore, a unified approach describes the scattering as a Bragg reflection, with
Bragg angle θ, from a family of direct lattice planes perpendicular to the reciprocal lattice
vector K.

As shown in section 2.1.3, the scattering amplitude is described by equation 2.53, with
the exception that now the scattering factor for each atom, fj, arises due to interactions
with the electron cloud, depending strongly on atomic number. The intensity of the Bragg
peaks is given by the square of the scattering amplitude, |A(q)|2, yielding equation 2.54.

2.3.1 Powder X-ray Diffraction

Powder X-ray Diffraction (PRXD) is a principal characterization technique used in the
phase identification and structural characterization of crystalline materials. Its opera-
tional principles rely on the Bragg diffraction of incident X-rays from crystallographic
planes, denoted by three Miller indices (h, k, l) upon variation of the angle of incidence
θ. In the Ewald sphere construction which is fixed in k-space, as the sample is rotated the
reciprocal lattice rotates causing each reciprocal lattice point to traverse a circle about the
axis of rotation of the sample. As a result, Bragg diffraction occurs whenever this circle
intersects the Ewald sphere [220]. For a single crystal sample, these scattering intensities
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produce distinct Bragg peaks as a function of scattering angle. For a powdered sample
which consists of randomly oriented grains, the incident direction is isotropically averaged,
wherein the axis of rotation is varied over all possible orientations, thereby yielding diffrac-
tion cones. The diffraction pattern of such a sample can be viewed as the summation of the
diffraction patterns from all possible orientations of a single crystal. The diffraction spots
of a single crystal therefore transform into concentric rings in the limit of random orien-
tational disorder. However, given the one-dimensional nature of PXRD where scattering
intensity is measured as a function of scattering angle 2θ, symmetry-equivalent reflections
are summed yielding a multiplicity effect. For example, given the ⟨100⟩ family of planes in
a cubic crystal system, the scattered peak will arise from the superimposition of diffraction
spots belonging to the (100), (010), (001), (1̄00), (0, 1̄, 0), (0, 0, 1̄) planes. Therefore each
peak in a PXRD pattern serves as a measure of the d-spacing that represents a family
of lattice planes, providing critical information on the crystal structure and phase purity,
including lattice parameters, crystallite sizes, and atom positions/occupancies.

The reduction of the three-dimensional reciprocal space data onto one-dimensional 2θ
data sets leads to a drastic loss of information, resulting from accidental and systematic
peak overlap [221]. From this it is typically not possible to make a full structure solution
determination. However, using a model for a calculated PXRD, the crystal structure may
be refined in a process known as a Rietveld refinement. This process implements the least-
squares method, minimizing the weighted residuals between the calculated pattern and
experimental data. The model is described by a set of parameters which includes contri-
butions from the background, lattice parameters, atomic positions, strain, microstructure,
and instrumental factors, amongst others [222, 221].

PXRD measurements presented here were performed at McMaster University for a
monochromatic X-ray beam with filtered Cu Kα1 radiation of wavelength 1.541 Å. Poly-
crystalline samples used in measurements were ground into fine powders in order to both
reduce nonsystematic inaccuracies from large crystallites and peak broadening due to finite
size effects from small crystallites [222]. The powdered samples were unformly distributed
on a rotating disk which was placed at the joint of the goniometer. The sample rotation
serves to enhance the orientational randomness of the crystallites, eliminating any pre-
ferred orientation and texturing effects which would otherwise bias the measurement. The
Rietveld refinement was performed using Fullprof [223].

2.3.2 Laue Diffraction

Contrary to Powder X-ray Diffraction in which the sample is rotated to successively satisfy
conditions for Bragg Diffraction from different crystallographic planes, the Laue method
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involves the variation of wavelength to achieve Bragg diffraction from different crystallo-
graphic planes. In Laue diffraction experiments, a stationary sample with a fixed orien-
tation (θ) and incident direction n, is illuminated by a beam of polychromatic X-rays,
thereby satisfying Bragg’s condition for multiple reciprocal lattice vectors simultaneously.
In the Ewald sphere construction, the Bragg peaks correspond to reciprocal lattice vectors
which lie within the region contained between two spheres determined by k0 = 2πn

λ0
and

k1 = 2πn
λ1

. This method is therefore best suited for determining the orientation of crystals
in a sample whose structure is known, since the diffraction pattern reflects the symmetry
of the symmetry axis of the crystal [220]. In polycrystalline samples, this method can also
be applied to get estimates of sample mosaicity through the systematic scanning of a sam-
ples surface based on the misorientation of smeared or split Laue patterns from different
crystallites. However, due to the limited penetration depth of X-rays, neutron pole figures
are best suited for this application.

Laue diffraction measurements presented here were performed in the backscatter geom-
etry. Systematic scanning and slicing of the crystal was performed to analyze the samples
crystallinity and align the sample to one of the dominant grains.
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Chapter 3

Characterization of the Disordered
Co8Zn8Mn4 Skyrmion Material

The study presented in this chapter is adapted from [224].

As discussed in section 1.4, the Co-Zn-Mn alloys play host to a rich variety of mag-
netic and topological phases which have been characterized over a wide range of techniques
[75, 116, 131, 115, 140, 56], including the triangular lattice thermal equilibrium phase of
Co8Zn8Mn4 [75]. The tuning of the Mn-doping for the compositional series introduces both
magnetic frustration and magnetic disorder due to antiferromagnetically coupled Mn spin
correlations [116, 140, 137] and site mixing of the ferromagnetic Co and antiferromagnetic
Mn spins [137, 116], respectively. Magnetic anisotropy has also been shown to vary both
in magnitude and orientation of its easy axes upon variation of the Co/Mn ratio [115]. It
is precisely this cooperative interplay of magnetic anisotropy, spin disorder, and frustra-
tion which stabilizes such a rich energy landscape with a high density of defects in these
materials. Accordingly, a myriad of exotic long-period chiral structures/phases have since
been realized in the Co-Zn-Mn series, ranging from meron-antimeron lattices generated by
in-plane magnetic anisotropy [56], to disconnected low-temperature disordered skyrmion
phases stabilized by frustrated interactions [140]. However, previous studies have been
constrained to single-crystalline samples and magnetically ordered skyrmion phases, disre-
garding the influence of disorder in skyrmion stabilization. In this chapter, we report the
synthesis procedure and characterization of a polycrystalline Co8Zn8Mn4 disordered bulk
sample. We employ powder X-ray diffraction, and backscatter Laue diffraction as charac-
terization tools of the crystallinity of the samples, while magnetic susceptibility and SANS
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measurements are performed to study the skyrmion phase. Magnetic susceptibility mea-
surements show a dip anomaly in the magnetization curves, which persists over a range
of approximately 305 K – 315 K. SANS measurements reveal a rotationally disordered
polydomain skyrmion lattice. Applying a symmetry-breaking magnetic field sequence, we
were able to orient and order the previously jammed state to yield the prototypical hexag-
onal diffraction patterns, with secondary diffraction rings. This emergence of skyrmion
order serves as a unique demonstration of the fundamental interplay of structural disorder,
and anisotropy, in stabilizing the thermal equilibrium phase, reinforcing the rich energy
landscapes inherent to these materials.

3.1 Synthesis

The material was synthesized via the solid state reaction 8Co + 8Zn + 4Mn → Co8Zn8Mn4.
The powders were mixed in stoichiometric ratios in an agate mortar under an argon at-
mosphere. Once thoroughly ground, the resulting mixture was pressed into a pellet, which
was then sealed in an evacuated quartz tube with a conically shaped end. The conical
shape of the ampoule served to facilitate nucleation along a dominant growth direction,
imposed by the geometry of the confining tube. The ampoule was inserted into a furnace
at 700◦C and the temperature was increased to 1025◦C over the course of 12 hours. It
was then cooled at a rate of 2◦C/h until 700◦C was reached. Finally, it dwelled at 700◦C
for 12 hours, and was removed. The final product was a conical shaped silver polycrystal
(approximately 2-3 grains) with dimensions 0.8 cm x 1.4 cm (diameter x length) and mass
of 2 g as shown in Fig. 3.1.

Figure 3.1: Polycrystalline Co8Zn8Mn4 sample mixed under argon of dimensions 0.8 cm x
1.4 cm and mass 2 g. Each grid line corresponds to 1 mm. Reprinted from [224].

The reaction products were analysed via powder X-ray diffraction in the scattering
angular (2θ) range of 20◦ − 110◦ using the Cu Kα1 wavelength of 1.54056 Å. A Rietveld
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refinement of the diffraction data to the P4132 space-group (β-Mn-type) was performed
using the FullProf program, from which we were able to extract a lattice constant of
6.37161(1) Å. Fig. 3.2 shows the Rietveld refinement for the powder X-ray diffraction
spectra, where the red dots are the measured spectra, the black line is the predicted
spectra (where the vertical blue lines below indicate expected peak locations), and the
blue line is the difference between the two. The sharpness of present peaks (evidenced by
the zero slope of the blue curve), and absence of additional peaks indicate the sample is
phase pure.

Figure 3.2: Rietveld refinement for powder X-ray diffraction of Co8Zn8Mn4. The black
curve is the predicted spectra, the red line is the data, and the blue is the difference
between the two. The green vertical lines indicate the locations of the expected peaks.
The refinement demonstrates the sample is phase pure with space-group β-Mn and lattice
constant 6.37161(1) Å. Reprinted from [224].

3.2 Characterization

Backscatter X-ray Laue diffraction was performed as a preliminary investigation of the
crystallinity and orientation of the material (Fig. 3.3). Based on a changing diffraction
pattern during translation, we were able to identify grain boundaries. Through systematic
scanning and slicing, the polycrystal was cut into a rectangular prism of dimensions 3.4 mm
x 3.3 mm x 3.0 mm while mapping the crystal orientation of the polycrystalline sample.
The final product was polycrystalline with the (100) direction of the dominant grain along
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Figure 3.3: Laue image along (100) direction of dominant grain on the front face of the
cube. All peaks were indexed to the (100) direction, verifying the single grain portion of
this material. The fourfold symmetry of the pattern is characteristic for the (100) direction
of a cubic crystal. Reprinted from [224].

one face of the rectangular prism. Fig. 3.3 shows a Laue pattern for the dominant grain,
demonstrating the archetypal 4-fold symmetry of the cubic lattice along the (100) direction.

Magnetic susceptibility measurements were performed using a Quantum Design MPMS
5 Superconducting Quantum Interference Device with an AC option installed. The high
temperature ferromagnetic phase was verified via FC from 400 K (Fig. 3.4). The onset of
the transition was found to be 320 K. A Curie-Weiss fit between 350 K and 400 K results in
an effective magnetic moment of 1.6 µB. The high temperature vertical offset between the
FC and ZFC (zero-field cooled) curves is a result of the disparity in magnetization due to
the aligned ferromagnetically ordered domains in the FC case, as opposed to the misaligned
domains in the ZFC case which produce a smaller net moment. Further cooling revealed a
notable path dependence of the susceptibility on different magnetic field cooling protocols
(i.e. ZFC or FC), as is evident by the sharp change in temperature dependence of the ZFC
magnetization at around 7 K (illustrated by the arrow in Fig. 3.4). This magnetic behavior
is evidence of a spin-glass transition, wherein the marked irreversible magnetic behavior
after field cooling is a result of the cooperative freezing of spin-glass [225]. FC measure-
ments bias the energy landscape, whereas for ZFC measurements the existence of many
metastable states leads to an irreversible path dependence, as the material may not follow
the same path to escape the energy valley. The mechanisms underpinning this transition
have been previously reported via crystal structure analysis by neutron powder diffraction
in [137], occurring due to site mixing between the Co and Mn atoms on the 8c crystal-
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Figure 3.4: Magnetic susceptibility per mol of Co8Zn8Mn4 after zero field cooling (ZFC)
and field cooling from 400 K in a magnetic field of 20 Oe. The bifurcation behaviour of the
ZFC and FC curves at 7 K results from the path-dependent behaviour of the susceptibility
(as indicated by the arrow in the ZFC curve), which is indicative of a spin-glass transition.
Reprinted from [224].

lographic sites, which gives rise to random competition amongst the ferromagnetic and
antiferromagnetic interactions, yielding quenched magnetic disorder. Further susceptibil-
ity measurements were carried out to confirm the presence of the skyrmion phase; Fig. 3.5
shows isothermal magnetization measurements as a function of magnetic field for a 20.0
mg polycrystalline piece of the sample. The magnetization measurements were taken while
increasing the DC field from 0 Oe to 400 Oe, after which measurements were taken while
decreasing the field (not shown). The notable decrease in magnetization for temperatures
above 320 K is consistent with exiting an ordered phase into a paramagnetic phase.

We performed differential magnetic susceptibility measurements at 300 K, 305 K, 310
K, and 315 K. This was investigated by taking numerical derivatives of the M vs H curves
and, after smoothing the data, show abrupt dips in the susceptibility (with the strongest
dip occurring at 310 K contained within the rectangular dotted box in Fig. 3.6), suggestive
of a phase transition.

AC susceptibility measurements were performed which depend upon dM
dH

but do not
involve using a numerical derivative, which can be susceptible to large fluctuations. AC
measurements are therefore a much more sensitive technique, yielding a much smaller
uncertainty than the above differential magnetic susceptibility measurements. The AC
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Figure 3.5: Magnetic field dependent magnetization upon increasing magnetic fields from
0 Oe to 400 Oe for a temperature range of 300 K-340 K, in 5 K increments. Low-high
temperature corresponds to blue-red curves. Note a substantial decrease in magnetization
for temperatures greater then 320 K, consistent with a paramagnetic phase. Reprinted
from [224].

susceptibility measurements show similar peaks as a function of applied field, indicating a
phase transition. The most pronounced dip structure is again observed at a temperature
of 310 K (contained within the magnetic field range defined by the two lines and arrow
in Fig. 3.7), consistent with Fig. 3.6. These dip structures are well-known markers of the
temperatures and fields over which the skyrmion phase exists [75]. The AC susceptibility
shows much cleaner and more defined dip structures than Fig. 3.6. AC measurements
also probe the dynamics of the system and may be included in future work to probe the
time-scales of the metastable skyrmion phases found below 300 K.

We performed unpolarized SANS at the NG7-30m beamline at the National Institute
for Standards and Technology (NIST) for a 15 m beam configuration and a neutron wave-
length of 6 Å[226, 227]. At room temperature in zero field, our initial SANS measurements
revealed four smeared magnetic satellites atop a circular ring, indicating multi-domain sin-
gle q-helical structures, with the preferential smearing direction of the peaks elucidating
the anisotropy direction (Fig. 3.8a). Upon field-cooling through the ferromagnetic phase,
from 420 K to 310 K in a field of 250 Oe, a ring developed. The absence of the signature
triangular lattice skyrmion hexagonal pattern is a result of the polycrystalline nature of the
material; the misalignment of the skyrmion domains breaks the order in many directions
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Figure 3.6: Temperature dependent isothermal differential magnetic susceptibility upon
increasing magnetic fields from 0 Oe to 400 Oe. Low-high temperature corresponds to dark
blue-light blue curves. The dip structure (region contained within the rectangular dotted
box) is most clearly pronounced for 310 K, and presents at a field of ∼ 200 Oe, indicating
the onset of the skyrmion phase. Reprinted from [224].

thereby smearing the hexagonal patterns, precipitated by each individual domain, to pro-
duce a ring. Using a symmetry-breaking magnetic field sequence [112] where the sample
is rotated symmetrically in the static magnetic field to precipitate ordered and oriented
skyrmion lattices despite the overwhelming structural disorder, the underlying triangular
lattice skyrmion phase was revealed. The development of a first order ring with 6 peaks and
an additional secondary ring was observed after 10 symmetric rotations. Fig. 3.8c shows
the fully discernible 6-fold primary ring after 30 rotations, accompanied by a second-order
ring mimicking the same hexagonal symmetry with 12 peaks. The presence of the sec-
ondary ring indicates potential multiple scattering and/or higher order diffraction. The
underlying mechanism is left to be investigated for future experiments. The energetics
of the skyrmion ordering sequence showed, through micromagnetic simulations, magnetic
moments to diverge away from the external field when approaching a magnetic hard axis,
consequently increasing the DM energy, resulting in a lattice reorientation [112]. Therefore,
the response of our material to the ordering sequence highlights the role of anisotropy in
skyrmion formation, and reorientation dynamics.
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Figure 3.7: Temperature dependence of AC magnetic susceptibility per mol of Co8Zn8Mn4

over a range of 305 K-317.5 K after increasing magnetic fields from 0 Oe to 500 Oe in a 100
Hz driving field, with an amplitude of 0.1 Oe. Low-high temperature corresponds to dark
blue-lighter colored curves. The skyrmion phase is most pronounced at a temperature
of 310 K, and is observed to persist in the dip anomaly between 100 Oe and 450 Oe
(contained within the region bounded by the lines, as indicated by the arrow). The field
value at the minimum of the dip determines the largest and most robust skyrmion phase;
these temperature and field parameters are then used for SANS measurements on the
material. Reprinted from [224].

