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1 Introduction

Since Markowitz [1952] introduced the classical mean-variance model, a large literature has developed on port-

folio selection models in which measures of risk and return are balanced. A significant vein in this literature

has focused on incorporating risk measures other than variance into the portfolio selection framework. Among

others, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR, a.k.a. Expected Shortfall), are two alter-

natives that enjoy significant popularity in both academia and practice. For example, Alexander and Baptista

[2002] consider a mean-VaR model for portfolio selection assuming normally distributed returns and relate the

model to the classical mean-variance analysis. Campbell et al. [2001] consider portfolio selection by maximiz-

ing expected return subject to a constraint on VaR. Although VaR is popular, it has been widely criticized

for some of its undesirable properties such as the lack of subadditivity, see Artzner et al. [1999]. Recognizing

the shortcomings of VaR, the mean-CVaR model has attracted significant attention (see, e.g. Rockafellar and

Uryasev [2000]). Other work has focused general classes of risk measures, such as distortion risk measures, and

spectral risk measures; see Sereda et al. [2010], Adam et al. [2008].

Expectiles were introduced by Newey and Powell [1987], as the minimizers of a piecewise quadratic loss

function. In recent years, there has been an increased interest in expectiles as an alternative risk measure, as

they are the only coherent risk measures with the property of elicitability. Elicitability is a concept introduced

by Osband [1985]. In practice, elicitability corresponds to the existence of a natural backtesting methodology

making it possible to compare different statistical methods when estimating risk from historical data. Further

details on elicitability and other properties of expectiles can be found in Emmer et al. [2015], which also presents

comparisons between several widely used risk measures.

To our knowledge, only a small number of papers have investigated the mean-risk portfolio selection problem

with expectiles. For example, Jakobsons [2016] used a scenario aggregation method for expectile optimization,

and Cai and Weng [2016] studied the problem of optimal reinsurance design using the expectile as a risk

measure. While both Cai and Weng [2016] and the present paper employ expectiles as the objective to optimize,

there are substantial differences between these two papers. First, Cai and Weng [2016] seeks to determine an

optimal partition on a given insurance risk (a given nonnegative random variable) into two nonnegative parts:

the risk ceded to a reinsurer, and the risk retained by an insurer. In contrast, the present paper aims to

develop an optimal portfolio strategy rebalancing over multiple risky assets. Second, the two papers apply

distinct methodologies in deriving optimal solutions. The problem of Cai and Weng [2016] was formulated into

determining an optimal function over a certain feasible set, and an optimal solution was explicitly constructed.

In contrast, the present paper applies the martingale method and Lagrangian duality to determine an optimal

solution to the portfolio selection problem.

Most of the above-mentioned literature concerning mean-risk analysis with different risk measures is in a

discrete-time framework, typically on a finite sample space. There have been extensions of the classical mean-

variance model from the discrete-time setting to a dynamic continuous-time framework; see Zhou and Li [2000].

Applications of other risk measures in the mean-risk portfolio selection problem under a dynamic continuous-
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time setting have been developed as well in the past decades, such as Jin et al. [2005], and He et al. [2015]. It

is worth noting that the results in He et al. [2015] show a vertical line efficient frontier in the mean-risk plane,

which differs from our results for a constrained version of the problem.

Our paper contributes to the literature by considering a mean-risk portfolio choice problem with the expectile

risk measure in a dynamic continuous-time framework. Owing to the implicit definition of the expectile as the

minimizer of a piecewise quadratic loss function, our problem lacks an explicit form for the objective function.

We exploit its connection with the Omega performance measure (see Bellini et al. [2016]) to relate the expectile

minimization problem to an Omega maximization problem. Based on this relationship, we show that the

expectile minimization problem has a finite optimal value, but this value is not attainable (i.e. there does

not exist a feasible portfolio that attains the finite infimum). Employing a modification from the literature,

e.g. Bernard et al. [2019] and Chiu et al. [2012], we impose an additional constraint by introducing an upper

bound on the terminal wealth. In this modified setting, we consider the global expectile minimizing portfolio

and obtain a mean-expectile efficient frontier, resembling the one from the classical mean-variance model. It is

worth stressing that our findings are based on a complete market model. The optimal mean-expectile portfolio

strategies may be attainable in a general incomplete model.

The remainder of the paper is structured as follows. Section 2 presents the formulation of a portfolio

selection problem with the expectile as objective function, introduces an optimization problem with the Omega

measure, discusses the relationship between both problems, and shows that there is no optimal solution for

the mean-expectile problem, even though the optimal value is finite. In Section 3, we modify the problem by

imposing an upper bound on the terminal wealth and solve the problem using Lagrangian duality. Section 4

considers the global expectile minimizing portfolio. Section 5 presents the mean-expectile efficient frontier, and

a numerical example. Section 6 summarizes and presents concluding remarks. The Appendix contains some

technical proofs.

2 Model Formulation and Preliminary Analysis

2.1 Financial Market Model

We assume that an agent, with initial wealth x0 > 0, invests capital in a risk-free bond B and p risky assets S

with price processes as follows:
dBt = rBtdt,

dS
(i)
t = S

(i)
t

µ(i)dt+

p∑
j=1

σijdW
(j)
t

 , i = 1, · · · , p,
(1)

where r > 0 is the risk-free rate, µ(i) > r is the growth rate of risky asset i, for i = 1, · · · , p, and µ =

(µ(1), · · · , µ(p))>. σ = {σij}1≤i,j6p is the corresponding volatility matrix, which is invertible with inverse σ−1.

W ≡ {Wt, t > 0} := {(W (1)
t , · · · ,W (p)

t )>, t > 0} is a standard Rp-valued Brownian motion on a probability
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space (Ω,F ,P). We use F := {Ft, t > 0} to denote the P-augmentation of the natural filtration generated by

the Brownian motion W .

We consider a finite investment time horizon [0, T ] with T > 0. Let πt := (π
(1)
t , · · · , π(p)t )>, where π

(i)
t

denotes the dollar amount of capital invested in the ith risky asset at time t, for t > 0 and i = 1, . . . , p. With

the trading strategy π := {πt, 0 6 t 6 T}, the portfolio value process, denoted by Xπ
t , evolves according to the

following stochastic differential equation (SDE):

dXπ
t = [rXπ

t + π>t (µ− r1)]dt+ π>t σdWt, t > 0, (2)

where 1 denotes the p-dimensional column vector with each element equal to 1. It is natural to assume that the

trading strategy π is F-progressively measurable and satisfies
∫ T
0
‖πt‖2dt < ∞ a.s., where ‖πt‖2 =

∑p
i=1

(
πit
)2

,

so that a unique strong solution exists for the SDE (2).

Definition 1 A trading strategy π := {πt, 0 6 t 6 T} is called admissible with initial wealth x0 > 0 if it belongs

to the following set:

A(x0) := {π ∈ S : Xπ
0 = x0 and Xπ

t > 0, a.s., ∀ 0 6 t 6 T},

where S denotes the set of F-progressively measurable processes π such that
∫ T
0
‖πt‖2dt <∞ a.s.

