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Exploratory Assessment of K-means Clustering to Classify [18F]Flutemetamol Brain PET  

as Positive or Negative  

 

 

Abstract  

 

Rationale: We evaluated K-means clustering to classify amyloid brain PETs as positive or negative. 

 

Methods: Sixty-six participants (31 men, 35 women; age range 52-81 years) were recruited through a 

multicenter observational study: 19 cognitively normal (CN), 25 mild cognitive impairment (MCI), and 

22 dementia (11 Alzheimer’s disease, 3 subcortical vascular cognitive impairment and 8 Parkinson-Lewy 

Body spectrum disorder). As part of the neurocognitive and imaging evaluation each participant had a 

[18F]Flutemetamol (VizamylTM, GE Healthcare) brain PET. All studies were processed using Cortex ID 

software (General Electric Company, Boston Massachusetts) to calculate standardized uptake value ratios 

(SUVr) in 19 regions of interest (ROIs), and clinically interpreted by two dual certified radiologists/ 

nuclear medicine physicians, using MIM software (MIM Software Inc., Cleveland, Ohio), blinded to the 

quantitative analysis, with final interpretation based on consensus. K-means clustering was 

retrospectively used to classify the studies from the quantitative data.  

  

Results: Based on clinical interpretation, 46 brain PETs were negative and 20 were positive for amyloid 

deposition. Of 19 CN participants, 1 (5%) had a positive [18F]Flutemetamol brain PET. Of 25 

participants with MCI, 9 (36%) had a positive [18F]Flutemetamol brain PET. Of 22 participants with 

dementia, 10 (45%) had a positive [18F]Flutemetamol brain PET; 7 of 11 participants with AD (64%), 1 

of 3 participants with VCI (33%) and 2 of 8 participants with PD/DLB (25%) had a positive 

[18F]Flutemetamol brain PET. Using clinical interpretation as the gold standard, K-means clustering 

(K=2), gave sensitivity=95%, specificity=98%, and accuracy=97%. 

 

Conclusion: K-means clustering may be a powerful algorithm for classifying amyloid brain PET.  
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Introduction:  

It is estimated that over 50 million people have dementia worldwide, with nearly 10 million new 

cases diagnosed annually (1). Alzheimer’s disease (AD), vascular cognitive impairment (VCI) and 

Parkinson-Lewy Body spectrum disorder (PD/LBD) are among the most common types of dementia and 

current diagnosis is based on clinical evaluation, with imaging playing a key supportive role (2). The 

pathology of AD is characterized by amyloid plaques and neurofibrillary tangles; however, amyloid 

deposition can also be seen in individuals with VCI and PD/DLB, possibly in part related to the high 

occurrence of mixed pathology. Although not routinely done, positron emission tomography (PET) can 

help assess the presence and extent of amyloid deposition in the brain (3). Clinically, PET scans are 

visually interpreted in a binary fashion as positive or negative for amyloid deposition. However, 

evaluation of the extent of amyloid deposition may be further augmented with quantitative imaging 

analysis in the form of standardized uptake values (SUVs) within specific regions of interest (ROIs) in the 

brain normalized to a reference region of the brain (SUVrs).  

Machine learning (ML) has been used in medical applications for decades (4). However, its use 

has become ubiquitous in the past few years due, in part, to advances in hardware, software and access to 

training datasets. Typically, the ML algorithm chosen depends on the task at hand and the available data 

for training. K-means clustering is an unsupervised ML algorithm (5-7) that assigns data points from the 

dataset to a cluster based on commonalities. Being unsupervised, the algorithm does not require tagged 

data for training (e.g. datasets that have been clinically interpreted by a physician). Rather, in K-means 

clustering numerical values for a set of pre-determined features are used to assign each data point in the 

training dataset to one of K clusters through an iterative process, where K is chosen by the programmer.  

The aim of this paper is to explore the feasibility of K-means clustering for the classification of 

amyloid brain PET scans as positive or negative for amyloid deposition. To our knowledge, this is the 

first time this ML algorithm has been used in this context. 

