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A B S T R A C T   

This paper seeks to identify the most unfavourable areas of a city in terms of high temperatures and the absence 
of green infrastructure. An automatic methodology based on remote sensing and data analysis has been devel
oped and applied in sixteen Spanish cities with different characteristics. Landsat-8 satellite images were selected 
for each city from the July-August period of 2019 and 2020 to calculate the spatial variation of land surface 
temperature (LST). The Normalized Difference Vegetation Index (NDVI) was used to determine the abundance of 
vegetation across the city. Based on the NDVI and LST maps created, a k-means unsupervised classification 
clustering was performed to automatically identify the different clusters according to how favourable these areas 
were in terms of temperature and presence of vegetation. A Disadvantaged Area Index (DAI), combining both 
variables, was developed to produce a map showing the most unfavourable areas for each city. Overall, the 
percentage of the area susceptible to improvement with more vegetation in the cities studied ranged from 13 % 
in Huesca to 64–65 % in Bilbao and Valencia. The influence of several factors, such as the presence of water 
bodies or large buildings, is discussed. Detecting unfavourable areas is a very interesting tool for defining future 
planning strategy for green spaces.   

1. Introduction 

Urban areas face serious challenges due to rapid urbanization and 
population growth in cities. Global warming and urbanization can in
crease temperatures in and around cities, exacerbating the Urban Heat 
Island Effect (UHI), especially during heat waves (Santamouris, 2013). 
The UHI is a climatic phenomenon consisting of higher urban temper
atures developing in an urban area, compared to the surrounding sub
urban and rural areas. This has a significant impact on energy 
consumption and the urban environment (Santamouris et al., 2007). It is 
the most documented climate change phenomenon and has been studied 
in detail in numerous cities worldwide (Imhoff et al., 2010; Theeuwes 
et al., 2017; Tran et al., 2006). 

The UHI is related to the positive heat balance created in the urban 
environment as the heat generated there (due to the high absorption of 
solar radiation and anthropogenic heat) is trapped in urban structures. 

This situation is exacerbated by greenhouse gases and the lack of green 
spaces (Susca et al., 2011). In this regard, numerous scientists propose 
increasing urban vegetation as a possible UHI mitigation strategy, since 
numerous studies have established the correlation between an increase 
in green areas and a reduction in local temperature (Qiu et al., 2013; 
Susca et al., 2011; Takebayashi and Moriyama, 2007). 

An important mechanism for cities to adapt and improve their 
resilience is to redesign their infrastructures and increase the role of the 
urban green infrastructure (UGI). The UGI includes public parks, nature 
reserves, forests, streams, greenways and walkways, community gar
dens, rain gardens, and green roofs (Wolch et al., 2014). In fact, any 
outdoor space that is partially or entirely covered with vegetation such 
as grass, shrubs, trees, or other types of vegetation is considered to make 
up the UGI (Environmental Protection Agency, 2014). 

The UGI is an important feature of cities that provides critical 
ecosystem services such as mitigating global warming and reducing 
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atmospheric pollution (Gupta et al., 2012; Liu and Russo, 2021). 
Furthermore, the UGI benefits include the provision of environmental 
requirements, such as fresh water (Yang et al., 2015), food production 
(Grafius et al., 2020), recreation and aesthetic pleasure (Grunewald 
et al., 2017; Wang et al., 2019). Additionally, although often over
looked, the UGI can make a major contribution to the economic and 
social development of cities (Levent and Nijkamp, 2017) and increase 
the quality of life of their citizens (Giannico et al., 2021). 

The use of satellite imagery to study climatic phenomena or UGI 
distributions on a city scale is very helpful. According to Shahtahmas
sebi et al. (2021) the number of studies focusing on mapping has 
increased rapidly over the last decade. Remote sensing technologies can 
provide repeated and complete coverage at different spatial scales and 
seasons. They minimize the need for field survey, as high spatial reso
lution imagery and free data access policies make remote sensing a 
valuable tool (Zhu et al., 2019), even in highly heterogeneous and 
complex urban settings. Programmes such as Copernicus (European 
Commission, 2014) and Landsat (NASA, 1972) provide both historical 
time-series and recently acquired data. 