3.3 Conclusions

We have successfully demonstrated the synthesis and characterization of the above room
temperature bulk disordered triangular lattice skyrmion material Co8Zn8Mn4. Powder X-
ray diffraction studies revealed a pure phase, while backscatter Laue diffraction and neu-
tron diffraction indicated a polycrystalline material. SANS measurements demonstrated
the underlying rotationally disordered skyrmion domains. Application of the symmetry-
breaking rotation sequence [112] precipitated ordered and oriented triangular skyrmion
lattices, yielding secondary diffraction rings. These secondary diffraction rings are most
likely a combination of double scattering (owing to the thickness of the sample), and
higher-order diffraction, in turn elucidating the effectiveness of the technique in [112] for
ordering and even promoting the growth of skyrmions, despite the presence of disorder,
thereby producing long-range order. While the phenomena of skyrmion ordering is by no
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Figure 3.8: SANS images showing disordered helical ground state at room temperature in
zero field a), initial scattering ring for disordered skyrmion domains at 310 K in a magnetic
field of 250 Oe b), schematic of symmetry-breaking field rotation setup, and SANS image
after 30 rotations of the rotation sequence at 310 K in a field of 250 Oe, c). The increased
intensity/preferential smearing of the peaks in the top right and bottom left diagonals of
the fourfold helical image elucidate the anisotropy direction for the crystal. Schematic of
the rotation setup illustrates neutron propagation direction (n) is in the z-direction. For
the symmetry-breaking rotation sequence the sample is rotated symmetrically in the xz
plane about θ, with the magnetic field fixed in the z-direction. Reprinted from [224].

means novel, experimental demonstrations of the conversion from disordered chiral states
to ordered skyrmion lattice forms—in varying host compounds—contributes fundamen-
tal insights into the nature of skyrmion formation energetics, pinning phenomena, and
stabilization mechanisms. This study serves as a unique demonstration of the interplay
of anisotropy and disorder in the thermal equilibrium phase for the Co-Zn-Mn skyrmion
series, reinforcing the influence of crystalline disorder and material defects on skyrmion
formation and orientations in skyrmion phases stabilized by thermal fluctuations. Future
experiments may explore the ratio of multiple scattering to higher-order diffraction through
the use of Renninger scans [228]. Furthermore, we intend to use a newly developed recon-
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struction algorithm [229] to perform 3D tomography of skyrmion topological transitions in
the bulk, as well as incorporate spin components to explore the structure of the neutron
wavefunction after passing through a skyrmion sample [160, 197, 195].
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Chapter 4

Skyrmion Alignment and Pinning
Effects in a Disordered Multi-Phase
Skyrmion Material Co8Zn8Mn4

The study presented in this chapter is adapted from [113].

Underlying disorder in skyrmion materials may both inhibit and facilitate skyrmion
reorientations and changes in topology. The identification of these disorder-induced topo-
logically active regimes is critical to realizing robust skyrmion spintronic implementations,
yet few studies exist for disordered bulk samples. In this chapter, we employ small angle
neutron scattering and micromagnetic simulations to examine the influence of skyrmion or-
der on skyrmion lattice formation, transition, and reorientation dynamics across the phase
space of a disordered polycrystalline Co8Zn8Mn4 bulk sample. Our measurements reveal
a new disordered-to-ordered skyrmion square lattice transition pathway characterized by
the novel promotion of four-fold order in SANS and accompanied by a change in topol-
ogy of the system, reinforced through micromagnetic simulations. Pinning responses are
observed to dominate skyrmion dynamics in the metastable triangular lattice phase, en-
hancing skyrmion stabilization through a remarkable and previously undetected skyrmion
memory effect which reproduces previous ordering processes and persists in zero field.
These results uncover the cooperative interplay of anisotropy and disorder in skyrmion
formation and restructuring dynamics, establishing new tunable pathways for skyrmion
manipulation.

51



4.1 Disordered Skyrmion States

Bulk skyrmion states have been realized over a broad temperature-magnetic field phase
space, with stabilization mechanisms ranging from thermal fluctuations just below Tc in
thermodynamic equilibrium states [75], to quenching processes via rapid field-cooling (FC)
procedures in metastable states [141]. Such metastable skyrmion phases have been shown to
exhibit disorder-dependent cooling rates (i.e., dependent on doping, vacancies, etc, present
in the system) [99, 141, 122, 101, 116, 59, 118], with a unique hierarchy of interaction terms
determining unconventional skyrmion formation and stabilization energetics [230]. One
notable example is the anisotropy-stabilized low-temperature skyrmion lattices realized in
the bulk cubic helimagnet, Cu2OSeO3, through competition between anisotropic exchange
and cubic anisotropy [118]. Additionally, studies of disordered skyrmion systems with weak
magnetocrystalline anisotropy have demonstrated the precipitation of skyrmion order in
triangular lattice phases through sequences which rock the external magnetic field relative
to the sample [112]. As such, examining the role of disorder and anisotropy in skyrmion
systems [231, 101] serves as an excellent testbed for realizing new pathways and mechanisms
which stabilize metastable phases and facilitate structural lattice transitions.

The chemically doped CoxZnyMn20−x−y compositional series outlined in section 1.4,
presents a unique platform to investigate skyrmion behaviour, owing to its interplay of
magnetic anisotropy, site disorder, and frustration, which generates diverse topological
phases and lattice forms [116, 99, 56, 75]. Of particular interest are the thermal equilib-
rium and metastable phases, which host skyrmion lattices of both triangular and square
forms. Random site occupancies of Co and Mn atoms on the 8c site, and Co, Zn, and
Mn atoms on the 12d site introduces site-disorder which stabilizes a high density of de-
fects [137, 116], enabling quenching to triangular lattice metastable phases with moderate
cooling rates [99, 116, 232, 117]. Upon further cooling, the interaction energy hierarchy
shifts: magnetocrystalline anisotropy increases [115, 116] and the development of antifer-
romagnetic correlations of the Mn spins decreases the ratio of the ferromagnetic exchange
to DM interaction [232, 116, 137, 117]. Together, these two actions drive a large increase
in q, which triggers a triangular-to-square lattice transition, where anisotropy determines
the directionality and type of distortion [99, 116, 232, 117].

4.2 Methods

Unpolarized SANS was performed at the NG7-30m beamline at the National Institute for
Standards and Technology (NIST) for a 15 m beam configuration and a neutron wavelength
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of 6 Å(Fig. 4.1a) [226, 227, 233]. The sample used for these measurements was that of
a polycrystalline cube of dimensions 3.4 mm x 3.3 mm x 3.0 mm, whose growth and
characterization was outlined in chapter 3 [224]. Prior to changing any temperature or
field parameters, the ground-state helical phase was verified at room temperature in zero
field (Fig. 4.1b). A field-cooling procedure was executed from the ferromagnetic phase to
enter the skyrmion envelope (Fig. 4.2), with the magnetic field applied along the neutron
flight path (z-direction in Fig. 4.1a), lowered until 250 G, determined from the maximal
dip in previous AC susceptibility measurements [224]. Using a skyrmion-ordering sequence
[112], the sample was rotated symmetrically in the static magnetic field to precipitate an
ordered and oriented skyrmion lattice (Fig. 4.1a).

To examine the influence of underlying disorder on skyrmion lattice transitions, the
low-temperature metastable square lattice skyrmion phase (M-S-SkX) was investigated by
way of the disordered thermal equilibrium triangular lattice skyrmion phase ((D)E-T-SkX)
phase (Fig. 4.11a). The (D)E-T-SkX phase was regained from its ordered counterpart by
saturation into the ferromagnetic phase, through the application of a strong magnetic field,
and subsequent lowering of the field back into the skyrmion envelope (b.2 of Fig. 4.11). A
square phase was then realized at 28 K in a field of 100 G (b.3 of Fig. 4.11).

In a separate SANS experiment, the ordered thermal equilibrium triangular lattice
skyrmion phase ((O)E-T-SkX) was brought into the ordered metastable triangular lattice
skyrmion phase ((O)M-T-SkX) via FC (c.2 of Fig. 4.11). In the (O)M-T-SkX phase, at a
temperature of 173 K, the skyrmion phase was saturated into the ferromagnetic phase by
increasing the field to 1 T, from its previous value of 10 G (indicated by the vertical arrow
in Fig. 4.2). The field was then lowered back to 10 G (c.3 of Fig. 4.11) in an attempt to
regain the phase to examine the nature of the metastability, and any potential memory
effects. The ordering sequence was then performed in the resultant phase for two different
field values (c.4 and c.5 of Fig. 4.11) in order to investigate the energetics and pinning
dynamics of the persisting phase. Finally, the ordered square phase was entered (c.6 of
Fig. 4.11) using another FC procedure for comparison with the disordered square phase,
to understand the mechanisms of the transition.

4.3 Skyrmion Ordering in the Thermal Equilibrium

Phase

The experimental setup for the SANS experiments is shown in Fig. 4.1a. The SANS pattern
for the initial helical state was that of four smeared magnetic satellites atop a circular
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ring, indicative of multi-domain single q-helical structures (Fig. 4.1b) [75, 224]. After FC
through the ferromagnetic phase, from 420 K in a field of 250 G, a ring developed at 310
K (Fig. 4.1c). The absence of the signature triangular lattice skyrmion hexagonal pattern
is most likely a combination of the chemically disordered and above-room-temperature
nature of the phase/material.

Figure 4.1: Schematic of the experimental SANS setup (a). The neutron propagation
direction and magnetic field direction are parallel (along z). For the ordering sequence the
sample was rotated symmetrically about the y-axis (in the xz-plane), with the magnetic
field held fixed in the z-direction. SANS images for b) disordered helical state at 290 K in
0 G, and c) initially disordered thermal equilibrium phase (D-Skx) at 310 K in 250 G, both
exhibiting magnetic scattering at approximately the same q0 of 0.0052 Å−1 (reproduced
from [224]). Note that the presence of a flare in both images is caused by scattering off of
the samples surface due to a neutron beam size exceeding the sample size. Both images
are normalized to a fixed number of standard monitor counts to enable direct comparison
between images, with the same scale for the color plots. Note the colorbar is a log-scale of
intensity. Adapted and reprinted from [113].

When referring to the levels of disorder in the material, there are two principle length
scales we may address: the exchange interaction field (i.e the combination of ferromagnetic
exchange (A), DMI (D), and anisotropy from site-to-site), and the periodicity of the spin
texture (as determined on average from the ratio of A/D). For this material, the exchange
length is approximately 11 nm as defined in [234] using material parameters from [232].
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The crystal mosaicity was previously reported in [224] as consisting of approximately 2-3
grains, with the crystal cut such that the (100) direction of the dominant grain is along
the front face of the rectangular prism. Systematically scanning and slicing of the ma-
terial using Backscatter X-ray Laue diffraction provided estimations of sample mosaicity
consisting of 2-3 grains, one occupying a majority volume fraction, with low-angle grain
boundaries. In order to produce a ring-like scattering image, one would need a large collec-
tion of slightly misoriented grains—assuming the grains are composed of idealized skyrmion
domains which exhibit perfect triangular packing of the skyrmions (i.e., long transverse
correlation lengths) and therefore minimal azimuthal smearing in their diffraction peaks.
Each grain would then precipitate a sixfold pattern, with their superposition smearing the
individual hexagonal patterns into a ring. In the event that the sample was comprised
of a few grains, large-angle grain boundaries would be required to sufficiently rotate the
hexagonal scattering patterns enough to smear their collective scattering pattern into a
ring. Given the reported crystallinity of the sample, these two cases are unlikely to be
responsible for the observed disorder. We will therefore concern ourselves primarily with
the two length scales of disorder mentioned earlier, and take note that grain boundaries
may act as sources of disorder, interrupting skyrmion long-range ordering in a non-linear
manner [235]. While this effect is not quantifiable given only a single polycrystalline sam-
ple and the compounding influence of site-disorder, sample polycrystallinity may become
more relevant when discussing defect-related pinning in the metastable phase.

Alternatively, the compositional disorder inherent to the unit cell of the CoxZnyMn20−x−y

series of materials may manifest as random local variations in the exchange field, which can
serve as nucleating and pinning defect sites, irrespective of the crystallinity of the material.
Examples include single crystal samples of doped (Fe, Co)Si, which have been shown to
produce disordered chiral jammed states [112]. In particular, the internal chemical disor-
der and weak magnetocrystalline coupling produces multiple degenerate helical domains,
which transform into skyrmion domains with weak relative orientation, upon application
of a laboratory field [112]. This leads to orientational disorder of the second length scale,
wherein one domain will propagate, becoming trapped upon intersecting another domain
and/or defect. This trapping precludes long-range order, precipitating intermediate chiral
spin textures due to the domain spacing not satisfying integer skyrmion lattice constant
multiples, resulting from randomly distributed nucleating sites [112]. The inability of
these structures to propagate or reorient leads to ”jammed” configurations, such as chiral
or labyrinth domains, amongst skyrmion domains [112]. Therefore, the chemical disorder
collectively generates a rich energy landscape exhibiting intermediate chiral and jammed
skyrmion states.

Similarly, CoxZnyMn20−x−y possesses both internal chemical disorder [116, 137] and rel-
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Figure 4.2: Known phase diagram of Co8Zn8Mn4 material (lightly shaded regions) compiled
from [116], with region of phase space which we have sampled through AC and SANS
measurements (both in this paper and in [224]) illustrated by darkly shaded regions. Red
dots illustrate measurement points of SANS images in the paper. White and black arrows
indicating the field-cooling procedures and memory test performed in the experiments,
respectively. Field-cooling procedures were performed over a magnetic field range spanning
50 G to 400 G. Green regions correspond to the thermal equilibrium skyrmion phase (E-
T-SkX). Note: for our material, this skyrmion window is shifted up by approximately 10
K as compared to [116]. Purple and pink regions correspond to metastable triangular
lattice (M-T-SkX) and square lattice phases (M-S-SkX), respectively. Helical, conical, and
ferromagnetic states are indicated by H, C, and FM, respectively. Reprinted from [113].

atively weak magnetocrystalline anisotropy around room temperature [115]. The ring-like
scattering pattern displayed in Fig. 4.1c may therefore be attributed to the misalignment
and trapping of the skyrmion and chiral domains which breaks the order in many di-
rections. In reciprocal space, this would produce a ring scattering pattern due to the
superimposition of rotationally offset hexagonal patterns and other magnetic structures,
such as rotationally disordered helical domains, with no net orientation, but the same pre-
ferred q. Therefore, the degree of order may be interpreted from the angular width of the
diffraction peaks, which we will examine later. Moreover, it is not to be ignored that we
are in an above-room-temperature phase; thermal fluctuations which stabilize this phase
may also contribute fluctuation-disorder by way of skyrmion merging, splitting, collapse,
and nucleation.
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Figure 4.3: SANS measurements as a function of magnetic field skyrmion-ordering se-
quence. Diffraction patterns and their corresponding annular averages of first-order scat-
tering rings after 10 (a), and 40 (b) rotations of the ordering sequence at 310 K in a
magnetic field of 250 Oe. Solid lines are fits of the measurement points to six Gaussian
peak functions with a constant baseline intensity. Note the peak heights and widths are
drastically altered between a) and b). All images are normalized to a fixed number of
standard monitor counts to enable direct comparison between images, with the same scale
for the color plots. Note the colorbar is a log-scale of intensity. Reprinted from [113].