We consider the market price of risk, defined as

ζ ≡ (ζ1, . . . , ζp)
> := σ−1(µ− r1),

and the state-price density process, given by

ξt := exp

{
−
(
r +
‖ζ‖2

2

)
t− ζ>Wt

}
, (3)

We further employ the notation:

ξt,s = ξ−1
t ξs = exp

[
−
(
r +
‖ζ‖2

2

)
(s− t)− ζ>(Ws −Wt)

]
, t 6 s, (4)

Note that ξt = ξ0,t, and ξt,s is independent of Ft under P. Consequently, we can introduce an equivalent

risk-neutral measure Q defined by

dQ
dP

∣∣∣
Ft

= ertξt

so that WQ
t := Wt + ζt is a Brownian motion under Q, and

ξt := exp

{
−
(
r − ‖ζ‖

2

2

)
t− ζ>WQ

t

}
. (5)
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2.2 Expectiles

The expectile EY (α) of a loss random variable Y with E[Y 2] < ∞ at a confidence level α ∈ (0, 1) is defined as

the unique minimizer of an asymmetric quadratic function:

EY (α) = arg min
m∈R

{
αE
[
(Y −m)2+

]
+ (1− α)E

[
(m− Y )2+

]}
, (6)

where (x)+ := max(x, 0). It is easy to show (see, e.g. Bellini et al. [2014]) that EY (α) solves the above opti-

mization problem (6) if and only if

αE
[
(Y − EY (α))+

]
= (1− α)E

[
(EY (α)− Y )+

]
. (7)

It can be verified that there exists a unique solution EY (α) to equation (7) (e.g., Newey and Powell [1987], and

Cai and Weng [2016]). Further, a simple rearrangement of equation (7) using the equality (x)+ − (−x)+ = x

yields the following expression:

EY (α) = E[Y ] + β E
[
(Y − EY (α))+

]
with β =

2α− 1

1− α and 0 < α < 1. (8)

In particular, for α = 1/2, β = 0, and thus EY (1/2) = E[Y ]. For a random variable Y with E[|Y |] <∞, we adopt

equation (7) or equivalently (8) as the definition of the expectile.

The following lemma summarizes some properties of expectiles that are useful in the sequel.

Lemma 1 For a loss random variable Y with E[|Y |] <∞ and α ∈ (0, 1), we have the following:

(a) EY+h(α) = EY (α) + h, for each h ∈ R,

(b) E−Y (α) = −EY (1− α),

(c) EY (α) is strictly increasing and continuous with respect to α for a given Y with a non-degenerate distribution

under P,

(d) lim
α→0+

EY (α) = ess inf(Y ) and lim
α→1−

EY (α) = ess sup(Y ).

Proof See Bellini et al. [2014, Propositions 5 and 7]. 2

Bellini et al. [2014] show that when α > 1/2, the expectile is a coherent risk measure in the sense of Artzner

et al. [1999]. Consequently, in the sequel we restrict ourselves to the case α ∈ (1
2 , 1).

2.3 Relationship between Expectiles and the Omega Performance Measure

The Omega was introduced by Keating and Shadwick [2002], and has become a popular performance measure.

For a random return R and a benchmark return level l, it is defined as follows:

ΩR(l) =

∫M
l [1− FR(x)] dx∫ l

m
FR(x)dx

=
E
[
(R− l)+

]
E
[
(l −R)+

] . (9)

where FR denotes the cumulative distribution function of R, and m and M are respectively the essential infimum

and essential supremum of the return under the physical measure P.
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A simple connection between the Omega measure and expectile can be observed by comparing (7) and (9)

as follows:

ΩY (EY (α)) =
E
[
(Y − EY (α))+

]
E
[
(EY (α)− Y )+

] =
1− α
α

, (10)

which, as observed by Bellini et al. [2016], yields the following one-to-one relation:

ΩY (l) =
1− E−1

Y (l)

E−1
Y (l)

, l ∈ R, (11)

with E−1
Y (·) denoting the inverse function of EY (·) which exists due to part (c) of Lemma 1 for Y with a

non-degenerate distribution.

From (10), we see that the expectile is the value of the threshold that makes the ratio of the expectation of

the amount by which the loss exceeds the threshold to the expectation of the amount by which it is below the

threshold equal to 1−α
α . An analogous property holds for VaR, which is the value of the threshold such that the

ratio of the probability of exceeding the threshold to the probability of being below the threshold equals 1−α
α ;

see Bellini and Di Bernardino [2017] for a comparison of the financial meanings of expectiles, VaR, and CVaR.

We summarize some useful properties of the Omega measure in the following lemma (see also Theorem 2

in Bellini et al. [2016]).

Lemma 2 Denote m := ess inf(R) and M := ess sup(R) for a nondegenerate random variable R. The function

ΩR : (m,M)→ (0,∞) is strictly positive, continuous and strictly decreasing with lim
l→m+

ΩR(l) =∞, lim
l→M−

ΩR(l) = 0

and ΩR (E[R]) = 1.

Proof See Section 3 of Keating and Shadwick [2002].

2.4 The Mean-Expectile Optimization Problem

We consider a mean-risk portfolio choice problem using the expectile as the risk measure. An agent has initial

wealth x0 and undertakes dynamic trading strategies to minimize the risk of the portfolio measured by the

expectile of the loss random variable at the final time T , given a prespecified expected wealth target at T . The

loss random variable at T is defined as L := x0e
rT −Xπ

T where Xπ
T is the wealth accumulated at T and x0e

rT

is the terminal wealth attained by allocating all the capital to the risk-free asset. The optimization problem is

formulated as follows: 
inf

π∈A(x0)
EL(α),

subject to E[Xπ
T ] = d,

E[ξTX
π
T ] 6 x0.

(12)

By the martingale approach (see Karatzas and Shreve [1998]), as well as parts (a) and (b) of Lemma 1, it is

equivalent to study the following optimal terminal payoff problem:
sup

Z∈M+

EZ(1− α),

subject to E[Z] = d,

E[ξTZ] 6 x0,

(13)
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where M+ denotes the set of non-negative FT -measurable random variables. We denote the feasible set of the

above problem by C1(d, x0), i.e.,

C1(d, x0) := {Z ∈M+ | E[Z] = d and E [ξTZ] ≤ x0} . (14)

Remark 1 From the financial point of view, it is more meaningful to consider the optimization problem:
inf

π∈A(x0)
EL(α),

subject to E[Z] ≥ d,

E[ξTZ] 6 x0,

(15)

in which an inequality constraint is applied to expected terminal wealth E[Z], instead of an equality as in (13).

Considering the equality constraint in (13) simplifies the problem. In fact, assuming the existence of the solution

to both problems (12) and (15), the strategy obtained from problem (12) (resp. problem (15)) corresponds to a

strategy lying on an expectile minimizing frontier (resp. efficient frontier). Later on, we will show how to obtain

the solution with an inequality constraint on the mean from the one with an equality constraint; see Section 5.

We impose the following assumptions throughout.

H1. The required expected wealth d satisfies d > x0e
rT .

H2. The confidence level α satisfies 1
2 < α < 1.

Remark 2 Without assumption H1, investing all wealth in the risk-free asset would yield the required terminal

wealth without any risk. As noted above, H2 implies that the expectile is a coherent risk measure. In addition,

it implies that 0 < EZ(1− α) < E[Z] = d for any Z ∈ C1(d, x0) by equation (8) and H1.

2.5 The Mean-Omega Optimization Problem

As the expectile is defined implicitly, through a minimization problem, it is difficult to obtain a solution for the

optimization problem (13) directly. However, given the close relationship between the Omega and expectiles,

i.e., equations (10) and (11), we propose a family of Mean-Omega optimization problems indexed by K ∈ (0, d)

to connect to the problem (13) as follows:

g(K;x0) = sup
Z∈C1(d,x0)

ΩZ(K), (16)

where C1(d, x0) is defined in (14). We confine the parameter K within (0, d) because the equivalence between

problems (13) and (16) only requires a subset of (0, d) for K under assumption H2; see Proposition 3 below for

details. While ΩZ(K) is the Omega measure applied to the terminal portfolio value, it can indeed be interpreted

as the Omega measure applied to the simple return: let R = Z
x0
− 1 to get

ER(l) =
E[(R− l)+]

E[(l −R)+]
=

E[(Z − x0(1 + l))+]

E[(x0(1 + l)−R)+]
=

E[(Z −K)+]

E[(K − Z)+]
, with K = x0(1 + l).
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Since E
[
(Z −K)+

]
= E [Z −K] + E

[
(K − Z)+

]
= d−K + E

[
(K − Z)+

]
for Z ∈ C1(d, x0), the objective in

(16) can be rewritten as

d−K
E[(K − Z)+]

+ 1.