Different analytical techniques can be used in the remote sensing of 
the UGI, such as object-based image analysis or land cover indices. They 
typically use combinations of different wave bands from multispectral 
satellite sensors. The Normalized Difference Vegetation Index (NDVI) is 
the best-known and most widely applied index for mapping the UGI 
(Xue and Su, 2017), among land cover indices, and useful to differen
tiate green and non-green regions within urban areas. 

Although traditional methods for measuring air temperature at 
meteorological stations offer the advantage of obtaining accurate data, 
the density of the meteorological station distribution is limited, leading 
to poor coverage. On the contrary, the remote sensing method achieves 
excellent synchronicity and spatial coverage, which overcomes the 
weakness of the traditional method (Du et al., 2017). 

Remotely sensed thermal infrared imagery retrieved from satellites 
can be used to calculate the land surface temperature (LST), which is 
regarded as an indicator of the air temperature close to the surface 
(Schwarz et al., 2012; Voogt and Oke, 2003). In fact, Herrera-Gomez 
et al. (2017) observed a high correlation between the LST obtained by 
Landsat 7 images and ambient temperature data retrieved from weather 
stations located at different sites in Seville (Spain). 

Estoque et al. (2017) found a significantly strong correlation be
tween mean LST and the density of impervious surface (positive) and 
green space (negative) along the urban-rural gradients of the cities 
studied, depicting a typical UHI profile. Their study sought to examine 
the relationship between land surface temperature (LST) and the 
abundance and spatial pattern of impervious surface and green space in 
three metropolitan areas using Landsat-8 OLI/TIRS data. On average, 
the mean LST of the impervious surfaces was around 3 ◦C higher than 
that of the green space. Other authors also reported the inverse rela
tionship between NDVI (as a measure of the abundance of vegetation) 
and LST (Herrera-Gomez et al., 2017; Huang and Ye, 2015; Susca et al., 
2011; Yue et al., 2007). The strength of the correlations depends on the 
season, time of day, and land cover (Marzban et al., 2018). Furthermore, 
the characteristics, abundance and spatial distribution of the UGI in
fluence the effectiveness in mitigating the UHI (Park et al., 2017; Yang 
et al., 2017), which makes the characterization of existing green areas in 
a city important. 

In this context, different studies in recent years have assessed the role 
that vegetation plays in the decrease in temperatures in urban envi
ronments. Although some rely on remote sensing (e.g., Du et al., 2017; 
Estoque et al., 2017; Reis and Lopes, 2019), the data acquisition and 
result process was not automated. Furthermore, as the urban space and 
resources to create new UGI are limited, determining the most unfav
ourable areas of a city in terms of high temperatures and the absence of 
UGI is essential and constitutes the main objective of this paper. The 
main innovations presented are (1) the identification of those unfav
ourable zones and (2) the automation of the process. 

Therefore, in order to meet these two challenges, a new methodology 
for the automatic retrieval of information at municipality level from 
satellite images has been applied to sixteen Spanish cities with different 
characteristics in order to verify its feasibility and applicability. In them, 
urban areas were evaluated in terms of their temperatures and the 
presence of vegetation. The most unfavourable locations in each of the 
cities studied were identified using that information. 

2. Methods 

2.1. Description of the cities studied and selection criteria 

Sixteen Spanish cities were selected for the study (Table 1) in order 
to cover several locations of Spanish geography with different climates, 
including cities of various sizes and quantity of UGI. According to their 
climatic characteristics, they were categorised into four groups: (I) 
inland cities with hot summers, (II) Mediterranean cities with coast, (III) 
northern cities close to the sea, and (IV) northern cities far from the sea. 
Cities in groups I and II are characterised by a prolonged warm period 
during spring and summer, though the former reaches very high tem
peratures. In contrast, milder ones, with a higher relative humidity, are 
observed in the latter. Cities in group III have lower temperatures in 
summer. Cities in group IV also present lower temperatures than those in 
the south, although they can reach high temperatures (over 30º) at 
specific time periods. 

