
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Tuukka Bogdanoff

COMPARATIVE EVALUATION OF THE
APPLICABILITY OF SELF-ORGANIZED

OPERATIONAL NEURAL NETWORKS TO
REMOTE PHOTOPLETHYSMOGRAPHY

Master’s Thesis
Degree Programme in Computer Science and Engineering

November 2023

Bogdanoff T. (2023) Comparative Evaluation of the Applicability of Self-
Organized Operational Neural Networks to Remote Photoplethysmography.
University of Oulu, Degree Programme in Computer Science and Engineering, 88 p.

ABSTRACT

Photoplethysmography (PPG) is a widely applied means of obtaining blood
volume pulse (BVP) information from subjects which can be used for monitoring
numerous physiological signs such as heart rate and respiration. Following
observations that blood volume information can also be retrieved from videos
recorded of the human face, several approaches for the remote extraction of PPG
signals have been proposed in literature. These methods are collectively referred
to as remote photoplethysmography (rPPG). The current state of the art of rPPG
approaches is represented by deep convolutional neural network (CNN) models,
which have been successfully applied in a wide range of computer vision tasks.

A novel technology called operational neural networks (ONNs) has recently
been proposed in literature as an extension of convolutional neural networks.
ONNs attempt to overcome the limitations of conventional CNN models which
are primarily caused by exclusively employing the linear neuron model. In
addition, to address certain drawbacks of ONNs, a technology called self-
organized operational neural networks (Self-ONNs) have recently been proposed
as an extension of ONNs.

This thesis presents a novel method for rPPG extraction based on self-organized
operational neural networks. To comprehensively evaluate the applicability of
Self-ONNs as an approach for rPPG extraction, three Self-ONN models with
varying number of layers are implemented and evaluated on test data from three
data sets representing different distributions. The performance of the proposed
models are compared against corresponding CNN architectures as well as a
typical unsupervised rPPG pipeline. The performance of the methods is evaluated
based on heart rate estimations calculated from the extracted rPPG signals.

In the presented experimental setup, Self-ONN models did not result in
improved heart rate estimation performance over parameter-equivalent CNN
alternatives. However, every Self-ONN model showed superior ability to fit the
train target, which both shows promise for the applicability of Self-ONNs as
well as suggests inherent problems in the training setup. Additionally, when
taking into account the required computational resources in addition to raw HR
estimation performance, certain Self-ONN models showcased improved efficiency
over CNN alternatives. As such, the experiments nonetheless present a promising
proof of concept which can serve as grounds for future research.

Keywords: artificial intelligence, atrial fibrillation, healthcare, machine learning

Bogdanoff T. (2023) Vertaileva arviointi itseorganisoituvien operationaalisten
neuroverkkojen soveltuvuudesta etäfotopletysmografiaan. Oulun yliopisto,
Tietotekniikan tutkinto-ohjelma, 88 s.

TIIVISTELMÄ

Fotopletysmografia on laajasti sovellettu menetelmä veritilavuuspulssi-
informaation saamiseksi kohteista, jota voidaan käyttää useiden
fysiologisten arvojen, kuten sydämensykkeen ja hengityksen, seurannassa.
Seuraten havainnoista, että veritilavuusinformaatiota on mahdollista
palauttaa myös ihmiskasvoista kuvatuista videoista, useita menetelmiä
fotopletysmografiasignaalien erottamiseksi etänä on esitetty kirjallisuudessa.
Yhteisnimitys näille menetelmille on etäfotopletysmografia (remote
photoplethysmography, rPPG). Syvät konvolutionaaliset neuroverkkomallit
(convolutional neural networks, CNNs), joita on onnistuneesti sovellettu laajaan
valikoimaan tietokonenäön tehtäviä, edustavat nykyistä rPPG-lähestymistapojen
huippua.

Uusi teknologia nimeltään operationaaliset neuroverkot (operational neural
networks, ONNs) on hiljattain esitetty kirjallisuudessa konvolutionaalisten
neuroverkkojen laajennukseksi. ONN:t pyrkivät eroon tavanomaisten CNN-
mallien rajoitteista, jotka johtuvat pääasiassa lineaarisen neuronimallin
yksinomaisesta käytöstä. Lisäksi tietyistä ONN-mallien heikkouksista eroon
pääsemiseksi, teknologia nimeltään itseorganisoituvat operationaaliset
neuroverkot (self-organized operational neural networks, Self-ONNs) on
hiljattain esitetty lajeennuksena ONN:ille.

Tämä tutkielma esittelee uudenlaisen menetelmän rPPG-erotukselle
pohjautuen itseorganisoituviin operationaalisiin neuroverkkoihin. Self-ONN:ien
soveltuvuuden rPPG-erotukseen perusteelliseksi arvioimiseksi kolme Self-ONN
-mallia vaihtelevalla määrällä kerroksia toteutetaan ja arvioidaan testidatalla
kolmesta eri datajoukosta, jotka edustavat eri jakaumia. Esitettyjen mallien
suorituskykyä verrataan vastaaviin CNN-arkkitehtuureihin sekä tyypilliseen
ohjaamattomaan rPPG-liukuhihnaan. Menetelmien suorituskykyä arvioidaan
perustuen rPPG-signaaleista laskettuihin sydämensykearvioihin.

Esitellyssä kokeellisessa asetelmassa Self-ONN:t eivät johtaneet parempiin
sykearvioihin verrattuna parametrivastaaviin CNN-vaihtoehtoihin. Self-ONN:t
kuitenkin osoittivat ylivertaista kykyä sovittaa opetuskohteen, mikä sekä on
lupaavaa Self-ONN:ien soveltuvuuden kannalta että viittaa luontaisiin ongelmiin
opetusasetelmassa. Lisäksi, kun huomioon otetaan vaaditut laskentaresurssit
raa’an sykkeen arvioinnin suorituskyvyn lisäksi, tietyt Self-ONN -mallit osoittivat
parempaa tehokkuutta CNN-vaihtoehtoihin verrattuna. Näin ollen kokeet joka
tapauksessa tarjoavat lupaavan konseptitodistuksen, joka voi toimia perustana
tulevalle tutkimukselle.

Avainsanat: tekoäly, eteisvärinä, terveydenhuolto, koneoppiminen

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 9
2. REMOTE PHOTOPLETHYSMOGRAPHY ... 11

2.1. Photoplethysmography.. 11
2.2. Unsupervised Methods .. 13
2.3. Supervised Methods.. 16
2.4. Data Sets Suitable for Remote PPG.. 19

2.4.1. Oulu Bio-Face (OBF) .. 19
2.4.2. COHFACE.. 20
2.4.3. LGI-PPGI-Face-Video-Database .. 20
2.4.4. MAHNOB-HCI .. 21

3. OPERATIONAL NEURAL NETWORKS.. 23
3.1. Background and Motivation... 23
3.2. Theoretical Foundation.. 25

3.2.1. Training with Backpropagation .. 27
3.3. Implementation... 27
3.4. Applications ... 29
3.5. Advantages and Limitations... 30
3.6. Self-Organized Operational Neural Networks 33

3.6.1. Generative Neurons ... 34
3.6.2. Forward Propagation and Backpropagation for Self-ONNs 35
3.6.3. Applications and Performance.. 35
3.6.4. Advantages and Limitations ... 36

4. IMPLEMENTATION .. 40
4.1. Materials .. 40

4.1.1. Preprocessing.. 40
4.2. Methods ... 41

5. EXPERIMENTAL SETUP .. 44
5.1. Training the Neural Network Models ... 45

5.1.1. Data ... 45
5.1.2. Loss Function ... 45
5.1.3. Train Setup ... 47
5.1.4. Training Results .. 47

5.2. Extracting Remote PPG Signals from the Test Data 49
5.3. Extracting Heart Rates .. 51
5.4. Evaluation Criteria .. 52

6. RESULTS AND ANALYSIS ... 54
6.1. Performance on OBF .. 55
6.2. Performance on COHFACE... 60

6.3. Performance on LGI-PPGI .. 63
7. FURTHER DISCUSSION ... 73

7.1. Efficiency of ONN Models against CNN Models 73
7.2. Recognized Problems and Limitations.. 76

7.2.1. Neurokit Peak Detection .. 76
7.2.2. Welch’s Method .. 78

7.3. Future Works.. 81
8. CONCLUSIONS .. 84
9. REFERENCES ... 85

FOREWORD

This Master’s thesis was composed in the center for machine vision and signal analysis
(CMVS) in the University of Oulu for the purpose of evaluating the applicability of
self-organized operational neural networks to remote photoplethysmography. I would
like to thank the supervisors of my thesis, Dr. Miguel Bordallo López and Dr. Xiaobai
Li, for suggesting the topic of the thesis and their guidance during the writing process.
I would also like to thank Constantino Álvarez Casado for his help in implementing
the presented experimental setup and providing the code for the Face2PPG pipeline as
well as Zhaodong Sun for his help in implementing the supervised models by providing
the code for the used negative maximum cross-correlation loss function in addition to
example code for training the models.

Oulu, November 7th, 2023

Tuukka Bogdanoff

LIST OF ABBREVIATIONS AND SYMBOLS

AF atrial fibrillation
AFL atrial flutter
AUC area under the receiver operating characteristic curve
BP backpropagation
BPM beats per minute
BVP blood volume pulse
CNN convolutional neural network
DRMF Discriminative Response Map Fitting
ECG electrocardiography
ELU exponential linear unit
FIR finite impulse response
FP forward propagation
FPS frames per second
GIS greedy iterative search
GOP generalized operational perceptron
GPU graphics processing unit
GWN Gaussian white noise
HCI human-computer interaction
HR heart rate
HRV heart rate variability
IBI inter-beat interval
IR infrared
KLT Kanade-Lucas-Tomasi
LED light-emitting diode
LSTM long short term memory
MAC multiply-accumulate operation
MAE mean absolute error
MLP multi-layer perceptron
MSE mean square error
NaN not a number
NIR near infrared
NLMS Normalized Least Mean Square
NMCC negative maximum cross-correlation
NN neural network
NPC negative Pearson’s correlation
OBF Oulu Bio-Face
OMIT Orthogonal Matrix Image Transformation
ONN operational neural network
PCC Pearson’s correlation coefficient
PPG photoplethysmography
PSD power spectral density
ReLU rectified linear unit
RGB red, green, blue
RMSE root mean square error

RNN recurrent neural network
ROI region of interest
rPPG remote photoplethysmography
SD standard deviation
Self-ONN self-organized operational neural network
SGD stochastic gradient descent
SNR signal to noise ratio
SR sinus rhythm
SVM support vector machine
VRAM video random access memory

CP* target classification performance
Fs sampling frequency
my mean of the vector of ground truth HR values
mŷ mean of the vector vector of predicted HR values
N number of vector elements
NBP number of backpropagation runs
P projection matrix
P l
k pool operator of neuron k in layer l

Q orthonormal matrix
q1 first column of the matrix Q
T temporal dimension
wl

ki kernel i of neuron k in layer l
xl
k input map of neuron k in layer l

y vector of ground truth HR values
ŷ vector of predicted HR values
yli output map of neuron i in layer l
yi ground truth heart rate value
ŷi predicted heart rate value

∆l
k delta error at neuron k in layer l

ϵ learning factor
Ψl

ki nodal operator associated with kernel i of neuron k in layer l
Ψ composite nodal operator
θ operator set
{θ∗N} operator set library

9

1. INTRODUCTION

Measuring the heart activity of a patient is important in a variety of medical contexts.
Typically, a patient’s heart activity is measured by using either electrocardiography
(ECG) or photoplethysmography (PPG). ECG and PPG signals can be used to calculate
the average heart rate (HR) of the patient, as well as more detailed information
about heart activity such as the inter-beat interval (IBI) and heart rate variability
(HRV) measures which can help physicians in the diagnosis of a multitude of
conditions. However, utilizing these methods requires the use of dedicated equipment
and continuous physical contact, which makes them inapplicable or inconvenient in
many situations and in prolonged use.

In recent years, many methods have been suggested for measuring PPG signals
remotely from facial videos to overcome the burden of using contact sensors in
measuring heart activity. These remote methods for retrieving PPG signals are
collectively referred to as remote photoplethysmography (rPPG). Since most rPPG
methods only require the use of a standard RGB (red, green, blue) camera, they can
overcome the need for physical contact and specialized equipment to measure PPG
signals, making the information from PPG signals more readily available in a variety
of contexts, including telemedicine with the use of a webcam.

Methods utilizing neural networks, specifically convolutional neural networks
(CNNs), represent the current state of the art in rPPG analysis. A neural network is
a computational system composed of connected artificial neurons that loosely models
the functions in biological nervous systems. Due to their ability to automatically infer
discriminative features for a task based on the data they are given, neural networks
have been successfully applied to an extensive range of use cases.

However, the calculations performed in a typical neural network are mostly based
on simple linear functions, and the desired nonlinearity is achieved only by applying a
nonlinear activation function to the result of a linear combination in each neuron. Due
to relying extensively on simple linear calculations, neural networks must often consist
of a large number of layers of neurons in order to achieve the desired performance
on problems with complex nonlinear solution spaces. This means that a significant
amount of computational power may be necessary to utilize the developed neural
network model, which may limit the usability of the achieved model on consumer
hardware.

Operational neural networks (ONNs) are a novel type of neural network model
proposed in 2020 by Kiranyaz et al. [1]. ONNs extend upon the principle of
conventional neural network models such as CNNs by allowing each neuron in the
network to utilize any set of linear or nonlinear operations instead of relying entirely
on a linear neuron model followed by a nonlinear activation. As such, the so-called
"operational" neuron model utilized by ONNs forms a superset of the linear neurons
utilized by most conventional neural network models, including CNNs. The authors
of [1] demonstrate that due to utilizing the more general operational neuron model,
ONNs can achieve performance superior to traditional CNNs with a smaller number
of layers in challenging problems such as image denoising or image synthesis.

However, the ONNs as formulated in [1] also exhibit certain shortcomings which
can limit their performance and scalability to large-scale problems. To address these
issues, an extension of ONNs called self-organized operational neural networks (Self-

10

ONNs) were proposed in [2]. The formulation of the Self-ONN model follows the
authors’ observations of the particular importance of "nodal" operators found in ONNs,
which in their original formulation exhibit limitations that can potentially hinder
performance. The Self-ONN models utilize so-called generative neurons, which are
neurons utilizing a composite nodal operator as opposed to the conventional nodal
operators of ONNs. The defining characteristic of composite nodal operators is that
they can be optimized during training without limitations to maximize performance
for the given learning task. The authors of [2] demonstrate that Self-ONNs can exhibit
superior learning performance compared to both ONN and CNN alternatives in the
same experimental setups as proposed in [1].

As ONNs and Self-ONNs aim at overcoming the shortcomings of more traditional
neural network models, such as the CNNs which represent the current state of the
art in rPPG analysis, there is a clear incentive to explore the potential performance
of these novel neural network models to the problem of estimating PPG signals
remotely. However, as ONNs and Self-ONNs are rather novel proposals and yet to
see widespread use, there is currently no publicly documented research evaluating the
performance of these types of neural network approaches in rPPG analysis.

The main contribution of this thesis is a novel framework for remote PPG signal
extraction utilizing self-organized operational neural network models. The networks
are trained end-to-end for the extraction of PPG signals from facial videos and their
performance is evaluated in comparison to current state of the art methods in a variety
of experimental setups. The proposed framework is based on and compared against a
supervised rPPG model presented in [3] and an unsupervised rPPG pipeline presented
in [4]. The viability of an approach based on Self-ONNs for the task of rPPG
extraction is evaluated extensively by constructing multiple Self-ONN models with
varying complexity and comparing them against corresponding CNN alternatives. The
approaches are evaluated based on the accuracy of heart rate estimates calculated from
the extracted signals as well as the efficiency of the achieved solution.

The thesis is structured as follows: Chapter 2 presents an overview of the
principles and applications of both conventional and remote photoplethysmography.
The chapter describes suitable data sets for evaluating rPPG systems and presents
existing approaches for rPPG extraction proposed in literature, which are divided
into unsupervised and supervised methods. Chapter 3 describes operational neural
networks as proposed in [1], as well as the Self-ONNs proposed in [2], presenting
the motivation, theoretical foundation, implementation as well as current and potential
applications of ONNs and Self-ONNs. Chapter 4 describes the implementation of the
methods used in the experiments presented in this thesis, including the proposed novel
rPPG extraction pipeline based on Self-ONNs. Chapter 5 describes the experimental
setup and the metrics used in evaluating the methods. The obtained experimental
results and a detailed analysis of and what they signify is presented in Chapter 6.
Chapter 7 provides further discussion of the results and addresses certain problems and
limitations in the setup in addition to providing directions for future research. Finally,
the thesis ends with closing statements and conclusions in Chapter 8.

11

2. REMOTE PHOTOPLETHYSMOGRAPHY

Remote photoplethysmography (rPPG) refers to the process of remotely obtaining
photoplethysmograph (PPG) signals. This chapter discusses the principles and
applications of conventional PPG and rPPG as well as previous and current research
on the topics.

2.1. Photoplethysmography

Photoplethysmography (PPG) is an optical technique for measuring blood volume
changes in in the microvascular bed of tissue [5]. It can serve as a non-invasive
means for measuring cardiac activity from the surface of the skin, also capturing
information about other physiological phenomena such as respiration [5, 6, 7]. PPG
systems are affordable and easy to set up, requiring only a light source for illuminating
the tissue and a photodetector for measuring the variations in illumination related to
changes in blood volume, which has led to their wide adoption in a variety of contexts
[5]. The physiological origins of the components present in a PPG signal are not
fully understood, but it is nonetheless generally accepted that they contain valuable
information pertaining to cardiovascular function [5].

PPG signals are typically measured from the finger as this measurement site has been
found to produce a signal with high amplitude compared to other locations, although
numerous other measurement sites have been proposed for use in situations in which
measuring from the finger is inconvenient [8]. The light source used in PPG usually
consists of red and infrared (IR) light-emitting diodes (LEDs) [8].

The waveform of PPG signals are affected by numerous factors, not all of which
are related to underlying physiological phenomena, such as the subject’s posture and
movement, the contact force of the sensor as well as ambient temperature [8]. As
such, the choice of a suitable measurement site and signal processing steps is crucial
in obtaining a high quality signal with relevant information. Numerous approaches for
processing PPG signals have been proposed in attempts to reliably extract meaningful
information from them [5, 6, 8], and the exact means of PPG measurement and
processing ultimately depend on the specific application at hand [5, 7].

Photoplethysmography has found wide use in a variety of clinical settings in
particular. Clinicians routinely apply PPG techniques for monitoring blood oxygen
saturation, heart rate, blood pressure, cardiac output, heart rate variability and
respiration, among others [5, 6]. The physiological signs that can be measured
using PPG can provide clinicians with valuable information in diagnosing a variety of
cardiovascular diseases and monitoring autonomic function [5]. PPG is also routinely
utilized in the monitoring of patients during anaesthesia [5].

Nowadays, PPG sensors can also often be embedded in wearable devices [8, 7], and
consumer interest in wearable health devices utilizing PPG, such as smart watches and
fitness trackers, has increased significantly in recent years [9]. Such wearable devices
often utilize green light as a light source [7] and employ several signal processing steps
to mitigate the effect of motion artifacts introduced in their intended pervasive daily
use [7, 9]. While devices worn on the wrist are the most popular [9], several other sites
for wearable PPG devices, such as ears, have been proposed [8, 9]. Ring sensors worn

12

on the finger can provide high quality signals which are comparable to benchmark PPG
and ECG sensors in detecting beat-to-beat pulsations [8].

The remote measurement of PPG signals was first proposed in 2008 by Verkruysse
et al. [10] based on the observation that blood volume pulse (BVP) information can
also be observed on the face and extracted from simple RGB videos showing the
face of the subject. The prospect of obtaining PPG signals remotely is significant
as it could extend the applicability of PPG technology to a much wider context,
including applications in which it would be inconvenient or infeasible for the subject
to continuously wear a PPG sensor, such as telemedicine settings in which a patient
communicates with a clinician in a video call. Remote PPG signals also encompass
many of the features of conventional PPG signals and could be applied by individuals
as an inexpensive means for the self-screening of various conditions, such as atrial
fibrillation (AF) [11], which is often asymptomatic but potentially life-threatening.
Practical applications of rPPG have become increasingly feasible due to recent
advances in computer vision as well as the ubiquity of RGB cameras in modern
everyday life. Interest in rPPG research has increased significantly since the inception
of the concept, with the number of related publications showing a steep upward trend
in the previous decade [12].

Remote PPG signals can also be applied in emotion analysis from facial videos since
the heart rate and heart rate variability features extracted from PPG and rPPG signals
can complement the information obtained by analysing facial expressions [12]. This
is an example of a human-computer interaction (HCI) use case in which using contact
sensors for obtaining the relevant physiological data would be inconvenient compared
to a remote approach.

Since the inception of rPPG, numerous approaches for the remote extraction of PPG
signals from facial videos have been proposed [13, 4]. A typical pipeline for remote
PPG measurement includes the steps of detecting the face in the video, selecting a
region of interest (ROI) suitable for rPPG measurement from the face, extracting
the rPPG signal from the color variations in the selected region, and finally, post-
processing the extracted signal to remove undesired artifacts and frequencies [12, 4].
Multiple alternatives for each step have been proposed in literature [4, 12]. After these
steps, HR features can be calculated from the signal by means of frequency analysis
or peak detection, for example, and in the case of peak detection, HRV features can
also be computed. Figure 1 shows an example of a typical rPPG extraction pipeline as
described above.

Figure 1. A general pipeline for remote PPG extraction from facial videos.

Approaches for rPPG extraction are often divided into unsupervised methods and
supervised methods. A supervised method may combine one or more of the above
steps in a single model, which is trained in a supervised manner using relevant

13

physiological signals. During the training process, a supervised model can implicitly
learn to perform several steps of the general pipeline described above. Unsupervised
methods, on the other hand, do not rely on supervisory signals in developing the
rPPG extraction process, and all of the above steps are usually defined explicitly. The
principles and differences of unsupervised and supervised rPPG methods are discussed
further later in this chapter and examples proposed in literature are given of both.

2.2. Unsupervised Methods

In 2008, Verkruysse et al. [10] were the first to demonstrate the feasibility of measuring
PPG signals remotely from facial videos. The authors showed that PPG signals can be
extracted from videos recorded of the human face from a distance of several meters
under normal ambient light as the light source using a consumer level digital photo
camera in movie mode. The authors demonstrate that at a distance of 1.5 meters,
the signal to noise ratio (SNR) of the green channel signal measured of the face was
sufficient for extracting up to four harmonics of the fundamental HR frequency, thus
allowing the extraction of not only the HR but also the signal waveform [10].

In 2014, Li et al. [14] proposed a framework for remote heart rate measurement
from facial videos utilizing face tracking and Normalized Least Mean Square
(NLMS) adaptive filtering. While existing methods proposed for remote heart rate
measurement from facial videos had been demonstrated to perform well on data
recorded under strictly controlled conditions in which illumination variations or
spontaneous movements by the subjects were not present, research demonstrating the
applicability of remote HR estimation to more realistic scenarios had not yet been
conducted. Based on existing research, the authors proposed a new framework that
could account for the effects of illumination variations and subjects’ motions, thus
demonstrating the feasibility of remote HR extraction from facial videos under more
realistic conditions.