The skyrmion-ordering sequence which was used in the SANS experiments entails ro-
tating the sample in the static magnetic field (about the y-axis in Fig. 4.1a), with the
rotational range determining the efficacy of the skyrmion ordering response. This tech-
nique has been previously demonstrated to disentangle jammed chiral states, thought to
reduce defect densities and nucleate additional skyrmion topological charge [112]. This
sequence was used in combination with various FC procedures and samplings of the phase
space of the material (outlined in Fig. 4.2). Upon application of the ordering sequence in
the (D)E-T-SkX phase, the development of a first-order ring with 6 peaks was observed,
accommodated by an additional secondary ring mimicking the same hexagonal symmetry
with 12 peaks. Fig. 4.3a and b show the developing, and fully discernible 6-fold primary
rings after 10 and 40 rotations, respectively. The presence of the secondary ring indicates
potential multiple scattering and/or higher order diffraction. Comparing Fig. 4.1c and
Fig. 4.3, we observe the conversion of the disordered phase to the ordered triangular lat-
tice phase via the dissolution of the ring diffraction pattern, and promotion of hexagonal
peaks. Looking at the azimuthal projection of the primary diffraction rings of Fig. 4.3, we
see that this transition manifests as an evolution of six peaks, accompanied by decreasing
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peak widths and baseline intensity. Note that there is no direct conversion between the
decrease in ring intensity and increase in peak intensity, reinforcing the conclusion that the
ring is comprised of additional chiral magnetic structures that upon rotation nucleate addi-
tional topological charge structures. This action is consistent with disentangling a jammed
state of chiral domains, through the collective reorientation of skyrmion domains and for-
mation of new skyrmions via the breakup of labyrinth domains through emergent monopole
nucleation and propagation [112, 59]. Therefore, the reported behaviour in Fig. 4.3 occurs
as the rotational skyrmion alignment improves, and previously jammed states comprised
of mixed helical/labyrinth phases are disentangled, enabling further skyrmion nucleation
and propagation, which additionally contributes to the sixfold scattering signal.

4.4 Disordered Metastable Skyrmion Transitions

As we cooled the sample by a FC procedure through the (D)E-T-SkX phase into the dis-
ordered metastable triangular phase ((D)M-T-SkX), there was a subtle development of
peaks atop the ring diffraction pattern. The promotion of these peaks was observed to
alternate with continued cooling, dissolving peaks into the background ring, while enhanc-
ing new peaks. The SANS measurement in the disordered square phase (Fig. 4.4) shows a
heavily smeared four-fold pattern with significant promotion of the peaks along a preferred
orientation of the q-vector. Subsequent re-warming processes into the room-temperature
skyrmion phase, in addition to AC susceptibility measurements performed in the square
phase, confirmed the presence of skyrmions which contributed to the square pattern. The
annular average confirms the presence of four peaks; the variable baseline intensity, height,
and width of the peaks suggests preferential development of the square lattice phase along
a preferred q-direction. That is to say, the two peaks along the anisotropy direction display
decreased baseline intensities and peak widths, and increased scattering intensities com-
pared to the remaining two peaks. This is consistent with recent studies examining cubic
anisotropy in the CoxZnyMn20−x−y skyrmion series, which found that anisotropy controls
the angular distribution of the q-vectors, exhibiting a trend with temperature similar to
that of the inverse of the full width at half maximum of the SANS peaks [115]. In our
case, however, the mere presence of four-fold peaks suggests a more complex action, gener-
ating improved rotational alignment in addition to increased development of the skyrmion
tubes in the preferred q direction—whether it be through lengthening of existing tubes
and/or nucleation of new tubes, contrary to what one would expect. In [115], increased
anisotropy enhances orientational order and defines the distribution in rotational align-
ment of the skyrmions. Alternatively, for the case of disordered skyrmions there is this
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additional mechanism of skyrmion development, wherein anisotropy may play a greater
role by facilitating the disentangling of jammed states to allow reorientations to a square
phase. We note that the overall scattering intensity of the square lattice peaks are greatly
reduced from the ordered triangular lattice, a fact which may be attributed to disorder
somewhat inhibiting skyrmion development and reorientations, resulting in leftover topo-
logically trivial states such as helical, conical, and ferromagnetic domains. Neither conical
or ferromagnetic states would contribute to the scattering signal as the ferromagnetic sig-
nal is masked in the central peak by the beam block, while conical domains would have to
be probed in a perpendicular field geometry.

Figure 4.4: SANS image, and its corresponding annular average, for the square lattice
skyrmion phase, with significant promotion of the peaks along the anisotropy direction.
Solid lines are fits of the measurement points to four Gaussian peak functions with a
constant baseline intensity. Measurement was taken at 28 K in a field of 100 G. Note the
colorbar is a log-scale of intensity. Reprinted from [113].

A decrease in the A/D ratio is stipulated to accompany the increase in anisotropy upon
decreasing temperature. These two scalings are thought to trigger the triangular to square
lattice transition through skyrmion elongation by directional expansion and subsequent
rearrangement [99, 58]. The interplay of topological stability with an enhancement of q
demands spin textures which satisfy conservation of skyrmion number between triangular
and square phases. In thin plate samples, this is accomplished via the directional expansion
of skyrmions into deformed bar and L-shaped elongated textures whose directionality is
determined by magnetic anisotropy [117, 232]. In bulk samples, conservation of skyrmion
number can be achieved through solutions which increase the volume occupied by each
skyrmion, such as in deformed textures similar to [117, 232], or alternatively through
solutions which decrease the volume occupied by the square lattice of skyrmions.

For our sample, the ratio of skyrmion density in the triangular phase at 310 K, to the
square phase at 28 K, is given by ρS

ρT
=

√
3
2

(QS

QT
)2 [116], where ρS and ρT are the skyrmion

densities in the square and triangular phases, and QS and QT are the positions of the
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magnetic reflections for the square and triangular lattice forms in q-space. This expression
derives from considering the ratio in packing density for an ideal triangular lattice ( π

2
√
3
a2T )

versus square lattice (π
4
a2S) given their lattice periodicity’s, aT and aS, as defined by QT

and QS in q-space. The q-centers for each phase were extracted as the peak centers from
Gaussian functions fit to radial averages of the SANS images. This yields a ratio of ρS

ρT
≈

1.78, consistent with [116]. However, to keep skyrmion density constant between idealized
triangular and square lattice phases, the square lattice constant should decrease by a factor

of
√

2√
3
≈ 1.075 corresponding to a square q value of 0.0056 Å−1, contrary to our observed

value of 0.008 Å−1. Thus the skyrmion density violates conservation of topological charge
when assuming a perfectly ordered square lattice. This can be resolved through solutions
which decrease the volume occupied by the square lattice by incorporating additional
magnetic structures with no topological charge that are defined by the same orthogonal
double-q vectors, such as with helical or conical domains.

In the special case of a disordered square lattice transition pathway, the emergence
of some net four-fold order when coming from a jammed labyrinth state suggests three
possible physical cases. In the first case, skyrmions are nucleated from the mixed helical
state present in the disordered phase, with their alignment determined by the direction of
increased anisotropy. In the second case, an in-plane elongation and subsequent reorien-
tation of the tubes may partially disentangle trapped domains and jammed states along
distinguished direction, nucleating new skyrmions. In the final case, the in-plane elonga-
tion of the jammed state through merging and subsequent reorientation yields a deformed
nematic-like square texture, similar to [232, 117]. In all of these cases it appears that, in or-
der to overcome some of the jamming inherent to the disordered state, a change in topology
is required in order to allow for skyrmion restructuring/reorientations through elongation,
merging, and nucleation processes. For our material, we stipulate that mechanism (2) or
(3) produces skyrmion reorientations that disentangle jammed states—improving skyrmion
alignment and possibly nucleating oriented skyrmions upon disentangling. For mechanism
(1), the magnetocrystalline anisotropy would have to increase to a large enough value
so as to stabilize new skyrmions well below Tc however, for this doping series of materi-
als, the only disconnected skyrmion phase observed at low temperatures is a disordered
phase stabilized by magnetic frustration [140]. Whereas in support of (2) and (3), we
have already observed skyrmion reorientations associated with anisotropic considerations
[112, 224]. Note that mechanism (2) could still produce skyrmion textures reminiscent of
(3) when transitioning in a disordered lattice, as skyrmions reorient and intersect jammed
helical/skyrmion states, resulting in an elongated deformed skyrmion texture along a pre-
ferred q-direction consistent with anisotropy.
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Figure 4.5: Micromagnetic simulations and their corresponding SANS patterns for a
thin-plate Co8Zn8Mn4 sample of dimensions 2.4 x 2.4 µm2. Out-of-plane magnetization,
Mz, is shown for the simulated triangular-to-square lattice transition starting from the
initially disordered phase (a) phase at 310 K, to the disordered square phase at 30 K (c).
The total topological charge per 2D slice is observed to increase during the transition by
approximately 12%. Corresponding SANS images demonstrate an increasing scattering
ring size, consistent with a reduction in Amax, while the development of four-fold order is
observed in plot (d). Reprinted from [113].

Micromagnetic simulations performed on a disordered state suggest a transition path-
way which entails a change in topology, contrary to observations made for ordered lattices
[117, 232]. Simulations were performed using the Ubermag micromagnetic simulation pack-
age [236] on a lattice of size 2400 nm x 2400 nm x 5 nm, with a discretization cell size of 5
nm. A random spin configuration was initialized in an external magnetic field of 400 mT
(along the z-direction) to mimic the experimental field-cooling procedures. A DMI con-
stant of 0.00053 J/m was used [237, 232]. To simulate a disordered state with site-by-site
disorder, a varying scalar exchange field was used, set to vary between 0 and a maximum
value Amax. The equilibrium-square metastable lattice transition was performed by incre-
mentally decreasing Amax from 9.2 pJ/m to 4.5 pJ/m to simulate the relative decrease in
A/D ratio, while a cubic anisotropy term was simultaneously increased from 150 J/m3 to
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4500 J/m3. The former change induces an enhancement of the q-vector, while the latter
favors a particular elongation direction. While the decrease in A/D ratio may manifest a
change in the helical periodicity similar to experiment, the primary origin of the change
in q-vector is thought to be rooted in the low-temperature antiferromagnetic frustration
of the Mn sublattice which can shorten the helical pitch and deform skyrmions [232, 238].
Similar competition between DMI and frustrated exchange interactions have been shown
to produce short-size magnetic modulations [239, 240]. These simulation parameters were
taken from studies which determined exchange and cubic anisotropy values as a function
of temperature through soft X-ray scattering measurements coupled with simulations, and
ferromagnetic resonance techniques [232, 115]. Relaxation times of 0.5 ns were introduced
between each step. A two-dimensional magnetization slice of the out-of-plane magnetiza-
tion Mz for the initial disordered state shows a mixed skyrmion and helical/labyrinth state,
with a topological charge of -330 (Fig. 4.5a). A corresponding simulated SANS image ex-
hibits a roughly uniform ring-like scattering pattern (Fig. 4.5c). Cooperatively decreasing
Amax while increasing K shows results in a q-vector magnitude dependence consistent with
our SANS data and 4πAmax

D
which defines the helical pitch. Magnetization slices show a

gradual merging and separation of labyrinth states, producing deformed skyrmions elon-
gated along two orthogonal double-q vectors. These restructuring dynamics are in direct
opposition to LTEM and micromagnetic simulation studies performed on ordered skyrmion
states in [117] and [232], respectively. In the former two studies, deformation and elonga-
tion of the skyrmions along magnetic easy axis obeys conservation of topological charge.
The deformations ensure the occupied skyrmion volume is constant despite the changing
lattice shape and periodicity, thereby conserving skyrmion density. Conversely, our simu-
lations demonstrate an increase in topological charge from -330 to -372 during the square
lattice structural transition as skyrmion and labyrinth structures merge and dissolve, allow-
ing skyrmion elongations and reorientations along preferred directions, which ultimately
produce deformed textures reminiscent of [117]. The simulated and experimental SANS
patterns exhibit a similar conversion from a ring-like to four-fold pattern. These results
reinforce the requirement of a change in topology when undergoing disordered-to-ordered
square structural lattice transitions. This observation suggests the disordered square lat-
tice transition takes place by a unique pathway, not accessible by ordered states, which
involves the merging and separation of helical and labyrinth states. This restructuring
enables skyrmion nucleation, elongation, and reorientations necessary for the disordered
square lattice structural transition.
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4.5 Ordered Metastable Skyrmion Transitions

For the (O)E-T-SkX phase shown in Fig. 4.6a, transitioning to the lower temperature
phase marked the development of higher order scattering rings up to the third order, while
the baseline ring intensity approached zero (Fig. 4.6b). The significant reduction in peak
widths and baseline intensity in Fig. 4.6a versus Fig. 4.3b points towards improved ro-
tational alignment and development of the skyrmion lattice. We attribute this to the
increased rotational range of the ordering sequence, consistent with [112]. Similarly, the
increase in scattering order and decrease in baseline intensity between the thermal equilib-
rium (Fig. 4.6a) and corresponding (O)M-T-SkX phase (Fig. 4.6b) implies a lengthening
and/or nucleation of the tubes and therefore increase in correlation lengths, possibly due
to reduced thermal fluctuations and increased pinning/anisotropy contributions. The pres-
ence of additional scattering rings are most likely attributable to a combination of multiple
scattering and higher-order scattering processes.

Remarkably, saturation of the metastable skyrmion lattice into the ferromagnetic phase
generates a memory effect upon re-entry into the metastable skyrmion field window.
Namely, a diffraction pattern reminiscent of the pattern prior to saturation is observed
after lowering the field, with similar azimuthal peak positions and a prominent anisotropy
direction (Fig. 4.7a). This reemergence of a skyrmion diffraction pattern in the metastable
phase of a previously annihilated skyrmion lattice suggests that a memory of the skyrmion
lattice is present, even in fields high enough to destroy all skyrmion and spiral scatter-
ing signals. This memory effect is quite surprising given the underlying disorder of the
material which tends to precipitate jammed, rotationally disordered states. The competi-
tion between this disorder and the tendency of skyrmions to nucleate and maintain their
previous orientations is apparent in the slightly broadened peak widths. Previous FC pro-
cedures from the (D)E-T-SkX through the metastable phase demonstrated a disordered
ring SANS pattern for the same field and temperature. The skyrmion order parameter
provides an additional measure of the memory effect. In particular, not only does the
state after saturation have to produce topological skyrmion states, but it must overcome
the natural energetics of the phase which favors disordered states. Relaxation into a dis-
ordered state after saturation would be possible if there was a slight memory effect set
by low-temperature pinning sites, with jamming energetics still dominating. However,
the reproduction of previous skyrmion order, which was generated in a separate phase,
overcomes the naturally disordered ground state of the metastable skyrmion phase. The
generation of this ordered state therefore requires additional energetics not available in the
metastable phase. Therefore, the degree of order that is retained after saturation, in spite
of the phase’s underlying tendency towards disordered ring-like states, strongly suggests a
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Figure 4.6: SANS diffraction patterns and their corresponding annular averages of their
primary scattering rings for a) the sample after 20 rotations of the ordering sequence at
310 K in a magnetic field of 250 Oe, and b) after cooling to 173 K and 122 G from a). Solid
lines are fits of the measurement points to six Gaussian peak functions with a constant
baseline intensity. Note the baseline intensity essentially goes to zero from a) to b), and
we observe the development of higher order scattering rings the more we cool into the
(O)M-T-SkX phase. Both images are normalized to a fixed number of standard monitor
counts to enable direct comparison between images, with the same scale for the color plots.
Note the colorbar is a log-scale of intensity. Reprinted from [113].

memory effect.