2.2. Data retrieval process 

Four or five Landsat-8 satellite images (depending on their avail
ability) were downloaded from Earth Explorer (USGS, Department of the 
Interior, United States, http://earthexplorer.usgs.gov) for each of the 
cities. They were selected in the July-August period of 2019 and 2020, 
from among those with less than 5 % cloud cover that showed temper
atures closer to the average of the month in each city. The dates of the 
images selected in the different cities studied were not the same, and 
heatwaves were avoided in order to prevent unreliable results. The 
images, with a pixel size of 30 m x 30 m, were cropped to fit the area of 
interest and the desired UTM coordinates introduced. After being pro
cessed, some of the images had to be discarded due to corrupted data or 
missing information. However, at least three images per city were finally 
used. 

Additional images in autumn, winter, and spring were selected for 
two cities (Malaga and Seville), in order to assess the methodology (and 
detect discrepancies) not only in the most unfavourable dates, but all 
over a complete year. 

The data on the green infrastructure and the observed temperatures 
was retrieved and computed from the images of each city using the R 
programming language (R Core Team, 2021). The R libraries used were 
raster, dplyr, rgdal, factoextra, NBClust, sp, and ggplot2, inter alia. 
Therefore, the spatial distribution of these two variables was obtained. 

2.3. Vegetated areas detection and classification 

The Normalized Difference Vegetation Index (NDVI) was used to 
identify the areas covered by vegetation and its amount. The NDVI is a 
numerical index that indicates the presence or absence of vegetation, as 
its value depends on the amount and physiological state of the plant 
cover (Liao et al., 2005; Tan et al., 2010). It varies from 0.0 to 1.0, with 
water being below 0 (Chen et al., 2006; Small, 2010). 

The NDVI value for each pixel of the areas of interest in all cities was 
calculated as follows (Taufik et al., 2016):  

NDVI = (b5− b4) (b5+b4)-1                                                              (1) 

where b5 is the near-infrared band and b4, the red band. 
There are different classifications according to the NDVI values in 
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terms of vegetation abundance. For example, Taufik et al. (2016) made 
three categories: water (NDVI<0.1), non-vegetation (0.2–0.5) and 
vegetation (0.6–0.9). Farina (2012) determined for Seville (one of the 
cities used in our study) that pixels with positive NDVI values lower than 
0.2 included man-made materials with no or sparse vegetation. NDVI 
values higher than 0.5 were considered fully vegetated, while NDVI 
values between 0.2 and 0.5 corresponded to a mixture of man-made 
materials and vegetation. Similarly, Hashim et al. (2019) established 
the following categories: non-vegetation (<0.2), low vegetation 
(0.2–0.5), and high vegetation (>0.5). For our study, an intermediate 

category corresponding to moderate vegetation was included according 
to Fusami et al. (2020). Therefore, values obtained were classified as 
water (NDVI < 0), no vegetation (0 < NDVI ≤ 0.2), low vegetation (0.2 
< NDVI ≤ 0.4), moderate vegetation (0.4 < NDVI ≤ 0.6) and dense 
vegetation (0.6 < NDVI ≤ 1). 

Finally, in order to validate the results obtained with this procedure, 
the vegetation maps generated in two cities (Malaga and Seville) were 
compared with the maps of Land Cover/Use classes established in the 
Urban Atlas Copernicus project (https://land.copernicus.eu/local/ 
urban-atlas). For that, the Urban Atlas 2018 maps for these cities were 

Table 1 
Selected cities and their characteristics: Inhabitants, size of the urban area studied, green areas (surface and area per inhabitant) (Holidu, 2019), climatic area ac
cording to the Spanish Technical Building Code (“Código Técnico de la Edificación”, 2020) and average temperature in summer (AEMET, n.d.).  