The proposed framework for processing facial videos is divided into four distinct
steps of region of interest (ROI) detection and tracking, illumination rectification,
non-rigid motion elimination and temporal filtering. In the first step, a Viola-Jones
face detector is used to detect the face rectangle in the first frame of the video and
the Discriminative Response Map Fitting (DRMF) method [15] is used to detect 66
landmarks on the face. 9 of the landmarks are used to determine the ROI so that
the eye region is excluded from the ROI and the ROI boundary is indented from the
face boundary. Instead of detecting the ROI separately in each frame, the changes
in the location of the ROI detected in the first frame are tracked through the the
following frames of the video using the Kanade-Lucas-Tomasi (KLT) algorithm [16]
to counter the variations caused by rigid head movement. The raw blood volume
pulse signal is then defined as the mean of the green channel values inside the ROI
of each frame. In the second step, the raw pulse signal is filtered using a NLMS
filter using the mean green value extracted from a background region as a reference in
order to account for changes in illumination. In the third step, to mitigate the effects
of non-rigid movements such as changes in facial expression, the filtered signal is
divided into segments of equal length and 5% of the segments with the largest standard
deviation in all the testing samples are removed, after which the remaining segments

14

are concatenated back together. In the final step, the resulting signal is filtered using
a detrending filter proposed by Tarvainen et al. [17], a moving average filter, and
a Hamming window based finite impulse response band pass filter with a cutoff
frequency set to [0.7, 4] Hz. Finally, the power spectral density (PSD) of the filtered
pulse signal is calculated using Welch’s method [18] and the heart rate measured from
the video is defined as 60fHR where fHR is defined as the frequency with the maximal
power response as observed in the PSD.

The authors evaluate the performance of their network on two data sets: the
VideoHR database, which was compiled by the authors themselves, and the multi-
modal MAHNOB-HCI database [19]. The VideoHR database consists of videos
recorded under controlled settings in which illumination variations or body movements
do not occur. The MAHNOB-HCI database was in turn chosen because it
contains videos recorded under more diverse and realistic human-computer interaction
scenarios. The authors also compared their method against four previous methods
proposed in literature by [20], [21], [22] and [23]. The authors find that all tested
methods, including their own, were able to achieve almost perfect performance for HR
estimation on the VideoHR database due to the controlled nature of the data. However,
when testing on the MAHNOB-HCI database, the authors’ method significantly
outperformed all previous methods in all metrics used by the authors, achieving a root
mean square error (RMSE) of 7.62, mean error rate percentage of 6.87% and Pearson’s
correlation coefficient of 0.81 for the task of predicting average HR in 30 second clips
extracted from videos in the MAHNOB-HCI database. The authors also demonstrate
that each of the steps performed in their framework improves the performance of the
model.

In their paper, Álvarez Casado and Bordallo López [4] propose and evaluate
a number of unsupervised approaches for extracting blood volume pulse signals
from facial videos. The authors propose a novel framework for rPPG extraction
based on a generic unsupervised pipeline, which the authors aim to improve with
novel techniques. The main contributions to the pipeline by the authors are a new
stabilization method for faces based on rigid mesh normalization to increase robustness
to variations in pose and movement, a dynamic ROI selection scheme based on
statistical and fractal analysis for choosing the best facial regions from which to
measure the signals, and a novel method for rPPG extraction from RGB signals called
Orthogonal Matrix Image Transformation (OMIT) based on QR decomposition.

The pipeline employed by the authors is a typical example of an unsupervised rPPG
extraction pipeline, which can generally be split into three main phases: selecting
the face regions for the measurements, extracting the rPPG signals from the color
variations in the selected areas, and the computation of heart rates and other relevant
parameters. The modular pipeline utilized by the authors consists of a total of 8
modules: a database interface for loading the data, detection and alignment of the
face, ROI selection, extracting the raw RGB signal as the mean value of the ROI
pixels, pre-processing of the extracted RGB signal, RGB to PPG transformation
(rPPG), frequency analysis for HR computation, and evaluation of the HR estimation
performance [4].

The authors base their rPPG pipelines on one included in version 0.0.4 of the PyVHR
framework [24], to which the authors refer as the "baseline" pipeline. The authors
then aim to improve upon the selected baseline by introducing changes to several

15

steps, proposing three new versions called the "improved", "normalized" and "multi-
region" pipelines. The improved pipeline introduces a few changes to the baseline
in order to enable better reproducibility and fairer comparison to other methods.
The normalized pipeline improves on the previous approaches by employing a skin
segmentation method based on geometric normalization. Finally, the multi-region
pipeline aims to improve on the normalized pipeline by leveraging the fact that the
employed skin segmentation method produces a set of facial regions which can be
processed separately. The authors develop a method for automatically choosing the
regions which exhibit the most BVP information based on statistical parameters and
discard the regions which are deemed less relevant [4].

The PyVHR framework includes implementations for several reference rPPG
methods such as POS [25], CHROM [26], GREEN [10], PCA [27], ICA [22], 2SR
[13], LGI [28] and PBV [29], which are all employed and evaluated by the authors
of [4] as part of each of the four proposed pipelines. The authors also test an rPPG
method proposed in [30], which utilizes the chroma channel a in the CIE Lab color
space.

In addition, the authors propose a novel approach for RGB to PPG transformation,
Orthogonal Matrix Image Transformation (OMIT), which is also integrated in the
four pipelines and compared against previously proposed alternatives. The proposed
approach attempts to improve robustness against noise and artifacts in the input
compared to previous rPPG methods. The OMIT method consists of the three key steps
of calculating a reduced QR decomposition with Housenholder reflections, calculation
of a subspace projection matrix, P , and finally, using P to project the input RGB
data to a subspace orthogonal to the first column q1 of the matrix Q, whose columns
represent the orthonormal basis of the input matrix [4].

The authors of [4] evaluate all 10 rPPG methods mentioned as part of all four
proposed pipelines. The authors evaluate the methods on six publicly available
benchmark data sets: PURE [31], COHFACE [32], the LGI-PPGI-Face-Video-
Database [28], the two datasets, UBFC1 and UBFC2, forming the UBFC-RPPG Video
dataset [33] as well as MAHNOB-HCI [19]. The authors evaluate the proposed
pipelines based on HR prediction accuracy as measured by the mean absolute error
(MAE) and Pearson’s correlation coefficient (PCC) between the predicted and ground
truth heart rate envelopes. For MAE, the standard deviation (SD) is listed in addition
to the mean.

The best experimental results in all six data sets were achieved using the multi-
region pipeline which incorporates all the changes proposed by the authors. Of the
different rPPG conversion methods, the authors report CHROM and POS to perform
the best on uncompressed data, while their proposed OMIT method performs the best
on heavily compressed data, outperforming the other methods on the compressed data
in the MAHNOB data set. The authors also note that the level of performance that
the pipelines can achieve depends strongly on the nature of the data in question, as
achieved error levels on UBFC and PURE reach below 2 BPM, the best result on LGI-
PPGI just below 4 BPM and the average errors on the highly compressed COHFACE
and MAHNOB data sets between 8 and 12 BPM [4].

The multi-region pipeline proposed by the authors outperforms its alternatives when
presented with videos recorded under natural conditions, especially on data which
shows variations in facial expressions, head movements and changes in illumination.

16

However, achieved performance improvements are only modest on data which shows
subjects remaining still in front of the camera, such as PURE and UBFC. The
authors also demonstrate the performance improvements gained using the multi-region
pipeline on natural data by comparing its results against the baseline pipeline on the
four different scenarios in LGI-PPGI, resting, rotation, talking and gym, separately,
showing significant performance improvements on the more natural talking and gym
scenarios, with an especially drastic improvement in performance seen in the gym
scenario. The authors also compare their multi-region pipeline against state of the art
unsupervised and supervised methods, showing that it can outperform the previously
proposed unsupervised methods and achieve performance comparable to state of the
art supervised methods with lower computational cost and no requirement of training
[4].

2.3. Supervised Methods

Unlike unsupervised rPPG extraction pipelines, in which each phase of the pipeline
is defined explicitly by the developer, supervised methods leverage a training process
on relevant data to learn to perform one or more of the required steps automatically.
Most supervised methods applied in rPPG extraction are based on a machine learning
approach called neural networks (NNs). The current state of the art in rPPG extraction
is represented by so-called end-to-end approaches based on deep neural networks,
which attempt to combine all the necessary steps required to achieve the desired rPPG
signal from a facial video into a single model. The best performance in the task of
remote PPG extraction is achieved by a type of neural network called convolutional
neural networks (CNNs), which have been shown to perform well in a variety of
computer vision applications. CNNs are also serve as the basis for the operational
neural networks (ONNs) proposed in [1], which in turn are the basis of the self-
organized operational neural networks (Self-ONNs) proposed in [2]. The different
types of neural network models and their characteristics will be covered in more detail
in Chapter 3.

A neural network is trained by providing samples of input-output pairs and updating
the parameters of the network iteratively based on a target function calculated between
them. The training process aims to minimize the value of the target function, which is
achieved by calculating the gradient of the function and performing backpropagation
to compute the contribution of each parameter in the model so that their values
can be updated accordingly. In an end-to-end approach for rPPG extraction from
faces, the input is typically a facial video while the ground truth output is a PPG
signal recorded from the finger. Through the training process, the network learns
all the steps required to produce the desired outputs from its inputs simultaneously
and automatically, which eliminates the need for the feature engineering typical of
unsupervised methods. However, the computational requirements of deep neural
networks may be high compared to unsupervised approaches, and the quality of the
learned representation of any supervised model is entirely dependent on the quality of
the training samples provided.

Yu et al. [3] proposed a number of spatiotemporal neural network models for the
purpose of remote PPG extraction. The authors propose two model architectures based

17

on 3D CNNs, which treat the input videos as a 3D volume, and three long short term
memory (LSTM) neural network models. The implementations based on LSTMs also
incorporate a 2D CNN model for extracting spatial features, forming a time series
to serve as input for the actual LSTM models [3]. One of the 3D CNN models
proposed by the authors, PhysNet-3DCNN-ED, employs an encoder-decoder structure
in its architecture. This model also served as the basis for the models evaluated in the
experimental section of this thesis and is described further in Section 4.2. A diagram
of the architecture of the model can be seen in Figure 6, in which it is referred to as
’CNN-deep’.

The models are trained by the authors in an end-to-end manner using samples in the
OBF database, with the included PPG signals serving as the ground truth for the input
videos. The videos are preprocessed to contain only the face and resized to 128 by
128 pixels. Both the input videos and the ground truth PPG signals are resampled to
a sampling rate of 30 Hz. The entire videos are not input into the models at once, and
four different lengths of 32, 64, 128 and 256 frames for the training clips are used in
the experiments instead. The authors test two different loss functions when training
their models: the mean square error (MSE) and negative Pearson’s correlation (NPC)
losses [3].

The authors evaluate the performance of the proposed models based on HR and HRV
features calculated from the output rPPG and ground truth signals using peak detection.
The metrics chosen for evaluating HR and HRV prediction performance are standard
deviation (SD), root mean square error (RMSE), Pearson’s correlation coefficient
(PCC) and mean absolute error (MAE). The authors also evaluate their models in
experimental settings for atrial fibrillation detection and emotion recognition, for
which the evaluation metrics of accuracy and specificity are used [3].

The models are first evaluated in a 10-fold cross validation setup on the OBF
database, for which performance in HR and HRV estimation as well as AF detection
accuracy based on HRV features is reported. The best performance for HR prediction
was achieved by the proposed PhysNet-3DCNN-ED model when the length of the
training clips was set to 128 and the NPC loss was used, resulting in an RMSE of
1.812 and PCC of 0.992 for the HR estimates. The authors also extract ten-dimensional
HRV features for use in an AF detection setup on OBF, for which the authors report an
accuracy of 80.22 % and specificity of 81.87 %. This model was then evaluated on the
MAHNOB-HCI data set to evaluate its ability to generalize to data outside the OBF
database used in training the model. The authors report an SD of 7.84, MAE of 5.96,
RMSE of 7.88 and PCC of 0.76 for the task of HR prediction on the MAHNOB-HCI
data set [3].

The model was also tested in an emotion recognition setup on MAHNOB-HCI. The
authors extract the same ten dimensional HRV features as for AF detection, which
are used to detect three levels of arousal and valence as well as nine categories of
emotions. The authors report accuracies of 46.86 % and 44.02 % in the 3-class valence
and arousal prediction tasks, respectively, and an accuracy of 29.79 % in the 9-class
emotion classification task [3].

Sun et al. [11] developed an approach based on deep learning for a specific
application of rPPG: atrial fibrillation (AF) detection from facial videos. The authors
base their method on a slightly modified version of the PhysNet-3DCNN-ED model
proposed in [3]. To train their model, the authors use a binary time series indicating

18

the systolic peak locations detected in the PPG signal measured from the subject as
the ground truth for the corresponding facial videos as opposed to utilizing the entire
PPG waveform as in [3]. The choice is made to prevent the model from learning
unnecessary features inherent to PPG signals, such as diastolic peaks and artifacts,
instead retaining only the information that is required for calculating HR and HRV
features, i.e., the timing of the systolic peaks. To that end, the authors also propose
a novel loss function called Wasserstein distance. The authors find that utilizing their
newly proposed loss to train the proposed model leads to better performance in HR
and IBI prediction compared to alternative loss functions suitable for training on a
binary time series. In addition, a model trained using the systolic peaks using their
newly proposed loss function outperforms an equivalent model trained on the entire
PPG waveform [11].

The authors record and conduct their experiments on the full version of the Oulu
Bio-face (OBF) dataset, which consists of 100 facial videos recorded of healthy
subjects and 100 recorded of AF patients along with the corresponding PPG and ECG
recordings. The subset consisting of recordings of healthy subjects is referred to as
OBF-H and the subset recorded of AF patients as OBF-P. For classification purposes,
the samples of AF patients were labeled as showing atrial fibrillation (AF), sinus
rhythm (SR) or atrial flutter (AFL), with certain complex cases labeled as ’other’. 73
of these videos were labeled as AF, 61 as SR, 11 as AFL, and 24 were labeled as other
and excluded from classification experiments [11].

The authors test the applicability of their method to AF detection in two
classification setups. In the first experimental setup, videos of healthy subjects and
videos of AF patients labeled as containing AF are used in a binary classification
scheme of healthy vs. AF. In the second setup, videos of patients labeled as SR and
videos labeled as AF are used to classify SR vs. AF. The authors also test the feasibility
of their approach for AFL detection in a setup for classifying samples labeled as
SR against samples labeled as AFL. To perform classification, 20 HRV features are
extracted from the signals and used to train a support vector machine (SVM) classifier.
In the first two setups, subject-independent 10-fold cross-validation is used. In the SR
vs. AFL classification experiment, 6 patients with SR and 6 with AFL are selected
randomly to form the set of training data while another 5 patients with SR and 5 with
AFL are chosen for the test set [11].

The authors report an accuracy of 96.00 %, sensitivity of 95.36 % and specificity
of 96.12 % for the first experiment of classifying healthy subjects against samples
containing AF when utilizing their newly proposed deep learning pipeline. For
reference, the authors list the classification performance achieved using the recorded
ECG signals and the same HRV features, which resulted in an accuracy of 99.38
%, sensitivity of 99.63 % and specificity of 99.24 %. In the second experiment
of classifying samples of patients with AF vs. patients with SR, the proposed
approach achieved an accuracy of 95.23 %, sensitivity of 98.53 % and specificity of
91.12 %, with the corresponding reference ECG results for the experiment measuring
an accuracy of 97.89 %, sensitivity of 99.31 % and specificity of 95.85 %. The
authors also demonstrate the feasibility of their approach in AFL detection with an
accuracy of 88.43 %, sensitivity of 90.04 % and specificity of 87.04 % in the AFL
vs. SF classification task, with the corresponding reference ECG signal resulting
in an accuracy of 91.96 %, sensitivity of 92.31 % and specificity of 91.36 %. The

19

experiments producing these results were conducted using 30-second clips extracted
from the samples. The authors also compare their method against other rPPG pipelines
proposed in [3], [34], [25] and [29] in the same classification setups and find that
their proposed approach outperforms the alternatives in all settings based on all the
metrics used, i.e., accuracy, sensitivity, specificity, F1 score and area under the receiver
operating characteristic curve (AUC) [11].

2.4. Data Sets Suitable for Remote PPG

To evaluate a pipeline for rPPG extraction, suitable data consisting of videos showing
the face and at least one corresponding relevant physiological signal, such as PPG or
ECG signals, is required. This section lists some data sets of facial videos that contain
ground truth recordings of cardiac activity in the form of PPG or ECG signals and have
been used for evaluating the performance of rPPG extraction frameworks in literature.

2.4.1. Oulu Bio-Face (OBF)

The Oulu Bio-Face (OBF) database [35] consists of facial videos and reference
physiological signals recorded of 100 healthy subjects with no history of heart disease
as well as 6 subjects diagnosed with atrial fibrillation (AF). According to the authors,
the OBF database is the first example of a database built specifically for the purpose
of evaluating methods of measuring physiological signals remotely. Of the healthy
subjects, 61 were male and 39 were female, 39 wore eyeglasses, and the average age
was 31.6 years. 32 of the healthy subjects were white, 37 were Asian and the remaining
31 were of other ethnic background. The subjects with AF had an average age of 68.1
years, were all white, and were split evenly between male and female subjects. In
addition, half of them wore eyeglasses. Two recording sessions took place for each
subject, lasting five minutes each. In the case of healthy subjects, five minutes of
exercise by climbing the stairs took place between the two recording sessions, resulting
in a higher heart rate during the second session. For the subjects with atrial fibrillation,
the first session was recorded before they underwent cardioversion treatment for their
condition, meaning that they showed symptoms of AF during recording, and the
second session took place three hours after the cardioversion treatment took place,
at which point the patients show a regular sinus heart rhythm. All the videos were
recorded under controlled conditions in artificial light, with subjects facing the camera
throughout the videos. The facial videos were recorded on a Blackmagic URFA mini
RGB camera at a resolution of 1920 by 1080 pixels at a frame rate of 60 frames per
second. In addition to RGB video, near infrared (NIR) video was recorded using a
specialized camera during each session at a resolution of 640 by 480 pixels and a frame
rate of 30 frames per second. Three ground truth physiological signals were recorded
during each recording session: an ECG signal, a respiration signal and a BVP signal.
The ECG signal was recorded at a sampling rate of 256 Hz, the respiration signal at
a sampling rate of 32 Hz, and the BVP signal had a sampling rate of 128 Hz. The
cameras and all biosensors were synchronized by passing a visual cue to the cameras

20

and pressing a trigger button on the biosignal data acquisition device simultaneously
at the beginning and end of each recording.

Figure 2 shows examples of three facial videos from OBF to demonstrate the
recording conditions. The presented examples have been postprocessed to conceal
the subjects’ identities.

Figure 2. Examples of three facial videos from the OBF database.

2.4.2. COHFACE

The COHFACE data set [32] consists of 160 videos recorded of 40 healthy subjects.
12 of the subjects were women and 28 were men, and the average subject age was
35.6 years. The videos were recorded of the subjects sitting still in front of a webcam
under two different types of lighting conditions: "studio" lighting, during which the
blinds in the room were closed and the subject’s face was illuminated using a spotlight,
and "natural" lighting, during which all lights in the room were turned off and the
blinds were open. Two sessions were recorded of each subject under both lighting
conditions, resulting in a total of four recordings of each subject. Figure 3 shows
examples of the two lighting conditions for one subject, with the facial features blurred
for privacy. Each video was approximately 60 seconds long and recorded using a
consumer grade webcam, Logitech HD Webcam C525, with a resolution of 640 by
480 pixels at 20 frames per second. In addition, blood volume pulse and respiration
signals are recorded of the subjects during each session using measuring equipment
manufactured by Thought Technologies. The BVP signals were recorded at a sampling
rate of 256 Hz and the respiration signals were recorded at a sampling rate of 32 Hz.
The physiological signals were synchronized with the corresponding video sequence
during recording by a software suite provided by the manufacturer of the physiological
signal measurement equipment.

2.4.3. LGI-PPGI-Face-Video-Database

The LGI-PPGI-Face-Video-Database [28] consists of videos recorded of 25 subjects,
although only the recordings of 6 of the subjects have been made publicly available.

21

Figure 3. Examples of the two lighting conditions under which the data in COHFACE
was recorded, with an example of natural light on the left and studio light on the right.

20 of all the participating subjects are male and 5 are female. Of the 6 subjects in
the publicly available part of the data, five subjects are male and one is female. The
age of the subjects ranges between 25 and 42 years and the majority race is white.
Four videos were recorded of each subject under varying conditions, resulting in a
total of 100 videos. The first of the recording sessions involves a resting scenario with
minimal changes in face and head position or illumination. In the second session,
illumination also remains static, but the subjects are instructed to move their face and
head. The third session is recorded during exercise on a bicycle ergometer with no
specific instructions given to the subjects. The fourth session is recorded during a
conversation in an urban environment with natural variations in illumination. The
length of the videos is one minute except for the sessions recorded during exercise,
which are five minutes long. All of the videos were recorded using a consumer grade
webcam, the Logitech HD C270, at a frame rate of 25 frames per second. PPG ground
truth signals were recorded for each session using a CMS50E finger pulse oximeter at
a sampling rate of 60 Hz.

Figure 4 shows examples of the four different recording sessions for a subject
from the LGI-PPGI-Face-Video-Database, demonstrating the differences in lighting
conditions and the pose of the subject. The facial features in the presented examples
were blurred to protect the subject’s privacy.

Figure 4. Examples of the four different recording scenarios in the LGI-PPGI-Face-
Video-Database in the following order from left to right: resting, rotation, gym and
talking.

2.4.4. MAHNOB-HCI

The MAHNOB-HCI database [19] is a multimodal set of data collected primarily for
the purpose of emotion recognition research. However, as the database contains facial

22

videos as well as corresponding synchronized ECG recordings of the subjects, which
can be used for extracting ground truth HR and HRV features, the database is also
suitable for evaluating the performance of rPPG extraction frameworks. The database
consists of synchronized recordings of face videos, audio signals, eye gaze data and
various physiological signals recorded in a multimodal setting. The modalities of
interest in an rPPG experimental setting are the color facial video, which was recorded
using an Allied Vision Stingray F-046C color camera at a resolution of 780 by 540
pixels at 60 frames per second, and the ECG signals, which were recorded using three
electrodes at a sampling rate of 1024 Hz but later downsampled to 256 Hz for more
efficient processing. The videos in the database are stored in a compressed H.264
format, which poses challenges for the remote extraction of PPG signals. The samples
were recorded of 27 subjects of whom 11 were male and 16 were female. The age of
the subjects ranged between 19 and 40 years [19].

23

3. OPERATIONAL NEURAL NETWORKS

Operational neural networks (ONNs) are a novel neural network technology proposed
by Kiranyaz et al. in 2020 [1]. The ONN networks are based on the operational
neuron, which is an extension of the convolutional neurons used in conventional
CNNs. While the traditional convolutional neural networks are homogeneous with
their configuration based on the linear neuron model, ONNs can be heterogeneous,
consisting of operational neurons with any set of operators. By proposing ONNs
as a more generalized alternative to the conventional CNNs by extending on them
with a neuron model which can encompass nonlinear operations, the authors attempt
to overcome the limitations imposed by the linear neuron model which limits the
performance of CNNs in problems with highly complex and nonlinear solution spaces
[1].

In addition, an extension of ONNs called self-organized operational neural networks
(Self-ONNs) has recently been proposed in [2]. The newly proposed Self-ONNs
attempt to overcome certain observed shortcomings in the ONN model by employing
so-called generative neurons, which allow the model to self-organize the operators
of the network during training in an unrestricted manner with backpropagation. This
results in the operators being tailored to the specific task at hand as opposed to being
selected from a fixed operator library, which can result in improved performance for a
number of applications as well as improved scalability for large scale problems with
high complexity due to eliminating the computationally expensive search process for
the best operators.