Examining the influence of the ordering sequence on the memory effect provides an
indication of the energetics of the phase. The ordering sequence was applied in fields of
both 10 G (Fig. 4.7b) and 250 G (Fig. 4.7c). The baseline intensity is observed to slightly
increase after the first ordering sequence, while the third and sixth peaks are further en-
hanced, reproducing previous peak asymmetries. This suggests the sequence may in fact
orient skyrmions and helices, while also nucleating additional skyrmions from their pin-
ning sites. These skyrmions appear to be both ordered and disordered, contributing to
the peak and baseline intensities, respectively. This illustrates the dual nature of disorder:
it may both enhance skyrmion development through defect pinning sites while also im-
peding reorientations and alignment through jammed chiral textures. Interestingly, there
is significant development of the second order rings between ordering procedures, possibly
indicating a lengthening of the skyrmion tubes, thereby reinforcing [125]. It is possible that
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Figure 4.7: SANS images, and their corresponding annular averages of their primary
diffraction rings for the (O)M-TSkX phase at 173 K upon a) lowering the field back to
10 G after saturation into the ferromagnetic phase in a field of 1 T, b) after 10 ordering
sequence rotations in a field of 10 G, and c) after 10 ordering sequence rotations in a field of
250 G. Solid lines are fits of the measurement points to six Gaussian peak functions with
a constant baseline intensity. All images are normalized to a fixed number of standard
monitor counts to enable direct comparison between images, with the same scale for the
color plots. Note the colorbar is a log-scale of intensity. Reprinted from [113].

the varying interplay of the magnetic field direction and anisotropy direction encourages
an anisotropy favored elongation of magnetic torons into skyrmions [125]. Torons may be
visualized as skyrmion fragments that terminate their prolongation on Bloch points [125].
These torons may exist as remnants of the previous skyrmion lattice [118]. Their survival
is likely enhanced by pinning on defects. These defects may be naturally present in the
material owing to internal disorder, which may be rooted in the site mixing of atoms [69]
or presence of grain boundaries [235].

Upon further cooling, the square phase was entered, yielding four discrete peaks (Fig. 4.8).
Comparing Fig. 4.8 and Fig. 4.4, we observe significantly increased scattering and dis-
cretization of the peaks for the square phase entered through the ordered phase, versus
the disordered phase, emphasizing the role of previous order and/or pinning in structural
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Figure 4.8: SANS image and it’s corresponding annular average, for the ordered square
lattice skyrmion phase. Solid lines are fits of the measurement points to five Gaussian peak
functions with a constant baseline intensity. Measurement was taken at 60 K in a field of 6
G. The annular averages contains 5 peaks; the additional peak is due to a scattering flare
from the surface of the sample. Note the colorbar is a log-scale of intensity. Reprinted
from [113].

lattice transitions. Most likely, the cooperative increase in anisotropy and decrease in A/D
drives a collective reorienting and elongation of skyrmion tubes, leading to an increase
in scattering along distinguished directions, consistent with [117, 237]. The history de-
pendence of the structural lattice transition on previous skyrmion order supports separate
lattice transition pathways for ordered versus disordered skyrmion states. Namely, internal
disorder has a strong influence on a skyrmion states ability to reorient, invoking different
restructuring dynamics which may change the topology of the system.

Fig. 4.9a shows the azimuthally integrated radial |q| dependence for triangular, metastable
triangular, memory, and square skyrmion SANS images. All forms of triangular skyrmion
lattice, i.e. equilibrium, metastable, and memory, display similar peak centers. Likewise,
the two square lattice phases also exhibit similar peak centers, shifted to larger q relative
to the triangular ones, consistent with [99, 116]. The two square phases display compa-
rable scattering intensities, while the triangular phases are more varied in their respective
scattering intensities. This larger variability in scattering intensity amongst the triangular
lattice phases may be representative of the overarching diversity of stabilization mech-
anisms for the triangular versus square skyrmion phases, enabling the triangular lattice
forms to achieve larger ranges of skyrmion development, i.e., formation, penetration, and
alignment. Fig. 4.9b demonstrates the degrees of order for the various skyrmion phases, en-
capsulated in the angular peak widths as a function of temperature. Angular peak widths
were calculated using the average of the azimuthal peak widths of the primary scattering
ring, multiplied by the radial q location of the peaks taken from fits to data in Fig. 4.9a.
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We note that although the two square phases are stabilized through two different pathways
(i.e., ordered versus disordered), and display varying degrees of order, their comparable in-
tensities may suggest square lattice formation occurs via a similar driving mechanism for
this particular compound, with limited development/proliferation throughout the mate-
rial. It is indeed possible that the square phase is not the majority phase, and is instead
stabilized at surfaces, grain boundaries, and/or defects, resulting in its bounded formation
irrespective of its transition pathway. If both the ordered and disordered square phases
exhibit similar final states, the lattice transition must produce comparable skyrmion elon-
gation and reorientation in the ordered and disordered states, precipitating similar volume
fractions. This may suggest the presence of a dominant conical domain in the square lattice
phase. There also appears to be an increase in diffuse scattering in the disordered square
phase, suggestive of increased local disorder. This may result from disorder-enhanced q-
vector fluctuations brought on by the deformation of the disordered triangular lattice state
during the square lattice transition. Conversely, the presence of diffuse scattering in the
thermal equilibrium phase may be indicative of thermal fluctuations or coexisting precursor
helical or conical phases near the skyrmion phase boundary.

Figure 4.9: Radial |q| dependence of SANS intensity, integrated azimuthally over entire
SANS image for q ≥ 0.0040 Å−1 (smaller q was excluded due to the presence of flares)
for triangular, metastable, memory, and square skyrmion phases (a). Angular peak width
as a function of temperature for triangular, metastable, memory, and square skyrmion
phases (b). Angular peak width is defined as the q value of the primary diffraction rings as
determined from radial averages a), multiplied by the average peak widths extracted from
the annular averages in Figures 4-8. Reprinted from [113].

Estimates of the relative skyrmion volume fractions for the (O)M-T-SkX vs (M)M-
T-SkX phases can be generated by comparing the summed radial |q| intensities. For a
magnetic skyrmion sample, the scattered neutron intensity will depend on the saturated
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magnetization, the correlation length of the magnetic structures, and the volume fraction
occupied by those structures. As an approximation, we may perform SANS simulations on
magnetization arrays of various skyrmion volume fractions, with a fixed correlation length,
to examine their independent influence on scattered neutron intensity. Magnetization ar-
rays of size 640 nm x 640 nm x 2048 nm were generated with discretization cell sizes of 5
nm using the micromagnetic simulation package Ubermag [236]. Assuming contributions
to the hexagonal diffraction patterns arise solely from skyrmionic structures which occupy
the entire lattice volume, we may take their ratio in scattered intensities and use this to
determine the approximate difference in skyrmion volume fraction. We created composite
magnetization arrays of skyrmion domains with a ferromagnetic domain of varying vol-
ume fraction. We concern ourselves primarily with coexisting skyrmion and ferromagnetic
domains, since we transitioned directly from the ferromagnetic to skyrmion state with-
out crossing the zero field boundary. In doing so, we can estimate the relative change in
skyrmion volume fractions for the ordered metastable skyrmion phase versus its memory
counterpart. Hysteresis and low-temperature trapping of ferromagnetic domains is pos-
sible after saturation, with ferromagnetic contributions to the scattered intensity masked
by the beam block, resulting in a reduced scattered intensity. While other chiral and/or
non-chiral domains such as conical and helical are possible, decoupling the multi-variable
contributions of the domain types and their correlation lengths is beyond the scope of this
paper. Conical domains could similarly appear to reduce the scattered neutron intensity,
with contributions only accessible in the perpendicular field geometry. Alternatively, he-
lical domains could both increase and decrease the SANS intensity as a complex function
of their longitudinal correlation lengths.

SANS simulations were performed for fixed size polydomain magnetization volumes
with triangular lattice skyrmion volumes and ferromagnetic volumes shown in Fig. 4.10.
The scattering intensity was examined for varying skyrmion lattice and ferromagnetic
volume fractions, integrating the scattering intensity over the first order scattering ring.
The scattering intensity was observed to decrease for increasing ferromagnetic volume
fractions, displaying a linear relation (Fig. 4.10). The experimental SANS images were
integrated over an annular region from q=0.0040 Å−1 to q=0.0080 Å−1 capturing the entire
first order scattering ring, while excluding contributions from flares and higher orders. The
ratio of the intensity in the (O)M-T-SkX (2) to (M)M-T-SkX (2) phases is ≃ 1.4. Assuming
the (O)M-T-SkX phase has a skyrmion volume fraction of 95 %, we can estimate a decrease
in the skyrmion volume to 68 % in the memory state.
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Figure 4.10: Simulations demonstrating the relationship between skyrmion to ferromag-
netic volume fraction and scattered neutron intensity. XZ magnetization slices of the
out-of-plane magnetization component, Mz, are displayed for the skyrmion magnetization
volume. The simulated SANS intensity is plotted as a function of the ferromagnetic vol-
ume fraction in the magnetization array. A simulated SANS image is displayed in the
bottom left corner of the plot for a composite magnetization arrays consisting of a trian-
gular skyrmion lattice and ferromagnetic domain with 100 % and 0% volume fractions,
respectively. The SANS intensity demonstrates a linear relationships which decreases for
increasing ferromagnetic volume fractions. Reprinted from [113].

4.6 Discussion

Our SANS measurements demonstrate three distinct regimes in which thermal fluctua-
tions, pinning, and anisotropy terms dominate skyrmion ordering responses and reorien-
tations. A collective reorientation takes place in the thermal equilibrium phase, while
pinning and memory effects are observed to enhance skyrmion stability in the metastable
triangular phase. A new disordered-to-ordered skyrmion square lattice structural transi-
tion is revealed through elongations which necessitate a change in topology in order to
enable reorientations of the jammed state to a deformed square pattern. This is reinforced
through micromagnetic simulations on a disordered lattice as exchange and anisotropy
parameters are incrementally varied, demonstrating an increase in topological charge dur-
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ing the transition through the breakup of labyrinth domains which nucleates deformed
skyrmions. Together, these observations emphasize the fundamental mechanisms and in-
terplay of magnetic anisotropy and defects in skyrmion stabilization and structural lattice
transitions.

One might expect a disordered triangular skyrmion lattice to display similar degrees
of disorder in the square lattice phase (b.3 of Fig. 4.11). In the extreme case, such disor-
der may even inhibit the triangular-to-square structural lattice transition, where pinning
defects and trapped chiral domains preclude skyrmion elongation and reorientations, and
suppress the monopole motion required for the breakup or merging of labyrinth domains.
On the other hand, a finite amount of disorder may facilitate skyrmion ordering and tran-
sitions by lowering the barrier for monopole-antimonopole creation. In addition to the
influence of disorder on square lattice transitions, the cruciality of anisotropy in such tran-
sitions has been reinforced across multiple studies. In MnSi the triangular-to-square lattice
transition in quenched skyrmions entails a pathway in which the combination of reduced
net magnetization upon decreasing magnetic field, and favored magnetic moment direc-
tions due to anisotropic perturbations, produced skyrmion reorientations which generate
the square lattice [100]. Additional triangular-to-square lattice pathways invoke an in-
crease in easy-plane anisotropy, in which anisotropy favored growth of skyrmions leads to
skyrmion overlap, and the subsequent triangular-to-square lattice transition [58]. Most
recent studies for this material suggest that the role of anisotropy in ordered square lat-
tice transitions is to set the preferred direction of distortion of the peaks. However, our
simulations reveal that the combination of varying exchange and anisotropy is required
for the new disordered square transition pathway, which invokes a change in topology. As
mentioned previously, anisotropy may contribute to elongation and reorientations, while
disorder-related defects may lower the energy required for topological transitions, overcom-
ing the topological protection of skyrmions.

The memory of the previous skyrmion lattice in the (O)M-T-SkX phase persisted
in spite of saturation to the ferromagnetic phase—marked by the disappearance of all
skyrmionic and spiral scattering signals. The recovery of the same approximate azimuthal
peak positions and relative peak intensities, despite the predisposition of the skyrmion
phase to disordered and jammed states, further underscores the origin of this phenomena
to be memory based. One might expect such a memory effect, owing to the “frozen in”
nature of the metastable phase, as shown in the upper plot c.3 of Fig. 4.11. One possi-
ble explanation for this apparent memory may lie in low-temperature pinning phenomena
and enhanced magnetic anisotropy, highlighting the fundamental stabilization energetics
of skyrmions in the metastable phase. This result is consistent with skyrmion memory
observations made in Cu2OSeO3, in which the memory of skyrmion lattice states persisted
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after increasing the magnetic field to the field polarized state [118]. This memory effect
however, did not persist in zero field and was demonstrated in a well ordered triangular
phase that did not require any previous ordering procedures. Our memory effect is made
substantially more robust by the fact that it exists in the absence of a magnetic field,
and occurs in an inherently disordered material, demonstrating a complex competition
of stabilization energetics. The latter may be highlighted by the slightly enlarged peak
widths for the memory state. One may deduce the competition between previous pinning,
which favors the same peak locations and widths, and underlying disorder which favors
smeared ring-like patterns. The intensities of our peaks are, however, significantly reduced
indicating underdeveloped skyrmion lattice formation as compared to it’s original state.
Simulations in which the skyrmion-to-ferromagnetic volume fraction ratio was varied sug-
gest a decrease in the skyrmion volume fraction from an assumed value of 95% to 68%.
The remaining skyrmion volume fraction in the (M)M-T-SkX phase should be correlated
with the disorder in the material, which determines the number of defect pinning sites,
and therefore possible locations for toron survival. This suggests the polycrystallinity
of the sample may contribute to the observed memory through grain boundary disorder
and domain intersection. Examining the same memory effect for an ordered lattice would
help elucidate the interplay of skyrmion memory and disorder (such as pinning defects,
polycrystallinity, and complex jammed energy landscapes).

Skyrmion lattice correlations extending beyond the skyrmion envelope have also been
shown to exist upon FC in Fe1−xCoxSi, producing a metastable phase, where intensities
almost two orders of magnitude smaller than in the A phase are thought to indicate origins
rooted in surface or edge pinning [102]. On the other hand, previous studies using Mag-
netic Force Microscopy (MFM) on a polished surface of Fe1−xCoxSi have demonstrated the
preferential and reproducible decoration of certain positions on the surface with metastable
skyrmions during field-cooling runs, owing to enlarged local potential barrier at defect pin-
ning sites [241]. Given the chemical disorder inherent to this material, which stabilizes a
high density of defects, it is possible that the skyrmion memory is encoded and survives in
the form of isolated skyrmions (or torons as suggested in [118, 109]) confined to preferential
positions, attributed to defect-related pinning. One fashion in which the skyrmion lattice
may then propagate between these isolated skyrmions, which set the lattice orientation, is
by a monomer-by-monomer addition type mechanism previously observed in [242]. Theo-
retical evidence of isolated skyrmions have been shown to exist as metastable objects within
the saturated phase for a broad range of uniaxial anisotropy in the phase diagram of [86].
It would therefore follow that the underlying disorder in the material, both compositional
and crystalline, plays a considerable role in the observed memory. Thus, the pinning of
the skyrmions may be enhanced at lower temperatures and with increased anisotropy.
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Studying composition effects via chemical substitution enables a pathway in which
one can manipulate the delicate balance of stabilization energy terms, while introducing
additional disorder and pinning effects. In particular, exploring the memory effect as a
function of x,y concentration in CoxZnyMn20−x−y would illuminate the role of defects and
anisotropy in the skyrmion memory phenomena. Additionally, one could examine the in-
fluence of disorder induced by grain boundaries in polycrystalline samples by performing
the memory procedure for varying levels of sample crystallinity, with powdered samples
used in the extreme case. Studying the persistence of the memory effect as a function of the
strength of the saturating field could provide an estimate on the lower bound of the energy
barrier of defect-related pinning. Moreover, exploring the memory effect as a function of
the temperature and field of the metastable lattice, before saturation, would highlight the
fundamental stabilization energetics of skyrmions in the metastable phase. Future experi-
ments may also vary the time over which the magnetic field is reduced back to its skyrmion
envelope value, and in so doing probe a characteristic time scale over which the skyrmion
memory persists, similar to metastable skyrmion lifetime estimates in [101]. Noting that
the (O)E-T-SkX phase does not exhibit the same memory effect upon saturation into the
ferromagnetic phase—the disordered ring SANS pattern is regained—reinforces the dis-
parate nature of the stabilization and formation mechanisms of the thermal equilibrium
versus metastable phases; that is, thermal agitation, disorder, and topological stability.
Performing simulations which examine lattice transition pathways and memory effects as
a function of disorder levels would help establish a boundary between regimes of disorder
which facilitate and inhibit skyrmion lattice transitions and stability. This could be used
to establish ideal defect densities for enabling skyrmion reorientations and enhancing sta-
bility, guiding the tailoring of future material parameters for spintronic applications. We
intend to further explore skyrmion formation and stabilization mechanisms across multi-
ple phases in the bulk using a newly developed reconstruction algorithm [229], as well as
incorporate spin dynamics [160, 197, 195].