Group City Inhabitants Urban Area (Km2) Green areas per inhabitanta (m2/inhab) Climatic areab Average temp.c (ºC) 

I Madrid 3183 K  274  15.78 C  26.9 
Seville 689 K  75  11.27 B  28.6 
Murcia 443 K  9.7  3.38 B  26.6 
Ciudad Real 75 K  9  31.44 C  27.8 
Alcobendas 116 K  18.7  15.13 C  26.7 

II Barcelona 1621 K  76.8  5.53 C  24.3 
Valencia 788 K  73  4.19 B  26.8 
Malaga 569 K  93.3  2.92 A  27.3 
Palma de Mallorca 416 K  27.7  3.34 B  26.2 

III Bilbao 345 K  17.5  5.74 C  21.6 
Vigo 293 K  5.9  3.65 C  20.5 
Vitoria 247 K  28.7  26.76 D  19.4 
Santiago de Compostela 96 K  10.1  23.61 C  18.7 

IV Zaragoza 665 K  47.6  9.02 C  26.7 
Huesca 220 K  2.9  5.69 C  25.1 
Lleida 138 K  10.2  10.13 C  25.8  

a To calculate the ratio of green areas per inhabitant, data were extracted from OpenStreetMap (OSM), considering the parks in each city labelled as "leisure=park" 
(Holidu, 2019) 

b Classification according to the Spanish Technical Building Code (“Código Técnico de la Edificación”, 2020) 
c Calculated as the mean of average temperatures in July and August in 2019 and 2020 for each city 

Fig. 1. Process for determining the most unfavourable areas.  
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downloaded and the layers corresponding to the following land uses 
(compatible with the inclusion of vegetation) were isolated: Green urban 
areas (14100), Forests (31000), Herbaceous vegetation associations 
(32000), Permanent crops (22000), and Pastures (23000). Lastly, a map 
overlapping the information of both vegetation (derived from NDVI 
values classification) and land uses (from Urban Atlas) was created to 
show the degree of coincidence. It should be noted that this last step was 
manually performed and was not part of the automated methodology. 

2.4. Temperature calculation 

A Raster map with the LST was created for each Landsat image of the 
different cities. The Landsat-8 OLI (Operational Land Imager) and TIRS 
(Thermal Infrared Sensor) Landsat-8 band data was therefore converted 
to Top of Atmospheric (TOA) spectral radiance using the rescaling fac
tors provided in the metadata file. The TOA spectral radiance was then 
converted to brightness temperature to obtain LST following the pro
cedure described by Mejbel Salih et al. (2018). The Land Surface 
Emissivity (computed from NDVI values) was also used. 

2.5. Determination of the most unfavourable areas 

Fig. 1 shows the complete process with the different steps performed 
The LST and NDVI maps obtained for each city were used to generate a 
further two maps prior to determine the most unfavourable areas in 
terms of the lower amount of vegetation present and higher 
temperatures. 

An indicator was developed for the first to quantify the ‘degree of 
disadvantage’ of each region. Therefore, the Disadvantaged Area Index 
(DAI) was again calculated for each pixel as follows: 

DAIi =

(

1 −
tanh(NDVIi)

tanh(1)

)

⋅tanh
(

LSTi − LSTav

LSTsd

)

(2)  

where: 
DAIi is the Disadvantaged Area Index for pixel i. 
NDVIi is the Normalized Difference Vegetation Index of pixel i. 
LSTi is the Land Surface Temperature of pixel i. 
LSTav is the average value of the Land Surface Temperature of every 

pixel in the image. 
LSTsd is the standard deviation of the Land Surface Temperature 

values of every pixel in the image. 
The LST of pixels with NDVI < 0 (water) was not considered to 

calculate LSTav and LSTsd. 
This index is intended to give low ratings to locations with more 

vegetation (high NDVI) and cooler temperatures than other areas. High 
DAI values are obtained when higher temperatures are observed in a 
location with little or no vegetation. The hyperbolic tangent function 
assures that the DAI value for nonnegative NDVI values is between − 1 
and 1. The sign of the DAI in a given pixel will correspond to the tem
perature in that pixel in relation to the region’s mean temperature. 