Thus, in order to study properties of problem (16), we consider the following problem:

g̃(K;x0) = inf
Z∈C1(d,x0)

E
[
(K − Z)+

]
. (17)

g̃ is clearly increasing in K. The following proposition establishes that g̃(·;x0) is Lipschitz continuous, with

constant 1.

Proposition 1 Assume H1, and suppose that K1,K2 ∈ (0, d). Then |g̃(K1;x0)− g̃(K2;x0)| ≤ |K1 −K2|.

Proof Without loss of generality, assume K1 > K2. Let ε > 0 and Zi be such that E
[
(Ki − Zi)+

]
≤ g̃(Ki;x0)+ε,

i = 1, 2. Using the inequality E
[
(K1 − Z)+

]
− E

[
(K2 − Z)+

]
≤ K1 −K2, we get

g̃(K1;x0) ≤ E
[
(K1 − Z2)+

]
≤ E

[
(K2 − Z2)+

]
+ (K1 −K2) ≤ g̃(K2;x0) + ε+ (K1 −K2),

and the result follows by letting ε↘ 0. 2

The following proposition demonstrates some properties of both problems (16) and (17).

Proposition 2 Assume H1 and 0 < K < d.

(a) If 0 < K < x0e
rT < d, then g̃(K;x0) = 0 and g(K;x0) =∞, i.e. problem (16) is unbounded.

(b) If 0 < x0e
rT = K < d, then there exists a sequence of Zn ∈ C1(d, x0) such that lim

n→∞
E
[
(K − Zn)+

]
= 0 and

lim
n→∞

ΩZn(K) =∞.

(c) If 0 < x0e
rT < K < d, then g̃(K;x0) > 0, g(K;x0) < ∞, and the optima for both problems (16) and (17) are

not attained.

Proof We only present the proof of part (a) and relegate those of parts (b) and (c) to Appendix A. Consider Z

defined as follows:

Z = K +
(
x0 −Ke−rT

) ξβ−1
T 1{ξT≤δ}

E
[
ξβT1{ξT≤δ}

] , (18)

for some β > 1, where δ is chosen so that E[Z] = d. It is easy to see that E[ξTZ] = x0.

Since Z ≥ K a.s., E
[
(K − Z)+

]
= 0, thus g̃(K;x0) = 0 and g(K;x0) =∞, so that problem (16) is unbounded.

It remains to justify the existence of both β and δ. From (3) and (5) we know that

ξβ−1
T = exp

{
−
(
r +
||ζ||2

2

)
(β − 1)T − (β − 1)ζ>WT

}
=: mβ,1(T )Λβ,1(T ),

= exp

{
−
(
r − ||ζ||

2

2

)
(β − 1)T − (β − 1)ζ>WQ

T

}
=: mβ,2(T )Λβ,2(T ),
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where 

mβ,1(T ) := exp

{
−r(β − 1)T +

||ζ||2

2
(β − 1)(β − 2)T

}
,

Λβ,1(T ) := exp

{
−||ζ||

2

2
(β − 1)2 · T − (β − 1)ζ>WT

}
,

mβ,2(T ) := exp

{
−r(β − 1)T +

||ζ||2

2
(β − 1)βT

}
,

Λβ,2(T ) := exp

{
−||ζ||

2

2
(β − 1)2 · T − (β − 1)ζ>WQ

T

}
.

We introduce two equivalent measures defined by

dP̃
dP = Λβ,1(T ) and

dQ̃
dQ = Λβ,2(T )

so that W P̃
T = WT + (β− 1)ζ ·T and W Q̃

T = WQ
T + (β− 1)ζ ·T are Brownian motions under P̃ and Q̃ respectively,

from which we obtain that

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] =
erTE

[
ξβ−1
T 1{ξT≤δ}

]
EQ
[
ξβ−1
T 1{ξT≤δ}

] =
erTmβ,1(T ) · P̃ (ξT ≤ δ)
mβ,2(T ) · Q̃ (ξT ≤ δ)

=
e[r−||ζ||

2(β−1)]T · Φ(a)

Φ(a− ||ζ||
√
T )

,

where a =
ln δ+[r−(β− 3

2
)||ζ||2]T

||ζ||
√
T

.

We can verify that 

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] →∞ as δ → 0,

E
[
ξβ−1
T 1{ξT≤δ}

]
E
[
ξβT1{ξT≤δ}

] → e[r−||ζ||
2(β−1)]T < erT as δ →∞.

Consequently, given β we can find δ such that
E[ξβ−1

T 1{ξT≤δ}]
E[ξβT 1{ξT≤δ}]

= d−K
x0−Ke−rT > erT , i.e. E[Z] = d. 2

2.6 Nonexistence of Optimal Solutions to the Mean-Expectile Problem

Denote the mean-expectile optimal payoff problem (13) and the mean-omega optimal payoff problem (16) by

P1(α) and P2(K) respectively. Consider the set of all optimal solutions to P1(α) as α ranges over (1
2 , 1):

ΠP1
:=

⋃
α∈( 1

2
,1)

{Z∗ | Z∗ is optimal for P1(α)}. (19)

In this section, we will show that ΠP1
= ∅, which motivates us to consider a modification of the problem in the

next section.

We have already shown in Proposition 2 that the corresponding optimal solution set for the Mean-Omega

problem is the empty set, i.e.

ΠP2
:=

⋃
K∈(x0erT ,d)

{Z∗ | Z∗ is optimal to P2(K)} = ∅. (20)

Emptyness of ΠP1
then follows from the following proposition.
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Proposition 3 ΠP1
⊆ ΠP2

.

Proof Suppose Z∗ ∈ ΠP1
, and let α ∈ (1

2 , 1) be such that EZ∗(1− α) ≥ EZ(1− α) for any Z ∈ C1(d, x0). Letting

K = EZ∗(1− α), we obtain

ΩZ∗(K) = ΩZ∗ (EZ∗(1− α)) =
α

1− α = ΩZ (EZ(1− α)) ≥ ΩZ (EZ∗(1− α)) = ΩZ(K), (21)

where the second and the third equalities follow from equation (10), and the inequality follows because ΩZ(·)

is decreasing by Lemma 2.

It remains to prove that K ∈ (x0e
rT , d). Firstly, K < d by equation (8) and the fact that α ∈ (1

2 , 1)1. If

K ≤ x0e
rT , by Proposition 2, we can construct a feasible strategy (for K < x0e

rT ) or a sequence of strategies

(for K = x0e
rT ) leading to ΩZ∗(K) =∞, contradicting ΩZ∗(K) = α

1−α . 2

3 Optimal Solutions with Bounded Terminal Wealth

In this section, we modify the portfolio choice problem by imposing an upper bound on the terminal wealth.

This technique has been used in the literature, see Chiu et al. [2012] and more recently Bernard et al. [2019].

It may be thought of as a constructive method of producing (for large values of the bound) nearly optimal

strategies. The modified problem is as follows:



inf
π∈A(x0)

EL(α),

subject to E[Xπ
T ] = d,

E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.

(22)

Using the fact that EL(α) = x0e
−rT − EXπT (1 − α), we will apply the martingale approach and consider the

following problem: 

sup
Z∈M+

EZ(1− α),

subject to E[Z] = d,

E[ξTZ] 6 x0,

0 ≤ Z ≤M, a.s.

(23)

For a nonempty and nontrivial feasible set, we should have M > d.

We denote the feasible set of the above problem (23) by

C2(d, x0,M) = {Z ∈M+ | E[Z] = d, E [ξTZ] ≤ x0 and 0 ≤ Z ≤M a.s.} . (24)

We once again consider the corresponding Mean-Omega problem indexed by K ∈ (0, d), now with a bound

on the terminal wealth:

G(K;x0) = sup
Z∈C2(d,x0,M)

ΩZ(K). (25)

1 Z ≡ d is not feasible, since E[ξT ] = e−rT > x0/d; so E[(Y − EY (α))+] > 0.
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The connection between the Mean-Omega problem and the Mean-Expectile problem will be described in Propo-

sition 7 in the sequel.