The presence of secondary and tertiary scattering rings may provide additional infor-
mation as to the long range magnetic order of the skyrmion lattice through reconstructions
with higher-order diffraction peaks. Unfortunately, multiple scattering tends to overwhelm
higher-order harmonics in the underlying structure. From an experimental point of view,
Renninger scans may be employed to quantitatively distinguish the two mechanisms by
“rocking out” the condition for multiple scattering. Renninger scans were performed in
a bulk sample of MnSi, revealing higher-order diffraction to arise from an interference ef-
fect [228]. These scans may be performed in the future on this sample as a function of
field and temperature to map out higher-order versus multiple scattering contributions
in phase-space. Alternatively, in theory, given an ideal skyrmion sample with instrument
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Figure 4.11: Schematic of expected SANS results for outlined experimental procedure
(upper panel), and corresponding real SANS results (lower panel). Note: the central peak
for the ferromagnetic phase is masked by the beam block, while prominent flares are able
to leak out in the SANS image. All SANS images are normalized to a fixed number of
standard monitor counts to enable direct comparison between images, with the same scale
for the color plots. Note the colorbar is a log-scale of intensity. Reprinted from [113].

resolution limited peak widths, second-order diffraction is indistinguishable from multiple
scattering which takes the form of a self-convolution of the first-order peaks with them-
selves. However, in the case of a disordered sample, the two effects become distinguishable
as the first-order diffraction pattern is convolved with some kernel which has cylindrical
symmetry. As a result, the radial and angular peak profiles of the primary and secondary
rings will be equivalent for the case of higher-order diffraction. For the case of multiple
scattering, the 12 secondary peaks will have alternating larger radial widths and smaller
angular widths relative to the 6 primary peaks. To determine the approximate ratio of the
two effects one can, in theory, unwrap the images in polar coordinates and determine a
linear combination of the simulated higher-order diffraction and multiple scattering images
that would produce the experimentally measured intensities in frequency space. Unfortu-
nately, given the low signal-to-noise ratio for the secondary peaks in these datasets, this
type of analysis is not trivial.
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4.7 Conclusions

In conclusion, we have shown skyrmion order, and ordering ability, to vary as a function of
phase. Discrepancies in skyrmion lattice transition and metastable phenomena for ordered
versus disordered samples were revealed through a newly established disordered-to-ordered
square lattice transition pathway and metastable triangular lattice memory effect. These
results greatly enhance our understanding of skyrmion stabilization and formation mech-
anisms for thermal versus metastable phases, demonstrating the interplay of topological
stability with a tunable energy landscape of exchange, anisotropy, disorder (i.e. defects and
pinning), field, and temperature. Ultimately, our work has provided a valuable account
of skyrmion stabilization/formation and lattice restructuring dynamics as a function of
disorder, establishing new pathways for skyrmion manipulation and enhanced stability for
future devices.
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Chapter 5

Three-Dimensional Neutron
Far-Field Tomography of a Bulk
Skyrmion Lattice

The study presented in this chapter is reproduced and adapted from [243].

Skyrmions are thought to nucleate and annihilate along their depth on points of vanish-
ing magnetization, called Bloch points, as described in section 1.3. However, owing to a lack
of bulk techniques, experimental visualizations of skyrmion lattices and their stabilization
through defects in three-dimensions remain elusive. In this chapter, we present three-
dimensional visualizations of a bulk Co8Zn8Mn4 skyrmion lattice through a tomographic
algorithm which processes multi-projection small angle neutron scattering measurements
to generate mean scattering feature reconstructions (MSFR) of the bulk spin textures.
Digital phantoms validated the algorithm; reconstructions of the sample show a disordered
skyrmion lattice with a topological saturation of 63 %, exhibiting three-dimensional topo-
logical transitions through two different emergent (anti)monopole defect pathways with
densities of 147 µm−3 and 21 µm−3 for branching and segmentation events, respectively.
These results serve as the first experimentally-informed visualizations of bulk skyrmion
lattice structures and defects in three-dimensions, providing novel insights into skyrmion
stabilization and topological transition pathways. This technique opens the door to future
studies of bulk skyrmion behavior on unprecedented lengthscales, guiding the development
and manipulation of skyrmion materials for spintronic applications.
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5.1 Skyrmions in Two Dimensions and Confined Sys-

tems

In three-dimensions, the uniform stacking of the two-dimensional skyrmion spin structure
produces skyrmion tubes elongated along the external magnetic field direction, thought to
penetrate surface-to-surface [244, 97]. In physical bulk crystal systems at non-zero tem-
perature, a finite density of defects exist, interrupting the skyrmion string propagation
[121]. Because the emergent flux that defines skyrmions is quantized, their nucleation and
termination is mediated by emergent magnetic charges that must also be quantized [59].
Skrymion tube segmentation and branching via emergent magnetic monopoles and anti-
monopoles (denoted S+, S−, B+, and B−, respectively) are believed to mediate skyrmion
topological transitions [60]. Motion of such defects in response to changes in external pa-
rameters, such as field or temperature conditions, have been proposed to drive a change in
skyrmion topology through the unwinding of individual skyrmions [121, 60] and the zip-
ping/unzipping of neighboring skyrmion tubes [59, 122, 60]. Since total emergent charge is
conserved, skyrmionic transitions can only take place in three-dimensions when emergent
(anti)monopoles are either pinned to a material defect or jammed in place and unable
to overcome the activation energy required to travel to the material surface or reach an
oppositely-charged monopole to annihilate [123, 122, 69].

As discussed in section 1.2, examinations of skyrmions using two-dimensional imag-
ing have revealed a myriad of in-plane skyrmion string deformations including elongated
structures [59] and bent skyrmion strings which terminate on the surface [92] or form at
edges [69], while three-dimensional imaging in confined systems has revealed axial modu-
lation of skyrmion tubes [70]. In all of these instances, the physical systems being probed
are subject to constricted geometries by virtue of the thin-plate or needle-shaped samples
required by the techniques. This introduces confinement effects, causing the system to
exhibit drastically different energetics to those of bulk samples, favoring surface-pinning
[91] and edge-interactions [73, 94, 69] which affect skyrmion formation, shape, interac-
tions, dynamics, and stabilization. Recent advances in the imaging and reconstruction
of three-dimensional magnetization vector fields have been made using X-ray magnetic
microscopy [245, 246] and nanotomography [247, 248] techniques, exploiting dichroism
in magnetic scattering and element-specific absorption contrast. However, such methods
maintain low penetration depths, bounded material thicknesses and compositions, and re-
quire vacuum-compatible setups which typically limit angular sampling [248]. A recent
study [126] confirmed the presence of interrupted and merging-type skyrmion strings in a
sparsely populated micrometer sized thin plate needle-shaped sample of Mn1.4Pt0.9Pd0.4Sn
using scalar magnetic X-ray tomography. The observations, however, are limited to individ-
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ual skyrmion strings in a sample thickness only a few times the skyrmion tube diameters,
whose confined geometry and thickness gradient fundamentally alters the skyrmions shape
and behaviour; bulk lattice skyrmion behavior has yet to be experimentally observed.

5.2 Reconstruction Technique

Small angle neutron scattering (SANS) is sensitive to bulk scattering features, enabling
studies of truly bulk skyrmionic systems along different paths through the sample’s phase
diagram. In particular, spatially averaged depth information may be obtained by forming
rocking curves, integrating over one or more diffraction peaks as a function of sample angle,
to extract the longitudinal correlation length of a skyrmion lattice [228]. The effects of
recent external magnetic field and temperature history on jammed states has been shown
using SANS, where skyrmion lattice defect densities were reduced using an ordering se-
quence where the external magnetic field is rocked relative to the sample [112]. Rocking
the sample in the field [112, 224] produces skyrmion lattice reorientations which disen-
tangle the jammed state, promoting additional skyrmion formation [112, 224], unless the
segmentation defect creation barrier is too high or the pinning potential is too strong to
liberate existing defects [124, 224, 113].

Whereas previous studies are confined to surface-level techniques, confined systems, or
integral far-field SANS measurements which cannot produce real space representations of
the sample, here we perform tomography of the thermal equilibrium triangular skyrmion
lattice phase to generate a three-dimensional mean scattering feature reconstruction of
a bulk skyrmion lattice. While, existing neutron scattering tomography techniques have
applied contrast imaging methods and phase-retrieval algorithms to multi-projection ultra
small angle neutron-scattering datasets to reconstruct two-dimensional sample cross sec-
tions [249] and scattering length density maps of periodic structures [229], respectively, the
technique presented here takes somewhat of a divergent approach, coupling the angular
projection datasets with a free energy regularization. In particular, our reconstruction
algorithm consists of first forming an estimator of a multi-projection set of SANS measure-
ments by operating on the incoming neutron state with a forward operator, which takes
the MSFR volume as its main input. Next, the sum of weighted residuals between the
estimated and measured SANS patterns for multiple projections is minimized with respect
to the MSFR. Without integrating over peak areas before forming the rocking curve, the
χ2 is sensitive to shifting peak locations, shapes, intensities, and correlations. The number
of free parameters depends on the chosen MSFR volume, but will usually be larger than
the number of data points in the set of SANS images. The large degeneracy of possible
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solutions and danger of overfitting the data is overcome by adding a free energy regular-
izing functional to the objective function f = χ2 + βF , where the χ2 is the weighted sum
of measurement residuals, F is the free energy of the MSFR, and β is a Lagrange multi-
plier reminiscent of a Boltzmann factor. The free energy includes the Heisenberg exchange,
Dzyaloshinskii-Moriya (DM) exchange, and external field Zeeman terms and could be made
to include additional interactions which are functionals of the spin density, though such
terms are beyond the scope of the present work. Knowledge of the functional form of the
free energy and average magnetization of the phase is therefore required for the application
of this technique to a magnetic system. Similar techniques are often used in traditional
computed tomography (CT) algorithms, in which case the total variation can be used as a
regularizing functional [250]. The resulting MSFRs may be interpreted as containing the
types of structures, and their densities, which are common within the sample. However,
there is no portion of the sample which looks exactly like a MSFR, and there are a large
number of possible MSFRs which would converge on a minimum of the objective function.
Moreover, since the reconstructed magnetization volumes are representative of the bulk,
they won’t produce surface specific features (such as surface twisting [251, 97]) unless it
is frequent throughout the sample, comprising a sizable volume fraction of the magnetic
features. One can also view minimizing the objective function as performing a micromag-
netic simulation with the χ2 providing the local interaction and pinning potential terms in
the free energy that cause lattice defects, thereby enforcing the lattice correlation lengths
and structure encoded in the SANS patterns.

To compute the reconstructions, the cost function was minimized using a conjugate
gradient method. The mmm2 = 1 constraint was enforced by defining search directions in
terms of the angular fields Θ = arcsin(mz) and Φ = arctan(my,mx). Ten iterations were
run with equal weights for all residuals, which can aid in convergence when measurement
uncertainties are dominated by counting statistics and there are regions of low count rates.
Following the ten iterations, 100 iterations were run with the weights given the measure-
ment uncertainties provided by the SANS reduction software [227]. A maximum weight
was introduced for the low-count rate regions to aid in convergence. The resulting aver-
age magnetization was found to depend on the weight given to the Zeeman term h, so
reconstructions over a range of h and starting average magnetization ⟨mz⟩ were performed
(Table 1), with the preferred MSFR being the one that most closely matches the phantom
or experimental average magnetization.

Details on the forward propagator, gradient, and defect density calculations are pro-
vided in Appendix A.
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Figure 5.1: Schematic outlining the reconstruction technique, beginning with the collec-
tion of experimental SANS angular projections (top) and ending with the output MSFR
(bottom). The experimental sample-field geometry used during tomographic rotations is
shown, where the sample and magnetic field were rotated coincident about an angle θ ensur-
ing a fixed magnetic orientation parallel to the surface normal of the sample. The rocking
curve is plotted for one of the horizontal peaks, showing the measured and extrapolated
regions of the Lorentzian curve. Estimated and measured SANS patterns are shown for
the initial and final MSFR, including their weighted residuals and minimization of the cost
function. The reconstruction is shown for the entire 12.3 µm3 (1.8 µm×1.8 µm×3.7 µm)
MSFR volume, with blue contours outlining the skyrmion tubes for an out of plane mag-
netization, mz = −0.5. Zoomed in two-dimensional skyrmion spin textures are shown for
3 depths along the reconstruction with highlighted emergent magnetic charges. Reprinted
from [243].
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5.3 Small Angle Neutron Scattering Tomography

Multi-projection SANS measurements were made (Fig. 5.1) using an above-room-temperature
skyrmion host, Co8Zn8Mn4, whose characterization was described in chapter 3 ([224]).
These measurements were performed at the NG7-30m beamline at the National Institute
for Standards and Technology (NIST) for a 15 m beam configuration at a wavelength of
6 Å. The sample was field cooled from 420 K in a field of 250 G to 310 K. Upon entering the
thermal equilibrium triangular lattice skyrmion phase a uniform ring manifested in SANS,
indicative of a jammed chiral state composed of misoriented skyrmion, labyrinth, and he-
lical domains [113]. The skyrmion sample was rotated symmetrically in the magnetic field
10 times over +/- 60 degree angular range to achieve the ordered six-fold pattern shown
in (Fig. 5.1). From here, multi-projection SANS data was collected for a static skyrmion
configuration, rotating the sample and field together on the same rotation stage about the
vertical axis specified in (Fig. 5.1) to ensure the magnetic field orientation remained fixed—
with the field direction parallel to the surface normal of the sample. These tomographic
rotations were performed for 30 angles from -2.9 degrees to 2.9 degrees. Incorporating ad-
ditional tomography axes may enhance the data, particularly in the case of sample tilting
for skyrmion states with very short longitudinal correlation lengths, however, this is left
for our future studies. The determination of the range and number of projections that
should be collected for a given magnetization volume, or sample, is set by the correlation
lengths of the phase. In the ideal case, the angular range should be sufficiently large so as
to capture the entire decay of the rocking curve. Rotations past this point do not enhance
the data unless there exist large off-axis domain structures or spin geometries in which
the propagation wavevector lies parallel to the incident neutron direction. For example,
conical domains may be probed by collecting angular projections about the perpendicular
sample-field geometry, however, these are left as the subject of our future experimental
explorations. For the case of highly disordered states characterized by long rocking curves
with persistent non-zero angular intensities, this can lead to large angular ranges for the
tomographic datasets, and can also present challenges for the rotation of cumbersome
cryomagnets in the limited sample space available on typical SANS beamlines. In the
experiment presented here, the ordered skyrmion sample and magnetic field were rotated
through 30 projections over a 5.8 degree angular range, limited by the geometry of the guide
field coils (Fig. 5.2a). Application of the ordering sequence seeks to both enhance the lon-
gitudinal and transverse correlation lengths of the phase while precipitating an oriented
monodomain skyrmion lattice. Therefore, the ordering sequence should refocus intensity
to the central peak of the rocking curve, while minimizing its FWHM and any potential
persistent non-zero angular intensity offsets arising from misoriented chiral domains. As a
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result, the initial application of the ordering sequence enforces our measured angular range,
while some of the rocking curve extrapolation performed at lower Q gets filled in by the
⟨mz⟩ parameter and free energy term. To determine the implications for how a limited-
projection dataset would effect our results, we reconstructed digital phantoms under both
ideal conditions, where SANS data was simulated for 31 projections between ±15 deg about
both axes (no compound rotations) and the actual experimental projections (see methods
and ideal vs limited projection datasets in supplementary materials).