This chapter discusses the motivation and background behind ONNs as well as
their theoretical foundation and practical implementation as proposed in [1]. In
addition, the current and potential applications of ONNs are discussed, and the
advantages and limitations of ONNs against other existing alternatives are evaluated.
The chapter concludes by providing a similar review of Self-ONN models, covering
their motivation and background, theoretical foundation, practical implementation as
well as applications, advantages and shortcomings.

3.1. Background and Motivation

ONNs are a novel type of neural network which is based on CNNs and a novel
neural network model called generalized operational perceptrons (GOPs), both of
which are ultimately based on multi-layer perceptrons (MLPs) which are universal
approximators loosely inspired by biological neurons. By solving an optimization
problem to achieve the output weights of the network, the conventional fully connected
and feed-forward neural networks such as MLPs have been shown to be capable of
approximating any continuous function as long as the neural units of which they consist
are able to perform nonlinear piece-wise continuous mappings of their inputs and the
network has a sufficient number of layers, resulting in high enough computational
capacity. However, such artificial neural networks traditionally exhibit a homogeneous
structure and a neuron model which is rather a crude approximation of the biological
neurons inspiring it, only being capable of performing the linear transformation and
weighted sum operations. The real biological neural systems, on the other hand, are

24

heterogeneous and consist of a large variety of specialized neuron types which differ
in their structural, biochemical and electrophysiological properties. As such, although
the typical homogeneous neural networks are capable of learning to approximate
the corresponding responses of training samples, they may be unable to learn the
underlying functional form which maps the inputs to the outputs of the problem.
Such homogeneous networks based on the traditional neuron model may often fail to
produce satisfactory results for problems with highly complex and nonlinear solution
spaces. Extensions of MLPs, such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs) and long-short term memories (LSTMs) also inherit the
limitations caused by the traditional neuron model [1].

To address the limitations of the traditional neural networks, a novel feed-forward
and fully connected neural network model, called generalized operational perceptron
(GOP), has been proposed. These models attempt to model the biological neuron more
accurately with a neuron model which incorporates features of biological neurons
not represented in the traditional neuron model, such as variations in the synaptic
connections between nerve cells, which are nonlinear in general. The GOP neuron
model is an extension of the MLP neuron which adds a "nodal" operation, which
corresponds to the synaptic connections in the dendrites of biological neurons, and
a "pool" operation, corresponding to an spatial and temporal integration of incoming
signals in the soma of a biological neuron. The GOP neurons directly adopt the
"activation" operation of MLPs, which in a biological sense corresponds to the pooled
potentials exceeding a certain limit and the consequent release of a series of action
potentials in the axon of the nerve cell. The GOP neurons generalize the fixed linear
model of MLPs and allow any set of nonlinear transformations to be used in defining
the transformations applied to the input signals at the neuron level. The GOP neurons
are a superset of MLP neurons, also known as linear perceptrons, which allow for more
compact and efficient neural network architectures with superior performance resulting
from better encoding of the input signals due to combining linear and nonlinear
operations. In fact, some studies have shown that GOPs can achieve respectable results
on many challenging problems which MLPs entirely fail to learn to solve such as "two
spirals", "N-bit parity" for N > 10 and "white noise regression". As a superset of MLPs,
a GOP network is capable of reverting to a conventional MLP, but only in the case that
the learning process defining the operators of the neurons determines that the native
operators of an MLP best fulfill the learning criterion [1].

GOPs are also the reference point for the ONNs proposed by the authors since they
share the underlying philosophy of generalizing the homogeneous networks utilizing
only the linear neuron model with a heterogeneous model utilizing an "operational"
neuron model capable of encapsulating any set of linear or nonlinear operators. Much
like GOPs are a generalization of MLPs, the neuron model of ONNs attempts to
generalize the linear neuron model conventionally employed in CNNs with any linear
or nonlinear operator. As an extension of MLPs, conventional CNNs similarly rely on
linear transformations to produce their output, and because of this, in many challenging
applications only deep CNNs with a very large number of layers and substantial
computational complexity are capable of learning meaningful representations and
achieving satisfactory performance [1].

25

3.2. Theoretical Foundation

Operational neural networks are based on the principles behind two previously
proposed types of neural networks: CNNs and GOPs. ONNs retain the two defining
properties of weight sharing and limited connectivity of CNNs but extend upon using
linear convolutions exclusively by adding the nodal and pool operators as found in
GOPs. Much like GOPs are a superset of MLPs, the proposed ONNs become a superset
of CNNs by definition [1].

Conventional convolutional neural networks are based on the same neuron model
as MLPs, but employ two additional restrictions of weight sharing and limited
connections. In a fully connected MLP without these restrictions, every pixel in
the feature map of a layer would be connected to every pixel in the corresponding
feature map of the previous layer, leading to an exceedingly large number of trainable
parameters which are infeasible to optimize efficiently [1]. Employing these two
restrictions, which exploit the fact that the most relevant information to a given
region is most likely found in the neighboring pixels, has allowed CNNs to be
applied efficiently to applications of computer vision in particular. The output of
a convolutional layer serving as the input map of the next layer neuron, xl

k, is
calculated by cumulating the output maps, yl−1

i , of the previous layer convolved with
the kernels, wl

ki of the current layer [1]. The corresponding mathematical formula for
2D convolutional layers is presented in Equation 1 [1].

xl
k = blk +

Nl−1∑
i=1

conv2D
(
wl

ki, y
l−1
i , ’NoZeroPad’

)
∴ xl

k(m,n)
∣∣(M−1,N−1)

(0,0)
=

2∑
r=0

2∑
t=0(

wl
ki(r, t)y

l−1
i (m+ r, n+ t)

)
+ · · ·

(1)

ONNs extend upon this principle by adding the nodal and pool operations. To calculate
the output of an operational layer, xl

k, the final output maps of the previous layer, yl−1
i ,

are first pooled and then operated on using the kernels, wl
ki, of the current layer, leading

the computation to take the form presented in Equation 2 as defined in [1].

xl
k = blk +

Nl−1∑
i=1

oper2D
(
wl

ki, y
l−1
i , ’NoZeroPad’

)
xl
k(m,n)

∣∣(M−1,N−1)

(0,0)
= blk+

Nl−1∑
i=1

(
P l
k

[
Ψl

ki

(
wl

ki(0, 0), y
l−1
i (m,n)

)
, . . . ,

Ψl
ki

(
wl

ki(r, t), y
l−1
i (m+ r, n+ t), . . .

)
, . . .

]) (2)

In Equation 2, P l
k denotes the pool operator of neuron k in the current layer l and

Ψl
ki denotes the nodal operator associated with kernel number i of the same neuron.

The authors of [1] also point out that by comparing Equations 1 and 2, it can be seen
that when the pool operation is summation and the nodal operator is multiplication,
i.e., P l

k = Σ and Ψl
ki(y

l−1
i (m,n), wl

ki(r, t)) = wl
ki(r, t)y

l−1
i (m,n), for every neuron

26

in an ONN, the resulting homogeneous ONN is identical to a corresponding CNN,
indicating that ONNs form a superset of CNNs as mentioned.

Figure 5 presents an illustration of the operation of CNN and ONN models as
defined in the equations above, with three 3x3 convolutional layers presented in the
upper diagram and three 3x3 operational layers presented in the diagram below it.
The diagrams illustrate how the kth neuron of layer l of the network operates on the
previous layer outputs with a size of 22 by 22 to produce its output.

Figure 5. A figure demonstrating the operation of the kth neuron of layer l of a CNN
in the upper diagram and ONN in the diagram below, illustrating its relation to the
previous and following layers.

27

3.2.1. Training with Backpropagation

The BP training of ONNs as formulated by [1] consists of four phases: (1) computation
of the delta error, ∆L

1 , at the output layer, (2) inter-BP between two operational layers,
(3) intra-BP in an operational neuron and (4) computation of the weight (operator
kernel) and bias sensitivities for the purpose of updating them at each iteration of BP.
Phase 3 is also responsible for any pooling operations, i.e., up- or downsampling, if
they are applied at the neuron. The training of ONNs with backpropagation (BP)
is based on the same principles as training CNNs. Some steps in backpropagation
training, such as the entirety of phases 1 and 3, are common between ONNs and CNNs,
but certain differences arise due to the added nodal and pool operations of ONNs.

3.3. Implementation

To implement the proposed ONN model in practice, the authors of [1] present
implementations for the forward propagation (FP) and backpropagation (BP)
operations based on the four phases described earlier. The authors also present a
method for searching for the optimal operator set for each neuron by performing short
training sessions with BP utilizing potential operator set candidates. After this, the
ONN with the best operators can be trained on the designated set of train data for a
given problem.

The pseudocode for the modified backpropagation algorithm for ONNs as described
in [1] is presented in Algorithm 1. Some details have been omitted here for brevity,
but the algorithm still captures the underlying principle behind the process of training
ONNs with backpropagation. The full details of the algorithm, including the relevant
mathematical equations, can be found in the original publication [1]. In the algorithm,
iterMax and CP* are examples of stopping criteria for the training process, with
iterMax denoting a maximum number of iterations and CP* referring to a target
classification performance [1].

28

Algorithm 1. Backpropagation algorithm for ONNs
Input : ONN, Stopping Criteria (iterMax, CP*)
Output: BP trained ONN* = BP(ONN,iterMax,CP*)

1 Initialize all parameters (e.g., randomly)
2 until a stopping criterion is reached iterate:
3 for each item in the train dataset do:
4 FP: Forward propagate from the input layer to the output layer to find

the outputs and required derivatives and sensitivities for BP for each
neuron k at each layer l.

5 BP: Compute delta error at the output layer and backpropagate the
error back to the first hidden layer to compute delta errors of each
neuron k, ∆l

k, at each layer l.
6 PP: Find the bias and weight sensitivities.
7 Update: Update the weights and biases with the sensitivities found in

the previous step, scaled with a learning factor ϵ.
8 end
9 end

10 return ONN*

For the purpose of determining the best set of operators for each operational neuron,
the authors of [1] utilize the greedy iterative search (GIS) algorithm [36, 37]. The GIS
algorithm performs a pruned search for the best operators of one layer at a time, which
means that each neural layer will be homogeneous with all of its neurons sharing the
same operator set. The operator set library, denoted by {θ∗N}, consists of N operator
sets, each of which represents a unique combination of a nodal, pool and activation
operator. With each pass, GIS searches for the best operator set from the library for
a particular layer, while the operator sets of other layers remain fixed. To that end,
a small number of short BP runs with randomly initialized parameters are performed
with each possible operator set assigned to the given layer in turn. The operator set
that leads the ONN to perform the best is assigned to the layer, and GIS moves on to
the next layer until the search has been performed for every layer in the network. The
authors assert that only few passes of GIS should suffice to determine a near-optimal
ONN configuration since with each pass, the best operator set always remains assigned
to each layer [1].

Algorithm 2 presents the pseudocode for two-pass GIS for forming a near-optimal
ONN, ONN*(θ), as presented in [1]. In the algorithm, {θ∗N} refers to the operator
set library as described earlier, and NBP denotes the number of backpropagation runs
performed for testing each operator set for a given layer during each pass of GIS. Much
like in Algorithm 1, iterMax and CP* represent the stopping criteria of maximum
iterations and target classification performance set for the problem at hand, and the
GIS algorithm is set to stop early if the learning objective set for the problem, i.e.,
target CP*, is met during the search [1].

29

Algorithm 2. Two-pass GIS
Input : {θ∗N}, Stopping Criteria (iterMax, CP*), NBP

Output: ONN*(θ)
1 Initialization: Form an ONN with neurons having operator set (nodal, pool,

activation) randomly selected from {θ∗N}.
2 for GIS-pass = 1:2 do:
3 for output layer l = L:1 do:
4 for ∀θi ∈ {θ∗N} do:
5 Assign the operator set of each neuron in the lth layer of the ONN

to θi → ONN(l, θi)
6 Perform: NBP× BP(ONN(l, θi), iterMax, CP*) and Record:

ONN*(θi) that achieves the best performance
7 end
8 Assign θ∗i as the operator set of each neuron in the lth layer of the

ONN → ONN(l, θ∗i)
9 if CP* is reached in any BP run, break GIS

10 end
11 end
12 return ONN*(θ), the best performing ONN

3.4. Applications

As the proposed ONNs constitute a superset of CNNs, in principle they can be applied
to all the same problems as conventional CNNs as well as additional problems in which
CNNs may not be applicable due to their constraints. As CNNs are firmly established
as a powerful tool for a variety of applications, especially in computer vision, it is
clear that the potential applications for ONNs are similarly numerous. In addition,
ONNs may be capable of superior performance compared to CNNs with the same
configuration in many applications, although the actual benefit of opting for an ONN
approach instead of a CNN depends on the specific problem in question.

To demonstrate the performance of their proposed ONN model, the authors of
[1] draw direct comparisons between the performance achieved by ONN and CNN
models in experimental setups for four tasks: image denoising, image synthesis, face
segmentation and image transformation. The authors also impose certain restrictions
in the experiments in an attempt to demonstrate the learning capabilities of ONNs.
The restrictions are low resolution, which means limiting the resolution to 60 by 60
pixels, compact model, which means using a compact ONN configuration of In × 16
× 32 × Out and only optimizing the two hidden layers using GIS, scarce train data,
which means using only 10 % of the data for the denoising and segmentation problems
and evaluating using tenfold cross-validation, multiple regressions, which means that a
single network is trained to regress multiple images in the two regression problems of
image synthesis and transformation, as well as shallow training, which means limiting
the maximum iterations of BP training. The authors also apply the same restrictions to
the tested CNN models at first, but later relax the constraints to assess whether CNNs
can achieve the same learning performance with a more complex configuration [1].

30

In the image denoising task, the models are trained to output the original images,
which are downsampled and converted to grayscale, from their counterparts with added
Gaussian white noise (GWN). The data used for this experiment consisted of 1500
images from the Pascal VOC database [38]. In the image synthesis task, the models
are trained to generate 8 target images from 8 source images consisting of Gaussian
white noise. The target images consisted of 80 randomly selected images from the
Pascal VOC dataset, 8 for each of the 10 folds. In the face segmentation task, the
models were trained to output the segmentation mask corresponding to the face from
facial images. The experiment was conducted on the 1000 images from the FDDB
face detection dataset [39], each containing one or more human faces. Finally, in the
image transformation task, the models are trained to convert four source images to
four corresponding target images. The data consisted of close-up face images, mostly
obtained from the FDDB face detection dataset. In the first fold, the authors attempt
to train the models to also perform the opposite transformation, i.e., convert the target
images to their corresponding source images [1].

The authors conclude that ONNs exhibit superior learning performance compared to
CNNs in all of the proposed problems. The difference in performance also increases as
the problem becomes more difficult. In image denoising, the average performance on
the train and test partitions as measured by SNR between the ground truth and output
images were 5.59 and 5.32 dB for the ONN model, and 4.1 and 3.96 dB for the CNN,
respectively. In the image synthesis task, which constitutes a more difficult problem,
the average SNR level was 9.91 dB for the ONN and 5.02 dB for the CNN, which
gives a difference of about 5 dB. In image transformation, which is considered the most
difficult of the problems, the average SNR level is 10.42 dB for the ONNs and -0.083
for the CNNs, producing a difference of more than 10 dB. The CNN with the default
configuration failed to produce the transformations in all 10 folds, which was also the
case when a CNN configuration with 4 times the complexity, called CNNx4, was used
even for a significantly simplified task of performing only one image transformation
as opposed to four [1].

For the face segmentation task, two distinct ONN models were tested in addition to
the CNN configuration. The two ONN models utilized the best and third best operator
sets as determined by GIS on the first fold and were referred to as ONN-1 and ONN-3,
respectively. The average performance as measured by F1 score between the ground
truth and predicted segmentation masks was 58.58 % for the CNN, 87.4 % for ONN-1
and 79.86 % for ONN-3 on the train partition and 56.74 % for the CNN, 47.96 % for
ONN-1 and 59.61 % for ONN-3 on the test partition [1].

3.5. Advantages and Limitations

As the experimental results collected by the authors which are summarized in the
previous section suggest, the proposed operational neuron model shows significant
advantages over the conventional CNNs with the most glaring difference appearing
in the image transformation task for which even a CNN with twice the number of
hidden neurons and about 4 times the number of parameters compared to the default
configuration failed to produce acceptable results despite the ONN model being able to
learn a solution. In fact, analysis of the two-pass GIS process revealed that there were

31

at least 16 other potential ONN operator set configurations that would outperform the
CNN. However, it is important to note that the experimental setup was intentionally
constructed in a way that highlights the advantages of ONNs, and the experiments were
also conducted with fairly small models and limited amount of data, serving as an early
proof of concept. The actual performance benefit of opting for an ONN approach as
opposed to CNNs, for example, ultimately depends on the specific problem at hand. It
is also worth noting that the training of ONNs also poses some challenges of its own
compared to CNNs. This section takes a closer look at the potential advantages and
limitations of ONNs in terms of performance and efficiency, comparing against CNNs
in particular.

In addition to performance, the measured efficiency of an ONN model against
a corresponding CNN depends on its computational complexity. In their original
publication, the authors of [1] present a detailed analysis of the computational
complexity of an ONN model against a corresponding CNN, evaluating the complexity
of both forward propagation (FP) as well as backpropagation. The authors assert that
the difference in computational complexity between an ONN and a corresponding
CNN depends entirely on the choice of the set of operators for each neuron or layer.
In the worst-case scenario that can result with the operators options chosen for the
experiments, i.e., choosing sinc, median and tanh as the operator set, the FP of an ONN
will be 8.68 slower compared to the corresponding CNN. However, in the example
experimental setups presented in their publication, the pool operator chosen by GIS
turned out to always be summation, which would bring the worst-case figure to 2.704
times. In practice, the authors observed a deterioration in FP speed by 1.4 to 1.9 times
for ONNs when comparing to an equivalent CNN. Through thorough analysis of the
BP algorithm for ONNs, the authors also assert that the increase in the computational
complexity of BP for ONNs compared to CNNs occurs due to the increased complexity
of computing the initial FP as the complexity of each BP phase is the same for both
network types. In practice, the authors observed the speed of BP iterations, with FP
included, to be between 1.5 and 4.7 times slower for ONNs compared to the speed of
a BP iteration in a corresponding CNN [1].

Based on the analysis presented above, the added nonlinearity of operational layers
comes at the cost of added computational complexity, which is to be expected.
However, based on the results achieved in the example experiments in [1], the resulting
increase in learning performance is also significant, which results in ONNs producing
a more efficient solution for the tested problems despite the increase in complexity
compared to CNNs. The difference in efficiency can be observed most clearly in the
image transformation task, in which the ONN significantly outperformed the CNNx4
model despite being more than twice as fast. In fact, as implementing deeper and
more complex CNNs have become more viable with advances in modern hardware,
most benefits of opting for an ONN approach instead would most likely come from the
added efficiency associated with achieving the desired performance with a shallower
architecture. However, it is also important to note that if the number of layers in
an ONN is increased to a point in which a CNN with the same configuration is also
sufficient for solving the specific training task at hand, the operator set of the ONN
can revert to the native operators of the CNN as determined by GIS during the training
process, which leads the ONN to also having the same computational complexity as the
corresponding CNN. As such, the operator sets which increase complexity should not

32

be chosen by GIS at least in principle unless they result in actual performance benefits
for fitting the train data.

A challenge associated with ONNs worth noting is that as an ONN generally has
higher capacity to fit its training data compared to an equivalent CNN, it is also
more susceptible to overfitting. This was also demonstrated by the results of the face
segmentation experiments presented in [1], which saw the ONN with the best operator
set as determined by GIS, ONN-1, have about 8 % lower average generalization
performance compared to its CNN counterpart on the test partition as measured by
the F1 score despite scoring 29 % higher on the train partition on average. On the
other hand, the ONN with the third best operator set, ONN-3, outperforms the CNN
on both the train and test partitions, but the authors acknowledge that it may also suffer
from overfitting due to exhibiting a significant gap in performance between the train
and test sets [1]. These results highlight the importance of ensuring that the train data
is sufficiently representative of the problem at hand when training an ONN model.
While susceptibility to overfit is a problem shared by all supervised models with high
capacity, the problem is magnified in the case of ONNs as unlike CNNs with a fixed
operator set, the train data is also used for determining the set of operators used in
the operational neurons. As such, in the worst case a set of operators which increases
computational complexity over the native operators of a CNN may be chosen for the
ONN by GIS during training, even if the choice were to lead the model to overfit. Such
a scenario is detrimental to the applicability of the model to outside data as well as
efficiency compared to a CNN alternative, as in such a case, the added complexity of
the nonlinear operations degrades generalization performance as opposed to improving
it. If the operator set is already determined based on the train data, it limits the
possibilities to address the problem with certain techniques to combat overfitting such
as early stopping because the best operators on the train data may not be the best in
general, and may cause the model to overfit while also unnecessarily introducing added
computational complexity. To address this problem, the authors suggest performing
GIS over a validation set instead as a means to combat overfitting [1]. The added
capacity of ONNs compared to CNNs should also be taken into account in designing
the architecture of the network, as shifting from convolutional to operational layers
implies that a smaller number of layers should suffice in general, and using a large
number of operational layers may lead the model to overfit.

While ONNs can exhibit superior performance compared to CNNs due to their
heterogeneous and nonlinear set of operators, finding the right operator set for ONNs
poses certain challenges. Choosing an operator set suitable for a given task is crucial
and a defining factor of ONN performance and efficiency. However, as implied
by its name, the greedy iterative search algorithm chosen by the authors of [1] for
choosing the set of operators does not provide an optimal solution as it cannot evaluate
all possible operator set assignments to the layers. How the operator set library is
formed is also a significant factor contributing to the efficiency of the achieved ONN
model. On the one hand, constructing a library with many possible operator sets can
provide more options to specifically tailor the operations to the task at hand. However,
increasing the number of possible operator sets also complicates the task of choosing
the best operator set, and some of the given options might even turn out to not be
worth considering due to their high complexity or only providing negligible increases
in performance compared to other alternatives. On the other hand, constructing an

33

operator set library with fewer options can simplify the process of determining which
of the operators are best suited for the given task but also limits the number of available
options and may not contain the best operator sets for a given problem. As the choice of
operator set is so crucial to the efficiency of ONNs, more research should be conducted
to determine which operator set libraries and search strategies can yield the best results
in practice.

3.6. Self-Organized Operational Neural Networks

Self-organized operational neural networks (Self-ONNs) have recently been proposed
in [2] as an extension to the operational neural network model in an attempt to
address certain limitations of the conventional ONNs proposed in [1]. Although
the superior learning performance of ONNs compared to CNNs was both theorized
and demonstrated in a few proof-of-concept experimental setups in [1], the ONN
model exhibits certain limitations which limit its applicability to real-world large
scale problems. The most significant limitation of conventional ONNs is the limited
heterogeneity resulting from the usage of a single operator set for every neuron in a
hidden layer, which leads each neuron to only use a single nodal operator for every
kernel connection to the neurons in the previous layer. Another major limitation of
ONNs is that the learning performance of an ONN model is heavily dependent on
which operators, especially nodal operators, are present in the predetermined operator
set library. This means that if a suitable operator set for the problem at hand is
missing from the library, the learning performance of the ONN model will deteriorate.
In addition, the GIS algorithm, which is applied for determining the operator sets
used with the ONN model, is computationally demanding and requires many runs of
backpropagation. The best operator sets as determined by GIS may also not be optimal
for the problem in question, which further may further limit learning performance
during training. Overall, applying the GIS algorithm significantly limits the scalability
of conventional ONNs to complex setups with large-scale data sets or deep network
architectures [2].