We know that E
[
(Z −K)+

]
= E[Z −K] + E

[
(K − Z)+

]
= d−K + E

[
(K − Z)+

]
for any Z ∈ C2(d, x0,M).

Thus, we consider the following problem in order to study the properties of problem (25):

G̃(K;x0) = inf
Z∈C2(d,x0,M)

E
[
(K − Z)+

]
. (26)

From the proof of part (a) of Proposition 2, for K in the subset of (0, x0e
rT ), some problems (25), indexed

by K, are also unbounded when the upper bound M is large enough. Thus, hereafter we focus on the case

where x0e
rT ≤ K < d.

Proposition 4 Suppose x0e
rT ≤ K < d.

(a) G̃(K;x0) is Lipschitz continuous and strictly increasing with respect to K.

(b) If G̃(x0e
rT ;x0) > 0, then G(K;x0) is Lipschitz continuous and strictly decreasing with respect to K.

Proof The Lipschitz continuity of G̃(K;x0) regarding K can be proved in the same way as in Proposition 1.

Below we show the strict monotonicity of G̃(K;x0) with respect to K. We claim that P(Z ≤ K) > 0 for any

Z ∈ C2(d, x0,M) since x0e
rT ≤ K < d. Indeed, if P(Z ≤ K) = 0, then P(Z > K) = Q(Z > K) = 1 implies

E[ξTZ] = EQ[e−rTZ] > e−rTK ≥ x0, which contradicts the budget constraint. Denote ε = K1 − K2 > 0

for x0e
rT ≤ K2 < K1 < d and take Z̃ ∈ C2(d, x0,M) such that E[(K1 − Z̃)+] ≤ G̃(K1;x0) + b

2ε, where

b = P(Z̃ ≤ K2) > 0. Then, it follows that

G̃(K1;x0) ≥ E[(K1 − Z̃)+]− b

2
ε

= E[(K2 − Z̃)+] + (K1 −K2)P(Z̃ ≤ K2) + E[(K1 − Z̃)+1{K2<Z̃≤K1}]−
b

2
ε

≥ E[(K2 − Z̃)+] + εb− b

2
ε ≥ G̃(K2;x0) +

b

2
ε > G̃(K2;x0),

which implies the strict monotonicity of G̃(K;x0) with respect to K. Finally, (b) is a straightforward conse-

quence of (a) due to the relationship between the objective functions of problems (25) and (26). 2

3.1 Choosing the Upper Bound M

As advised by Chiu et al. [2012], M should be chosen sufficiently large to approximate well the original problem,

which does not have the bound constraint, resulting in a “nearly-optimal” strategy. Let ϕ be the standard normal

probability density function, Φ be the standard normal cumulative distribution function, and Φ−1 be its inverse.

The following result is useful in selecting M (see Section 3.3).

Lemma 3 Assume H1 holds, i.e. d > x0e
rT . Then:

lim
M→∞

Φ−1

(
d

M

)
− Φ−1

(
x0e

rT

M

)
= 0 (27)

11



Proof By the concavity of Φ−1 near 0, for sufficiently large M ,

0 ≤Φ−1

(
d

M

)
− Φ−1

(
x0e

rT

M

)
≤ 1

ϕ
(
Φ−1

(
x0erT

M

)) [ d
M
− x0e

rT

M

]

=
√

2π exp

{
1

2

(
Φ−1

(
x0e

rT

M

))2
}
· d− x0e

rT

M
→ 0, as M →∞.

The claim follows from the Squeeze Theorem. 2

In particular, Lemma 3 ensures the existence of a constant Mmin > d such that for all M > Mmin, we have

Φ−1

(
d

M

)
− Φ−1

(
x0e

rT

M

)
< ||ζ||

√
T . (28)

We require that M satisfies this inequality in order to obtain the solution for the modified problems (25)

and (26); see Lemma 5 and Proposition 5 in the sequel.

H3. The upper bound M satisfies M > d and (28).

3.2 Lagrangian Duality and Pointwise Optimization

We now focus on problem (26), which we will solve by a Lagrangian duality method in conjunction with a

pointwise optimization procedure. This entails introducing the following optimization problems with multipliers

β1 and β2:

inf
Z∈M+

0≤Z≤M a.s.

E
{

(K − Z)+ + (β2ξT − β1)Z
}
, β1 ∈ R, β2 > 0, (29)

where we recall from (25) that the parameter K is within (0, d). We solve the above problem by resorting to a

pointwise optimization procedure and consider the following problem for y1 > 0 and y2 > 0:

inf
0≤x≤M

{(K − x)+ + (y2 − y1)x} , (30)

Given that H3 holds, it is easy to verify that the solution to the pointwise optimization problem (30) is as

follows:

x∗(y1, y2) = K1{y1<y2≤y1+1} +M1{y2≤y1}. (31)

Lemma 4

(a) Z∗β1,β2
:= x∗(β1, β2ξT ) solves problem (29) where x∗ is given in (31).

(b) If there exist two constants β∗1 > 0 and β∗2 > 0 such that Z∗ := x∗(β∗1 , β
∗
2ξT ) ∈ FT satisfies E [Z∗] = d and

E[ξTZ
∗] = x0. Then Z∗ solves both problems (25) and (26).

Proof The proof resembles those of Lemmas 3.1 and 3.2 in Lin et al. [2017], and is thus omitted. 2
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3.3 Solutions to the Mean-Omega Problems

In this section, we investigate the solutions of problems (25) and (26). The following lemma will be employed

later for determining the solutions.

Lemma 5 Suppose x0e
rT ≤ K < d and H3 holds. There exists a unique solution pair (q̃1, q̃2) satisfying 1 > q̃2 >

q̃1 > 0 to the following system:


p1(q̃1, q̃2) := q̃2 +

(
M

K
− 1

)
q̃1 −

d

K
= 0,

p2(q̃1, q̃2) := Φ
(
Φ−1(q̃2)− ||ζ||

√
T
)

+

(
M

K
− 1

)
Φ
(
Φ−1(q̃1)− ||ζ||

√
T
)
− x0e

rT

K
= 0.

(32)

Proof For each q1, equation p1(q1, q2) = 0 is equivalent to q2 = d
K −

(
M
K − 1

)
q1. Thus, the condition 1 > q2 > q1

implies that d−K
M−K < q1 <

d
M . Write q2(q1) := d

K −
(
M
K − 1

)
q1 to get dq2

dq1
= −

(
M
K − 1

)
< 0 and

dp2(q1, q2(q1))

dq1
=
ϕ
(
Φ−1(q2)− ||ζ||

√
T
)

ϕ (Φ−1(q2))

dq2
dq1

+

(
M

K
− 1

)
ϕ
(
Φ−1(q1)− ||ζ||

√
T
)

ϕ (Φ−1(q1))

= e−
1
2
||ζ||2T

(
e||ζ||

√
TΦ−1(q2) − e||ζ||

√
TΦ−1(q1)

)
dq2
dq1

< 0,

for q2 > q1. This implies that p3(q1) := p2(q1, q2(q1)) is decreasing in q1.

Furthermore, as q1 ↗ d
M we have

p3(q1)→ M

K
Φ

(
Φ−1(

d

M
)− ||ζ||

√
T

)
− x0e

rT

K
< 0,

where the inequality follows from assumption H3.

As q1 ↘ d−K
M−K , we obtain

p3(q1)→1 +

(
M

K
− 1

)
Φ

(
Φ−1

(
d−K
M −K

)
− ||ζ||

√
T

)
− x0e

rT

K

≥ 1 +

(
M

K
− 1

)
Φ

(
Φ−1

(
d−K
M −K

))
− x0e

rT

K
=
d− x0erT

K
> 0

where the inequality follows from x0e
rT < d. Therefore, we conclude that there exists a unique solution (q̃1, q̃2)

to the system (32). 2

Proposition 5 Suppose that x0e
rT ≤ K < d and H3 holds. There exist two unique constants β∗1 > 0 and β∗2 > 0

such that Z∗ := x∗(β∗1 , β
∗
2ξT ) satisfies E [Z∗] = d and E[ξTZ

∗] = x0, where x∗ is given in (31).