5.4 Phantom Generation

Digital phantoms were made by seeding an LLG relaxation using Ubermag [236] with a
high-energy lattice made to have a fixed correlation volume. The LLG relaxation was
stopped after ten iterations to retain a reasonable density of defects. The system used the
free energy functional

E[mmm] = −Ammm · ∇2mmm+Dmmm · (∇×mmm) − µ0MsHHH ·mmm. (5.1)

with exchange stiffnessA = 10 pJ/m, Dzyaloshinskii–Moriya constantD = 3.93×10−3 J/m,
saturation magnetization Ms = 1 × 106 A/m, and external field values of H = 0.2080 T,
0.2780 T, and 0.3475 T for Phantoms A, B, and C, respectively.

The seed was generated by alternating between Fourier-space and real-space constraints.
The magnitude of the sample magnetization in Fourier-space is set by the desired corre-
lation volume; the real space magnitude of the sample magnetization was constrained to
unity everywhere; and the transverse magnetization was set to be in the direction of the
curl of the longitudinal magnetization.

SANS patterns were simulated by applying a forward operator to a randomly-selected
and randomly-translated one of twenty phantoms made with differing random initialization.
The resulting SANS images from repeating this process at least 100 times were averaged to
simulate an incoherent neutron source and create the resulting simulated multi-projection
SANS data.

81



5.5 Three-dimensional Visualizations of Skyrmions in

the Bulk

The voxel size of the MSFR is determined by the Fourier-space span of the SANS images
dx = 2π/Qtot = 2π/(dQ N). In this experiment dx = 14.3 nm, as determined by the
resolution dQ = 3.4 µm−1 and size N ×N = 128× 128 of the SANS images. The height of
the MSFR was set to 256 voxels, for a total volume of 1.8 µm×1.8 µm×3.7 µm= 12.3 µm3.
Two-dimensional slices of the measured and reconstructed SANS images, weighted resid-
uals, and MSFRs are shown for the bulk sample and phantom set B with average mag-
netizations of 0.42 and 0.41, respectively (Fig. 5.2). Videos showing magnetization and
topological defects as a function of depth for the phantoms and MSFRs are available with
the supplementary materials [252]. Since the reconstruction technique does not provide a
one-to-one spatial mapping to any volume within the sample, deviations between Fig. 5.2g
and Fig. 5.2k are expected. However, comparison between the two in-plane slices shows the
presence of similar topological structures, transitions, and skyrmion packing densities. A
more accurate and comprehensive comparison entails looking at the entire input and MSFR
volumes for average features and their densities. Average magnetization, topological sat-
uration, and defect densities are compared in Table 1. Phantoms were generated with the
external field near the helical-skyrmion boundary (Phantom A), the ideal value (Phantom
B), and the ferromagnetic-skyrmion boundary (Phantom C). The choice of Zeeman term
h, was set such that average magnetization of the reconstructions matched those estimated
through magnetic susceptibility measurements. The required weighting of the Zeeman
term h, to achieve the average magnetization that was estimated from DC-susceptibility,
was affected by the χ2. The favored MSFR are thus those with values of h which produce
the estimated average magnetization and are highlighted in Table 1. The agreement be-
tween phantom and MSFR is reasonable for Phantoms B and C , with deviations between
ideal and limited-projection datasets likely arising due to the truncated rocking curve of
the limited datasets. However, the MSFR for Phantom A overestimates the branching
defect density. This is likely attributable to the seeding, where Phantom A transitioned
from an average magnetization of ⟨mz⟩ = 0.4 to ⟨mz⟩ = 0.33 during the free energy re-
laxation (see Materials and Methods), while the MSFR had a net magnetization change
of ⟨mz⟩ = 0.35 to ⟨mz⟩ = 0.32, suggesting hysteresis-like effects can impact the fidelity of
the reconstructions. Such effects are reminiscent of real samples, wherein sample histories
and trajectories through phase-space may alter the stability, chiral and topological volume
fractions, and defect densities of the phase [231, 131, 253]. Future studies may incorporate
variations of the estimated ⟨mz⟩ parameter to simulate and incorporate these hysteresis
effects.
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Figure 5.2: Experimental setup (a), measured SANS image (b) reproduced from [224],
minimized weighted residuals (c), reconstructed SANS image (d), and xy (e) and xz (f)
slices of the MSFR are shown in the upper panel. The lower panel shows the corresponding
plots for the phantom B limited-projection dataset (see highlighted row in Table 1) where
(g) is the simulated input magnetization, (h) is the simulation SANS pattern, and (i)-(l)
follow the same as the upper experimental row. All SANS images are shown for the zeroth
projection, with the guide field and sample aligned parallel to the neutron beam. XY and
XZ magnetization slices are shown for a 1.8 µm×1.8 µm area of the MSFR, showing the
full in-plane magnetization slice and half of the longitudinal magnetization slice. Reprinted
from [243].

The sample MSFR topological saturation Nsk/Nmax is found to be 63 % of that of a
perfect, skyrmion triangular lattice with the same Q0. This is reflected by the presence
of transverse and longitudinal lattice distortions. In particular, skyrmion voids, bimerons,
and elongated spin structures present in the two-dimensional MSFR magnetization slices
reduce the number of skyrmions from that of an ideal hexagonally packed lattice. Similarly,
interruption of the skyrmion strings along their length may be visualized by taking an x−z
slice of the MSFR as shown in Fig. 5.2f.

Three-dimensional visualizations of portions of the sample MSFR show skyrmion nu-
cleation and annihilation along their depth, where segmentation S± and branching B±

(anti)monopoles mediate the change in topology at skyrmion transition points (Fig. 5.3e).
These features are similar to those observed for simulations of skyrmion annihilation
in three-dimensions through helical and conical pathways [60, 59, 122]. Notably, some
branching events are observed to occur along wave vectors Q which are offset by 60 de-
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h ⟨mz⟩seed ⟨mz⟩ Nsk/Nmax ρbranch, µm−3 ρseg, µm−3 ρtot, µm−3

Phantom A 0.56 0.40 0.33 65 % 101 37 138

MSFR A, ideal 0.50 0.30 0.28 52 % 322 7 329

0.60 0.35 0.32 59 % 238 13 251

0.75 0.40 0.37 65 % 150 26 176

MSFR A, lim. proj. 0.50 0.30 0.30 56 % 299 9 308

0.60 0.35 0.34 60 % 233 13 246

0.75 0.40 0.40 64 % 164 24 189

Phantom B 0.75 0.40 0.41 68 % 47 40 87

MSFR B, ideal 0.60 0.35 0.35 62 % 138 10 148

0.75 0.40 0.38 64 % 115 12 127

0.87 0.45 0.42 72 % 53 31 84

MSFR B, lim. proj. 0.60 0.35 0.35 60 % 166 6 172

0.75 0.40 0.41 67 % 88 16 104

0.87 0.45 0.45 69 % 53 31 84

Phantom C 0.94 0.40 0.47 73 % 13 103 115

MSFR C, ideal 0.80 0.42 0.41 69 % 133 27 161

0.94 0.47 0.46 72 % 54 56 110

1.08 0.52 0.49 72 % 21 91 112

MSFR C, lim. proj. 0.80 0.42 0.43 69 % 126 26 152

0.94 0.47 0.49 72 % 46 63 109

1.08 0.52 0.54 71 % 23 95 119

MSFR, sample 0.50 0.30 0.25 53 % 214 6 220

0.60 0.35 0.35 59 % 163 13 176

0.75 0.40 0.42 63 % 118 21 139

0.87 0.45 0.48 66 % 69 37 106

Table 5.1: Zeeman term weight in reduced field units h, seeded average magnetization
⟨mz⟩seed, final average magnetization ⟨mz⟩, topological saturation Nsk/Nmax, and defect
densities, ρ, of the phantoms and associated MSFRs and sample MSFR. The green high-
lighted rows correspond to the reconstructions that most-closely match the known ⟨mz⟩
parameters—calculated from input phantoms or extracted through susceptibility measure-
ments. The reduced field is fixed; all other parameters are computed from the spin density.
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Figure 5.3: Characteristic topological transitions present in the MSFR showing branching
and segmentation (anti)monopole pathways. The blue contours outline the skyrmion tubes
where the out of plane magnetization, mz = −0.5. Some of the skyrmion tubes are
masked to highlight the regions undergoing changes in topology. Emergent magnetic charge
density contours are shown for the two types of skyrmion topological transition processes
with S+, S−, B+, and B− corresponding to purple, orange, red, and green, respectively.
Branching (B) and segmentation (S) emergent (anti)monopoles are observed to occur at
transition points along the tubes, displaying distinct spin textures determined by the sign
of ∂zmz. Zoomed in spin textures are shown for the labeled branching and segmentation
(anti)monopoles with each spin corresponding to one voxel (e). All skyrmion features are
shown for a depth of 37 voxels, equating to 531 nm. Reprinted from [243].

grees from the horizontal nearest-neighboring skyrmion, producing a skyrmion twisting
effect (Fig. 5.3a). Conversely, some instances of segmentation events exhibit pairs of S±

(anti)monopoles which cup skyrmions, producing spatially localized skyrmion filaments
which extend longitudinally over a few lattice periods (Fig. 5.3d) and are reminiscent
of magnetic torons [125]. Given the field history of the sample, wherein saturation to
the ferromagnetic phase was performed prior to collection of the tomography data, these
structures may represent a skyrmion survival mechanism in the field-polarized state via
magnetic torons on defect pinning sites [113]. Future studies will be performed to examine
the prevalence of these structures as a function of field history and average magnetization,
shedding insight into skyrmion elongation and stabilization mechanisms.

The energy source required for emergent (anti)monopole creation may derive from
internal chemical disorder present in the material (such as in material imperfections or
site-disorder [60, 92, 124]), thermal activation [141, 38, 254], and the external magnetic
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field setting relative to the helical and ferromagnetic phase boundaries [38, 92, 59]. For
the case of the magnetic field setting, segmentation and branching (anti)monopoles are
thought to control skyrmion annihilation upon increasing and decreasing fields, respec-
tively [59, 122, 80]. This is reinforced by reconstructions performed on equivalent datasets
under different average magnetization and reduced field h conditions; a shifting prevalence
from branching defects in the low-field case, to segmenting defects in the high-field case is
observed.

The preferred sample MSFR shows segmentation and branching (anti)monopoles seem-
ingly jammed in place and unable to travel to the sample surfaces or annihilate. The
observed defect densities could be due to pinning potentials in the material which would
trap the (anti)monopoles and inhibit their motion [124]. In this case, the prevalence of
these structures may indicate the degree of internal chemical disorder, providing snapshots
of magnetic defect pinning centers. Alternatively, these features may be evidence of an in-
complete ordering sequence, wherein the limited magnetic field directions during rotation
did not allow the monopoles to propagate along enough angular paths in the sample to
completely breakup the jammed labyrinth domains [112]. Future SANS tomography mea-
surements taken as a function of skyrmion ordering could decouple these two possibilities.
Implementation with structured neutron beams, which possess an analogous non-trivial
winding character in spin [197] or phase [194, 255], may provide estimates of the magnetic
defect densities based on the vertical widening of the skyrmion peaks in the transverse ge-
ometry. Alternatively, the defects themselves may be viewed as the magnetic equivalent of
phase singularities, capable of generating topological neutron states for probing nanometric
sample topologies.

5.6 Conclusions

We have shown experimental visualizations of the three-dimensional character of a bulk
skyrmion lattice through Mean Scattering Feature Reconstructions, generated via a SANS
tomography technique. The present results uncover the stabilization and evolution of
a triangular skyrmion lattice in the bulk through three-dimensional topological transi-
tions which exhibit a mixture of distinctive segmenting and branching (anti)monopole
defects. Exotic features for these two event types are observed in the MSFR, characterized
by skyrmion twisting during branching events and localized skyrmion filament structures
cupped by S± (anti)monopoles. Our SANS tomography techniques provide unique insights
into skyrmion formation/annihilation and transition processes through (anti)monopole de-
fects, opening the door to future studies of bulk micromagnetic materials on unprecedented
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lengthscales, including skyrmion and emergent (anti)monopole structure, behaviour, and
dynamic processes under a wide range of external parameters under complex environments.
Furthermore, this techniques may be extended to incorporate new micromagnetic systems,
such as frustrated magnets and superconducting vortex lattices, in addition to exotic topo-
logical structures such as magnetic chiral bobbers [80], torons [118, 109, 125], bimerons
[256], and hopfions [82].

87



Chapter 6

Experimental Realization of Neutron
Helical Waves

The study presented in this chapter is reproduced and adapted from [255].

Whereas conventional neutron probes exploit the nuclear and magnetic moments of
the neutron to study the structural and magnetic properties of materials, the OAM de-
gree of freedom of the neutron promises direct access to topological phases, structures,
and interactions over a wide range of systems. Endowing the wavefront of the neutron
with OAM embeds the sample-to-system interaction in a topological subspace, enabling
novel investigations of topological scattering interactions and interferences across various
phases of matter and system potentials. Through topological interaction mechanisms such
as targeted scattering, conservation of topological charge, and dynamic OAM transfer
mechanisms, we would gain unprecedented insights into topological features and excita-
tions spanning condensed matter systems to fundamental physics and quantum sensing
applications, ushering in a new phase of neutron probing techniques.

Section 2.1.2 introduced the concept of neutron OAM, its future applications, and the
various means by which it has been generated and detected. One of the foremost challenges
facing the utilization of neutron OAM degrees of freedom across modern neutron scattering
and imaging techniques is the inability to create helical wavefronts dominated by a single
OAM value. Future applications involving the determination of sample defect densities,
magnetic topological charges, and exotic topological interactions/phases are predicated on
the input of a known single-valued neutron OAM. Moreover, implementation with quantum
materials necessitates the generation of topological neutron states on the length-scale of
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the periodicity of the topological structures in the sample. However, existing methods as
outlined in section 2.1.2 are limited to either incoherent averaged values or lattice structures
with large periodicities unable to match those found in quantum materials. As a result,
neutron OAM prospects for quantum materials and sensing applications remain unrealized.

In this chapter, we demonstrate a holographic approach to the selective tuning of neu-
tron OAM. We use microfabricated arrays of millions of diffraction gratings with criti-
cal dimensions comparable to neutron coherence lengths. The arrays can be laid out on
the cm-square areas typical of usual neutron scattering targets, inspiring the direct inte-
gration of other structured wave techniques, such as the generation of Airy and Bessel
beams [257, 258, 259], into neutron sciences. Furthermore, we discuss the applications
towards characterization of materials, helical neutron interactions, and spin-orbit correla-
tions.

6.1 Generation of Neutron Helical Beams Through

Phase-Gratings

Phase-gratings with q-fold fork dislocations are a standard tool in optics that produce
photons with OAM value of ℓ = mℏq at the mth order of diffraction [260]. This requires
that the transverse coherence length of the light beam be at least comparable to the
dimensions of the fork dislocation.

Neutron beams have transverse coherence lengths of microns and fluence rates of 105−
107 neutrons/(cm2×s). Observing the neutron signal from a single micron sized target is
impractical. However, we can multiply the signal by using an N ×N array of micron-sized
fork dislocation gratings. When considering an array it is important that the overall array
size is much smaller than the diffraction signal of interest, and that the separation distance
between the individual gratings is large enough so that it does not induce an observable
diffraction order.

We have fabricated such arrays with N = 2500 on silicon substrates using electron
beam lithography. Fig. 6.1a shows scanning electron microscope (SEM) images of the
fork dislocation phase-gratings with q = 3. By construction, the spatial dimensions of the
individual gratings are comparable to the transverse coherence length of our neutron beam.
The use of such an array increases the neutron intensity by N2 in a given m > 0 diffraction
order in the far-field (see Fig. 6.1b). The individual diffraction orders in the presented
intensity profiles (see Fig. 6.1c) span an area of ≈ 10 cm by 10 cm, were taken over a
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Figure 6.1: Holographic approach to generating neutron helical wavefronts that carry well-
defined orbital angular momentum (OAM). a) SEM images characterizing the array of fork
dislocation phase-gratings used to generate the neutron helical wavefronts. The arrays
covered a 0.5 cm by 0.5 cm area and consisted of 6,250,000 individual 1 µm by 1 µm fork
dislocation phase-gratings that possesses a period of 120 nm, height 500 nm, and were
separated by 1 µm on each sides. Three arrays with topological charges of q=0 (standard
grating profile), 3 (shown here), and 7 were used in the experiment. b) Each phase-grating
generates a diffraction spectra consisting of diffraction orders (m) that carry a well-defined
OAM value of ℓ = mℏq. c) The intensity in the far-field is the sum over the signal from
all of the individual fork dislocation phase-gratings. Shown is an example of the collected
SANS data. Reprinted from [255].

period of ≈ 40 min, and consist of the signal from 6, 250, 000 individual fork dislocation
phase-gratings.