To address the limitations and drawbacks of conventional ONNs mentioned above,
the authors of [2] propose the self-organized ONNs with generative neurons. As
implied in the name, a Self-ONN can self-organize the operators of the network
during training. The proposed Self-ONNs leverage the so-called "generative neuron"
model, which eliminates the need for a predetermined operator set library as well
as any search process for finding the optimal nodal operator. While the neurons
in conventional CNNs and ONNs have static nodal operators, which can limit their
performance in fitting a certain set of train data, the newly proposed generative
neurons are able to create any arbitrary nodal function for each kernel element of
each connection, addressing the problem of utilizing only a single nodal operator for
all kernel connections in conventional ONNs. A generative neuron is a neuron with
a composite nodal operator in which each kernel element of each kernel connection
can have any arbitrary nodal function, Ψ, which does not necessarily have to be a
well-defined function such as linear, exponential or sinusoid. The nodal functions are
generated iteratively during the training process without restrictions in a manner that

34

maximizes the learning performance on the given set of train data by backpropagating
the error at the output layer through the operational layers of the Self-ONN.

3.6.1. Generative Neurons

Generative neurons, which are the main difference between Self-ONNs and
conventional ONNs, are neurons with a "composite nodal operator", which is created
iteratively during training with backpropagation without restrictions. To generate
a composite nodal operator capable of encompassing any arbitrary nodal functions
without requiring too many trainable parameters, the authors leverage the fact that any
function can be approximated using Taylor polynomials, which also have reasonable
computational complexity. The Taylor approximation of the function f(x) near the
point x = a can be expressed as

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · (3)

in which f ′ is the first, f ′′ is the second and f ′′′ is the third derivative of f(x). As such, the
composite nodal operator function can be formed by utilizing the Qth order truncated
Taylor approximation as follows:

Ψ(w,y) = w0 + w1(y − a) + w2(y − a)2 + · · ·+ wQ(y − a)Q (4)

where wq = f (q)(a)
q!

is the qth parameter of the Qth order polynomial. During the
training process, these parameters are optimized to form an approximation of the
nodal operator function which best fits the train data for each kernel element of each
connection to the previous layer neurons [2].

An issue with this approach of defining the nodal operator is that the presented
approximation is only valid near the point y = a, and the approximation becomes
coarser the farther the points are from a. However, the nodal operators operate over
the outputs of the neurons in the previous layer, which are in turn bounded by the
generative range of their respective activation functions. As such, if the activation
function is a sigmoid, for example, the outputs y are bound within the range of [0, 1],
and in this case, approximating the nodal operator functions for the middle point of the
range, a = 0.5, a polynomial with a high enough degree is capable of approximating
any arbitrary function within the range of the previous layer outputs. If the activation
function is chosen as the hyperbolic tangent (tanh), which is bound in the range of [-1,
1], the choice of a = 0 is made and the Qth order Taylor approximation in Equation 4
simplifies to the Maclaurin series as follows:

Ψ(w,y) = w0 + w1y + w2y
2 + · · ·+ wQy

Q (5)

In addition, the bias coefficient w0 can be omitted as each neuron already contains a
bias term, bli, which can compensate for any offset by a constant [2].

35

3.6.2. Forward Propagation and Backpropagation for Self-ONNs

The formula for the forward propagation (FP) in Self-ONNs is similar to
the one of conventional ONNs presented in Equation 2 but with two key
differences. Firstly, the nodal operator functions with a single kernel element,
Ψl+1

i

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
, is replaced with the approximation given by the

composite nodal operator Ψl+1
i

(
ylk(m+ r, n+ t),wl+1

ik (r, t)
)

as expressed by the Qth
order Taylor approximation in Equation 4 or the Maclaurin series in Equation 5 if the
tanh activation function is used. Secondly, the scalar kernel parameter, wl+1

ik (r, t), of
in ONN neurons becomes a Q-dimensional array, wl+1

ik (r, t), and the composite nodal
operator function as expressed in Equation 4 or 5 is used for all the neurons in the
network. As such, the individual nodal operators, Ψl+1

i , can be simplified to a unified
expression of a single composite nodal operator, Ψ. The composite nodal function for
the kernel element wl+1

ik (r, t) is presented in Equation 6 below [2].

Ψ
(
ylk(m+ r, n+ t),wl+1

ik (r, t)
)

= wl+1
ik (r, t, 1)ylk(m+ r, n+ t)

+ wl+1
ik (r, t, 2)ylk(m+ r, n+ t)2

+ · · ·
+ wl+1

ik (r, t,Q)ylk(m+ r, n+ t)Q

(6)

In Equation 6, the bias term wl+1
ik (r, t, 0) is omitted as per reasoning presented

previously. As a result, the kernel of a generative neuron becomes a 3-dimensional
matrix in which wl+1

ik (r, t, q) represents the qth weight of the kernel element (r, t) [2].
Backpropagation for Self-ONNs follows the same basic steps as backpropagation

for conventional CNN and ONN models as described in Section 3.2.1. The main
differences between the backpropagation algorithms of Self-ONNs and ONNs arise
from the presence of the composite nodal operator in the generative neurons of
Self-ONNs. The backpropagation process for ONNs presented in Algorithm 1 also
applies for Self-ONNs, with the main differences being in how the required values
are calculated at each step. All the steps of backpropagation for Self-ONNs and the
relevant equations are described in detail in [2].

3.6.3. Applications and Performance

To evaluate the performance of the proposed self-organized operational neural
networks, the authors of [2] compare Self-ONN models against CNN and ONN
alternatives in the same experimental setups as presented in [1], i.e., image synthesis,
denoising, face segmentation, and image transformation. The same constraints to the
training setup as described in [1] are also applied. The problems and constraints are
described in Section 3.4 of this thesis. To keep the comparison between Self-ONNs
and the other neural network models fair, the authors use a Self-ONN architecture
of In × 6 × 10 × Out with Q set to 7 in all layers. This results in the Self-ONN
model having approximately the same number of trainable parameters as the CNN and
ONN alternatives. It is also worth noting that as a result, the Self-ONN models also

36

have three times fewer hidden neurons than the CNNs or ONNs at 16 against 48. In
addition, the pool function used in the Self-ONN models was fixed to summation and
the activation function was fixed to hyperbolic tangent for simplicity. The Self-ONN
models were trained using stochastic gradient descent (SGD) without momentum and
with a fixed learning parameter, while an adaptive learning rate was used for training
the CNN and ONN models. To choose the Self-ONN model used for each problem,
three runs of BP were performed and the model achieving the minimum MSE loss was
chosen by the authors [2].

In the image denoising task, the Self-ONN models outperformed the tested CNN
and ONN models on both the train and test sets. The authors report the average
performance levels on the train and test partitions as measured by SNR between the
ground truth and output images as 5.67 dB and 5.61 dB for the CNN models, 5.68
dB and 5.46 dB for ONNs, and 7.05 dB and 6.15 dB for Self-ONNs, respectively. As
such, the Self-ONNs outperform the other models by more than 0.5 dB on the test
data. In the image synthesis task, however, the Self-ONNs outperform ONNs in only
two of the ten experimental folds. In this experimental setup, the average SNR level
was 5.02 dB for CNNs, 9.91 dB for ONNs and 8.73 dB for Self-ONNs. For the face
segmentation task, the conventional ONN model chosen for comparison was the ONN-
3 model which achieved the best performance for the task in the experiments of [1] as
described previously in Section 3.4. The average F1 scores for the face segmentation
task were 58.58 % for the CNN model, 79.86 % for ONN-3 and 96.6 % for the Self-
ONN on the train set, and the average F1 scores on the test set were 56.74 % for the
CNN, 59.61 % for ONN-3 and 62 % for the Self-ONN. For the image transformation
task, the average SNR levels were 0.5 dB for CNNs, 9.5 dB for ONNs and 10 dB for
Self-ONNs. The CNNx4 model and the best ONN model as described in [1] were used
in the comparison of the performance on the image transformation task [2].

3.6.4. Advantages and Limitations

The experimental results presented in [2] suggest that Self-ONN models are able
to produce better performance in various problems compared to CNN and ONN
alternatives with a similar number of trainable parameters. The Self-ONN models
seem to retain the desirable features of ONNs in that they significantly outperform
the tested CNN alternatives, particularly as the learning task becomes more complex,
while also addressing the inherent limitations of the ONN models as proposed in
[1]. This section discusses the advantages and limitations associated with Self-ONN
models in terms of performance and efficiency against CNN and ONN alternatives.

Although opting for a Self-ONN model resulted in improved results compared to
both CNN and ONN models in most cases in the experiments of [2], the authors also
note cases in which the conventional ONN model outperform the proposed Self-ONN
approach. The authors mention that in the image synthesis task, Self-ONNs outperform
ONNs in only two of the ten experimental folds, which also led the ONNs to achieve
a higher average SNR. Another example is the image transformation task, as although
the Self-ONN models outperform the ONNs in this task on average, they do so by only
a narrow margin of 0.5 dB and the ONN models are able to outperform Self-ONNs in
three of the ten transformations.

37

The authors list two reasons for the conventional ONNs outperforming the Self-
ONNs in these cases. The first reason is that the nodal operators chosen for the
conventional ONN models by GIS provide a near-optimal solution for the task at hand,
in which case the Qth order approximation utilized by Self-ONNs cannot reach as good
a level of performance. The second reason is the ONN models containing three times as
many neurons as the Self-ONN models to compensate for the fact that the generative
neurons utilized by Self-ONNs require Q times as many parameters as conventional
ONN neurons, which can potentially lead to deterioration in the performance of a
Self-ONN model compared to an ONN counterpart with a similar number of trainable
parameters. The authors also note that when using the same 1 × 16 × 32 × 1
configuration as the ONN models, the Self-ONNs manage an average SNR level of
10.27 dB in the image synthesis task, surpassing the SNR achieved by ONNs by over
3.5 dB [2].

Although the conventional ONNs were able to outperform the Self-ONN approach
in a few instances, the authors of [2] assert that opting for Self-ONNs can still generally
be expected to lead to better performance compared to ONNs, as demonstrated by the
results of the majority of their experiments. While nearly optimal nodal operators
could be determined for the ONN models in some of the experimental scenarios, it is
generally not reasonable to assume a near-optimal operator set to be available within
the fixed operator set library used with conventional ONNs. In such a case, the nodal
operators of generative neurons which are tailored specifically to the learning task at
hand during backpropagation can lead to significantly improved learning performance.
In addition, despite a near-optimal operator set being present in the operator set library,
the best operators for a given task may not always be correctly assigned by GIS due
to its suboptimal nature. It also worth noting that opting for a Self-ONN approach
also allows for constructing deeper architectures which would be computationally
infeasible for ONNs due to the computational complexity of determining the operators
using GIS, which makes them applicable to a wider range of more complex learning
problems on larger amounts of data compared to ONNs [2].

In addition to the performance levels they achieve, the usefulness of Self-ONNs in
practical applications also depends on the computational resources required for their
implementation. Although the results listed in [2] indicate that Self-ONN models
can generally achieve superior performance compared to CNN and ONN models
with a similar number of parameters, to determine whether they lead to a more
efficient solution compared to their CNN or ONN counterparts, their computational
complexity must be also be calculated and compared against these alternatives. In
their publication, the authors of [2] evaluate the computational complexity of the FP
and BP operations of their proposed Self-ONN models and draw comparisons against
parameter-equivalent CNN and ONN models. They state that when the pool operator

38

is fixed as the sum operation, i.e., P l
i = Σ, as assumed in their study, the FP operation

of a Self-ONN as based on Equation 2 can be expressed as

xl
k = blk +

Nl−1∑
i=1

oper2D
(
wl

ki, y
l−1
i , ’NoZeroPad’

)
xl
k(m,n)

∣∣(M−1,N−1)

(0,0)
= blk

+

Nl−1∑
i=1

(
Kx−1∑
r=0

Ky−1∑
t=0

Ψ
(
wl

ki(r, t), y
l−1
i (m+ r, n+ t)

))
(7)

in which Ψ is the composite nodal operator and wl
ki(r, t) is the Q-dimensional array

associated with kernel element (r, t). By placing the qth order 2D kernel wl
ki⟨q⟩(q =

1..Q) composed of the kernel elements wl+1
ik (r, t, q) in Equation 7, the equation can be

simplified as follows:

xl
k = blk +

Q∑
q=1

{
Nl−1∑
i=1

conv2D
(
wl

ki⟨q⟩,
(
yl−1
i

)q
, ’NoZeroPad’

)}
. (8)

The authors note that once the powers-outputs,
(
yl−1
i

)q
, have been computed for

q = 1..Q for each hidden neuron in the network, Equation 8 becomes only (Q×Nl−1)
independent 2D convolution operations, which are parallelizable and as such, take
the same time for a single convolution when parallelized. The authors conclude that
in a parallelized implementation, the FP operation of a Self-ONN has approximately
the same computational complexity as the FP of a CNN with the same number of
parameters. In addition, the authors calculate the total number of multiply-accumulate
operations (MACs) for the CNN and Self-ONN models used in their experiments. The
number of trainable parameters was 39749 thousand for the CNN and 32481 thousand
for the Self-ONN, and the corresponding total MACs were 78246 and 79923 million,
respectively. Based on the backpropagation formulae for Self-ONNs derived, the
authors also conclude that the BP operations for Self-ONN also have approximately
the same computational complexity as BP for a CNN with the same configuration in a
parallelized implementation [2].

A challenge associated with opting for a Self-ONN model instead of a parameter-
equivalent CNN is the increased susceptibility to overfit the training data due to the
increase in learning capacity. As mentioned previously, this problem was already
observed with ONNs in the experiments of [1] in the face segmentation task, in which
the model that performed the best on the train data, ONN-1, did not achieve the
best performance on the test set. The authors of [2] note that the Self-ONN model
trained for the same face segmentation task also exhibits significant overfitting. This
is apparent from the fact that it achieves a significantly higher F1 score compared
to the CNN and ONN alternatives on the train data, while the margin by which it
outperforms the two other models is rather small on the test data. In addition, the
authors note that the Self-ONN achieves its lowest MSE loss of 0.324 on the test set at
epoch 21 of training, after which the loss on the test set gradually increases, which is a
clear indication of overfitting. However, the authors note that the overfitting problem
can easily be addressed by employing early stopping based on the loss achieved on
a separate validation set, which is established practice in machine learning research

39

[2]. Although the overfitting problems that may arise when using Self-ONN models
can largely be addressed with the same approaches as those already in use with other
supervised machine learning approaches, it is worth noting that Self-ONN models
generally possess more learning capacity compared to not only a CNN architecture
with the same number of neurons, but even a CNN architecture with the same number
of trainable parameters, which should be taken into account when attempting to design
a Self-ONN architecture of appropriate computational complexity to a given problem.

40

4. IMPLEMENTATION

This chapter describes a novel framework for remote PPG extraction from facial
videos utilizing self-organized operational neural networks. In order to gain insight
to how the depth of a Self-ONN model affects its performance in the proposed
experimental settings, three Self-ONN architectures with varying number of neural
layers are proposed and evaluated. To draw a comparison between the proposed
Self-ONN models and conventional CNN-based approaches, three CNN models with
the corresponding number of layers are also implemented and tested under the same
experimental settings. A state of the art convolutional neural network proposed in [3]
was chosen as the basis for the neural network architectures described in this chapter.

4.1. Materials

The experiments described in this thesis were conducted using three data sets of facial
videos: OBF, COHFACE and the publicly available portion of the LGI-PPGI-Face-
Video-Database. Samples from the OBF data set, which were recorded under strictly
controlled conditions, were used for training and validating the neural network models.
A subset of the OBF data set was also used as test data in evaluating the models. The
samples from COHFACE and LGI-PPGI were used as test data in a cross-database
evaluation setting to evaluate the performance of the models on unseen data that
represents a variety of realistic real world scenarios and as such pose more challenges
for an rPPG extraction framework.

4.1.1. Preprocessing

All videos used in the the experiments were preprocessed to only contain the face
before being input to the neural network models. For detecting the face in the videos,
a Single Shot Multibox Detection network [40] implemented in the OpenCV library
and pretrained for face detection was used. This face detection method was chosen to
maintain better comparability with the results of Álvarez Casado and Bordallo López,
2022, who employed the same face detection method in their proposed improved
unsupervised rPPG pipelines [4].

As the face detection given by the model could be a rectangle with any given aspect
ratio, the face was instead defined as a square with its center at the center of the
original face detection and a side equal to the larger of the dimensions of the original
face detection for the use with the neural network models. This step was performed
because all inputs of the neural network models must have the same resolution, and this
approach avoids the warping of the face which occurs when stretching a rectangular
face detection to a square shape. After defining the square region containing the face,
the cropped face detection was resized to a size of 128 by 128 pixels using nearest-
neighbor interpolation.

For the videos in the OBF data set, face detection was only performed on the first
frame as the coordinates of the face were assumed to remain approximately constant
throughout the video, due to the subjects having been instructed to remain as still as

41

possible during recording. When preprocessing the videos from COHFACE and LGI-
PPGI, face detection was performed on every frame as the face of the subject moves
over time throughout the recording session.

For the purpose of training the neural network models, the ground truth blood
volume pulse (BVP) labels in the OBF data set were resampled to the corresponding
video sampling rate of 60 Hz. The sampling rate, or FPS (frames per second), of
any of the videos was not changed during preprocessing. After preprocessing the
videos by extracting the face from each frame, the resulting processed videos and BVP
labels were saved to disk in the h5 format for efficient loading during the training and
evaluation of the network models.

4.2. Methods

This section describes an end-to-end approach for rPPG extraction from facial videos
with self-organized operational neural network models utilizing three-dimensional
operational layers. To gain more perspective into the benefits and potential limitations
of utilizing Self-ONNs for the task of rPPG extraction, three Self-ONN architectures
with varying number of layers are proposed. In addition, to comprehensively evaluate
the performance of the Self-ONN models against comparable CNN architectures,
three CNN models with the corresponding numbers of layers are also trained and
evaluated in the same experimental settings. The models are based on the architecture
of the "PhysNet-3DCNN-ED" model proposed in [3], employing an encoder-decoder
structure. From this chapter onward, the term "operational layer" refers to Self-ONN
layers with generative neurons unless otherwise specified.

All the neural networks described in this chapter were implemented using the Python
language and the PyTorch library [41]. The implementation of the self-organized
operational neural network models was based on the PyTorch-based FastONN library,
which provides efficient graphics processing unit (GPU) enabled implementations for
ONN and Self-ONN models in Python [42]. However, while the FastONN library
contains implementations for 1-dimensional and 2-dimensional Self-ONN layers, as
of writing it lacks an implementation for the 3-dimensional Self-ONN layers required
for the purposes of this thesis. As such, the 3-dimensional Self-ONN layers used in
implementing the 3D-SelfONN models proposed in this thesis were implemented by
the author based on the 1D and 2D Self-ONN layer implementations of FastONN by
replacing the 1D or 2D operations used in the library with their corresponding 3D
equivalents found in PyTorch. Another point worth mentioning about the used Self-
ONN layers is that they assume their input values to be within the range of [-1, 1],
which means that the Self-ONN models must utilize sigmoid or hyperbolic tangent
activation functions instead of more currently prevalent activation functions such as
the rectified linear unit (ReLU) or exponential linear unit (ELU) functions.

The implemented Self-ONN and CNN models are similar to the ones used in [3]
and [11], utilizing 3D convolutional or operational layers to operate on the three-
dimensional volumes formed by the frames of the videos. The models mostly consist of
3x3x3 layers, each followed by batch normalization and an activation function except
for the final layer. In addition, average pooling layers are employed to decrease the
size of the inputs in the spatiotemporal domain. The architectures also contain a

42

temporal encoder-decoder structure which was proposed in [3] and found to improve
rPPG extraction performance by the authors.

To evaluate how the number of layers affects the performance of Self-ONN models
in the proposed experimental settings, three Self-ONN models with varying depth were
implemented: a baseline "deep" model, and two shallower ones. To evaluate how the
same variations in depth affect CNNs, three CNN models with corresponding numbers
of layers were also implemented for comparison. The nonlinearity parameter Q was
set to 3 for every operational layer in the implemented Self-ONN models, which also
results in the layers of the Self-ONNs having three times as many trainable parameters
as a CNN layer with the same number of neurons would have [43]. To make the
Self-ONN models as comparable as possible to their CNN counterparts, the number of
neurons in each operational layer of the Self-ONN models was adjusted so that each
Self-ONN model has approximately as many trainable parameters as its corresponding
CNN alternative as suggested in [2] and [43]. Otherwise, the corresponding Self-
ONN and CNN architectures were made as similar as possible with the only other
differences being that the Self-ONN models utilize 3D operational layers as opposed
to 3D convolutional layers.

The neural network architecture used in [3] and [11] was chosen as the baseline
for the neural networks implemented for the purposes of this thesis. The two other
architectures were formed from this "deep" architecture by removing a number of
the neural layers with a kernel of size 3x3x3 as well as the batch normalization and
activation functions following them, resulting in shallower architectures with reduced
computational complexity. In the shallowest architecture, one of the deconvolution
layers in the decoder section was also removed. An important point to note is that
the shallower networks retain all the spatiotemporal dimension reducing operations of
the deeper models. As such, the encoder-decoder structures in the shallower models
attempt to reduce the dimensionality of their inputs by as much as the deeper models
do but with fewer neural layers. For the rest of the thesis, the three proposed Self-
ONN models will be referred to as SelfONN-deep, SelfONN-reduced and SelfONN-
shallow, and the CNN models will be referred to as CNN-deep, CNN-reduced and
CNN-shallow, respectively, in decreasing order by number of layers.

All activations in both the Self-ONN and CNN models utilize the hyperbolic tangent
function as suggested in [2]. Although [3] and [11] utilized the ReLU activation
function in their implementation, the activation function was kept the same between
the two types of neural models in the experiments of this thesis to make the models
as comparable as possible. When other aspects of the model architectures are fixed,
the results can provide more insight into the specific effects of the tradeoff between
the number of neural units and the nonlinearity enabled by the generative neurons of
Self-ONNs on the performance of the model.

Figure 6 illustrates the architectures of all the implemented neural networks in detail,
with every operation performed by the models represented by a box shape. In the boxes
representing convolutional or operational layers in the diagram, the numbers on the top
indicate the kernel size of the layer and number at the bottom is the number of output
channels for the layer. The first of the numbers on the bottom represents the number
of output channels in the case of a CNN model and the latter indicates the number
of output channels in the corresponding Self-ONN model. Each convolutional or

43

Figure 6. A diagram illustrating the implemented neural network architectures.

operational layer is also followed by a batch normalization operation and an activation
function, which are omitted from the diagram for simplicity.

As demonstrated in Figure 6, all the implemented models are based on the same
pipeline of functional parts. The variations in the depth of the proposed architectures
are achieved only by adjusting the number of operational or convolutional layers
included in the encoder section of the models, except in the case of SelfONN-shallow
and CNN-shallow, in which one of the deconvolution layers in the decoder section is
also omitted. All the networks accept an input of shape 3xTx128x128, where the
temporal dimension T was fixed as 256 during training and the experiments. For
every model, the first operation is performed on the input by a 1x1x5 convolutional
or operational layer, followed by an encoder section which decreases the spatial
and temporal dimension of the input. The reduction of dimensionality is achieved
using four average pooling operations, of which the first and last only downsample
the spatial dimensions and the second and third downsample both the spatial and
temporal dimensions. The encoder is followed by a decoder section which increases
the temporal dimension back to the original length. After the decoder section, a spatial
global average pooling operation is performed to reduce the spatial dimension to 1x1.
Finally, a 1x1x1 convolutional layer decreases the number of channels from 64 or 37
to 1, producing the desired 1-dimensional output rPPG signal with a length of T. The
final output layer was kept as a convolutional layer even for the Self-ONN models,
while all other neural layers in the Self-ONN models were operational layers.