 

Materials and Methods:  

The first 66 participants (31 men, 35 women, age 52-81 years) recruited through a prospective 

multicenter observational study (8) were included in the analysis: 19 cognitively normal (CN), 25 with 

mild cognitive impairment (MCI), and 22 with dementia. Of the 22 participants with dementia: 11 had 

AD, 3 had subcortical VCI and 8 had PD/DLB spectrum disorder, based on clinical assessment (9-11). As 

part of the neurocognitive evaluation each participant had a [18F]Flutemetamol PET scan of their brain 

using scanners available at two of the participating sites (GE Discovery MI and Philips Gemini Big Bore 

PET/CT scanners). Images were acquired for 20 minutes approximately 90 minutes following intravenous 

administration of 185MBq of [18F]flutemetamol; consistency of data was maintained by adherence to a 
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standard quality assurance program and use of a common imaging protocol. All brain PET studies were 

clinically interpreted as positive or negative for amyloid deposition by two dual certified radiologists/ 

nuclear medicine physicians, using MIM software (MIM Software Inc., Cleveland, Ohio), blinded to the 

quantitative analysis, with final interpretation based on consensus. Clinical interpretation was performed 

using a subjective visual approach according to the manufacturer’s reader training program specific to the 

radiopharmaceutical. Table 1 provides a summary of the study participants. In addition, all brain PET 

scans were retrospectively processed using Cortex ID software (General Electric Company, Boston 

Massachusetts) to calculate the SUVr in each of 19 ROIs; subsequently converted to Z-scores using the 

GE database (12). ROIs included the: left and right prefrontal cortices, left and right anterior cingulate 

gyruses, left and right precuneus and posterior cingulate gyrus, left and right parietal lobes, left and right 

lateral temporal lobes, left and right occipital lobes, left and right sensorimotor cortices, left and right 

mesial temporal lobes, cerebellar gray matter, pons, as well as a composite ROI (13). 

A K-means clustering ML algorithm programmed in Matlab was used to classify amyloid brain 

PET scans for the purpose of comparison with clinical interpretation (Figures 1 and 2). The K-means 

clustering algorithm used K=2 (i.e. assumption of 2 clusters, positive and negative) and the Z-score data 

(M=19 features) to determine if the data clusters were concordant with the clinical interpretation. The 

“exact” Clopper-Pearson 95% confidence interval (CI) was calculated with Medcalc. Since K-means 

clustering does not provide insight into whether a cluster is negative or positive, the clusters were 

assigned as ‘negative’ or ‘positive’ in a manner that maximized classification accuracy using the clinical 

amyloid PET scan interpretation as the ground truth. 

 

Results:  

Based on clinical interpretation, 46 of the [18F]Flutemetamol brain PET studies were negative 

and 20 were positive. Of the 19 CN participants, 1 (5%) had a positive [18F]Flutemetamol brain PET 

study. This participant was one of the oldest subjects included in the study at 80 years of age, with 

clinically derived normal Mini-Mental Status Examination (score 30) but borderline Montreal Cognitive 

Assessment (score 24). Of the 25 participants with MCI, 9 (36%) had a positive [18F]Flutemetamol brain 

PET study. Of the 22 participants with dementia, 10 (45%) had a positive [18F]Flutemetamol brain PET 

study; 7 of the 11 participants with AD (64%), 1 of the 3 participants with VCI (33%) and 2 of the 8 

participants with PD/DLB (25%) had a positive [18F]Flutemetamol brain PET study (Table 1). 

K-means clustering (K=2) of the data gave: sensitivity 95% (95% CI: 75% to 100%), specificity 

98% (95% CI: 89% to 100%), and classification accuracy=97% (95% CI: 90% to 100%). Table 2 shows 

the confusion matrix. Table 3 shows the mean Z-score of the 19 ROIs for each cluster. The cluster that 

was interpreted as negative (A) had several ROIs with low amyloid deposition (low SUVrs), while the 



 4 

cluster interpreted as positive (B) had several ROIs with high amyloid deposition (high SUVrs). The 

ROIs with the greatest difference in amyloid deposition were the precuneus/ posterior cingulate gyrus, the 

prefrontal and parietal lobes, as well as the lateral temporal lobe on both the left and right sides. Table 4 

summarizes the algorithm parameters according to the reporting guidelines for ML algorithms first 

suggested earlier this year (14). 