To characterize the generated OAM states we can map out the momentum distribution.
SANS beamlines provide several advantages as they map the spatial profiles in the far-field,
where the observed intensity distribution is directly determined by the Fourier transform of
the outgoing neutron wavefunction. Having access to the far-field enables the use of holo-
graphic techniques that have been developed for optical structured waves [260]. Another
advantage is the relatively large flux and the accessibility to a wide range of wavelengths.
And lastly, it is the typical setup used in material characterization techniques including
the contemporary techniques analyzing skyrmion and topological geometries [224, 113].
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Straight-forward extensions follow for incorporating the characterization of materials and
performing experiments with helical neutron interactions.

Small angle neutron scattering measurements were performed on the GP-SANS beam-
line at the High Flux Isotope Reactor at Oak Ridge National Laboratory [261]. The arrays
of fork dislocation phase-gratings were placed inside a rotation mount which was then af-
fixed to the end of the sample aperture holder. The phase-gratings were placed 17.8 m
away from a 20 mm diameter source aperture. A 4 mm diameter sample aperture was
placed right in front of the sample. The distance from the phase-grating to the camera
was 19 m, and the camera size spanned an area of ≈ 1 m2 with each pixel being ≈ 5.5 mm
by 4.1 mm in size. The wavelength distribution was triangular with ∆λ/λ ≈0.13 and a
central wavelength of 12 Å. The resulting beam divergence is ≈ 0.67 mrad, the transverse
coherence of the neutron wavepacket σ⊥ ≈ λL1/s ≈ 1 µm, and the standard deviation of
the resolution distribution was estimated to be σQ=0.00016 Å−1.

The neutron wavelength is selected by a turbine-like velocity selector that has helical
blades which allow specified neutrons with correct velocity (and thus wavelength) through
it. The ∆λ/λ is determined by the angle at which the velocity selector is positioned with
respect to the beam. Note that because the wavelengths were selected with a velocity
selector we do not get λ/2 and λ/4 contributions that are present when a monochromator
is used.

Scattering images were collected for the three arrays of fork dislocation phase-gratings
in the beam, where the instrument configuration remained fixed. An empty beam scan
without a sample and a background scan for a plain Si wafer of equivalent size and thick-
ness were collected. These measurements were used to take into account the beam size,
total neutron monitor counts, background and plain wafer scattering, and sample/plain
wafer transmission which would otherwise contribute to losses in intensity and increased
background scattering noise levels in the images.

A simple map for modelling the action of a binary phase-grating with a fork dislocation
can be expressed as:

ψin → ψin

[
cos
(α

2

)
+ sin

(α
2

)∑
m

2

mπ
ei

2πmx
p eimqϕ

]
(6.1)

where x (ϕ) is the Cartesian (azimuthal) coordinate, p is the grating period, m = ... −
3,−1, 1, 3... are the non-zero diffraction orders, α is the induced phase by the height of
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the grating grooves, and the incoming wavefunction ψin is typically taken to be a Gaus-
sian profile for convenience. The far-field is typically defined to be the distance at which
Fraunhofer diffraction is valid. In this regime the diffraction orders are spatially separated,
so here we can consider the m terms independently along their respective propagation di-
rections. We thus obtain well-defined OAM states in the form of ψine

imqϕ. Note that the
OAM is therefore only well defined in the paraxial approximation. The full analysis of the
evolution of such states is presented in Ref. [262, 263].

With equal transverse coherence lengths σx = σy = σ⊥ we can make use of the cylin-
drical symmetry to describe the transverse wave function in terms of solutions to the 2-D
harmonic oscillator [160]:

ψℓ,nr(r, ϕ) = N
(
r

σ⊥

)|ℓ|

e
− r2

2σ2
⊥L|ℓ|

nr

(
r2

σ2
⊥

)
eiℓϕ, (6.2)

where N = 1
σ⊥

√
nr!

π(nr+|ℓ|)! is the normalization constant, nr ∈ (0, 1, 2...), ℓ ∈ (0,±1,±2...),

and L|ℓ|
nr (r2/σ2

⊥) are the associated Laguerre polynomials. The corresponding neutron
energy is

E = ℏω⊥(2nr + |ℓ| + 1), (6.3)

where ω2
⊥ = ℏ/(2Mσ2

⊥), and M is the mass of the neutron. Each diffraction order m of
the fork dislocation phase-grating is in a definite state of OAM:

ψ =
∑
nr

ψℓ=mq,nr . (6.4)

Considering nr = 0 dominant term [160] of the first diffraction order, we can determine
that the azimuthally integrated intensity:

∫ 2π

0

|ψq,0(r0, ϕ0)|2dϕ (6.5)

peaks at:

r0 = σ⊥
√
q. (6.6)
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6.2 Results

Figure 6.2: SANS data collected for the three arrays of fork dislocation phase-gratings
with q=0 (top), q=3 (middle), and q=7 (bottom). The m= −1, 0, 1 diffraction orders are
visible, and the corresponding doughnut profiles induced by the helical wavefronts (see
Fig. 6.1b) can be observed in the bottom two profiles. Due to the relatively high intensity
of the direct beam the range of the colorbar is limited to emphasize the diffraction order
features. The vertical gridlines and the arrows above the plots indicate the location of
the theoretical intensity peaks of the m= −1 orders. The azimuthally integrated intensity
profiles across the diffraction orders, as well as the corresponding simulated profiles, are
shown in Fig. 6.3. Reprinted from [255].

We fabricated three arrays of fork dislocation phase-gratings on Si wafers, with topo-
logical charge of q=0, 3, and 7. Each array covered a 0.5 cm by 0.5 cm area and consisted
of 6, 250, 000 individual 1 µm by 1 µm fork dislocation phase-gratings, where each one
possessed a period of 120 nm, height 500 nm, and was separated by 1 µm on each side
from the other fork dislocation phase-gratings.
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The observed SANS data for the arrays of fork dislocation phase-gratings is shown in
Fig. 6.2. The measurement time was 60 min for q=0, 40 min for q=3, and 60 min for
q=7. With the phase-grating period of p = 120 nm, the angle of divergence of the first
diffraction order is θ ≈ λ/p ≈ 0.01 rad which corresponds to Qx = 2π/p = 0.00525 Å−1

on the SANS images (see Fig 6.1c). In our particular setup this corresponds to a spatial
distance of x ≈ 19 cm on the camera as shown in Fig. 6.2. Good agreement is found with
the observed location of the peaks.

Figure 6.3: The azimuthally integrated intensity profiles centered on the m = −1 diffrac-
tion orders of the data presented in Fig. 6.2. The simulated profiles take into account the
wavelength distribution, beam divergence, propagation distance, and array size which are
common to all three cases. The amplitude in each case was scaled to match the observed
data. Note that for the q=0 data, a large magnet apparatus was present in the beamline
which greatly reduced the observed intensity. Good agreement is found between the sim-
ulated and observed profiles. Reprinted from [255].

To quantify the doughnut profiles we can analyze the azimuthally integrated intensity
(Eq. 6.5) centered on the first diffraction orders. Fig. 6.3 shows the comparison between
observed and simulated intensity. For the simulated profiles only the amplitude was varied
in each case to match the observed amplitude. Wavelength distribution, beam divergence,
propagation distance, and array size are common to all three profiles. Note that because
each wavelength has a distinct diffraction angle, the observed signal at the first diffraction
orders is the incoherent sum of the translated signals from each wavelength. For the q=0
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data, a large magnet apparatus was present in the beamline which greatly reduced the
observed intensity and therefore the peak appears relatively smaller than expected. Good
agreement is observed between the simulated and observed profiles.

6.3 Conclusions

Through microfabrication and SANS techniques, we have successfully produced and char-
acterized topological diffraction gratings which generate neutron helical waves that are
dominated by a well-defined OAM value. Using microfabricated 2D arrays of fork dislo-
cation phase-gratings, we have revealed the doughnut shaped intensity SANS signature
of various topological neutron states, thus providing the first experimental realization of
single-valued coherent neutron OAM states. This method enables novel investigations of
the coherent interaction between neutron OAM and topological phases of matter through
targeted and enhanced scattering/interferences, conservation of OAM/topological charge,
and a dynamic OAM-magnon transfer. For example, through the implementation of a
topological grating upstream of a magnetic skyrmion sample, we could couple the topolog-
ical spatial phase structure of the neutron beam with the topological spin phase structure
of the skyrmion lattice, exploring the coherent diffraction of neutron OAM states from
a triangular skyrmion lattice phase. A successful demonstration of the passage and/or
transfer of neutron OAM to skyrmions would serve as a novel and direct means of probing
sample topologies, conservation of OAM, and provide estimates on topological defect densi-
ties and structural correlation lengths, having extensive implications for neutron scattering
techniques for bulk topological phases. These results would have far-reaching implications
for neutron scattering techniques as a whole, providing insight into topological interactions
between neutrons and materials, ushering in a new phase of neutron materials scattering
techniques.

A myriad of applications which extend beyond quantum materials, involve fundamental
tests of topological based interactions and novel neutron beam manipulation techniques.
In particular, topological absorption/decay mechanisms and interaction potentials may
be explored using the presented neutron helical wave generation technique, with studies
ranging from spin-dependent neutron OAM selection rules in nuclear spin-polarized 3He,
to OAM-dependent neutron lifetimes. Moreover, the microfabrication methods presented
here may be extended to various shapes of phase-gratings such as cubic phase and radial
phase gradients, enabling the production of “self-accelerating” Airy beams [258, 264], as
well as the “non-diffractive” Bessel beams [259, 265]. This would offer new routes to
manipulating neutron beam shapes and trajectories, opening the door to a new suite of
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structured neutron beam techniques.

Finally, these structured techniques may be extended to other quantum materials char-
acterization methods by incorporating OAM degrees of freedom across a variety of probe
particles, spanning electrons to X-rays. In particular, developing OAM-based analyzers
and structuring input probing beams with helical wavefronts, and spin-orbit modes of var-
ious symmetries and topologies, would enable the direct investigation of novel topological
features and excitations. Implementation of these methods across Angle-Resolved Photoe-
mission Spectroscopy(ARPES) and neutron spectroscopic instruments for example, would
enable the direct examination of topological interactions and excitations in quantum ma-
terials which span a diverse range of lengthscales, dimensions, and degrees of freedom,
encompassing energy to spin. These experiments promise a new generation of quantum
measurement techniques which provide unprecedented access to exotic topological phases
and interactions in quamtum materials.
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Chapter 7

Conclusions and Future Prospects

In this thesis, we (1) demonstrated novel techniques for probing three-dimensional topolog-
ical magnetic states in bulk quantum materials, and (2) applied these methods to charac-
terize the topological dynamics and stabilization defect pathways of the disordered multi-
phase bulk skyrmion material, Co8Zn8Mn4. Neutron scattering is an invaluable tool in the
study of quantum materials, however, current techniques and their instrumentation fail to
exploit all the available degrees of freedom of the neutron that we have at our disposal. In
particular, tomographic approaches have yet to be adopted to modern SANS techniques; as
a result, valuable information regarding the sensitivity of the neutron to three-dimensional
sample states is completely discarded. Additionally, spin-phase coupled neutron interac-
tions and topological degrees of freedom have yet to be explored, leaving a blatant gap in
the repertoire for neutron scattering methods for quantum material investigations. Our
work resolves these outstanding challenges, providing both the first demonstration of a
three-dimensional reconstruction technique for the visualization of bulk micromagnetic
materials and the first method for generating tunable single-valued topological neutron
states.

The synthesis and characterization procedure for a disordered multi-phase bulk skyrmion
sample, Co8Zn8Mn4, was outlined in chapter 3. Powder and backscatter Laue X-ray diffrac-
tion techniques were used to characterize the phase purity and crystallinity of the sample,
respectively. Magnetometry and SANS measurements were performed to identify the ther-
mal equilibrium temperature-magnetic field skyrmion envelope. SANS measurements of
the thermal equilibrium triangular lattice phase revealed a uniform scattering ring charac-
teristic of a rotationally disordered magnetic configuration composed of chiral and skyrmion
domains. Application of a skyrmion ordering sequence precipitated oriented and ordered
triangular lattices which manifest a hexagonal pattern in SANS.
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Ordering methods demonstrated in chapter 3 were used to examine the disorder-
dependent nature of skyrmion transitions and dynamics across thermal and metastable
phases in chapter 4. Application of skyrmion ordering procedures in the thermal equi-
librium phase revealed an indirect conversion between the disordered ring intensity and
the ordered skyrmion peak intensity, indicative of the presence of an initial jammed state
of chiral domains. Cooling from the disordered thermal equilibrium skyrmion triangular
lattice phase to the metastable skyrmion square lattice phase revealed a new disordered-to-
ordered skyrmion square lattice transition pathway characterized by the novel promotion
of four-fold order in SANS and accompanied by a change in topology of the system, re-
inforced through micromagnetic simulations. Here, anisotropy is thought to facilitate the
disentangling of a jammed labyrinth state through pathways which alter the topological
charge of the system, allowing reorientations to a square lattice. In the ordered metastable
triangular lattice phase, field-induced saturation protocols to and from the ferromagnetic
phase reveal a skyrmion memory effect which is enhanced upon application of a skyrmion
ordering sequence. The dynamical response of the memory state to the ordering sequence
suggests that skyrmion survival during saturation is encoded into topological charge con-
serving magnetic torons which are pinned to defect sites. The subsequent interplay of the
anisotropy and field direction during the ordering sequence may facilitate the elongation of
torons into skyrmions. Together, these results highlight the role of skyrmion disorder and
topological charge in skyrmion stabilization and lattice restructuring pathways, offering
new routes for skyrmion manipulation and enhanced stability for spintronic applications.

Application of the SANS tomography technique to a bulk skyrmion material (chapter 5)
yielded the first three-dimensional visualizations of a bulk skyrmion lattice and its stabiliza-
tion through branching and segmentation topological transition emergent (anti)monopoles
defect pathways. These visualizations have provided key insights into skyrmion forma-
tion and annihilation mechanisms through the identification of defect-mediated transition
points and possible field-saturated skyrmion fragments, in addition to their dynamical
twisting behaviors. In this manner, we have overcome the previous sample thickness and
shape requirements associated with x-ray and electron probes, which limit studies to thin
and confined sample geometries only capable of reconstructing a handful of skyrmions over
a few periods of depth. Moreover, our method enables bulk studies across a broad range of
material compositions and states under extreme and diverse external parameters, thanks
to the generous sample spaces afforded by SANS beamlines which may accommodate both
complex and large-scale sample environments. Future studies involve the tomographic
exploration of various skyrmion formation and annihilation phenomena as a function of
field, temperature, and skyrmion order, mapping out the entire magnetic phase space of
the material. Alternatively, three-dimensional oscillatory skyrmion dynamics on the mil-
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lisecond and sub-millisecond scale can be explored via the incorporation of Time-Resolved
SANS measurements to the multi-projection SANS datasets. Application of the tomogra-
phy technique to skyrmion systems during various dynamical processes such as current-
induced creation, nonlinear phenomena, and short-term memory effects, may guide the
future development of skyrmion-based neuromorphic computing [266, 267]. The tomog-
raphy algorithm may be expanded to handle a broader class of micromagnetic systems,
such as frustrated magnets and vortex lattice superconductors, whilst also extending the
search for exotic topological structures to new magnetic systems [268, 81]. Furthermore,
the tomography algorithm could also be adapted to neutron grating interferometry setups,
enabling phase tomography studies up to micrometer lengthscales. Finally, computational
advancements may be made by implementing machine-learning methods using phantom
training datasets or by incorporating quantum annealing approaches to the minimization
portion of the algorithm.