Proof From (31), we know that

Z∗β1,β2
:= x∗(β1, β2ξT ) = K1{β1<β2ξT≤β1+1} +M1{β2ξT≤β1}.

13



Thus, 

E
[
Z∗β1,β2

]
= KP (β1 < β2ξT ≤ β1 + 1) +MP (β2ξT ≤ β1)

= KP (β2ξT ≤ β1 + 1) + (M −K)P (β2ξT ≤ β1) ,

E[ξTZ
∗
β1,β2

] = Ke−rTQ (β1 < β2ξT ≤ β1 + 1) +Me−rTQ (β2ξT ≤ β1)

= Ke−rTQ (β2ξT ≤ β1 + 1) + (M −K)e−rTQ (β2ξT ≤ β1)

= Ke−rTΦ
(
Φ−1 [P (β2ξT ≤ β1 + 1)]− ||ζ||

√
T
)

+ (M −K)e−rTΦ
(
Φ−1 [P (β2ξT ≤ β1)]− ||ζ||

√
T
)
,

where the last equality follows from the fact that Q(ξT ≤ a) = Φ
(
Φ−1 (P(ξT ≤ a))− ||ζ||

√
T
)

for a positive

constant a. Denote q̃1 := P (β2ξT ≤ β1) and q̃2 := P (β2ξT ≤ β1 + 1) to get that 1 > q̃2 > q̃1 > 0. Then by

Lemma 5, the claim follows. 2

Let β∗1 and β∗2 be the two unique constants that satisfy both constraints E [x∗(β∗1 , β
∗
2ξT )] = d and E[ξT x

∗(β∗1 , β
∗
2ξT )] =

x0. We characterize the optimal value G(K;x0) of problem (25) and optimal value G̃(K;x0) of problem (26) in

the following proposition.

Proposition 6 Suppose x0e
rT ≤ K < d and H3 holds. Then, x∗(β∗1 , β

∗
2ξT ) solves problems (25) and (26), where

x∗ is given in (31). The optimal values G(K;x0) and G̃(K;x0) of the two problems are respectively given as follows:
G(K;x0) =

(
M

K
− 1

)
P (β∗2ξT ≤ β∗1)

1− P (β∗2ξT ≤ β∗1 + 1)
=

d
K − P (β∗2ξT ≤ β∗1 + 1)

1− P (β∗2ξT ≤ β∗1 + 1)
,

G̃(K;x0) = K
[
1− P

(
β∗2ξT ≤ β∗1 + 1

)]
.

(33)

Proof The claims follow immediately from Lemma 4 and Proposition 5. 2

3.4 Optimal Solution to the Mean-Expectile Problem with a Bounded Wealth Constraint

As previously noted, we focus on the case x0e
rT ≤ K < d. In the earlier sections, for ease of notation, we

suppressed the dependence of q̃1,2, β∗1 , β
∗
2 , x
∗ and the optimal solution Z∗ on K and M . In this section, we make

the dependence explicit when it is necessary for clarity. No confusion should result from this abuse of notation.

We can now proceed to investigate the optimal solution for problem (23).

Proposition 7 Assume that there exists a K∗ such that x0e
rT ≤ K∗ < d and G(K∗;x0) = α

1−α . Then Z∗K∗ =

x∗K∗(β
∗
1(K∗), β∗2(K∗)ξT ) is an optimal solution to problem (23) and K∗ is the optimal objective value.

Proof The proof is similar to that of the analogous result in Proposition 3, and is therefore omitted.

Remark 3 Given an upper bound M , Proposition 7 specifies how to recover the optimal solution to problem (23).

Since we consider the case x0e
rT ≤ K < d, from Proposition 6 we have that G̃(x0e

rT ;x0) > 0 due to the facts

that β∗1(x0e
rT ) > 0 and β∗2(x0e

rT ) > 0, as shown in Proposition 5. Thus according to Proposition 4, G(K;x0)

is Lipschitz continuous and strictly decreasing with respect to K. It is clear that G(K;x0) ∈ (1, G(x0e
rT ;x0)].

By H2, α
1−α > 1, however, if α

1−α > G(x0e
rT ;x0), then obviously the method from Proposition 7 fails since

α
1−α is outside of the range of G(K;x0) (and we need to consider larger values of M). 2
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The following proposition implies that increasingM will increase the value ofGM (x0e
rT ;x0) := G(x0e

rT ;x0),

where G is defined in (25) and we have adjusted the notation in order to make its dependence on M explicit.

Proposition 8 For x0e
rT ≤ K < d, if M2 > M1 and both M2 and M1 satisfy (28), then GM2

(K;x0) >

GM1
(K;x0).

Proof It is obvious that GM2
(K;x0) ≥ GM1

(K;x0). It remains to rule out equality. Suppose GM2
(K;x0) =

GM1
(K;x0). By Proposition 6, we obtain:

q̃2(M2) := P
(
β∗2(K,M2)ξT ≤ β∗1(K,M2) + 1

)
= P

(
β∗2(K,M1)ξT ≤ β∗1(K,M1) + 1

)
=: q̃2(M1).

By Lemma 5 and Proposition 5, there should exist a unique solution (q̃1(M1), q̃1(M2)) to the following equations:
(
M1

K
− 1

)
q̃1(M1) =

(
M2

K
− 1

)
q̃1(M2),(

M1

K
− 1

)
Φ
(
Φ−1(q̃1(M1))− ||ζ||

√
T
)

=

(
M2

K
− 1

)
Φ
(
Φ−1(q̃1(M2))− ||ζ||

√
T
)
.

(34)

Suppose
(
M1
K − 1

)
q̃1(M1) =

(
M2
K − 1

)
q̃1(M2). Then q̃1(M1) = M2−K

M1−K q̃1(M2) > q̃1(M2). Defining

f(q) :=

(
M1

K
− 1

)
Φ

(
Φ−1

(
M2 −K
M1 −K

· q
)
− ||ζ||

√
T

)
−
(
M2

K
− 1

)
Φ
(
Φ−1(q)− ||ζ||

√
T
)
,

we should have f(q̃1(M2)) = 0 by (34). However, as q ↗ 1, f(q)→ K−1(M1−M2) < 0, and differentiating gives:

f ′(q) =

(
M2

K
− 1

)ϕ
(
Φ−1

(
M2−K
M1−K · q

)
− ||ζ||

√
T
)

ϕ
(
Φ−1

(
M2−K
M1−K · q

)) −
ϕ
(
Φ−1 (q)− ||ζ||

√
T
)

ϕ (Φ−1 (q)))


=

(
M2

K
− 1

)
e−

1
2
||ζ||2T

(
e
||ζ||
√
TΦ−1

(
M2−K
M1−K

·q
)
− e||ζ||

√
TΦ−1(q))

)
> 0.

so f(q) < 0 for q ∈ (0, 1), and we have a contradiction. Thus GM2
(K;x0) > GM1

(K;x0). 2

The next Proposition shows that as M → ∞, the optimal values of the problem with the upper bound on

wealth tend to the optimal value of the problem with unbounded wealth.

Proposition 9 For x0e
rT ≤ K < d, lim

M→∞
G̃M (K;x0) = g̃(K;x0), where g̃ is defined in (17).

Proof G̃M (K;x0) ≥ g̃(K;x0) > 0 is clear. Since GM (K;x0) = d−K
G̃M (K;x0)

+ 1, Proposition 8 implies that G̃M is

strictly decreasing in M , hence κ := lim
M→∞

G̃M (K;x0) ≥ g̃(K;x0) exists. For small enough ε > 0, Lemma 10

guarantees the existence of a bounded Zε such that κ ≤ E
[
(K − Zε)+

]
≤ g̃(K;x0) + ε, and the result follows

by letting ε↘ 0. 2

By the virtue of both Proposition 2 and Proposition 9, we know that lim
M→∞

G̃M (x0e
rT ;x0) = g̃(x0e

rT ;x0) =

0, and thus lim
M→∞

GM (x0e
rT ;x0) = g(x0e

rT ;x0) = ∞. Therefore, if M tends to infinity, the optimal value of

our modified problem approaches the optimal value of our original problem without a bound on the terminal

wealth.