 

Discussion:  

Clinically, the diagnosis of dementia is based on cognitive impairment that interferes with the 

activities of daily living (15). Pathologically, the etiology of dementia is a multi-factorial process and 

includes an array of pure and mixed pathology at presentation. AD is thought to result primarily from a 

complex interplay of Ab protein deposition and aggregation of hyperphosphorylated tau protein (16). VCI 

is likely related to vascular factors that may also include deposition of beta-amyloid within vessels. For 

example, dementia occurring after a stroke, is estimated to have a 7% incidence at 1 year with 30% 

prevalence in stroke survivors (17). While there are several variables associated with post-stroke 

dementia, vascular lesions are thought to play a part. PD/DLB spectrum disorder is characterized by the 

aggregation of mis-folded a-synuclein protein in neuronal cell bodies (Lewy bodies) and cell processes 

(Lewy neurites). Often more than one dementia subtype co-exist (18,19). Indeed, evidence suggests Ab, 

tau protein and a-synuclein interact promoting dementia pathology (20). Ultimately, it is thought that 

while amyloid deposition may be seen in cognitively normal individuals, it is more common in the setting 

of MCI and dementia. Further, the risk for conversion from MCI to AD is higher when cerebral amyloid 

deposition increases more rapidly (21,22). Also, while amyloid deposition is much more common in 

certain pathologies such as AD, it may be seen across the dementia spectrum including VCI and PD/DLB 

spectrum disorder (23). The diagnosis of dementia is made clinically; however, imaging plays a key role. 

For example, if amyloid deposition in the brain is detected on imaging it supports the clinical findings 

might be due to amyloid pathology.  

Today, three PET radiopharmaceuticals are clinically approved by the U.S. Food and Drug 

Administration to image brain amyloid deposition: [18F]Florbetapir (AmyvidTM), [18F]Flutemetamol 

(VizamylTM) and [18F]Florbetaben (NeuraCeqTM). When amyloid is present in the cerebral cortex, the 

radiotracer binds to it. In clinical practice, a amyloid PET scan is typically interpreted in a subjective and 

binary manner as positive or negative, where a positive scan correlates with moderate to frequent amyloid 

plaque, while a negative amyloid PET suggests no or sparse amyloid plaque. In research, a quantitative 

approach is often used that includes region specific amyloid deposition. Since cerebellar gray matter tends 

not to accumulate amyloid, this is often used as an internal control or reference region for quantitation. 

The ratio of radiotracer uptake in the brain ROI to that of the reference region is the SUVr. Quantitative 
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PET data may then be compared with a normal database such that Z-scores for individual and 

combinations of brain ROIs can be derived.  

The IDEAS study was launched in 2016, in part to assess if imaging amyloid with PET could 

help clinicians diagnose the cause of cognitive impairment. Of 11,409 participants with MCI or dementia 

of uncertain etiology, a positive amyloid PET was reported in 55% with MCI and 70% with dementia. 

While individuals with AD often had a positive amyloid PET, individuals with other types of dementia 

more commonly had a negative amyloid PET (24,25). A study by Sevigny et al. reported amyloid PET as 

positive in 61% of 278 participants with clinical criteria for prodromal or mild AD (26). We found 1/19 

(5%) of CN, 9/25 (36%) with MCI and 10/22 (45%) of participants with dementia had a positive amyloid 

PET. This is consistent with the literature in that most CN individuals have negative amyloid PET, while 

the incidence of positive amyloid PET increases in individuals with MCI and dementia. Further, and also 

consistent with the literature, we found that while the majority 7/11 (64%) of participants with clinically 

suspected AD had a positive amyloid PET, participants with clinically suspected non-AD dementia more 

commonly had negative amyloid PET. Our results also confirm the cerebral cortical regions in which 

amyloid deposition is preferentially found, specifically the precuneus and posterior cingulate gyrus, 

prefrontal lobes, parietal lobes, and lateral temporal lobes (27,28).  

Recently, there has been an explosion in the use of ML algorithms for the analysis of imaging 

data. One of the goals of ML algorithm is to assist clinicians in suggesting imaging interpretation. In 

certain cases, tagged data or data that has been processed by a human being may not be available to train 

a ML algorithm. K-means clustering is an unsupervised ML algorithm that attempts to identify 

commonalities between data points and assigns nearby data points to a common representative “cluster.” 

The idea is to iteratively assign each data point to a cluster (K the number of clusters) such that data 

points that are most alike are grouped together (assigned to the same cluster). There are a few papers that 

use a K-means algorithm to evaluate brain pathology. For example, Abualhaj et al. (29) and Blanc-

Durand et al. (30) used a K-means algorithm with dynamic [18F]FET brain PET scans in participants with 

brain tumors. Matias-Guiu JA et al. clustered participants with primary progressive aphasia (PPA) into 

different subtypes according to regional brain metabolism using [18F]FDG brain PET scans (31). 