44

5. EXPERIMENTAL SETUP

This chapter describes the experimental setup used for evaluating the performance of
the proposed neural network approaches for rPPG extraction described in Chapter
4. To draw comparisons between the proposed Self-ONN-based rPPG method and
existing alternatives proposed in literature, the three Self-ONN models were compared
against the CNN models described in Chapter 4 as well as an unsupervised rPPG
extraction pipeline described in [4]. The performance of each rPPG approach is
evaluated based on HR estimation accuracy as opposed to estimating the more
challenging HRV features.

The experiments were conducted using three suitable data sets: the OBF database,
the COHFACE data set and the publicly available portion of the LGI-PPGI-Face-
Video-Database. The videos from the OBF database were split into subject-
independent train, validation and test sets. The train set was used for training the
neural network models, the validation set was used for validation and model selection,
and the test set was used to evaluate the performance of the models on unseen data.
20 of the 100 subjects were chosen randomly for the validation set and another 20
for the test set, and the videos recorded of the remaining 60 formed the train set. As
two videos were recorded of each subject, the train set came to contain a total of 120
videos, and the validation and test sets contained 40 videos each.

In addition to evaluating the performance of the models on the test set consisting
of OBF samples, the proposed neural networks are also evaluated on two outside
data sets which were not used in training, COHFACE and LGI-PPGI, resulting in
a kind of cross-dataset experimental setup. The videos contained in the COHFACE
and LGI-PPGI data sets represent more challenging scenarios for an rPPG framework
compared to the videos from the OBF database used in training the models. As such,
the performance of the proposed models on these data sets provides insight to whether
the models are capable of learning a means of representing remote PPG signals that is
generally applicable to more realistic settings despite having been trained on samples
recorded under constrained conditions.

Figure 7 illustrates the process of training, validating and evaluating the neural
network models. First, the data in the OBF database is split into the dedicated train,
validation and test sets. The videos and corresponding PPG labels in the train set are
then used to iteratively update the weights of the neural network model based on the
loss function. After 20 epochs of training, the weights of the epoch that achieves the
lowest average loss on the validation set are selected for use during evaluation. Finally,
the performance of the model is evaluated separately on the previously reserved test
data from OBF, the COHFACE data set, and the LGI-PPGI-Face-Video-Database. The
evaluation process consists of calculating the output rPPG signals from the input videos
using the selected model and calculating HR estimates from them. Ground truth HRs
are calculated from the PPG signals associated with the videos, and an evaluation
metric is calculated between the HR estimate resulting from the rPPG signal and the
ground truth HR value. The performance of the model can then be assessed based
on the value of the calculated metric. Each of the phases presented in the figure is
described in detail later in this chapter.

45

Figure 7. A figure illustrating the process of training, model selection and evaluation
of the neural network models as well as the data used in each of these phases.

5.1. Training the Neural Network Models

5.1.1. Data

The train set described above, consisting of preprocessed samples from the OBF data
set, was used for training the implemented neural networks. The resampled ground
truth PPG signal was used as the label, which the models attempt to estimate based on
their inputs. The same sets of data were used in training and validating all six of the
implemented neural network models.

5.1.2. Loss Function

The function chosen to measure the loss between the estimates given by the models and
the ground truth labels was chosen as negative maximum cross-correlation (NMCC).
As the name implies, this loss function is calculated by first forming the cross-
correlation between the two signals and taking the additive inverse of the maximum
value of the resulting series. The cross-correlation between two 1-dimensional vectors
x and y can be defined as follows:

z[k] = (x ∗ y)(k −N + 1) =
Nx−1∑
l=0

xly
∗
l−k+N−1

for k = 0, 1, ..., Nx +Ny − 2

(9)

46

where Nx and Ny denote the number of elements in x and y, respectively, N =
max(Nx, Ny), and ym = 0 when m is outside the range of y [44]. Based on the
above, NMCC can be defined as

NMCC = −max(z[k]) (10)

This loss function was chosen over the negative Pearson’s correlation (NPC) loss
function suggested in [3] primarily due to its robustness against slight phase shifts
between the ground truth PPG signals and the corresponding latent blood volume
pulse information present in the facial videos. In initial tests, a set of neural network
models was also trained using NPC loss. In these experiments, although the train
loss of the models did converge, the NPC loss on the validation data did not decrease
with continued training, which suggests that the neural networks were unable to
learn a useful representation of the BVP signals. Figure 8 demonstrates this by
showing the average train and validation NPC losses achieved by the CNN-deep model
over 15 epochs of training during these initial experiments. The issue was resolved
when opting to use the NMCC loss function instead. The problem caused by phase
shifts could also have been overcome by synchronizing the facial videos with the
corresponding ground truth PPG signals based on cross-correlation. However, the
NMCC loss was adopted instead due to its versatility and to avoid this additional
preprocessing step.

Figure 8. Average train and validation loss for the CNN-deep model during initial tests
in which NPC was used as the loss function.

In order to maximize the information relevant to heart rate estimation in the
estimated PPG signals, only the cross-correlation of the frequency components
corresponding to realistic heart rates was considered when calculating the loss. The
range of relevant frequencies was set as [40, 250] beats per minute (BPM) or [0.67,
4.17] Hz. This was achieved by calculating the cross-correlation efficiently in the
frequency domain by taking the Fourier transfer of the estimated and ground truth
PPG signals, multiplying the Fourier transfer of the predicted signal with the complex
conjugate of the Fourier transfer of the ground truth signal and setting the frequency
components outside the desired range to zero in the resulting frequency domain
cross-correlation. Finally, the desired time domain cross-correlation was achieved by
calculating the inverse Fourier transfer of the result. The final loss function value is the
additive inverse of the maximum value of the resulting cross-correlation. The resulting

47

value was also adjusted for the ratio of energy between the relevant and non-relevant
frequency regions.

5.1.3. Train Setup

All the models were trained on a consumer graphics processing unit (GPU) with 8
GB of dedicated video random access memory (VRAM), the Nvidia GeForce RTX
3070, by utilizing the CUDA computing capabilities of the PyTorch library. Each of
the implemented neural network models was trained on the same data for a total of 20
epochs. An AdamW optimizer, a variant of the Adam optimizer with weight decay,
was used to speed up the training process [45]. The learning rate of the optimizer was
set to 10−4. A batch size of 1 was utilized when training all the models. Each training
sample and the corresponding ground truth label were also normalized before before
each iteration of backpropagation.

In order to train the model with backpropagation using a GPU, the batch of samples
used to perform one iteration of backpropagation must fit in the dedicated VRAM of
the GPU along with the weights of the trained model. Due to this memory constraint,
the model could not be trained using the full 5 minute facial videos from the OBF
data set. Instead, the models were trained using segments with a length of 256 frames
which were extracted from the videos in the train data at random locations. For each
epoch of training, 70 iterations of backpropagation were performed using such random
samples from each video in the train set. The number of iterations was calculated as
the length of the video divided by the length of the random segments, rounded to the
nearest integer. This was to ensure that during each epoch, the models are trained using
approximately 5 minutes of video material from each video in the train data, as they
would be if training on the entire videos at once.

5.1.4. Training Results

Figure 9 presents the average train and validation NMCC loss achieved by the models
after each epoch of training. It is important to note that the train losses presented in
Figure 9 are the averages of the train losses calculated during training process itself.
In other words, the train loss figure presents the average of the losses calculated on
the randomly selected segments after each iteration of backpropagation during a given
epoch. As such, the plot does not illustrate the performance of the models on the entire
train set after each epoch, and the train data used for calculating the results differs
slightly between models due to the random selection of video segments for training.
In the case of the plot on the right, the NMCC loss was calculated on the entire videos
from the validation set after each full epoch of training, and the averages of these values
were plotted over the epoch numbers. The numbering of epochs in the plots starts from
0, which represents the state of the models after one full epoch of training, and ends at
19, which in turn is the value after the full 20 epochs.

As seen in the plots on the left in Figure 9, all the models were able to converge
during training. The NMCC losses on the train data for the deepest models, SelfONN-
deep and CNN-deep, were -0.962 and -0.957 during the final epoch, respectively.

48

Figure 9. Average train and validation loss after each epoch of training.

SelfONN-reduced and CNN-reduced achieved train losses of -0.944 and -0.939,
respectively. The train losses achieved by SelfONN-shallow and CNN-shallow were
significantly lower than those of the other models at -0.867 and -0.857, respectively,
after the full 20 epochs of training. As such, every Self-ONN model was able to achieve
a lower train loss compared to its corresponding CNN counterpart, which indicates a
better fit of the train data based on the target function.

Using a separate set of data for validating the neural network models has two main
purposes: ensuring that the models learn to generalize to unseen data during training
as well as choosing the best weights achieved during training based on validation loss.
The validation loss plots on the right side of Figure 9 indicate a clear downward trend
in the NMCC loss on the validation data for each model when training for longer,
which implies that the models do not overfit the train data and are able to generalize
to the unseen data from the validation set. In each validation loss plot, the epoch that
achieves the lowest NMCC loss on the validation set is highlighted in bold along with

49

the corresponding validation loss value. For each model, the weights of the epoch that
achieved the lowest validation loss were used when conducting further experiments.

The lowest validation loss of all the models is achieved by the SelfONN-deep model
during epoch 18 at -0.946. The second best validation loss is achieved by CNN-deep
on epoch 15 at -0.923. Both SelfONN-reduced and CNN-reduced achieved an NMCC
loss of -0.917 on the validation set at best during epochs 16 and 13, respectively. The
best validation losses achieved by the shallow models were -0.838 on epoch 15 for
SelfONN-shallow and -0.854 on epoch 16 for CNN-shallow. As such, while the train
loss values indicated that the Self-ONN models always achieved a better fit of the
train data compared to their CNN counterparts, only SelfONN-deep achieves a better
validation loss compared to its CNN counterpart, with the validation loss achieved by
SelfONN-reduced and CNN-reduced being the same, and CNN-shallow outperforming
SelfONN-shallow on the validation set.

The minimum validation losses achieved by the models and the corresponding
epochs are also listed in Table 1 along with the number of trainable parameters in each
model and the train losses achieved after the full 20 epochs of training. Together, these
values provide insight into the capacity of each model to fit, and potentially overfit, the
train data with which it is presented.

Table 1. The train and validation losses achieved by the neural network models along
with the number of trainable parameters and epoch achieving the lowest validation
loss.

Model Trainable Train Validation Val loss
parameters loss loss epoch

SelfONN-deep 860063 -0.962 -0.946 18

CNN-deep 858497 -0.957 -0.923 15

SelfONN-reduced 305063 -0.944 -0.917 16

CNN-reduced 304577 -0.939 -0.917 13

SelfONN-shallow 70631 -0.867 -0.838 15

CNN-shallow 70529 -0.857 -0.854 16

5.2. Extracting Remote PPG Signals from the Test Data

The first step in evaluating the performance of the frameworks was extracting the
remote PPG signals from all the facial videos in the COHFACE and LGI-PPGI data
sets and the OBF test data using the neural network models described in Chapter 4
and the Face2PPG unsupervised rPPG extraction pipeline. For all the neural network
models, the weights during the epoch that achieved the lowest NMCC loss on the
validation set were used when conducting further experiments. The samples in the test
data were preprocessed as described in Section 4.1.1.

The inference of rPPG signals from the videos in the test set using the neural
networks was performed on a GPU, much like during training and validation. However,
as explained in Section 5.1.3, the rPPG signals cannot be inferred from the entire facial

50

videos at once when computing the results on the GPU used in these experiments due
to limitations in VRAM capacity, which is also true in the case of the test data. To
facilitate the extraction of rPPG signals from the whole facial videos on a GPU, the
preprocessed videos from the test data were input to the model in segments of 256
frames at a time, and the results were concatenated to form the final inferred rPPG
signal of the entire video.

However, as the number of frames in the videos is not divisible by the chosen
segment length of 256 in general, it was also necessary to take into account how to
handle the remainder of frames that could not form another segment with the desired
length. In the implementation used in these experiments, the number of segments in
a video was in most cases set to the floor division of the video length in frames by
the segment length of 256. The remainder of frames were considered as part of the
last segment, resulting in the final segment of frames being longer than the others.
However, in this approach, the length of the final segment may theoretically be as long
as 2T − 1 = 2× 256− 1 = 511 where T is the length of the video segment in frames.
This means that the final sample could exhaust the limited VRAM of the GPU, which
was also observed during preliminary experiments. To overcome this problem, the
number of segments that are extracted from the video was adjusted so that the length
of the final segment would not exceed T+T/2 = 384. If the length of the final segment
were to exceed this number of frames with the approach above, the number of segments
extracted from the video was instead increased by one, so that the remainder forms its
own segment instead of being considered part of the previous segment. The reason
why the remainder is not always treated as a segment of its own is because the input
of the neural network must be sufficiently long in the time domain due to the temporal
dimension reducing operations performed by the models.

To draw a comparison of the proposed supervised rPPG extraction frameworks to
an unsupervised method, rPPG signals were also extracted from the test data using the
Face2PPG rPPG extraction framework proposed in [4]. Of the multiple unsupervised
remote PPG extraction pipelines proposed by the authors, the "improved" pipeline
utilizing the POS rPPG extraction method [25] was chosen as an example of an
unsupervised method in this thesis. All experimental results reportedly achieved
using Face2PPG in this thesis utilize this particular pipeline. The Face2PPG pipeline
implementation used in this thesis was provided by the authors of the publication in
the form of a Python repository.

After the initial extraction of rPPG signals from the videos in the test data, the
resulting signals were postprocessed to exclude frequency components irrelevant to
heart activity in order to make it easier to extract the desired heart rate features from
them. In the case of the neural network models, the postprocessing of the output
signals only consisted of filtering using a bandpass FIR (finite impulse response)
filter with cutoff points at 0.75 and 4 Hz, corresponding to 45 and 240 BPM.
The filter was designed using a Hamming window with a variable length that was
determined as 2Fs−1 for each signal, where Fs denotes the sampling frequency of the
signal in question. The used Face2PPG implementation already incorporated similar
postprocessing steps as part of the pipeline, which was applied to the videos as-is
with no additional postprocessing steps taken. The PPG signals used for calculating
the ground truth heart rates were also filtered using a bandpass filter similarly to the

51

signals extracted using the neural network models in order to counter the effects of
possible noise present in the recorded signals.

5.3. Extracting Heart Rates

After postprocessing, the resulting signals were divided into 10 second windows for
which the average heart rate was calculated. The windows were extracted at intervals
of 1 second, resulting in 9 seconds of overlap between consecutive windows. The same
process of heart rate extraction was applied to all the signals in the test set, extracted
rPPG signals and ground truth BVP signals alike, resulting in two vectors of heart
rates for each video in the test set: a vector of estimated HRs calculated from the rPPG
signal and a vector of ground truth HRs calculated from the BVP label.

To calculate the heart rate for the windows extracted from the signals, two different
heart rate estimation methods were employed and evaluated: one based on peak
detection and one based on spectral analysis. The results for both methods are
presented because depending on the method used to achieve the rPPG signal, one
method may produce significantly better results than the other approach, which, on
the other hand, may not be suitable for the given signal at all.

The peak detection based heart rate calculation method utilized the function
ppg_process from the ppg module of the neurokit2 physiological signal processing
library for Python [46]. This function is specifically designed to detect peaks in PPG
signals, applying a number of preprocessing steps to enhance the input signal before
peak detection. The function also outputs an envelope of heart rate values for the input
signal, but this output was not utilized in the experiments of this thesis. Instead, only
the peak detections given by the function were used, and the heart rate was defined
as the reciprocal of the average interval between consecutive peak detections for each
window. This method was also used for calculating all ground truth heart rate values
because it was found to perform well in detecting the systolic peaks in the PPG signals
recorded from the finger, as this is the type of signal it was originally designed for.

The peak detection function from the neurokit2 library was chosen because it
was found to be fairly robust to the particularly challenging nature of remotely
extracted PPG signals, producing sensible results without additional modifications to
the implementation. Other similar solutions were also tested, such as those found
in the heartpy [47] and systole [48] libraries, but the results achieved using the
implementations from these libraries were found to be unsatisfactory when calculating
heart rates for rPPG signals as they produced NaN (not a number) values as opposed
to valid heart rates for certain signal windows, for example.

The other method that was used for calculating heart rates for each window from
all rPPG signals was the implementation of Welch’s method provided by the authors
of [4] which they used to achieve their results. This method was evaluated to
maintain comparability with the results of their publication, but also because peak
detection performs relatively poorly on the signals produced by the unsupervised
Face2PPG pipeline, which means that exclusively using peak detection for heart rate
calculation would underestimate the potential performance of this rPPG extraction
method. However, it is worth noting that unlike methods based on peak detection,
approaches based on spectral analysis such as Welch’s method cannot be used for

52

calculating the more challenging HRV features which require information of peak
locations.

Due to certain characteristics of the ground truth PPG signals provided with the
OBF data set, which was also used in training the neural network models, the
implementation of the Welch’s method was modified slightly when calculating HRs
from the rPPG signals extracted using the neural network models. The implementation
was modified so that instead of simply returning the maximum value of the power
spectral density (PSD) curve as given by the Welch algorithm, peak detection was
performed on the PSD, and in the presence of more than one peak, the two peaks with
the most power were compared. If the peak at the higher frequency was found to be the
second harmonic of the first, i.e., approximately double the frequency, within a margin
of 10 BPM, then the lower of the peak frequencies was chosen for the HR output. In
the presence of only one peak, the frequency associated with the peak was chosen as
is, and if for some reason no peak could be detected in the PSD by the peak detection
function used, the frequency associated with the maximum power was chosen as the
HR. This additional step was performed in an attempt to prevent the function from
outputting the second harmonic of the heart rate instead of the desired HR value and
was found to improve the test performance of the neural network models. However,
the implemented workaround was not perfect and some problems still occurred with
the used Welch’s method implementation particularly when calculating HRs from the
rPPG signals extracted using the neural networks. When calculating HRs from signals
extracted using the Face2PPG pipeline, the original unmodified implementation of the
algorithm as provided by the authors was used, as the described modification was not
found to improve the performance of the Face2PPG pipeline. The reasoning behind the
modification and the problems associated with the Welch’s method implementation are
discussed in more detail in Section 7.2 of the next chapter.

5.4. Evaluation Criteria

The performance of each rPPG extraction method was evaluated by comparing the
average window HR values calculated from the rPPG signals they produced against
the HRs calculated from the corresponding ground truth PPG signals. Three metrics
which are commonly applied in similar evaluation settings were used in evaluating the
tested models: mean average error (MAE), root mean square error (RMSE), which is
defined as the square root of the mean square error (MSE), and Pearson’s correlation
coefficient (PCC). The equations for MAE, MSE and PCC are presented below.

MAE =
1

N

N∑
i=1

|yi − ŷi| (11)

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (12)

53

PCC =

∑
(y −my) (ŷ −mŷ)√∑

(y −my)
2∑ (ŷ −mŷ)

2
(13)

In Equations 11 and 12, N is the number of elements in the HR vectors, i.e., the number
of windows for which HR was calculated, ŷi denotes the predicted HR value for a given
window, calculated from the rPPG signal, and yi denotes the corresponding ground
truth HR value. In Equation 13, ŷ denotes the vector of predicted HR values from a
video, y is the corresponding vector of ground truth HRs, mŷ is the mean of the vector
ŷ and my is the mean of the vector y.

For each video in the test set, MAE, MSE and PCC were calculated between the
predicted HR vector resulting from the rPPG signal and the ground truth HR vector
calculated from the BVP label. The mean values of these metrics were calculated
for each data set, and the resulting average performance metric values are reported in
Chapter 6 with the exception of MSE whose square root, RMSE, is reported instead.
For MAE, the standard deviation (SD) is reported in addition to the mean.

54

6. RESULTS AND ANALYSIS

This chapter presents the performance of all the tested rPPG extraction methods on
the three sets of test data based on the evaluation metrics described in Section 5.4.
In addition to listing the performance of each method, the underlying reasons and
significance of the experimental results are discussed, providing an analysis of which
methods perform best on the different types of test data and which factors contribute
to the performance of the methods. The results on each set of test data are analysed
individually, discussing which methods achieve the best results on the particular type
of data represented by the set in question and why each method performs well —
or poorly — on the particular type of data. Close attention is given to the newly
proposed Self-ONN models, which are directly compared against the other tested
methods with particular attention given to the corresponding CNN models as the most
directly comparable alternatives.

The performance metrics for each method on the OBF test data are listed in Table 2,
the results on the COHFACE data set in Table 4 and the results on LGI-PPGI in Table
5. In each table, the best result based on each metric is highlighted in bold. For MAE
and RMSE, a lower value is better as they measure error, whereas for PCC a higher
value is better as it measures correlation between the HR predictions and ground truth
HRs. Since two HR calculation methods were applied to the rPPG signals extracted
using each of the 7 rPPG extraction methods, the results for a total of 14 unique remote
HR estimation pipelines were collected.

In addition to the quantitative metrics described in Section 5.4, the performance of
the rPPG extraction pipelines is demonstrated with plots displaying example results of
rPPG extraction and HR calculation on select videos from the test data. Figures 10
and 11 display results on the OBF test data, Figures 12 and 13 contain examples from
the COHFACE data set, and Figures 14 and 15 display examples on videos from the
LGI-PPGI data set.

The left column of plots in the figures show the rPPG signals, as well as the
corresponding ground truth PPG signal on the bottom, with peak detections computed
using neurokit marked with red dots. The plots on the right display the heart rates
for each time window calculated from the corresponding rPPG signal on the left,
forming an envelope of average window heart rates. The heart rates calculated using
neurokit peak detections are plotted in black, and the heart rate envelope achieved
with Welch’s method is plotted in red. The bottom plot displays the ground truth
HR envelope, calculated from the PPG signal to its left using the peak detections
given by neurokit. All the signals are plotted after having undergone every signal
processing step described in this chapter, including the signal cleaning performed by
the ppg_process function of neurokit. It is worth noting that the steps performed by
neurokit were not applied when using Welch’s method for HR calculation, but the
signals are plotted after having also undergone this final processing step in order to
display the peak detections correctly.

In the titles of the plots on the left, the average HR for the whole video is shown,
calculated as the reciprocal of the average IBI based on the peak detections given by
neurokit as shown in the plots. For the plots on the right, the average HRs shown in
the legend are the mean values of the corresponding HR envelopes, i.e., the mean of
the average window HRs.

55

A general point worth noting when assessing the experimental results achieved using
the neural network models is that although the signals given by the networks resemble
the real PPG signals recorded from the finger on which they were trained, the rPPG
signals that they provide do not actually represent any real physiological signal that
could be recorded from the subject. The neural networks output a signal that is similar
to a real PPG signal because it is what they were trained to do, but in reality the changes
in blood volume that appear on the face differ significantly from the corresponding
changes measured from the finger. This means that instead of extracting the inherent
blood volume pulse signal that could be measured from colour changes on the face,
the neural networks attempt to estimate what the corresponding blood volume changes
in the finger could look like based on this information. This arises from the inherent
problem in the training setup that the "ground truth" PPG signal recorded from the
finger does not actually represent the true underlying blood volume changes occurring
on the face and as such could be considered not to represent a true ground truth for
the problem at hand. Despite this, the PPG signals recorded from the finger are the
closest thing to an accurate ground truth for the problem that can easily be measured,
which is why it has been widely adopted in the training of supervised models for rPPG
extraction.