The experimental generation and characterization of neutron helical waves dominated
by tunable single-valued topological charges, as outlined in chapter 6, serves as a critical
first step as to the incorporation of structured neutron beams techniques in SANS meth-
ods and the further advancement of neutron scattering techniques for quantum material
applications. The successful microfabrication of neutron diffraction phase-gratings with
periodicities accessible by SANS heralds a generation of a variety of structured neutron
beams spanning Airy beams, using cubic phase gratings, to spin-orbit beams, through
magnetic analogues of the fork-dislocation phase-gratings, and combinations thereof. The
nontrivial propagation properties of these beams offer new routes to manipulating neutron
beam shapes and trajectories which can be applied to prepare exotic and robust neutron
states for tests of exotic interactions, fundamental physics, and quantum materials.

Neutron helical waves hold special promise for the direct characterization of topological
magnetic states in bulk materials [269]. In particular, the fork-dislocation phase-gratings
may be fabricated with periodicities and topological charges matching those found in bulk
skyrmion materials. Preparation of these states upstream of a skyrmion sample in a SANS
experiment would then enable the coherent diffraction of topological neutron states phase-
matched to the topological sample states. This setup would effectively embed the scattering
in a topological subspace, producing topological interferences from which we could derive
structural topological information on the sample, such as the topological charge, defect
densities, and correlation lengths of the topological features, based on enhanced scattering
intensities, addition of OAM, and OAM dephasing. Angular characteristics of the coherent
scattering interaction between neutron OAM and bulk magnetic topological structures may
also be explored by performing SANS measurements as the topological diffraction gratings
are rotated upstream of a sample. These beam preparation methods may additionally be
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extended to dynamic neutron scattering techniques to explore exotic interactions between
topological neutron state and topological magnetic sample states, coupling to excitations
in condensed matter, potentially through OAM-magnon modes. Moreover, neutron OAM
states may be incorporated to interferometric [170, 270, 271, 272, 273, 274, 194, 275], polar-
ized [197, 276, 277, 278], and entangled neutron methods [279, 280, 281, 282], enabling the
search for exotic topological phases, magnetic correlations, and interactions. For instance,
similar fork dislocation gratings could be used to generate a topological neutron interferom-
eter which measures topological phase shifts through azimuthal rotations of fringe patterns
or changes in their topological orders; magnetic analogues of the gratings and transverse
neutron polarimetry approaches could serve as a novel route to examining spin-dependant
OAM correlations and interactions in quantum materials, such as OAM induced rotations
of skyrmion lattices; OAM entangled neutron beams could uncover unique scattering sig-
natures and properties of topological and frustrated systems. Finally, neutron OAM states
may be used in a SANS tomography approach, examining the topological interference of
neutron and sample states as a function of sample rotation. This procedure would enable
the determination of the volume fraction, orientation, and topological charges of topolog-
ical features in samples, effectively mapping the three-dimensional topology of a sample
for the first time. These structured beam methods may be incorporated into the input
probe beams and analyzers of additional sample characterization techniques which tran-
scend those of neutrons, such as Angle-Resolved Photoemission Spectroscopy (ARPES),
bridging real space and momentum space topologies. Together, these experiments promise
a new generation of neutron scattering techniques with unrivalled control over neutron
beams, providing access to exotic interactions over a range of lengthscales and topologies.

The quantum measurement techniques presented here reveal an unaddressed regime of
physics which reimagines current skyrmion spintronic architectures. Novel access to the
third dimension and topological features of bulk quantum materials enables the unprece-
dented study of skyrmion formation, interactions, defect pathways, and drive dynamics
across a range of systems and parameters. This collection of phenomena offers new routes
for skyrmion stabilization, control, and manipulation which may fundamentally reshape
our approaches to the engineering of spintronic devices and quantum computation frame-
works. In particular, three-dimensional investigations may establish innovative methods for
the controlled directional transport of skyrmions and may lead to devices which employ hy-
bridized skyrmion systems, consisting of both smooth and singular magnetic textures, using
disorder as a tunable control parameter; nonaxisymmetric skyrmions, with tubes perpen-
dicular to the external field [283, 284, 84]; or entirely new topological quasiparticles as log-
ical bits and qubits [285, 82, 286, 80, 287, 52, 288]. Moreover, the topological stability and
additional degrees of freedom of three-dimensional skyrmion systems may be exploited in
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quantum computation schemes. Here, skyrmions are intrinsically quantum-error corrected
logical qubits, acting as their own decoherent free subspace for logic operations, similar to
those demonstrated with neutron interferometry [289]. Three-dimensional skyrmion twist-
ing [94, 97] and braiding phenomena [81] may also be exploited, enabling three-dimensional
quantum computation schemes [290, 291, 292]. Topological probes may lead to exotic con-
ceptualizations involving higher-order topology skyrmion structures [293, 294, 295, 296]
and superstructures [81, 87, 37]. These new device architectures may operate on new
dynamical modes such as skyrmion string rotation, dilation, and propagation in confined
channels [297, 298, 299], while employing novel readout methods such as OAM-magnon
coupled excitations. Ultimately, these experiments open the door to the unique function-
alities of three-dimensional skyrmions, offering new symmetries, degrees of freedom, and
dynamical control methods which inspire a new era in quantum materials characteriza-
tion and engineering, reshaping modern skyrmion spintronics and quantum information
technologies.
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Szymańska, and Daniele Sanvitto. Twist of generalized skyrmions and spin vor-
tices in a polariton superfluid. Proceedings of the National Academy of Sciences,
113(52):14926–14931, 2016.

[32] Yusuke Ishihara, Takeshi Mizushima, Atsushi Tsuruta, and Satoshi Fujimoto. Tor-
sional chiral magnetic effect due to skyrmion textures in a weyl superfluid He 3- A.
Physical review B, 99(2):024513, 2019.

[33] LS Leslie, A Hansen, KC Wright, BM Deutsch, and NP Bigelow. Creation and
detection of skyrmions in a Bose-Einstein condensate. Physical Review Letters,
103(25):250401, 2009.

[34] Usama Al Khawaja and Henk Stoof. Skyrmions in a ferromagnetic Bose–Einstein
condensate. Nature, 411(6840):918–920, 2001.
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[154] Stephan Sponar, René IP Sedmik, Mario Pitschmann, Hartmut Abele, and Yuji
Hasegawa. Tests of fundamental quantum mechanics and dark interactions with
low-energy neutrons. Nature Reviews Physics, 3(5):309–327, 2021.

[155] William Michael Snow, Chris Haddock, and Ben Heacock. Searches for exotic inter-
actions using neutrons. Symmetry, 14(1):10, 2021.

[156] Ke Li, Muhammad Arif, David G Cory, Robert Haun, Benjamin Heacock, Michael G
Huber, Joachim Nsofini, Dimitry A Pushin, Parminder Saggu, Dusan Sarenac,
et al. Neutron limit on the strongly-coupled chameleon field. Physical Review D,
93(6):062001, 2016.

[157] Arnab Banerjee, Jiaqiang Yan, Johannes Knolle, Craig A Bridges, Matthew B Stone,
Mark D Lumsden, David G Mandrus, David A Tennant, Roderich Moessner, and
Stephen E Nagler. Neutron scattering in the proximate quantum spin liquid α-RuCl3.
Science, 356(6342):1055–1059, 2017.

[158] AD Christianson, EA Goremychkin, R Osborn, S Rosenkranz, MD Lumsden,
CD Malliakas, IS Todorov, H Claus, DY Chung, MG Kanatzidis, et al. Unconven-
tional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature,
456(7224):930–932, 2008.
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Appendix A

Supplementary Discussion for
Section 5

This section contains the details and discussions of the mathematical formalism of the seed
generation, forward propagator, minimization, and defect density calculations used in the
tomography algorithm and post-processing analysis of chapter 5.

A.1 Forward Propagator

The scattering pattern from passing through a single MSFR volume SQ,θ for some projec-
tion θ is computed by propagating a neutron wave function through the sample via the
time-evolution operator U

SQ,θ =
∣∣∣〈Q∣∣∣U∣∣∣Kθ

〉∣∣∣2 . (A.1)

Which is estimated using a translation operator along the z-direction

Jθ,dz = eiKz(θ,Q)dz (A.2)

assuming elastic scattering

Kz(θ,Q) =
√
K2 − (K sin θ −Qx)2 −Q2

y, (A.3)
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where K is the incoming neutron wave number, along with potential the potential Vz at
layer z

Uθ,z+dz = Jθ,dz [1 − iVzdz mn/Kz] , (A.4)

where mn is the neutron mass, and dz is the voxel height. The potential from the sample
is computed from its resulting magnetic field by applying the characteristic −Q̂ × Q̂×
operator in Fourier-space [300]

BBBs = −4πMsF−1
{
Q̂× Q̂×F [mmm]

}
(A.5)

where Ms is the saturated magnetization, with 4πMs = 1900 G estimated from DC sus-
ceptibility measurements taken at 310 K. The potential also includes the external field and
operates on a neutron spinor via Pauli matrices

V = −µnσσσ · (BBBs +HHHext). (A.6)

The unpolarized cross section

SQ,θ =
∑
s,s′

|⟨Q, s′|U|Kθ, s⟩|2 (A.7)

is then computed by summing over input s and selected s′ spin states.

Assuming the longitudinal correlation length of the sample is smaller than the recon-
struction height, the observed scattering pattern can be estimated by self-convolving the
scattering pattern of a single MSFR N times

IQθ =
∑
Q′′,Q′

YQQ′W θ
Q′Q′′

[
(S∗)N I0

]
Q′′θ

, (A.8)

where N is the ratio of the sample dimension along the propagation direction and the
corresponding size of the MSFR. For this sample N = 860. Because the forward propagator
is a function of the projection of the momentum transfer in the x−y plane Qxy, the sparse
matrix W shifts the scale of Q to be horizontal to the propagation axis. The sparse matrix
Y smears out Q = KΩQ ≃ KavgΩQ(1 − δλ/λ), where ΩQ is the scattering angle, over the
neutron’s incoming wavelength distribution.
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A.2 Seeding

The initial guess is formed by first estimating the three-dimensional vector amplitude of
the MSFR in Fourier-space |m̃0|2. This is accomplished by first performing a N th-order
deconvolution of the scattering signal with itself and the incoming beam profile, which
solves for Iθ

Imeas = (Iθ∗)NI0 (A.9)

with the Iθ slices of |m̃| for each measured projection unknown. This is accomplished with
modified Richardson-Lucy algorithm, which is iterative

Iθ,i+1 = Ii

[(
Imeas

ϵ+ (Iθ,i∗)NI0

)
∗ (Iθ,i∗)N−1I0

]
(A.10)

where ϵ is a small regulator. When N is large, this can be unstable, and we found it is often
helpful to enact this algorithm in stages, with Imeas deconvolved from I0, then performing
the deconvolution in n stages with N ′ = N1/n. It can also be helpful to track the error
of the deconvolution and stop iterating, or change the regulator size when the error stops
decreasing with iteration number.

After deconvolution is complete, the Bragg peaks were fit to a Lorentzian profile with
respect to Qz. The projection with the incoming beam aligned with the dominant direction
of the skyrmion tubes Iθ=0 was then taken as the |m̃|-slice at zero Qz and expanded along
the Q0 = D/J sphere, but attenuated according to the fitted Lorentzian with respect to
Qz. The result is a smooth function with a Lorentzian envelope along Qz that preserves
the transverse correlation structure of Iθ=0. All the Q > 0 structure is then scaled and a
DC term is introduced to m̃0 to generate the expected net sample magnetization ⟨m⟩ =
m̃(Q = 0).

After forming an estimate of |m̃0|, a guess for m is generated with an alternating
projections algorithm. The vector field of the MSFR m is iteratively amended according
to its constraints in Fourier and real-space. The Fourier-space constraint is given by the
magnitude estimated from the deconvolved SANS data |m̃0|

m̃mmi+1 = m̃mmi
|m̃0|
|m̃i|

(A.11)

For the first few iterations, the transverse components of m̃ are also redefined according
to the sign of the DM term and expected curl around mz
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m̃xy = ±iQyxm̃z. (A.12)

The real space constraint is mmm2 = 1. However, it can also be beneficial to let m relax
through a few iterations of a free energy minimizer before reapplying Fourier-space con-
straints. The net result is a guess m that adheres reasonably-well to the measured SANS
projections, while also having a low free energy.

A.3 Minimization

The chosen cost function was

f = χ2 + βF , (A.13)

where the χ2 is the sum of weighted residuals for all the projections

χ2 =
∑
Q,θ

(IQ,θ −MQ,θ)
2wQ,θ (A.14)

and the free energy includes symmetric and antisymmetric exchange terms and a Zeeman
term

F = −1

2
mmm · ∇2mmm+Q0mmm · (∇×mmm) − hhh ·mmm (A.15)

where the reduced field hhh = HHHQ2
0/J , and helical shell radius Q0 = D/J is taken from the

SANS patterns. The χ2 depends on the difference between the measured SANS patterns
MQ,θ and estimated SANS intensity for each projection IQ,θ computed from the MSFR
via Eqn A.8. The residuals are weighted according to wQ,θ = 1/σ2

Q,θ, which is taken from
the SANS reduction software [227], with the dominant uncertainty from Poisson counting
statistics.

The Lagrange multiplier β acts like a Boltzmann factor. Since the χ2 ∼ O(
√
NQ,θ),

where NQ,θ is the total number of measured SANS pixels over all projections, and the two
kinetic terms in F ∼ O(Q2

0), a reasonable choice is β =
√
NQ,θ/Q

2
0. Adjusting the weight

of the Zeeman term h will change the average magnetization ⟨mz⟩. A reasonable value
of h can be selected based on studying the behavior of the free energy term in isolation
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[301]. However, we found that larger values of h were needed when the χ2 was introduced
to achieve the same average magnetization, likely because the χ2 acts like a kinetic term
which further reinforces the helical shell size Q0. We therefore chose to study the behavior
of the reconstructions over a range of h, as is shown in Table 1.

The gradient of the free energy term was computed via finite difference methods, similar
to OOMMF [302]. The derivative of the χ2 necessitates taking the derivative of the forward
operator, which results in computing the overlap of the forward-propagating wavefunction
ψθ with a backward-propagating residual wavefunction χθ for each projection

δ

δmmm
χ2 = iµnMsmndz

∑
θ

1

Kz

F−1
{
F
{

Im
[
χ†
θσσσψθ

]}
·
(
I− Q̂Q̂

)}
, (A.16)

where F{· · · } and F−1{· · · } indicate forward and reverse Fourier transforms, respectively.
The wavefunctions are computed by a combination of forward and backward propagation
operators

ψθ =
〈
x
∣∣∣Uz

∣∣∣Kθ

〉
χθ =

∑
Q

〈
x
∣∣U−1

z,f

∣∣Q〉 ψ̃f,QGQ

GQ = 2
∑
Q′,Q′′

YQ,Q′WQ′′,Q′ {I0 ∗ [(I −M)w]}Q′′,θ

(A.17)

where tildes indicate Fourier-space representations; subscript f denotes the final state; and
U−1
z,f is the backward in time propagator, starting from the final MSFR layer.

A.4 Defect Densities

The emergent magnetic field is computed from the MSFR and its derivatives

bi =
1

2
ϵijkmmm · (∂jmmm× ∂kmmm) , (A.18)

where ϵijk is the fully antismmetric tensor; ∂i ≡ ∂/∂xi; and repeated indices are summed
over the three space coordinates. Summing z-component of this field over an area is
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identified as the skyrmion winding number in the enclosed area, and the emergent magnetic
charge density is defined as the source term for the emergent magnetic field

4πρem = ∇ · bbb. (A.19)

A peak-finding algorithm was used to identify local maxima of ρ2em that survive a threshold
cut after a Gaussian blurring. The total emergent charge of the defect was then estimated
to be the sum of ρem over the neighboring ±2 voxels in all directions. Further classifica-
tion of branching (two skyrmion events) versus segmentation (single skyrmion events) was
accomplished by summing ∂zmz over the same neighborhood. The same or differing signs
of the two summations indicate segmentation and branching defects, respectively.
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