We arrive at following algorithm for producing approximate solutions:
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1. Fix M and derive the optimal function x∗ for the pointwise optimization problem (30) using equation (31);

2. For each x0e
rT ≤ K < d, search for the unique solution pair to both equations E[x∗K(β∗1(K), β∗2(K)ξT )] = d

and E[ξT x
∗
K(β∗1(K), β∗2(K)ξT )] = x0. Then set Z∗K = x∗K(β∗1(K), β∗2(K)ξT );

3. Invoke Proposition 7 to get Z∗ := Z∗K∗ by solving for K∗ from G(K∗;x0) = α
1−α . If K∗ exists, then stop. If

there is no K∗ such that G(K∗;x0) = α
1−α or equivalently, α

1−α > G(x0e
rT ;x0), increase the upper bound

M , and return to Step 1.

4 Global Expectile Minimizing Strategies with Terminal Wealth Bound Constraint

In this section we consider the following global expectile minimization problem:
inf

π∈A(x0)
EL(α),

subject to E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.,

(35)

which differs from problem (23) by the exclusion of the mean constraint E[Xπ
T ] = d. A solution to problem

(35) leads to the global minimum expectile without a constraint on the expected terminal wealth, which is

an interesting problem in its own right. In addition, an analysis of the problem will shed some light on the

mean-expectile efficient frontier, which we will study in Section 5.

We also follow the martingale approach and consider the following problem:
sup
Z∈FT

EZ(1− α),

subject to E[ξTZ] 6 x0,

0 ≤ Z ≤M, a.s.

(36)

We denote the feasible set of the above problem by C3(x0,M), i.e.,

C3(x0,M) := {Z ∈M+ | E [ξTZ] ≤ x0 and 0 ≤ Z ≤M a.s.} . (37)

Similarly to the previous sections, we consider an associated Omega maximization problem:

sup
Z∈C3(x0,M)

ΩZ(K). (38)

The above Omega maximization problem has been solved by Bernard et al. [2019] (see also Proposition 12

below). Following the same proof idea as in Propositions 3 and 7, we need to find a K∗ such that ΩZ∗
K∗

(K∗) =

α
1−α where Z∗K denotes the solution for problem (38) at K. This nonlinear optimization problem can be reduced

to the following linearized optimization problem:

H(K;x0) = sup
Z∈C3(x0,M)

E
[
(Z −K)+

]
− α

1− αE
[
(K − Z)+

]
. (39)

Proposition 10 Suppose there exists a K∗ such that x0e
rT ≤ K∗ < d and H(K∗;x0) = 0. Then Z∗K∗ is the optimal

solution to problem (36) and K∗ is the optimal objective value for problem (36), provided that E
[
(K∗ − Z∗K∗)+

]
> 0.
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Proof Since H(K∗;x0) = 0 and E
[
(K∗ − Z∗K∗)+

]
> 0, we obtain that ΩZ∗

K∗
(K∗) = α

1−α . The rest of the proof

is similar to the proofs of the analogous results in Propositions 3 and 7. 2

Proposition 11 H(K;x0) is Lipschitz continuous and strictly decreasing with respect to K. Furthermore, H(x0e
rT ;x0) ≥

0 and H(M ;x0) < 0.

Proof The Lipschitz continuity can be proved in the same way as in Proposition 1. The strict monotonicity can

be proved in the same way as that of Proposition 4.

When K = x0e
rT , investing all wealth in the risk-free asset (i.e. Z = x0e

rT , or equivalently πt = 0 for all

0 ≤ t ≤ T ) will achieve a zero objective value. Thus H(x0e
rT ;x0) ≥ 0. When K = M , the objective value of

Z ∈ C3(x0,M) is − α
1−αE

[
(M − Z)+

]
< 0. Therefore, H(M ;x0) < 0. 2

We can derive the solution to (39) using the pointwise optimization technique and Lagrangian duality

method. A similar result is given in Bernard et al. [2019, Proposition 1].

Proposition 12 The unique optimal solution to (39) is given by:

Z∗K = M1{β∗ξT≤1} +K1{1<β∗ξT≤ α
1−α}, (40)

where β∗ is such that E [ξTZ
∗
K ] = x0. The value function H(K;x0) is given as

H(K;x0) = (M −K)P
(
β∗ξT ≤ 1

)
− α

1− αKP
(
β∗ξT ≥

α

1− α

)
. (41)

Proof The existence of the given solution (40) can be proved in the same manner as for problems (25) and (26)

in Section 3. Uniqueness can be proved in a manner similar to that used in Bernard et al. [2019]. 2

By the above two propositions, there is a unique K∗ such that H(K∗;x0) = 0 (since H(K;x0) is strictly

decreasing with respect to K). Thus, we can obtain the unique global expectile minimizing portfolio. The

corresponding mean, denoted by dgem and uniquely determined by K∗, is given by

dgem := E
[
Z∗K∗

]
=
(
M −K∗

)
P
(
β∗ξT ≤ 1

)
+K∗P

(
β∗ξT ≤

α

1− α

)
, (42)

and the global minimum expectile is EL∗(α) = x0e
rT − EZ∗

K∗
(1− α) = x0e

rT −K∗.

5 Efficient Frontier with a Bound on Terminal Wealth

In this section, we will construct the efficient portfolios and derive the efficient frontier of our mean-risk portfolio

selection problem using the expectile risk measure with an upper bound on terminal wealth. We begin with

the following definitions, which are adapted from the corresponding notions in the mean-variance analysis (see,

e.g. Markowitz et al. [2000]).
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Definition 2 The mean-risk portfolio selection problem using the expectile risk measure with bounded terminal

wealth is formulated as the following multi-objective optimization problem:
inf

π∈A(x0)
(J1(π), J2(π)) := (EL(α),−E[Xπ

T ]),

subject to E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.,

(43)

where L := x0e
rT−Xπ

T . A feasible portfolio π∗ is called an “efficient portfolio” if there exists no feasible portfolio

π such that

J1(π) ≤ J1(π∗), J2(π) ≤ J2(π∗),

with at least one of the inequalities being strict. In this case, we call (J1(π∗),−J2(π∗)) ∈ R2 an efficient point.

The set of all efficient points is called the efficient frontier.

The efficient frontier can be generated by solving the following optimization problem:

inf
π∈A(x0)

J1(π) := EL(α),

subject to J2(π) := −E[Xπ
T ] ≤ −d,

E[ξTX
π
T ] 6 x0,

0 ≤ Xπ
T ≤M, a.s.

(44)

for all d ≥ 0. The set (J(π∗),−J2(π∗)) ∈ R2 for all optimal π∗ is the efficient frontier.

In the remainder of the paper, we write Z∗d for the optimal solution Z∗ for problem (23), in order to make its

dependence on d explicit. Note that (23) has an equality constraint on the mean of Z, rather than an inequality

constraint as in (44).

Proposition 13 Let d2 > d1 ≥ dgem, where dgem is given by (42). Then EZ∗d1 (1 − α) > EZ∗d2 (1− α). For dgem ≥

d3 > d4 > x0e
rT , EZ∗d3 (1− α) > EZ∗d4 (1− α). Furthermore, EZ∗d (1− α) is a concave function with respect to d.