6.1. Performance on OBF

As indicated in Table 2, the best results on the OBF test data based on every used
metric was achieved by the deepest CNN model when using neurokit peak detection
for calculating HRs, with a MAE of 0.2784 ± 0.3097, RMSE of 0.9495 and PCC
of 0.9629, clearly outperforming every other tested method. In fact, not only are
these the best results achieved on the OBF test data, but they are also the best results
achieved by any of the tested methods on any data set, producing the only RMSE
value below 1 BPM recorded during the experiments. The best performing Self-ONN
model based on MAE and PCC was SelfONN-deep with a MAE of 1.229 ± 3.341
and PCC of 0.8797, and the best RMSE of the Self-ONN models was achieved by
SelfONN-reduced at 3.786. The shallower neural networks also produce good results
on this data set, although the performance of the neural network generally degrades
as the complexity of the model is reduced. In addition, the CNN models generally
perform better than the Self-ONN models of the same depth. For almost every neural
network model, calculating HRs using neurokit peak detection produced better results
compared to Welch’s method based on every metric on this test data, with the only
exceptions being the MAE and PCC of the SelfONN-shallow model and PCC of
the CNN-shallow model. For the unsupervised Face2PPG pipeline, Welch’s method
produced significantly better results compared to neurokit. When comparing the best
results achieved by each rPPG extraction method, Face2PPG with Welch’s method
outperforms the two shallowest neural network models paired with neurokit as the HR
calculation method based on MAE and RMSE, with the rest of the neural network
models outperforming the best result achieved by unsupervised Face2PPG pipeline
when they are paired with neurokit as the HR calculation method.

As all the data in the OBF database is quite homogeneous, the OBF test data is
similar to the train data used in training the supervised neural network models, which

56

Table 2. Performance of each method in estimating heart rates on the OBF test set with
the best result for each metric highlighted in bold.

rPPG extraction Evaluation metric HR calculation
method MAE ± SD RMSE PCC method
SelfONN-deep 6.716 ± 16.086 19.84 0.6696 Welch
CNN-deep 0.8288 ± 1.0946 4.803 0.9065 Welch
SelfONN-reduced 5.686 ± 14.492 18.42 0.7453 Welch
CNN-reduced 1.043 ± 2.163 5.083 0.8812 Welch
SelfONN-shallow 2.382 ± 6.619 9.838 0.8064 Welch
CNN-shallow 4.114 ± 10.477 14.74 0.7507 Welch
Face2PPG 1.928 ± 2.278 6.548 0.6794 Welch
SelfONN-deep 1.229 ± 3.341 4.396 0.8797 neurokit
CNN-deep 0.2784 ± 0.3097 0.9495 0.9629 neurokit
SelfONN-reduced 1.245 ± 2.614 3.786 0.8665 neurokit
CNN-reduced 0.6765 ± 1.5267 2.308 0.9096 neurokit
SelfONN-shallow 2.726 ± 5.208 6.817 0.7124 neurokit
CNN-shallow 2.512 ± 5.826 7.155 0.7744 neurokit
Face2PPG 4.829 ± 4.517 8.324 0.4058 neurokit

also consisted of samples from OBF. As such, the neural networks have an inherent
advantage over the unsupervised Face2PPG pipeline on this set of test data. This
can also be observed in the results presented in Table 2 as the neural networks —
apart from the two shallowest models — achieve better performance compared to
Face2PPG based on all used metrics. As the shallow models have less capacity to fit
the train data due to their significantly lower computational complexity, they also see
less benefit from being trained on similar data compared to the other neural networks
when evaluated on the OBF test set. It is also worth noting that because the samples
in OBF were recorded under quite ideal conditions for an rPPG extraction framework,
every tested method, including Face2PPG, achieves quite respectable performance on
this test data, achieving lower MAE and RMSE and a higher PCC than on any other
test set.

The peak detection method of neurokit outperforming Welch’s method in HR
calculation for the rPPG signals calculated from the OBF test data using the neural
networks is also partially explained by the similarity of this test data to the train
data. During the training process, the neural networks have been presented with
similar video samples, with real PPG signals recorded from the finger as the ground
truth. Because of this, the networks learn to produce outputs that resemble real PPG
signals as long as the input is similar enough to the data on which they were trained.
As such, the rPPG signals extracted from the videos in the OBF test data using the
networks resemble real PPG signals with pronounced peaks and overall similar shape,
which makes the neurokit PPG peak detection method effective in correctly detecting
the systolic peaks in these signals as the function was originally designed for peak
detection from PPG signals recorded from the finger. However, there are also certain

57

other reasons for neurokit peak detection producing better results compared to Welch’s
method which will be discussed later in this section as well as Section 7.2.

The good performance of the neural network models and the neurokit peak detection
algorithm is also demonstrated in Figure 10 which shows an example result from
a video in the OBF test data. As seen in the plots on the left, the rPPG signals
produced by the neural networks, especially the two deepest ones, closely resemble
a real PPG signal recorded from the finger. Although these rPPG signals do not follow
the ground truth exactly, the peak locations are almost exactly correct. Much like
the HR envelopes calculated using neurokit peak detection, the envelopes calculated
using Welch’s method also follow the ground truth HR envelope closely in the example
presented in the figure.

The example results achieved using the neural networks in Figure 10 are in rather
stark contrast to the rPPG signal extracted using the unsupervised Face2PPG pipeline
shown in the second to last plot on the left. This signal is shaped much more irregularly
with less pronounced peaks, which can in turn result in false positive peak detections
or missed peak detections. The Face2PPG example result shows an example of a false
peak detection and how it affects the HR prediction result achieved using neurokit. As
seen in the black HR envelope in the plot on the right, a single false peak detection
results in the HR predictions for multiple windows being calculated as too high since
the false detection appears in several consecutive 10 second windows. On the other
hand, the heart rates calculated from the Face2PPG signal using Welch’s method give
quite accurate results, which suggests that despite the irregular shape of the signal, the
signal nonetheless contains the relevant frequency information related to heart activity.

The peak detections in Figure 10 and the metrics achieved using neurokit peak
detection in Table 2 suggest that rPPG signals extracted using the neural networks
could also be applicable for calculating the more challenging HRV features in addition
to simple heart rates at least in this particular example, which requires the accurate
calculation of the intervals between consecutive heartbeats. Since the inter-beat
intervals were used for calculating the heart rates from the neurokit peak detections, the
excellent results achieved with the neural networks suggest that the intervals between
peaks are calculated accurately. In addition, the peak detections seen in Figure 10 also
seem to follow the corresponding peak locations in the ground truth signal closely.
However, it is worth noting that although the neural network results show promise for
HRV calculation, no HRV features were actually calculated during the experiments.

On the other hand, based on the results seen in Figure 10 and Table 2, the
signals given by Face2PPG would most likely not be reliable for calculating HRV
features as these signals are prone to missed or false peak detections due to their
irregular shape. In addition, although the average inter-beat intervals can often give
quite accurate HR predictions for rPPG signals extracted using Face2PPG, using
the intervals between consecutive peak detections in the signal for calculating HRV
features seems questionable based on Figure 10.

Due to the similarity between the OBF test data and the train data used for training
the neural network models, the neural network models which achieve the best fit of
the train data, i.e., the lowest train loss, could be expected to perform the best on this
particular set of test data. By observing the results achieved by the CNN models on
the OBF data in Table 2 and comparing them against the loss that each CNN model
achieved during training as seen in Table 1, it can be seen that an increase in the depth

58

of the architecture resulted in a better fit of the train data, and that the lower the train
loss achieved by the CNN model was, the better the performance on the OBF test data.

However, when observing the train losses achieved by the Self-ONN models in Table
1 and comparing them against the results achieved on the OBF test data in Table 2, it
can be seen that in the case of the Self-ONN models, a lower loss on the train data
does not necessarily translate to better performance on the OBF test set. For example,
SelfONN-deep fails to outperform both its equivalent CNN model of CNN-deep as
well as the shallower CNN-reduced and SelfONN-reduced models based on RMSE of
the HRs calculated using neurokit despite achieving the best fit on the train data and
lowest validation loss of any neural network model as seen in Table 1. In addition,
SelfONN-reduced was in turn outperformed by CNN-reduced despite also achieving a
better fit of the training target than its CNN counterpart.

As the Self-ONN models have higher capacity compared to their CNN counterparts
in theory, which also translated to a lower train loss in practice, overfitting to the
train and validation data sets could be a plausible explanation for why they fail to
outperform their respective equivalent CNN models on unseen data. For the SelfONN-
deep model in particular, the very late epoch chosen based on the validation loss,
specifically the second to last epoch at 18, suggests that there is a possibility that the
SelfONN-deep model might have even achieved lower validation loss with continued
training. However, as the Self-ONN models achieve better performance on the OBF
test set compared to their CNN counterparts based on the NMCC loss function used
as the training target as seen in Table 3, overfitting the train data based on the used
loss function is most likely not the cause for the Self-ONN models falling short in
performance.

As the SelfONN-models consistently achieve worse, or at best similar, performance
compared to their parameter-equivalent CNN counterparts when presented with test
data that is similar to the data used in training, based on the results seen in Table 2, it
cannot be concluded that opting for Self-ONN models instead of CNNs improves rPPG
extraction performance in the presented experimental setup based on the used metrics.
However, as the Self-ONN models consistently achieve better learning performance,
i.e., a better fit of the train data based on the target function, their poor results on
the OBF test set suggest that there are inherent problems in the training setup as
opposed to the Self-ONN models being inherently less fit to the problem at hand. In
fact, during conducting the experiments presented in this thesis, several such issues
related to the training setup — both the training target and the nature of the train
data — were detected. These problems can significantly hinder the rPPG extraction
performance achieved by the neural networks — particularly when evaluated based on
HR estimation accuracy. In the rest of this section, these issues will be addressed in
more detail and some insight will be provided into why the problems related to the
training setup affect the Self-ONN models more than their CNN counterparts.

A problem observed with the data in the OBF data set is that the ground truth PPG
signal recordings, which were also used as the training target for the neural network
models, contain very prominent second harmonic components, which can cause
problems when calculating heart rates. As a frequency-based method, Welch’s method
is particularly susceptible to errors resulting from the higher harmonic components
in the signal. These problems were already briefly touched upon in Section 5.3
when discussing the workarounds added to the Welch’s method implementation to

59

address the problems and will be covered in more detail in Section 7.2. This is also
an underlying reason for why Welch’s method produced a higher error compared to
neurokit for all the tested neural network models as seen in Table 2. In the time domain,
the second harmonic components correspond to prominent diastolic peaks, which can
in turn be erroneously detected by the used neurokit peak detection function as systolic
peaks.

As the neural networks were trained to reconstruct the entire signal waveform with
these PPG signals with strong second harmonic components as ground truth, the rPPG
signals produced by these models inherit the problems associated with the ground truth
data, i.e., the strong second harmonic components and diastolic peaks, which in turn
can result in increased error rates. During the experiments, it was observed that the
Self-ONN models are more capable of learning these problematic features compared
to their CNN counterparts. This can be seen particularly clearly from the example
rPPG signals and their corresponding HR estimates presented in Figure 11 and can also
be observed as particularly high error values associated with the HR estimates given
by Welch’s method for the signals extracted using the SelfONN-deep and SelfONN-
reduced models as seen in Table 2. This explains why the Self-ONN models produce
higher errors compared to the CNN models despite being able to achieve lower train
loss levels, as learning the higher harmonic features is appropriate considering the
training target of reproducing the ground truth PPG waveform as closely as possible
but unnecessary for the end goal of calculating heart rates from the extracted rPPG
signals.

When comparing the example results achieved with SelfONN-deep and CNN-deep
in Figure 11, it can be seen that a reproduced diastolic peak in the rPPG signal
produced by SelfONN-deep is erroneously detected by neurokit, which results in too
high average HR estimates for a number of consecutive windows. Similar problems
can be observed with the signals extracted using SelfONN-deep and SelfONN-shallow,
but also with CNN-reduced and CNN-shallow. In addition, the Welch’s method
implementation completely fails to produce reasonable HR estimates for the signals
produced by SelfONN-deep and SelfONN-reduced and also produces significant
errors when calculating HRs from the signals extracted with SelfONN-shallow and
CNN-shallow. In contrast, when presented with the rPPG signal produced by the
unsupervised Face2PPG pipeline, which has not been trained to reproduce PPG signals
from the OBF database, Welch’s method performs reasonably well in estimating the
average heart rates correctly. However, neurokit peak detection produces slightly less
desirable results with Face2PPG, as the produced signal is shaped less regularly for the
same reason, resulting in erroneous peak detections.

Table 3 lists the NMCC losses associated with the signals extracted using the neural
network models from the OBF test data. These numbers further suggest problems with
the train target, as SelfONN-deep and SelfONN-reduced outperform their respective
CNN counterparts based on the target NMCC loss function even on this test data in
addition to the train and validation sets, but fail to achieve lower HR error rates on the
OBF test set despite this as established earlier.

As many of the erroneous HR calculations associated with the signals extracted
using the Self-ONN models in particular result from the inherent characteristics of
the ground truth PPG signals in the OBF database, this raises the question of whether
the ground truth HR values calculated from said PPG signals with neurokit and used

60

Table 3. The average NMCC losses achieved by the neural network models on the
OBF test data.

Model Loss
SelfONN-deep -0.958

CNN-deep -0.951

SelfONN-reduced -0.936

CNN-reduced -0.923

SelfONN-shallow -0.862

CNN-shallow -0.877

in evaluating the models could also be erroneous. During the experiments, it was
observed that in the case of certain PPG signals from OBF with particularly strong
diastolic peaks, the neurokit peak detection method could indeed mistakenly detect
diastolic peaks as systolic peaks, resulting in erroneous ground truth HR calculations.
An example of such a case is presented in Figure 16 which is discussed in detail later
in Section 7.2 along with other problems observed with the heart rate calculations.
However, such cases were rare and occurred only in few signals, and even in these
signals only few of such erroneous detections were made. As such, the ground truth
HR values for OBF as calculated using neurokit peak detection were mostly correct,
but these small errors should be born in mind when analyzing the results on the OBF
test set. Despite their strong diastolic peaks, the ground truth PPG signals contained in
OBF are still more regularly shaped than rPPG estimates given by the neural networks,
and as such did not usually cause problems for the neurokit peak detection function
used as it was specifically designed for use with PPG signals recorded from the finger
in the first place.

6.2. Performance on COHFACE

On the COHFACE data set, none of the tested methods clearly outperformed the others,
with all of the methods achieving quite similar performance based on the used metrics
as seen in Table 4. The best performance was achieved neither by the deepest nor
the shallowest neural networks but rather by the CNN-reduced model, with the rest of
the tested methods performing slightly worse. The CNN-reduced model achieved the
best MAE and PCC of all the tested methods when using neurokit for HR calculation
with a MAE of 10.37 ± 5.27 and RMSE of 13.34 and the best PCC at 0.07990 with
Welch’s method as the HR calculation method. Much like with the OBF test data, using
neurokit for HR calculation generally outperformed Welch’s method as neurokit peak
detection produced better results than Welch’s method for every neural network model
based on RMSE with the only exception of CNN-deep. Interestingly, using neurokit
peak detection for HR calculation also produced better results for Face2PPG compared
to Welch’s method with a MAE of 12.67 ± 7.07, RMSE of 16.17 and PCC of 0.01173.
This is unlike the results on the other two sets of test data on which Welch’s method
clearly outperformed neurokit in accurately calculating heart rates from the rPPG
signals extracted with Face2PPG. When comparing the HR estimation performance

61

of Self-ONNs to CNNs on the COHFACE data set, with neurokit peak detection used
for HR calculation, Self-ONN models generally outperformed the CNN models of the
same depth except when comparing SelfONN-reduced and CNN-reduced. However,
for the results achieved using neurokit, the differences in performance were small —
not only between neural networks of the same depth but between all the tested methods.
The Face2PPG pipeline was outperformed by the neural networks, with each neural
network model producing a better result than the best result achieved using Face2PPG
— albeit narrowly. As each method achieved quite similar results on COHFACE, it is
rather difficult to draw conclusions about the performance of the proposed Self-ONN
models against the other tested methods based on these results.

Table 4. Performance of each method in estimating heart rates on the COHFACE data
set with the best result for each metric highlighted in bold.

rPPG extraction Evaluation metric HR calculation
method MAE ± SD RMSE PCC method
SelfONN-deep 14.91 ± 6.20 19.77 -0.006944 Welch
CNN-deep 10.89 ± 4.94 14.98 0.03400 Welch
SelfONN-reduced 20.43 ± 8.89 28.03 0.03479 Welch
CNN-reduced 13.45 ± 6.91 20.40 0.07990 Welch
SelfONN-shallow 20.10 ± 11.38 29.37 0.01329 Welch
CNN-shallow 19.01 ± 10.29 27.92 0.01559 Welch
Face2PPG 13.90 ± 6.84 20.67 0.005546 Welch
SelfONN-deep 10.98 ± 5.06 13.54 0.001720 neurokit
CNN-deep 12.22 ± 7.95 15.88 -0.01350 neurokit
SelfONN-reduced 11.39 ± 4.73 14.14 -0.02040 neurokit
CNN-reduced 10.37 ± 5.27 13.34 0.07375 neurokit
SelfONN-shallow 11.44 ± 5.07 14.30 -0.003261 neurokit
CNN-shallow 11.46 ± 4.94 14.34 -0.002377 neurokit
Face2PPG 12.67 ± 7.07 16.17 0.01173 neurokit

The results achieved by the models on COHFACE are very different from the results
on OBF discussed earlier, which is explained by the differences in the nature of data
in these data sets. Each method produced significantly poorer results on COHFACE
than they achieved on OBF, which suggests that the data in COHFACE is overall
more challenging in nature compared to OBF. Although the scenarios under which
the video samples in COHFACE were recorded are in fact quite similar to OBF, with
the subjects remaining still and looking at the camera at all times, the actual recordings
are heavily compressed and of a relatively low quality in general with a resolution of
only 640 by 480 pixels and frame rate of only 20 FPS, which is the lowest in any of
the data sets used in the experiments. This is in stark contrast to high quality data sets
such as OBF, which was recorded at a full HD resolution at 60 FPS. The overall low
quality of the data may make it challenging to accurately extract rPPG signals from the
videos and could explain why the performance of all the tested methods is similarly
underwhelming on this particular data set.

62

In addition, the relative portion of the frame area taken up by the face is generally
lower in COHFACE compared to the OBF database, for example, which implies that
the relative face area resolution compared to OBF is lower still. To compare this, the
average size of the rectangular face detection in the first frame of each video as given
directly by the used Single Shot Multibox Detection network was calculated for both
data sets. For OBF, the average width and height of a face detection were 456 and 607
pixels respectively, whereas for COHFACE the corresponding dimensions were only
146 and 205 pixels. The average area taken by the face detection was 279367 pixels
for OBF, or 13.5 % of the frame resolution, and 30230 pixels for COHFACE, or 9.8
% of the frame resolution. Although each face detection was resized to 128 by 128
pixels before being input to the rPPG extraction networks, the original resolution of
the detection affects the quality of the resulting resized image as results can degrade
especially when the resolution of the original detection becomes low enough to be
close to the target resolution when the video is heavily compressed to begin with.

The reason for the neural networks performing slightly better than the unsupervised
Face2PPG pipeline could be due to the neural networks having been trained on the
OBF data set which, despite all its differences to COHFACE, does represent similar
overall recording settings in which the subjects sit still facing the camera. This
familiarity with somewhat similar data may have provided the supervised methods with
an edge over the unsupervised Face2PPG, but due to the observed overall difficulty of
the COHFACE data set, the performance of even the neural network models falls far
short of the results on OBF.

The generally low quality and high compression of the video samples in the
COHFACE data set could be a significant limiting factor in how accurately heart
rates could feasibly be estimated from the videos. In their paper, Álvarez Casado
and Bordallo López [4] compare the results achieved by different rPPG extraction
approaches on this data set, and the best result they report based on MAE is achieved
by their proposed multi-region pipeline at 7.5 ± 3.5 when employing the RGB to rPPG
extraction method proposed in [28]. The result is rather poor compared to the results
that the authors report on most other data sets despite the seemingly easy nature of the
COHFACE data set which was recorded under controlled conditions. This suggests
that too much of the information relevant to heart activity could be lost due to the
compression and low quality of the data in order to reliably achieve excellent results
such as those on OBF presented in Table 2.

Figure 12 presents an example result calculated from a video in the COHFACE data
set. The video was recorded under artificial lighting, which could be considered the
easier of the two scenarios in the data set. From the extracted rPPG signals on the
left, it can be seen that the signals extracted by the neural network no longer resemble
real PPG signals recorded from the finger as was the case for the example video from
the OBF test set. On the other hand, the signal given by Face2PPG does resemble the
results achieved by the unsupervised pipeline on OBF. Although none of the signals
given by any of the methods resembles a real PPG signal, it can be seen that the deeper
neural networks attempt to recreate the typical features of PPG signals more closely
than the other methods by producing more pronounced peaks with the characteristic
shape of a systolic peak, whereas steep peaks are absent in the signals given by the
shallower models which in turn resemble the signal achieved using Face2PPG. The

63

deeper the neural network model, the more steep peaks it produces and the higher the
peaks are.

Although the signals in Figure 12 are not as cleanly shaped and the peaks are
less pronounced than in the results on OBF, the neurokit peak detection algorithm
generally produced more accurate HR estimates compared to Welch’s method for this
example, which was also the trend on the entire COHFACE data set. This can mostly
be explained by some observed underlying problems in the used implementation of
the Welch’s method algorithm, which can be seen in the figure as sudden increases and
decreases in the heart rates calculated with Welch’s method. These issues are discussed
in more detail in Section 7.2 along with other problems in the implementation
recognized during experiments.

Similar conclusions could be drawn from Figure 13, which shows example results
calculated from a video recorded of the same subject as in the example shown in Figure
12, but this time under natural lighting. Similar characteristics can be observed in the
shape of the rPPG signals, and much like in the previous example, using neurokit
for HR calculation generally produced better results. In addition, the aforementioned
issues observed with Welch’s method are even more prominent in this example,
especially in the case of SelfONN-shallow and CNN-shallow.

Unlike the example result on OBF in Figure 10, no method could be expected to
be feasible for reliably extracting HRV features on COHFACE based on Figure 12 or
Figure 13. Although the average heart rates are calculated quite accurately in Figure
12, the actual locations of the peaks and the individual inter-beat intervals do not
appear consistent or accurate enough for reliable calculation of HRV features in any
of the rPPG signals plotted on the left. The irregular shape of the signals and the
resulting inconsistencies in IBIs could be explained in part by the neural networks
struggling with data that is different from the data on which they were trained as well
as the generally challenging nature of the data or the relatively low quality of the video
recordings.

6.3. Performance on LGI-PPGI

The best performance on the LGI-PPGI data set was achieved by the Face2PPG
pipeline with Welch’s method as the HR calculation method, significantly
outperforming every other tested method based on every evaluation metric as seen
in Table 5 by achieving a MAE of 6.967 ± 5.415, RMSE of 13.98 and PCC of 0.4003.
The best performing neural network model based on all metrics was SelfONN-shallow,
which achieved a MAE of 11.30 ± 8.11 and PCC of 0.2576 with Welch’s method and
the best RMSE value of the supervised models at 19.90 with neurokit peak detection.
Comparing the two HR calculation methods, neither is clearly better than the other
with Welch’s method resulting in a better RMSE compared to neurokit in the case
of 4 of the 7 tested methods. However, Welch’s method very clearly outperforms
neurokit in calculating HRs from the signals extracted with Face2PPG. The Self-
ONN models generally achieve better performance compared to the CNN models of
the same depth although the differences are not very large. In the case of both Self-
ONN and CNN models, the shallower the model, the better the achieved performance
was based on MAE and RMSE regardless of which HR calculation method was used,

64

with the only exception being SelfONN-deep outperforming SelfONN-reduced when
comparing results calculated with neurokit.