Escudero et al. used a K-means algorithm to help divide participants according to a bio-profile and 

postulated this might help identify those individuals with MCI most likely to convert to AD (32). To our 

knowledge, our results provide the first data suggesting K-means clustering may be a helpful tool to assist 

clinicians with the classification of [18F]Flutemetamol brain PET studies as positive or negative for 

amyloid deposition. Given the low computational complexity and high classification accuracy (97%), K-

means clustering might be a desirable choice for the task of assisting clinical interpretation of amyloid 

brain PET. Further, this high fidelity is achieved even in the presence of a pathologically heterogeneous 
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sample with participants at all stages of disease. This implies that a ML-driven K-means algorithm may 

be helpful to suggest a PET interpretation that could potentially increase the confidence of the physician 

interpreting the amyloid brain PET. However, further investigation would be needed to confirm this.  

 

Conclusions:  

K-means clustering is a powerful unsupervised ML algorithm that may be a helpful tool for 

identifying amyloid brain PET positive individuals even in the face of a heterogeneous cohort, as would 

be encountered in a memory clinic. 
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Figure 1: K-means algorithm using an iterative process. 

 

Figure 2: Illustration of K-means clustering using an example dataset with 20 training cases and n=2 

features (x and y). A. Training cases plotted on the x-y plane. B. Initial random assignment of K=2 cluster 

centers (Cluster A: white diamond, and Cluster B: black diamond). C. Assignment of cases to nearest 

cluster center (white circles to Cluster A, and black circles to Cluster B; dashed line is at equal distance to 

the two centers). D. Cluster centers move to the center of the points. E. Three cases (arrows) are 

reassigned from Cluster B to Cluster A. F. Cluster centers move again to new centers of mass. G. Two 

cases (arrows) move from Cluster B to Cluster A. H. Cluster centers move again. Note that at this point, 

no cases change clusters so the algorithm has converged. 
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Table 1: Summary of study participants. F indicates female and M indicates male. N indicates negative 
and P indicates positive amyloid PET. 

Clinical 
Cohort 

 Number Age 
average (standard deviation) 

Sex Clinical PET 
interpretation 

    F M N P 
Clinically normal 19 67.9 (7.4) 11 8 18 1 
Mild cognitive impairment 25 68.6 (7.2) 14 11 16 9 
Dementia 22 70.2 (9.0) 10 12 12 10 
Breakdown AD 11 69.3 (10.6) 6 5 4 7 

VCI 3 73.7 (7.0) 2 1 2 1 
PD/LBD 8 70.1 (7.7) 2 6 6 2 

 
 
Table 2: Confusion matrices for K=2. N indicates negative and P indicates positive amyloid PET. 
  K-means 
  N P 
Clinical read N 45 1 

P 1 19 
 
 
Table 3: Centroids after clustering N=66 cases with M=19 features into K=2 clusters. Feature values are 
average Z-scores. N indicates negative and P indicates positive amyloid PET. Shaded boxes indicate ROIs 
where centroids have the largest differences in Z-score (³ 8).  

 N P  N P 
Composite 0.8 10.4    
Cerebellar grey matter -0.2 -0.3    
Pons 1.7 1.2    
Left prefrontal cortex 0.5 8.8 Right prefrontal cortex 0.6 9.2 
Left anterior cingulate gyrus 0.3 6.5 Right anterior cingulate gyrus 0.5 6.9 
Left precuneus/ posterior 
cingulate gyrus 0.8 9.2 

Right precuneus/ posterior 
cingulate gyrus 0.5 8.8 

Left parietal lobe 0.7 9.1 Right parietal lobe 0.9 9.8 
Left lateral temporal lobe 1.0 9.5 Right lateral temporal lobe 1.0 9.5 
Left occipital lobe 0.8 7.7 Right occipital lobe 1.0 8.0 
Left sensorimotor cortex 0.5 5.7 Right sensorimotor cortex 0.7 6.0 
Left mesial temporal lobe 0.3 2.3 Right mesial temporal lobe 0.8 3.0 

 
 
 
Table 4: Summary of ML algorithms performance following reporting guidelines in (12). 

ML algorithm K-means clustering (unsupervised) 
Architecture details K = 2 clusters 
Computational cost Low: 0.26 s runtime (matlab.mathworks.com cloud server) 
Data set 66 cases, 19 features 
Figure of merit Classification accuracy 97% 