Proof For d2 > d1 ≥ dgem, let a :=
d1−dgem
d2−dgem ∈ [0, 1), so that d1 = ad2 + (1 − a)dgem. Then Z := aZ∗d2 + (1 −

a)Z∗dgem ∈ C2(d1, x0,M), and

EZ∗d1 (1− α) ≥ EZ(1− α) ≥ aEZ∗d2 (1− α) + (1− a)EZ∗dgem (1− α) > EZ∗d2 (1− α) (45)

where the first inequality is due to the optimality of Z∗d1 to maximize EZ(1−α) among the class C2(d1, x0,M), the

second equality is due to the concavity of EZ(1−α) with respect to Z for α > 0.5, and the last inequality follows

from the uniqueness of the global expectile minimizing portfolio. The proof for the case dgem ≥ d3 > d4 > x0e
rT

is similar.

The concavity of EZ∗d (1 − α) also follows in the same manner. Indeed, for d5 > d6 > x0e
rT and γ ∈ (0, 1),

set d̃ = γd5 + (1− γ)d6 and construct Z̃ := γZ∗d5 + (1− γ)Z∗d6 ∈ C2(d̃, x0,M). Similarly to (45) we have

EZ∗
d̃
(1− α) ≥ EZ̃(1− α) ≥ γEZ∗d5 (1− α) + (1− γ)EZ∗d6 .

2
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Since EL∗(α) = x0e
rT −EZ∗d (1−α), we are now ready to summarize the final result on the efficient frontier.

Proposition 14 The efficient portfolio for the mean-risk portfolio selection problem using the expectile risk measure

with bounded terminal wealth, i.e. the optimal portfolio for problem (44), is determined by those solutions to problem

(22) with d ≥ dgem, where dgem is given by (42). The points (EL∗(α), d) ∈ R2 for all d ≥ dgem form the corresponding

efficient frontier. Moreover, the minimum expectile EL∗(α) as a function of the expected terminal wealth d is convex.

Proof The proof follows from the definition of the efficient frontier and Proposition 13. 2

Example 1 We consider the parameter values given in Table 1.

x0 T r α µ σ

100 5 0.03 0.75 0.07 0.3

Table 1: Parameter Setting for Numerical Illustration

We vary the choice of d over (x0e
rT , x0e

rT +20) for numerical illustration. We use M = 500 for our analysis.

The frontier is shown in Figure 1. For the global expectile minimizing portfolio, we try two different approaches

and the results from both approaches agree within accepted tolerance. The first approach, which is more

accurate because the result is computed from an analytical formula, is to use the results in Section 4. The

coordinate for the global expectile minimizing portfolio is (EL∗(α), dgem) = (−1.5607, 125.7551), as illustrated

in Figure 1.

The second approach is to solve the problem (23) for each d and find the minimum objective value by

a numerical search. We need to solve problem (25) and find K∗ such that G(K∗;x0) = α
1−α to recover the

solution. In this approach, we pick two different K’s that lead to two objective values above and below α
1−α

respectively, then use the bisection method to approach K∗ such that G(K∗;x0) = α
1−α , where we select the

tolerance for root finding to be 1.0×10−10. We repeat the procedure for each d to obtain the curve. We employ

step sizes of 0.001 and 0.0001 for d and find the coordinates for the global expectile minimizing portfolio

are (EL∗(α), dgem) = (−1.5607, 125.7554) and (EL∗(α), dgem) = (−1.5607, 125.7551) respectively. The values

differ after four decimal places; choosing smaller step sizes should lead to convergence to the global expectile

minimizing portfolio obtained from the first approach.

The numerical results agree with our analytical findings. When d ∈ (x0e
rT , dgem), EL∗(α) decreases with d,

whereas when d ∈ (dgem, x0e
rT + 20), EL∗(α) increases with d and the curve in this case is the efficient frontier.

This observation is consistent with Proposition 13. The entire curve in Figure 1 is the expectile minimizing

frontier. Recalling the curves for the variance minimizing frontier and the efficient frontier for the mean-variance

problem, the shapes of both curves are similar to their counterparts which are obtained in Figure 1.

In addition, we carry out sensitivity analysis with respect to the upper bound M . The results are shown

in Fig 2. Here, we consider three cases, M = 500, 600, and 700. When M gets large, the entire curve of the

expectile minimizing frontier shifts to the left upper in the mean-expectile plane. This finding is also revealed
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Fig. 1: Frontier: EL∗(α) versus d

in the global expectile minimizing portfolio. In other words, a larger upper bound M allows the investors to

construct more efficient portfolios in that it generates more return but the same risk or smaller risk for the

same return.

Fig. 2: Frontier: EL∗(α) versus d

6 Conclusion

In this paper, we consider a mean-risk portfolio selection problem for an expectile minimizing investor. Relying

on the close relationship between the expectile and the Omega measure, we propose an alternative problem with

20



the Omega measure as an objective and conclude that the original mean-expectile portfolio choice problem has

no solution, i.e. the solution is not attainable. Following the literature, we impose an upper bound on terminal

wealth and solve the modified problem by a Lagrangian approach and the pointwise optimization technique.

We proved that the optimal value of the problem with an upper bound on the terminal wealth converges

to that of the problem without such an upper bound as the imposed bound increases to infinity. Thus, the

optimal solution obtained for the problem with an upper bound can be taken as an approximate solution to

the mean-expectile problem with no upper bound on the terminal wealth. We also consider the global expectile

minimizing portfolio and the mean-expectile efficient frontier.
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A Proof of part (b) and part (c) of Proposition 2

In this appendix, we provide the proof of parts (b) and (c) of Proposition 2. The proof essentially consists of a series of lemmas

adapted from Section 5 of Jin et al. [2005], in which a similar result is shown.

Recall that 0 < x0erT ≤ K < d is assumed for both parts (b) and (c). To proceed, we let Y := Z−d and y0 := x0−de−rT <

0, so that the problem (16) can be equivalently cast as

inf
Y ∈FT

E
[
(K − d− Y )+

]
,

subject to E[Y ] = 0,

E[ξTY ] 6 y0

Y ≥ −d a.s.

(46)

where Y ∈ FT means that Y is FT measurable. Consider the optimization problem that relaxes the constraint on E[Y ].
inf

Y ∈FT
E
[
(K − d− Y )+

]
,

subject to E[ξTY ] 6 y0,

Y ≥ −d a.s.

(47)

The following lemma is due to Cvitanić and Karatzas [1999].

Lemma 6 Assuming 0 < x0 ≤ Ke−rT or equivalently y0 ∈ (−de−rT ,Ke−rT − de−rT ], an optimal solution to problem (47)

is given by

Y ∗ = Z∗ − d = K1{β∗ξT≤1} − d, (48)

where β∗ = exp
{
‖ζ‖
√
TΦ−1

(
1− y0e

rT+d
K

)
+
(
r − 1

2
‖ζ‖2

)
T
}

. The corresponding value function, denoted by h(y0), is

h(y0) = KΦ

(
Φ−1

(
1−

y0erT + d

K

)
− ‖ζ‖

√
T

)
. (49)

In Lemma 6, when x0 = Ke−rT , i.e. y0erT + d = K, we have β∗ = 0, Y ∗ = K − d and h(y0) = 0, which means that the

optimal solution to problem (47) is to invest only in the risk-free asset, and the optimal value is zero.

It is obvious that h(y0) is strictly decreasing with respect to y0 ∈ (−de−rT ,Ke−rT − de−rT ].

Lemma 7 For any sufficiently small ε > 0 and y0 ∈ (−de−rT ,Ke−rT − de−rT ], there exists a feasible solution Y to problem

(47) such that h(y0) ≤ E
[
(K − d− Y )+

]
= h(y0) + ε

2
and E [ξTY ] = y0.