Table 5. Performance of each method in estimating heart rates on the LGI-PPGI data
set with the best result for each metric highlighted in bold.

rPPG extraction Evaluation metric HR calculation
method MAE ± SD RMSE PCC method
SelfONN-deep 16.24 ± 12.04 24.72 0.03465 Welch
CNN-deep 16.08 ± 15.47 26.24 0.1277 Welch
SelfONN-reduced 12.90 ± 8.96 22.05 0.1918 Welch
CNN-reduced 13.75 ± 13.63 23.75 0.1443 Welch
SelfONN-shallow 11.30 ± 8.11 21.60 0.2576 Welch
CNN-shallow 12.44 ± 7.96 23.21 0.2538 Welch
Face2PPG 6.967 ± 5.415 13.98 0.4003 Welch
SelfONN-deep 15.71 ± 13.82 23.16 -0.02141 neurokit
CNN-deep 20.01 ± 17.39 28.50 0.09374 neurokit
SelfONN-reduced 15.72 ± 13.57 23.29 0.05821 neurokit
CNN-reduced 15.19 ± 15.40 23.93 0.09676 neurokit
SelfONN-shallow 12.85 ± 11.60 19.90 0.1276 neurokit
CNN-shallow 13.55 ± 11.11 20.56 0.05849 neurokit
Face2PPG 14.27 ± 12.65 21.42 0.1447 neurokit

The very noticeable difference in the results achieved on LGI-PPGI compared to the
other two data sets used in testing can be explained by the nature of data it contains.
While the videos in the OBF and COHFACE data sets were recorded under quite
strictly controlled conditions in which the subjects remained mostly still and looked
at the camera, the LGI-PPGI database also contains samples recorded under more
realistic and natural scenarios, in which the subjects move their heads, talk, or exercise,
for example. This makes some of the data in LGI-PPGI very dissimilar to the videos
from the rather homogeneous OBF database in particular, of which the set of train data
used for training the supervised models is made up.

Fitting a homogeneous set of train data which lacks examples of varied and
challenging scenarios does not adequately prepare the neural networks to handle the
more varied data from LGI-PPGI, and as such, the supervised models struggle to
produce good results when they are presented with some of the more challenging
samples from this data set. This inability to generalize to new samples which are
recorded under more varied conditions represents a type of overfitting which stems
from the lack of variation in the train data. The unsupervised Face2PPG pipeline, on
the other hand, clearly outperforms all of the tested supervised methods due to not
relying on any train data at all and as such not learning to make assumptions regarding
the data with which it is presented as the supervised models do.

Unlike on COHFACE, on which it was approximately equally difficult to achieve
good performance with every method, in the results on LGI-PPGI there is a very clear
disparity between the results achieved by the methods based on how much the method

65

bases its results on the OBF train data set. This implies that the deepest models,
which have the most capacity to fit the train data and as such learn to make the most
assumptions about the data with which they are presented, struggle the most when
presented with samples from a completely different distribution of data. In contrast,
the shallower models fare better as their lesser capacity to fit the train data also implies
a lesser ability to overfit the train data, resulting in better generalization performance.
In turn, the Face2PPG pipeline, which as an unsupervised method was neither trained
nor tuned on the OBF train data, performs the best as mentioned earlier. The result
is also in stark contrast to the results on the test set comprised of samples from the
OBF data which are very similar to the train data, providing an advantage to the the
supervised models with high capacity.

However, a somewhat surprising result is that SelfONN-deep was able to achieve
better performance compared to CNN-deep on LGI-PPGI based on MAE and RMSE
despite fitting the OBF train data more closely based on the NMCC loss function as
seen in Table 1. Similarly, SelfONN-reduced and SelfONN-shallow also achieved a
lower train loss and better performance than their respective CNN counterparts on LGI-
PPGI based on these metrics when comparing results achieved with Welch’s method
HR calculation. This suggests that what the Self-ONN models learned in order to fit
the train data they were presented with could be more suited for rPPG extraction on
even the more varied data of the LGI-PPGI data set when compared against their CNN
counterparts. The results might imply that the Self-ONN models are more capable of
learning the fundamentals related to remote PPG extraction from facial videos, even
from limited train data, and less prone to learning to take shortcuts based on the specific
characteristics of the train data compared to CNN models. However, it is difficult
to make conclusive statements based on these rather limited results, especially when
the differences in performance are quite small. As such, more research should be
conducted to further evaluate these properties of Self-ONN models.

Another point of comparison worth noting between the results on COHFACE and
LGI-PPGI is that despite the difficult realistic scenarios included in LGI-PPGI, the
Face2PPG pipeline achieves much better performance on LGI-PPGI compared to
COHFACE. The reason for this is most likely a combination of two factors. Firstly,
the processing steps in the unsupervised Face2PPG pipeline seem to be well suited
to the purpose of extracting rPPG signals from the face, being capable of producing
meaningful results even on data that is challenging for supervised methods. The second
factor is the higher quality of the data in LGI-PPGI compared to COHFACE. While the
data in COHFACE was highly compressed and of poorer quality in general, causing
every tested method to struggle on the data set, the data in LGI-PPGI is significantly
higher in quality, which could explain why Face2PPG can achieve better results on
it compared to COHFACE despite its seemingly more challenging nature. As an
unsupervised method, the pipeline does not make assumptions about the type of data
with which it is presented, and as such the ’difficult’ nature of the data in LGI-PPGI
is does not affect its performance much compared to the supervised methods, making
the fidelity of the data a more significant limiting factor in how well it can perform.

The reason why Welch’s method generally outperforms neurokit peak detection in
calculating heart rates on LGI-PPGI can be explained by the inability of the tested
methods to produce neatly shaped rPPG signals resembling real PPG signals with
pronounced peaks on this kind of challenging data, which in turn makes the peak

66

detection algorithm prone to missed or false positive detections. The Face2PPG
pipeline was never trained or designed to produce signals that resemble the PPG signals
recorded from the finger like the neural networks were. The neural networks, on the
other hand, struggle to extract the kind of output signals that they were trained to
produce due to the dissimilarity of this data to the data on which they were trained.
Frequency-based HR calculation methods, such as Welch’s method, are more robust to
the shape of the signal as long as the fundamental frequency of the signal corresponds
to a real heart rate. The better results achieved using Welch’s method, especially with
Face2PPG, suggest that although detecting the systolic peaks and their locations in the
signals extracted from the videos in LGI-PPGI is challenging, the frequency content in
the signals still contains information relevant to heart activity.

Figure 14 shows an example result on a video from the LGI-PPGI data set. The
video is an example of the easiest scenario in the database in which the subject faces the
camera with minimal head movement. In the case of this relatively easy example, every
method performs quite well and especially the results achieved using Welch’s method
are quite promising. The HR envelopes calculated with neurokit peak detection, on the
other hand, show some clear deviations from the ground truth HR envelope resulting
from missed or false positive peak detections in many of the rPPG signals. From
the rPPG plots on the left, it can be seen that the neural network models attempt to
produce realistic PPG signals with pronounced peaks, but struggle as the peaks in the
rPPG signals they produce are not very pronounced or high in amplitude. Although the
video was recorded under an almost ideal setting for the neural networks to perform
well, the nature of the data still differs enough from the train data for the performance
of the supervised methods to suffer, which is a phenomenon that could also be observed
on the COHFACE data set. The signal produced by Face2PPG is similar to the ones it
produced on data from the other sets. It does not show any clear systolic peaks, but the
frequency content in the signal is relevant to the subject’s heart activity based on the
HR envelope calculated with Welch’s method.

Figure 15 contains an example result on a video of the same subject as the
previous example in Figure 14 but recorded under what could be considered the
most challenging of the scenarios in which the subject talks naturally in an urban
environment with natural variations in illumination. Unlike the previous example, on
which every method performed relatively well, this example shows clear differences in
the accuracy of the HR estimations achieved with each tested method. This example
follows the pattern of the results observed on the entire LGI-PPGI data set as shown in
Table 5 as Face2PPG clearly outperforms the supervised methods, and the shallower
neural networks outperform the deeper ones. This further suggests that the videos
recorded under more natural conditions, such as the example in this figure, which
deviate from the samples in the train data are the reason behind the overall poor
performance of the deeper neural networks on this data set — both compared to their
results on other data as well as the results of other methods on LGI-PPGI.

Based on the peak detection results seen in either of the example figures, no method
could reasonably be considered applicable to the extraction of HRV features, much
like was the case in the examples from COHFACE in Figures 12 and 13. The peak
locations in the rPPG signals are irregular and do not correspond to the ground truth,
and the peak detection algorithm struggles to detect the peaks correctly in the first
place due to the inconsistencies in the shape of the signals.

67

Figure 10. A figure showing the rPPG signals and ground truth PPG signal as well as
the corresponding peak detections associated with a video from the OBF database on
the left along with the respective HR envelopes achieved with neurokit and Welch’s
method plotted on the right.

68

Figure 11. A figure showing the rPPG signals and ground truth PPG signal as well as
the corresponding peak detections associated with a video from the OBF database on
the left along with the respective HR envelopes achieved with neurokit and Welch’s
method plotted on the right.

69

Figure 12. A figure showing the rPPG signals and ground truth PPG signal as well as
the corresponding peak detections associated with a video from the COHFACE data set
on the left along with the respective HR envelopes achieved with neurokit and Welch’s
method plotted on the right.

70

Figure 13. A figure showing the rPPG signals and ground truth PPG signal as well as
the corresponding peak detections associated with a video from the COHFACE data set
on the left along with the respective HR envelopes achieved with neurokit and Welch’s
method plotted on the right.

71

Figure 14. A figure showing the rPPG signals and ground truth PPG signal as well
as the corresponding peak detections associated with a resting scenario video in LGI-
PPGI on the left along with the respective HR envelopes achieved with neurokit and
Welch’s method plotted on the right.

72

Figure 15. A figure showing the rPPG signals and ground truth PPG signal as well
as the corresponding peak detections associated with a talking scenario video in LGI-
PPGI on the left along with the respective HR envelopes achieved with neurokit and
Welch’s method plotted on the right.

73

7. FURTHER DISCUSSION

This chapter provides some further discussion based on the results presented in Chapter
6, covering certain topics not addressed in the previous chapter. While the analysis
presented in Chapter 6 focused on the individual performance of each method on
each set of test data, the discussion in this chapter focuses less on the individual
results on each test set and aims to draw more general conclusions, particularly
about the efficiency of Self-ONN models against CNN alternatives, in addition to
addressing certain issues common to the applied methods. The potential efficiency
gains achievable by opting for a Self-ONN approach are discussed first, after which
certain problems recognized in the implementation are addressed. The chapter then
concludes by discussing potential directions for future research.

7.1. Efficiency of ONN Models against CNN Models

While the previous analysis was mostly only based on the performance of the tested
methods as measured by the evaluation metrics described in Section 5.4, this section
aims to provide insight to the efficiency of the Self-ONN models against their CNN
counterparts, taking into account the time and computational resources required by the
methods to produce their outputs. In some ways, the efficiency of the models was
already evaluated previously by comparing how the depth of the model affects the
results of the Self-ONN models compared to CNNs. However, as each Self-ONN
model was designed to have approximately the same number of parameters as its
CNN counterpart as detailed in Section 4.2 and also seen in Table 6, and comparisons
between the parameter-equivalent neural network alternatives were already covered
previously in Chapter 6, this section places more focus on the time required by rPPG
extraction using each neural network model as well as the time taken to train the models
as seen in Table 6. Based on these metrics, the efficiency of the models is evaluated by
analysing how the computational complexity and time requirements translate into HR
estimation performance in the case of each type of neural network model.

In order to gain insight into the efficiency of each neural network model, the average
inference time for 3600 frames of video, which is equivalent to 60 seconds at 60 fps,
the time taken by training each model with the setup described in Section 5.1.3, as well
as the number of trainable parameters for each neural network are presented in Table
6. The average inference times are calculated based on all the videos in the test data,
although using any set of data should also produce comparable results. In addition
to these three metrics, which illustrate the computational resource requirements of
the model, Table 6 also lists the HR estimation RMSE achieved by each model on
each data set used in testing as well as the total HR estimation RMSE on all the test
data, with neurokit peak detection as the HR calculation method. It should be noted
that as the OBF test data contains 40 samples, COHFACE contains 164 and LGI-
PPGI contains only 24, the samples from COHFACE form the majority in the test
data, which is reflected in the total test data RMSE measures presented. The measures
of computational complexity together with the HR estimation error metrics allow for
quick assessment of how an increase or decrease in the computational complexity of

74

the models translates to increases or decreases in error on the different types of data in
the case of the tested CNN and Self-ONN models.

Table 6. Metrics illustrating the computational complexity of the tested neural network
models against HR estimation RMSE on the test data.

Trainable Extraction Training RMSE on
Model parameters time [s] time [h] test data
SelfONN-deep 860063 3.48 419 OBF: 4.396

COHFACE: 13.54

LGI-PPGI: 23.16

Total: 13.85

CNN-deep 858497 3.74 12.5 OBF: 0.9495

COHFACE: 15.88

LGI-PPGI: 28.50

Total: 16.34

SelfONN-reduced 305063 2.30 186 OBF: 3.786

COHFACE: 14.14

LGI-PPGI: 23.29

Total: 14.26

CNN-reduced 304577 2.43 6.83 OBF: 2.308

COHFACE: 13.34

LGI-PPGI: 23.93

Total: 13.75

SelfONN-shallow 70631 2.24 164 OBF: 6.817

COHFACE: 14.30

LGI-PPGI: 19.90

Total: 14.04

CNN-shallow 70529 2.40 6.08 OBF: 7.155

COHFACE: 14.34

LGI-PPGI: 20.56

Total: 14.19

By observing the signal extraction times presented in Table 6, it can be seen that
every Self-ONN model can produce its output in less time than the corresponding CNN
alternative. This suggests that a Self-ONN based approach has potential to provide a
more efficient solution to the problem at hand compared to CNN alternatives, most
likely resulting from the reduced number of neural units in the Self-ONN models
which is enabled by the added nonlinearity provided by the generative neurons. In
the experimental results presented in this thesis, there were cases in which a Self-ONN
achieved very similar performance when compared with its CNN counterpart. Most
noticeably, SelfONN-shallow and CNN-shallow achieved very similar performance
on every set of test data used. In such cases, the Self-ONN model is more efficient

75

in extracting a useful signal from the given videos as it can provide similar accuracy
based on the metrics used with less time required for signal extraction.

However, while each Self-ONN model requires less time for signal extraction than
its CNN counterpart, the time required for training the Self-ONN models is greater
by an order of magnitude compared to the CNN models with the setup described in
Section 5.1.3 as seen in Table 6. In fact, even training the shallowest Self-ONN model
took more than 13 times the time required to train the deepest CNN. This implies that
in an iterative development process of Self-ONN architectures can require significantly
more time and resources compared to CNN alternatives, which should also be taken
into account when deciding which of the approaches to utilize. However, once the
investment in developing and training the architecture has been made, a Self-ONN
approach can potentially lead to a more efficient end result due to the reduction in
output computation time as seen in Table 6.

When comparing the metrics associated with SelfONN-reduced in Table 6 against
the CNN model with the shortest required extraction time, CNN-shallow, it can be seen
that SelfONN-reduced can achieve better performance on COHFACE and significantly
better performance on the OBF test set based on RMSE while still managing a shorter
signal extraction time. The performance of SelfONN-reduced on LGI-PPGI, however,
was poorer compared to CNN-shallow, most likely due to overfitting as detailed earlier
in Chapter 6, which leads the model to have a slightly higher overall RMSE. However,
the OBF and COHFACE test sets are more similar to the data used in training the neural
networks than LGI-PPGI, and as such, SelfONN-reduced achieved better performance
on the type of data which was represented in the train set. If the set of train data
were constructed to contain more varied examples representing realistic scenarios,
SelfONN-reduced could potentially see more benefit. In addition, the total RMSE
levels achieved by the models is still quite close, but SelfONN-reduced requires less
time for signal extraction, which implies better overall efficiency, at least based on the
time required to compute the signals. However, the reduced computation time comes
at the cost of significantly more trainable parameters as seen in Table 6.

Next, a closer look is taken at the performance achieved by SelfONN-shallow, which
is compared against its CNN counterpart in CNN-shallow as well as the ’reduced’
models as the most directly comparable alternatives in order to get an idea of the
potential efficiency gains achievable with a Self-ONN approach when the complexity
of the model is severely restricted. When comparing the RMSE values associated
with the heart rates calculated with neurokit as seen in Table 6, it can be seen that
the results achieved using SelfONN-shallow and CNN-shallow are very similar, with
SelfONN-shallow only slightly outperforming CNN-shallow on every set of test data
in this setting. However, as SelfONN-shallow requires less time for computing its
output signal, and both models have approximately the same number of trainable
parameters, SelfONN-shallow can be considered to provide the more efficient solution
of the two. SelfONN-shallow also achieves similar total RMSE to CNN-reduced as
seen in Table 6 despite requiring less time for signal extraction and only 4.32 % of
the number of trainable parameters, implying better overall efficiency in the test setup.
However, total RMSE values achieved by these two models are only close due to the
better performance of SelfONN-shallow on LGI-PPGI, which is most likely due to its
lesser capacity to overfit the train data. The results achieved using SelfONN-shallow
on COHFACE and especially the OBF test set fall short of CNN-reduced, which in

76

turn suggests a significant gap in performance on data represented in the train set.
As such, CNN-reduced could potentially benefit more from increases in the variety
of the train data. Still, SelfONN-shallow can achieve respectable performance given
the significantly lesser computational complexity. Further research with more diverse
data should be conducted to test the potential increases in efficiency achievable with
Self-ONN models.

Comparing SelfONN-deep against CNN-deep, it can be seen that SelfONN-deep can
produce better results on both COHFACE and LGI-PPGI, also achieving a significantly
lower total RMSE, with a lower required extraction time. As both models have
approximately the same number of trainable parameters, SelfONN-deep could be
considered to provide the more efficient solution of the two in this case. However, the
performance of SelfONN-deep on OBF test data falls short of CNN-deep for reasons
discussed earlier in Section 6.1.

A significant point worth noting about the Self-ONN models is that as each of them
achieves a lower train loss compared to its CNN counterpart in addition to requiring
less time for producing its output signal, every Self-ONN model can be considered
significantly more efficient in achieving the training target as defined by the train data
and target NMCC loss function. As such, if the issues related to the training setup
mentioned in earlier in Section 6.1 are addressed, making for a more appropriate train
setup for the end task of HR estimation on outside data, Self-ONN models could
eventually lead to a much more efficient solution to the problem at hand than can
be achieved with conventional CNN models. Ways in which the train setup can be
improved and other potential future research directions will be discussed further in
Section 7.3.

7.2. Recognized Problems and Limitations

During the experiments, some problems were observed with both of the methods used
for calculating heart rates from the extracted rPPG signals, i.e., HR calculation using
the PPG peak detection function from the neurokit library and the implementation
of Welch’s method based on the one provided by the authors of [4]. In some cases,
the methods failed to produce accurate or even reasonable heart rates from certain
rPPG signals even if the rPPG extraction preceding the HR calculation could have
been considered reasonably successful. Such shortcomings in the HR calculations had
a significant effect on the results of the experiments and should taken into consideration
when analysing the presented results. This section discusses these problems in more
detail and demonstrates their effects with examples from the experiments.

7.2.1. Neurokit Peak Detection

The problems with calculating heart rates using the PPG peak detection function in the
neurokit library are associated with missing or false detections of systolic peaks. As
some of the rPPG signals produced by the tested methods are shaped irregularly and
very different from typical PPG signals recorded from the finger, they can represent an
unexpected type of input for this peak detection function.

77

The neurokit peak detection function is often able to give excellent results on OBF
for the signals extracted using the neural networks. In this setting, even the peak
locations are generally accurate, and the peak detections could even be applied to
the calculation of HRV features. However, on other data, the signals produced by
the tested methods are much more irregular in shape, and the peak detection function
often misses peaks or gives false detections. In fact, there are some cases in which
the locations of the peak detections in the rPPG signals and the intervals between
them deviate significantly from the ground truth even though the average IBI, and as
such the resulting HR estimate, are approximately correct. This means that although
the estimated heart rates calculated with neurokit may be correct, the peak detection
locations may not be meaningful, which not only makes it impossible to make any
estimations of HRV features but also brings under question the basis on which these
heart rates were calculated. One such example can be seen in the peak detection result
on the signal given by CNN-reduced in Figure 12. However, achieving an accurate HR
estimation despite failed peak detection could simply be coincidence, and as such these
results should be counterbalanced by the inaccurate results resulting from the missed
and false peak detections in the final results presented in Chapter 6.

Although the neurokit peak detection function generally performed well with the
rPPG signals extracted from the OBF test set by the neural networks, certain problems
sometimes occurred in detecting the peaks from the signals extracted using the Self-
ONN models. The problems were characterised by falsely detecting the particularly
prominent reconstructed diastolic peaks produced by the Self-ONN models as systolic
peaks. The strong reconstructed diastolic peaks in turn result from the characteristics
of the train data and the training setup. An example of this phenomenon can be seen
in the example results presented in Figure 11, and the underlying reasons behind this
phenomenon were discussed in detail in Section 6.1.

In addition, neurokit peak detection sometimes falsely detected diastolic peaks as
systolic peaks even in the ground truth PPG signals in the OBF database as mentioned
in Section 6.1, although such cases were rare and the ground truth HR values calculated
using neurokit were mostly correct. An example of such a case can be seen in the PPG
signal on the right in Figure 16, displaying a 10 second segment of a PPG signal from
the OBF database with two diastolic peaks erroneously detected as systolic peaks. This
issue should also be taken into consideration when interpreting the results on the OBF
test set.

The peak detection function also does not perform well on signals extracted
using the Face2PPG pipeline as the signals produced by this unsupervised method
deviate significantly from typical PPG signals recorded from the finger. The peak
detection function often made mistakes when presented with signals extracted using
this pipeline, which can be seen as false peak detections in Figure 10 or missed peak
detections in Figure 14, for example. As an unsupervised method, Face2PPG only
attempts to extract the underlying blood volume information present in the face and
has no reason to make its output look more like a PPG signal recorded from the
finger. As such, the neurokit peak detection function, which is specifically designed for
analysing PPG signals measured from the finger, is inherently unsuitable for processing
the signals produced by Face2PPG, which should be taken into consideration when
assessing the results produced with Face2PPG combined with neurokit peak detection.

78

As the neurokit peak detection function performs well on signals extracted by the
neural networks from data which is similar to their train data, the peak detection
function could perform better in a scenario in which the neural networks are trained on
more diverse data and as such learn to produce regularly shaped signals from a wider
variety of facial videos. In addition, addressing other problems related to the train
setup as discussed in Section 6.1 could also lead to better peak detection results. In the
case of Face2PPG, however, peak detection would most likely not be the best approach
for HR calculation in any scenario. As an unsupervised method, the pipeline cannot
learn to produce signals that resemble the PPG signals recorded from the finger, which
are the type of input expected by the peak detection function. If the pipeline were
somehow tweaked to produce signals with more pronounced peaks, however, a custom
peak detection approach tweaked for use with such signals could potentially produce
good results.

7.2.2. Welch’s Method

A frequently observed problem with the implementation of Welch’s method used for
calculating heart rates during the experiments is that for certain signals, its output
deviates very significantly from the ground truth or the result achieved using peak
detection, often outputting approximately double the desired HR value. The problem is
most prevalent with rPPG signals extracted using the neural network models, whereas
for signals extracted using Face2PPG, the Welch’s method implementation generally
performed as intended. Such large deviations in the HR estimates result in very large
increases in the values of the used error metrics, especially in the case of RMSE due
to the square operation.

The phenomenon can be seen very clearly in the example from OBF presented in
Figure 11 in which Welch’s method provides highly erroneous HR calculations for the
signals extracted using neural networks in spite of the HR estimates calculated with
neurokit peak detection being mostly accurate. The examples in Figures 12, 13 and
15 also exhibit the same phenomenon to some extent. The HR envelopes produced
with the Welch’s method implementation contain drastic instantaneous changes in the
calculated HR value, which show as jagged shapes in the envelopes.