Proof For any feasible solution Y of problem (47), h(y0) ≤ E
[
(K − d− Y )+

]
by definition. Consider Yε defined as follows:

Yε =

(
K − d−

ε

2bE
[
ξT 1{β∗ξT≤1}

])1{β∗ξT≤1} +

(
ε

2bE
[
ξT 1{β∗ξT>1}

] − d)1{β∗ξT>1}, (50)

where b = 1
E[ξT |β∗ξT≤1]

− 1
E[ξT |β∗ξT>1]

≥ 0 and β∗ is given in Lemma 6. For ε > 0 small enough, Yε ≥ −d a.s. It can be

verified that E[ξTYε] = y0 and

E
[
(K − d− Yε)+

]
= E

[(
K −

ε

2bE
[
ξT 1{β∗ξT>1}

])1{β∗ξT>1}

]
+ E

[
ε

2bE
[
ξT 1{β∗ξT≤1}

]1{β∗ξT≤1}

]

= h(y0) +
ε

2b

(
P(β∗ξT ≤ 1)

E
[
ξT 1{β∗ξT≤1}

] − P(β∗ξT > 1)

E
[
ξT 1{β∗ξT>1}

])

= h(y0) +
ε

2b
b = h(y0) +

ε

2
.

Therefore, Yε constructed in (50) meets the requirement.

The following is Lemma 5.2 in Jin et al. [2005].
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Lemma 8 For any α > 0, δ > 0, and 0 < β < αδ, there exists a bounded random variable Ỹ ≥ 0 such that E[Ỹ ] = α,

E[ξT Ỹ ] = β and Ỹ = 0 on the set {ξT ≥ δ}.

Lemma 9 For any sufficiently small ε > 0 and y0 ∈ (−de−rT ,Ke−rT − de−rT ], given the feasible solution Yε in (50) to

problem (47) such that h(y0) ≤ E
[
(K − d− Yε)+

]
= h(y0) + ε

2
and E [ξTYε] = y0, we have the following.

(a) There exists a unique δ0(a) for any a ∈ (−de−rT , y0] such that

E
[
a

y0
ξTYε1{ξT≥δ0(a)}

]
= y0.

(b) lim
a↗y0

δ0(a) = 0.

(c) There exists a δ1(a) such that 0 < δ1(a) < δ0(a) and

E
[
a
y0
Yε1{ξT≥δ1(a)}

]
E
[
ξT

a
y0
Yε1{ξT≥δ1(a)}

]
− y0

>
1

δ1(a)
,

(d) lim
a↗y0

δ1(a) = 0.

Proof (a) From (50), notice that E
[
a
y0
ξTYε

]
= a and Yε ≤ 0 a.s. for any sufficiently small ε > 0. Define Xβ := a

y0
ξTYε1{ξT≥β}

and H(β) := E(Xβ) = E
[
a
y0
ξTYε1{ξT≥β}

]
for β > 0. We observe that Xβ increases in β and tends to 0 and ξT

a
y0
Yε a.s. as

β tends to∞ and 0 respectively. Furthermore,
∣∣Xβ′ ∣∣ ≤ ∣∣∣ξT a

y0
Yε

∣∣∣ for all β, so the Dominated Convergence Theorem implies

that H(β) is continuous on (0,∞) with lim
β→∞

H(β) = 0 and lim
β→0

H(β) = a < 0. The existence of δ0(a) follows. Uniqueness

follows from the strict monotonicity of H, since for β1 > β2 > 0, we have

H(β1)−H(β2) = E
[
a

y0
ξTYε1{ξT≥β1}

]
− E

[
a

y0
ξTYε1{ξT≥β2}

]
= E

[
a

y0
ξT (−Yε)1{β2≤ξT<β1}

]
> 0.

(b) It is clear that δ0(y0) = 0. Continuity of δ0(a) follows from the continuity and strict monotonicity of H.

(c) Define G(λ) = E
[
a
y0

(−λYε)1{ξT≥λ}
]
−
(
y0 − E

[
ξT

a
y0
Yε1{ξT≥λ}

])
for λ ∈ (0, δ0(a)). The continuity of G(λ) with respect

to λ can be proved in the same way as in part (a).

Both random variables inside the corresponding expectations are integrable, with magnitudes bounded by
∣∣∣ξT a

y0
Yε

∣∣∣. Dom-

inated Convergence then yields

lim
λ↗δ0(a)

G(λ) = E
[
a

y0
(−δ0(a)Yε)1{ξT≥δ0(a)}

]
−
(
y0 − E

[
ξT

a

y0
Yε1{ξT≥δ0(a)}

])
= δ0(a)E

[
a

y0
(−Yε)1{ξT≥δ0(a)}

]
> 0

where the second equality follows from part (a). The continuity of G implies that there exists a 0 < δ1(a) < δ0(a)

such that G(δ1(a)) > 0. Notice that for such a δ1(a), we can obtain that δ1(a)E
[
a
y0

(−Yε)1{ξT≥δ1(a)}
]
> 0 and y0 −

E
[
ξT

a
y0
Yε1{ξT≥δ1(a)}

]
> 0, where the latter inequality follows from strict monotonicity of H from part (a). The result

follows by rearranging G(δ1(a)) > 0.

(d) With 0 < δ1(a) < δ0(a) and lim
a↗y0

δ0(a) = 0, the claim follows by Squeeze Theorem.

Lemma 10 For any sufficiently small ε > 0 and y0 ∈ (−de−rT ,Ke−rT −de−rT ], there exists a feasible solution Y ∗ε to problem

(46) such that E
[
(K − d− Y ∗ε )+

]
< h(y0) + ε.

Proof Using Lemma 8, we define

Ȳa =
a

y0
Yε1{ξT≥δ1(a)} + Ỹa1{ξT<δ1(a)} (51)

where Yε is defined in (50) and Ỹa ≥ 0 a.s. is such that Ỹa = 0 on the set {ξT ≥ δ1(a)} and
E
[
Ỹa
]

= E
[
Ỹa1{ξT<δ1(a)}

]
= −E

[
a

y0
Yε1{ξT≥δ1(a)}

]
> 0

E
[
ξT Ỹa

]
= E

[
ξT Ỹa1{ξT<δ1(a)}

]
= y0 − E

[
ξT

a

y0
Yε1{ξT≥δ1(a)}

]
> 0
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where δ1(a) > 0 and the two inequalities follow from proof of part (c) in Lemma 9. Consequently, E [Ya] = 0 and E [ξTYa] = y0.

For Ȳa, we have:

E
[(
K − d− Ȳa

)
+

]
= E

[(
K − d−

a

y0
Yε

)
+

1{ξT≥δ1(a)}

]
+ E

[(
K − d− Ỹa

)
+
1{ξT<δ1(a)}

]

= E

[(
K − d−

a

y0
Yε

)
+

1{ξT≥δ1(a)}

]
.

since Ỹa ≥ 0 a.s. Since

∣∣∣∣(K − d− a
y0
Yε
)
+
1{ξT≥δ1(a)}

∣∣∣∣ ≤ ∣∣∣K − d− a
y0
Yε

∣∣∣ ≤ K + d + a
y0
|Yε| and |Yε| is integrable from (50),

the Dominated Convergence Theorem implies:

lim
a↗y0

E
[(
K − d− Ȳa

)
+

]
= E

[
(K − d− Yε)+

]
= h(y0) +

ε

2

where the second equality is due to the definition of Yε (50) in Proposition 7. Thus, we can find an a < y0 such that

E
[(
K − d− Ȳa

)
+

]
< h(y0) + ε.

Lemma 11 Given y0 < 0, for any feasible solution Y of (46), E
[
(K − d− Y )+

]
> h(y0).

Proof Note that for any Y feasible for problem (46), E [ξTY+] > 0, since otherwise Y+ = 0 a.s., and then E[Y ] = 0 implies

Y = 0 a.s., and thus E[ξTY ] = 0 > y0, contradicting feasibility.

Let Y− = max(−Y, 0). Then b := E[ξT (−(Y−))] ≤ y0 − E[ξTY+] < y0, and −(Y−) ≥ −d. Thus Ỹ := −(Y−) is a feasible

solution to (47), and we have:

E
[
(K − d− Y )+

]
≥ E

[(
K − d− Ỹ

)
+

]
≥ h(b) > h(y0).

using the fact that h is strictly decreasing by Lemma 6.

Lemmas 10 and 11 yield the claims in both part (b) and part (c) of Proposition 2.
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