As mentioned earlier in Sections 5.3 and 6.1, the highly erroneous HR values
produced by the Welch’s method implementation were associated with the signals in
the OBF database, and specifically the strong second harmonic components in the
ground truth PPG signals in this set of data. The second harmonic was observed
to often be even more prominent than the desired first harmonic, which usually
corresponds to the real heart rate, which led to Welch’s method providing the second
harmonic as its output, resulting in erroneous HR calculations. As the data used in
training the neural networks also consisted of samples from OBF, the rPPG signals
extracted using the neural networks also inherit these properties, leading to erroneous
HR values given by Welch’s method.

To test whether the properties of the PPG signals contained in the OBF database are
the underlying cause of the problem, the Welch’s method implementation was used
to calculate the heart rates from the ground truth PPG signals from each set of test
data, which were then compared against the ground truth HR values calculated with

79

neurokit peak detection. The resulting RMSE values of the heart rates calculated from
the PPG signals with Welch’s method were 48.3 BPM for the OBF test data but only
5.64 for COHFACE and 4.72 for LGI-PPGI, which suggests that the highly erroneous
HR values given by Welch’s method are associated with the nature of the data in the
OBF database in particular.

As briefly mentioned in Section 5.3, the Welch’s method implementation provided
by the authors of [4] was altered so that in the presence of two or more strong
harmonic frequency components in the signal, only the first of them is considered
instead of simply outputting the frequency associated with the component with the
most power in order to address these problems associated with applying the method
to rPPG signals given by the neural networks. With this altered implementation of
Welch’s method, the RMSE of the heart rates calculated from OBF PPG signals against
the corresponding ground truth HR values given by neurokit reduced to 36.7 BPM,
which further indicates that the strong higher harmonic components were causing
erroneous HR values to be produced by Welch’s method. Adopting this altered
implementation was also found to improve the accuracy of the heart rates calculated
from the signals given by the neural network models compared to the original Welch’s
method implementation given by the authors of [4].

However, these changes did not improve HR calculation results for signals
extracted using the Face2PPG pipeline, for which reason the original Welch’s method
implementation provided by the authors of the pipeline was employed as-is for these
signals. The problem does not occur when using the method with the signals extracted
using Face2PPG as these signals do not resemble the PPG signals from OBF, and as
such do not contain the strong second harmonic components.

Although altering the implementation of Welch’s method as described improved
the HR calculations for OBF PPG signals as well as neural network rPPG signals,
the problems associated with applying Welch’s method to these particular types of
signals could not be fully solved by these measures. When evaluating the PSD given
by Welch’s method for the PPG signals from the OBF database, it was found that for
certain signals, only the peak associated with the second or higher harmonic of the
desired heart rate was present, representing a scenario which cannot be addressed by
the measures employed.

Figure 16 shows an example of a PSD in which such a phenomenon can be observed,
corresponding to a 10 second PPG segment from the OBF database, which is displayed
on the right. As seen in the figure, there are 10 systolic peaks present in the 10
second segment, and the HR calculated from the average interval between these peaks
is approximately 65 BPM. However, this desired heart rate is in no way observable
from the PSD to the left as the only peak in the spectrum occurs at approximately 173
BPM due to the higher frequency components in the signal, such as strong diastolic
peaks or artifacts, which can also be seen by inspecting the waveform on the right.
In fact, the diastolic peaks in this particular signal are so prominent that even the
neurokit peak detection function mistakenly detects some of the diastolic peaks as
systolic peaks, resulting in an erroneous HR value of 76 given by taking the reciprocal
of the average IBI if these erroneous peaks are not removed. As mentioned above, the
employed changes to the Welch’s method implementation do not improve performance
in this case, and the RMSE against the HR values calculated using neurokit peak
detection is 109.3 for the entire 5-minute PPG signal with both the original and altered

80

implementations. It is worth noting, however, that even the ground truth HR values
calculated using neurokit peak detection contain errors as demonstrated in Figure 16.
It is also worth noting that this particular signal represents one of the most problematic
examples that could be observed in the OBF database, and most other PPG signals
were not as pathological for either HR calculation approach.

Another problem observed when employing Welch’s method for HR calculation was
that in some rare cases, no peak could be detected in the PSD at all by the applied peak
detection algorithm from the scipy library. In such cases the frequency corresponding
to the maximum value of the PSD was selected instead as mentioned in Section 5.3.
However, the absence of a clear peak in the PSD which could be interpreted as the
desired HR value brings the viability of such HR estimates under question.

Figure 16. A figure showing the power spectral density and waveform corresponding
to a 10 second segment of a PPG signal from the OBF database along with peaks
detected using neurokit.

As Welch’s method performed better of the two HR calculation methods in certain
test scenarios, working around these issues could significantly improve the quality
of the results that can be achieved with the neural network models as frequency-
based methods provide a more robust approach for calculating heart rates than relying
on achieving accurate peak detections. However, some of the problematic PSD
calculations mentioned in the previous paragraph suggest that such a frequency based
method may not be a suitable solution for all rPPG or even PPG signals. A possible
way of mitigating the problem could be to make the signals more compatible with
Welch’s method by reducing the prominence of the second harmonic component in the
PPG labels used in training the neural networks, e.g., by applying filters with cutoff
frequencies based on the ground truth HR value. In addition, as the issues are mostly
related to the nature of the PPG signals in the OBF database as established, training the
neural networks using more varied data or different data altogether could also mitigate
these problems.

81

7.3. Future Works

While the results presented in this thesis show mixed results for the applicability of
Self-ONN models for remote PPG extraction from facial videos, it is important to
note that these results are only a preliminary proof-of-concept, and there are numerous
ways to research the topic further and potentially achieve much better results. The
previous section already proposed some steps for improving the pipeline by suggesting
solutions to problems recognized during the experiments. This section will provide
further suggestions for improving the performance of the proposed approach and give
insight into potential future research directions.

The most glaring issue with the experimental setup presented in this thesis is the
formulation of the training setup of the neural network models described in Section
5.1. As briefly covered in Section 6.1, the Self-ONN models fail to achieve better
HR estimation performance compared to their CNN counterparts despite fitting the
train data more closely. In addition, the Self-ONN models outperformed their CNN
counterparts on the validation set and OBF test set based on the NMCC loss function
which was used in training the models. As the Self-ONN models were able to exhibit
superior learning performance in the proposed setup, it is likely that reformulating the
train setup to incorporate only the features which are useful for the desired end goal
of HR and HRV calculation could result in the Self-ONN models producing better
results compared to CNN alternatives in this end task. The primary problem in the
training setup which should be addressed in future research is the choice of target
ground truth used in training the models. In the experiments presented in this thesis,
the neural networks were trained to replicate the full PPG waveform, which contains
unnecessary features for the tasks of HR and HRV calculation, such as diastolic peaks.
During the experiments, these features were found to cause problems for both HR
calculation methods used, as discussed in the previous section.

A solution to this problem would be to adopt a similar approach to training the
models as the one proposed in [11] in which the proposed neural network model was
trained to only predict the systolic peak locations in the reference PPG signal based on
the input facial videos, ignoring the overall shape of the PPG signal in question. The
authors also list multiple alternatives for a suitable loss function for this task in addition
to proposing their own novel loss function, the Wasserstein distance loss, which they
demonstrate to perform better than the other tested alternatives found in literature. This
kind of approach to training the supervised models makes sense as the peak locations
contain all the relevant information for calculating both HR and HRV features.

In fact, the overall shape of the ground truth PPG signal is not only irrelevant for
the task of HR and HRV calculation but also misleading as the shape of a PPG signal
recorded from the finger does not correspond exactly to the blood volume changes that
can be observed on the face. As such, training the models to output entire PPG signals
requires the models to have more capacity in order to produce feasible estimates of
what a corresponding PPG signal recorded from the finger may have looked like based
on the facial video, even though this information cannot be reliably inferred from the
face alone, and in reality, the peak locations are all that is needed for HR and HRV
calculation. As the models require more capacity and only learn the characteristic
shapes of the PPG labels in the train data with which they are presented, a training
setup based on signal shape as a target can also lead to overfitting in itself as the

82

models attempt to output similar signals to the train data labels regardless of the type
of data with which they are presented.

The results presented in [11] show much promise for using the Wasserstein distance
loss in training models for systolic peak detection as the authors report accurate
detection of the systolic peaks and successfully apply the extracted HRV features in
a classification scheme for atrial fibrillation. Adopting a training approach based on
peak locations can also directly address some of the problems observed with the PPG
signals in the OBF database, such as the strong diastolic peaks and second harmonic
components, as in this kind of training setup the networks do not learn to replicate these
undesired features. In addition, it simultaneously addresses other problems associated
with PPG signals recorded from the finger, such as varying amplitude resulting from
inconsistencies in skin contact, for example.

In addition to changing the train target and loss function, applying a different
optimization approach could potentially lead to better results. Such approaches could
include employing a different variant of the Adam optimizer or a different type of
optimizer altogether, or adopting a learning rate scheduling scheme, for example.

Another very significant issue with the experimental setup presented in this thesis
is the homogeneity of the data used for training the neural network models. Like all
supervised methods, Self-ONNs require the train data to be sufficiently varied in order
to avoid overfitting and allow the models to generalize to the wide range of input data
associated with real use cases. In the experimental results presented in this thesis, the
homogeneity of the train data was apparent from the poor generalization performance
achieved by all the tested supervised models. As such, an important direction in the
future research of applying Self-ONNs to rPPG extraction would be to train, validate
and test the models on a much wider variety of relevant data which represents the
situations under which the models would realistically be applied.

However, as relevant data is rather scarce, with only few public data sets available,
data augmentation could also be applied as an alternative method to increase the
variety of the train data. Augmentation steps such as rotation or changes in luminance,
saturation or contrast represent variations that can occur in real use cases in which
videos are recorded with different cameras, under different lighting conditions, and at
different angles. Another potential method for overcoming the limited availability of
relevant train data could be the application of self-supervised generative models for
generating synthetic data samples based on real data.

It is also worth noting that in the experiments presented in this thesis, the supervised
models were both trained and validated on data from OBF. Validating the models on
outside data can also reduce the potential of overfitting to a certain distribution of data,
improving generalization performance.

In addition to focusing on the training setup and data used, testing the performance
of different Self-ONN architectures should be a direction of future research. The Self-
ONN models proposed in this thesis are directly based on the CNN architectures
described in [3] and [11] which provide some of the best performance achieved
by supervised approaches in relevant literature. However, while the performance
of different CNN architectures for different types of problems has been researched
extensively, Self-ONNs have only seen a small fraction of the attention given to
other neural network approaches by the research community as of yet. As such,
no clear design paradigms or reference architectures for Self-ONN models have

83

been established, and the architectures achieving the best performance for the task
at hand could differ significantly from the architectures proposed in this thesis or
from any typical CNN architectures seen in literature. Possible ways of altering
the proposed architectures could be changing the number of layers in the network,
changing the values of the nonlinearity parameters Q, removing some or all of the
pooling operations, instead increasing the stride of the neural layers to reduce spatial
dimensionality, or changing the kernel size or number of channels of the layers.
Whether or not these changes would yield better results for the task at hand remains a
question to be researched.

84

8. CONCLUSIONS

This thesis presented a novel approach for remote photoplethysmograph signal
extraction based on self-organized operational neural networks. A literature review
of existing remote PPG extraction approaches and their applications as well as a
description of the recently proposed operational neural networks and self-organized
operational neural networks was also presented. The efficacy of the proposed approach
was evaluated on varied data, based on the accuracy of heart rate estimates calculated
from the extracted remote PPG signals, and Self-ONN models with varying depth
were compared against convolutional neural network models with corresponding
architectures as well as a typical unsupervised rPPG pipeline.

Based on the experimental results, the Self-ONN models were not found to improve
performance over their CNN counterparts based on the accuracy of HR estimates
calculated from the remotely extracted PPG signals. However, the Self-ONN models
were able to achieve a better fit of the train data compared to their parameter-equivalent
CNN counterparts based on the learning criterion, which indicates higher learning
ability. As such, the poorer results achieved by Self-ONN models on test data based
on HR estimation accuracy likely stem from problems observed in the train setup as
opposed to any inherent lack of suitability to the problem at hand.

The main issues with the training setup observed during the experiments stem from
the problematic features in the PPG signals used in training, such as strong diastolic
peaks and higher harmonic components, which the neural network models learned to
replicate due to being trained on the entire PPG signal waveform. The Self-ONN
models were more affected by these problems compared to CNN alternatives due to
their higher learning ability. In addition, the results also demonstrate the overfitting
phenomenon typical of supervised approaches, resulting from the homogeneous nature
of the set of data used in training the neural network models. The phenomenon was
apparent from the supervised Self-ONN and CNN models being outperformed by the
tested unsupervised pipeline when evaluated on data which differs significantly from
the data used in training.

Despite being unable to outperform CNN-based approaches as measured by heart
rate estimation accuracy, the proposed Self-ONN approach for rPPG extraction is
nonetheless a promising proof-of-concept which could be improved upon significantly
— primarily by altering the training setup. If the training setup were defined so that the
features which are unnecessary for the end goal of HR estimation are ignored, a Self-
ONN approach could even hold potential for state-of-the-art performance due to the
superior learning performance of Self-ONNs over the current state-of-the-art in CNN
models, which was also demonstrated in these experiments. In future research, the
performance of the proposed approach could also be improved further by employing
some of the strategies for combatting overfitting discussed in the discussion chapter
and exploring alternative training strategies and model architectures.

85

9. REFERENCES

[1] Kiranyaz S., Ince T., Iosifidis A. & Gabbouj M. (2020) Operational neural
networks. Neural Computing and Applications 32, pp. 6645–6668.

[2] Kiranyaz S., Malik J., Abdallah H.B., Ince T., Iosifidis A. & Gabbouj M. (2021)
Self-organized operational neural networks with generative neurons. Neural
Networks 140, pp. 294–308.

[3] Yu Z., Li X. & Zhao G. (2019) Remote photoplethysmograph signal
measurement from facial videos using spatio-temporal networks. arXiv preprint
arXiv:1905.02419 .

[4] Álvarez Casado C. & Bordallo López M. (2022), Face2ppg: An unsupervised
pipeline for blood volume pulse extraction from faces. URL: https://
arxiv.org/abs/2202.04101.

[5] Allen J. (2007) Photoplethysmography and its application in clinical
physiological measurement. Physiological measurement 28, p. R1.

[6] Elgendi M. (2012) On the analysis of fingertip photoplethysmogram signals.
Current cardiology reviews 8, pp. 14–25.

[7] Tamura T. (2019) Current progress of photoplethysmography and spo2 for health
monitoring. Biomedical engineering letters 9, pp. 21–36.

[8] Tamura T., Maeda Y., Sekine M. & Yoshida M. (2014) Wearable
photoplethysmographic sensors—past and present. Electronics 3, pp. 282–302.

[9] Castaneda D., Esparza A., Ghamari M., Soltanpur C. & Nazeran H. (2018)
A review on wearable photoplethysmography sensors and their potential future
applications in health care. International journal of biosensors & bioelectronics
4, p. 195.

[10] Verkruysse W., Svaasand L.O. & Nelson J.S. (2008) Remote plethysmographic
imaging using ambient light. Optics express 16, pp. 21434–21445.

[11] Sun Z., Junttila J., Tulppo M., Seppänen T. & Li X. (2022) Non-contact atrial
fibrillation detection from face videos by learning systolic peaks. IEEE Journal
of Biomedical and Health Informatics .

[12] Yu Z., Li X. & Zhao G. (2021) Facial-video-based physiological signal
measurement: Recent advances and affective applications. IEEE Signal
Processing Magazine 38, pp. 50–58.

[13] Wang W., Stuijk S. & De Haan G. (2015) A novel algorithm for remote
photoplethysmography: Spatial subspace rotation. IEEE transactions on
biomedical engineering 63, pp. 1974–1984.

[14] Li X., Chen J., Zhao G. & Pietikainen M. (2014) Remote heart rate measurement
from face videos under realistic situations. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4264–4271.

https://arxiv.org/abs/2202.04101
https://arxiv.org/abs/2202.04101

86

[15] Asthana A., Zafeiriou S., Cheng S. & Pantic M. (2013) Robust discriminative
response map fitting with constrained local models. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3444–3451.

[16] Tomasi C. & Kanade T. (1991) Detection and tracking of point. Int J Comput Vis
9, pp. 137–154.

[17] Tarvainen M.P., Ranta-Aho P.O. & Karjalainen P.A. (2002) An advanced
detrending method with application to hrv analysis. IEEE transactions on
biomedical engineering 49, pp. 172–175.

[18] Welch P. (1967) The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Transactions on audio and electroacoustics 15, pp. 70–73.

[19] Soleymani M., Lichtenauer J., Pun T. & Pantic M. (2011) A multimodal database
for affect recognition and implicit tagging. IEEE transactions on affective
computing 3, pp. 42–55.

[20] Poh M.Z., McDuff D.J. & Picard R.W. (2010) Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation. Optics
express 18, pp. 10762–10774.

[21] Kwon S., Kim H. & Park K.S. (2012) Validation of heart rate extraction
using video imaging on a built-in camera system of a smartphone. In: 2012
annual international conference of the IEEE engineering in medicine and biology
society, IEEE, pp. 2174–2177.

[22] Poh M.Z., McDuff D.J. & Picard R.W. (2010) Advancements in noncontact,
multiparameter physiological measurements using a webcam. IEEE transactions
on biomedical engineering 58, pp. 7–11.

[23] Balakrishnan G., Durand F. & Guttag J. (2013) Detecting pulse from head
motions in video. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3430–3437.

[24] Boccignone G., Conte D., Cuculo V., d’Amelio A., Grossi G. & Lanzarotti R.
(2020) An open framework for remote-ppg methods and their assessment. IEEE
Access 8, pp. 216083–216103.

[25] Wang W., den Brinker A.C., Stuijk S. & de Haan G. (2017) Algorithmic
principles of remote ppg. IEEE Transactions on Biomedical Engineering 64, pp.
1479–1491.

[26] De Haan G. & Jeanne V. (2013) Robust pulse rate from chrominance-based rppg.
IEEE Transactions on Biomedical Engineering 60, pp. 2878–2886.

[27] Lewandowska M., Rumiński J., Kocejko T. & Nowak J. (2011) Measuring
pulse rate with a webcam—a non-contact method for evaluating cardiac activity.
In: 2011 federated conference on computer science and information systems
(FedCSIS), IEEE, pp. 405–410.

87

[28] Pilz C.S., Zaunseder S., Krajewski J. & Blazek V. (2018) Local group invariance
for heart rate estimation from face videos in the wild. In: Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 1254–
1262.

[29] De Haan G. & Van Leest A. (2014) Improved motion robustness of remote-ppg
by using the blood volume pulse signature. Physiological measurement 35, p.
1913.

[30] Yang Y., Liu C., Yu H., Shao D., Tsow F. & Tao N. (2016) Motion robust remote
photoplethysmography in cielab color space. Journal of biomedical optics 21, pp.
117001–117001.

[31] Stricker R., Müller S. & Gross H.M. (2014) Non-contact video-based pulse
rate measurement on a mobile service robot. In: The 23rd IEEE International
Symposium on Robot and Human Interactive Communication, IEEE, pp. 1056–
1062.

[32] Heusch G., Anjos A. & Marcel S. (2017) A reproducible study on remote heart
rate measurement. arXiv preprint arXiv:1709.00962 .

[33] Bobbia S., Macwan R., Benezeth Y., Mansouri A. & Dubois J. (2019)
Unsupervised skin tissue segmentation for remote photoplethysmography.
Pattern Recognition Letters 124, pp. 82–90.

[34] Shi J., Alikhani I., Li X., Yu Z., Seppänen T. & Zhao G. (2019) Atrial fibrillation
detection from face videos by fusing subtle variations. IEEE Transactions on
Circuits and Systems for Video Technology 30, pp. 2781–2795.

[35] Li X., Alikhani I., Shi J., Seppanen T., Junttila J., Majamaa-Voltti K., Tulppo
M. & Zhao G. (2018) The obf database: A large face video database for remote
physiological signal measurement and atrial fibrillation detection. In: 2018 13th
IEEE international conference on automatic face & gesture recognition (FG
2018), IEEE, pp. 242–249.

[36] Kiranyaz S., Ince T., Iosifidis A. & Gabbouj M. (2017) Generalized model
of biological neural networks: progressive operational perceptrons. In: 2017
International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 2477–
2485.

[37] Kiranyaz S., Ince T., Iosifidis A. & Gabbouj M. (2017) Progressive operational
perceptrons. Neurocomputing 224, pp. 142–154.

[38] Everingham M., Van Gool L., Williams C.K.I., Winn J. & Zisserman A.
(2010) The pascal visual object classes (voc) challenge. International Journal of
Computer Vision 88, pp. 303–338.

[39] Jain V. & Learned-Miller E. (2010) Fddb: A benchmark for face detection in
unconstrained settings. Tech. rep., UMass Amherst technical report.

88

[40] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.Y. & Berg A.C.
(2016) SSD: Single shot MultiBox detector. In: Computer Vision – ECCV 2016,
Springer International Publishing, pp. 21–37. URL: https://doi.org/10.
1007%2F978-3-319-46448-0_2.

[41] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin
Z., Gimelshein N., Antiga L. et al. (2019) Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32.

[42] Malik J., Kiranyaz S. & Gabbouj M. (2020) Fastonn–python based open-
source gpu implementation for operational neural networks. arXiv preprint
arXiv:2006.02267 .

[43] Malik J., Kiranyaz S. & Gabbouj M. (2021) Self-organized operational neural
networks for severe image restoration problems. Neural Networks 135, pp. 201–
211.

[44] scipy.signal.correlate — scipy v1.11.3 manual. URL: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.signal.
correlate.html.

[45] Loshchilov I. & Hutter F. (2017), Decoupled weight decay regularization. URL:
https://arxiv.org/abs/1711.05101.

[46] Makowski D., Pham T., Lau Z.J., Brammer J.C., Lespinasse F., Pham
H., Schölzel C. & Chen S. (2021) Neurokit2: A python toolbox for
neurophysiological signal processing. Behavior research methods 53, pp. 1689–
1696.

[47] Van Gent P., Farah H., Van Nes N. & Van Arem B. (2019) Heartpy: A novel heart
rate algorithm for the analysis of noisy signals. Transportation research part F:
traffic psychology and behaviour 66, pp. 368–378.

[48] Legrand N. & Allen M. (2022) Systole: A python package for cardiac signal
synchrony and analysis. Journal of Open Source Software 7, p. 3832.

https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
https://arxiv.org/abs/1711.05101

	Introduction
	Remote Photoplethysmography
	Photoplethysmography
	Unsupervised methods
	Supervised methods
	Data sets suitable for remote PPG
	Oulu Bio-Face (OBF)
	COHFACE
	LGI-PPGI-Face-Video-Database
	MAHNOB-HCI

	Operational Neural Networks
	background and motivation
	theoretical foundation
	training with backpropagation

	implementation
	Applications
	Advantages and limitations
	Self-organized operational neural networks
	Generative neurons
	Forward propagation and backpropagation for Self-ONNs
	Applications and Performance
	Advantages and limitations

	Implementation
	Materials
	preprocessing

	Methods

	Experimental setup
	Training the neural network models
	Data
	Loss Function
	Train setup
	Training results

	extracting remote PPG signals from the test data
	extracting heart rates
	evaluation criteria

	Results and analysis
	Performance on OBF
	Performance on COHFACE
	Performance on LGI-PPGI

	Further Discussion
	Efficiency of ONN models against CNN models
	Recognized problems and limitations
	Neurokit peak detection
	Welch's method

	Future works

	Conclusions
	REFERENCES