Based on the NDVI and LST maps, a k-means unsupervised classifi
cation clustering was likewise performed to automatically identify the 
different clusters according to how favourable these areas were in terms 
of temperature and presence of UGI. For this methodology, the number 
of clusters must be decided a priori and three clusters were therefore set. 
One out of those three clusters grouped the most unfavourable areas, 
another the most favourable, and the last was for intermediate zones. 

Although both methods (DAI and k-means) use information about 
vegetation (NDVI) and temperature (LST), the former combines infor
mation using an ad hoc index designed by experts, and the latter dis
covers relationships between similar points without any prior 
knowledge of the experts (non-supervised method). 

Once the clustering process determines the different regions that 
share common characteristics, those regions need a semantic labelling 
(more favourable areas, favourable areas and unfavourable areas). Such 

labelling is given using DAI information. 
To finally determine the most disadvantaged areas, the DAI and 

clustering information are combined. First, only points determined 
within the cluster labelled as unfavourable are considered. Then for 
those points, the DAI value is used. That is, if a point is not included in an 
unfavourable area, it is filtered and not considered because it is not 
relevant to identify unfavourable points. These DAI values calculated for 
the pixels in the most unfavourable cluster were presented in a final 
map. A kmz file was created for each city and imported to Google Earth 
Pro 7.3.4., so the DAI map over layed an aerial image. 

3. Results 

The LST and NDVI maps obtained for the studied cities are shown in 
the Supplementary Information (Appendix A). Only one map per city 
(both for LST and NDVI) is presented as an example. Each of them is 
accompanied by a histogram showing the distribution of values. 

In addition, a map per city was created showing the distribution of 
zones in each category (moderate, low, or no vegetation and water) 
(Appendix A). Furthermore, Table 2 shows the surface and percentage of 
the total area of the city in each of the said categories and those corre
sponding to the areas determined as the most unfavourable. The area 
corresponding to dense vegetation was negligible, so it was not 
considered. 

Fig. 2 shows maps with the most unfavourable areas in each city 
overlapped with an aerial view (the maps are presented in greater detail 
in Appendix B). The DAI value within those areas is indicated using a 
colour code, with red zones corresponding to a higher DAI. 

4. Discussion 

Overall, the percentage of the area susceptible to improvement with 
more vegetation in the cities studied changed substantially from one city 
to another. For example, only 13 % of Huesca’s total area was identified 
as unfavourable, while Bilbao and Valencia are well over 60 %. 

It should be noted that having a larger unfavourable surface area (or 
a higher proportion of the city catalogued as such) does not mean that 
the city has fewer UGIs or a worse heat problem compared to another 
with less unfavourable areas. This happens because both DAI and k- 
means clustering are based on the complete dataset of that particular 
city, which is somehow ‘normalised’. Therefore, cities such as Santiago 
de Compostela, with a high amount of UGIs and not many areas with 
extreme temperatures, show a higher percentage of unfavourable areas 
than other such as Ciudad Real. Hence, this methodology is not meant to 
be a comparison between cities, but a tool to decide the best location for 
the UGI within each urban area. In any case, the NDVI histograms pre
sented in Appendix A for each city are a good indicator of the abundance 
of vegetation in them and could be used to compare cities or determine 
which one is in more need of introducing green infrastructure. 

In terms of deciding where to locate the new UGI, and given that the 
cooling effects of green areas can be observed within a maximum dis
tance between 35 and 840 m (Lin et al., 2015), it is important to 
consider the landscape connectivity because it can modify the effects of 
green areas on variations in LST (Sun et al., 2018). This fact can be 
observed, for instance, in Alcobendas, where the south-east of the city 
has very high UGI coverage with good connectivity, which produces a 
cooling effect with differences of even 10ºC compared to the other areas 
of the city (Appendix A). Vitoria and Santiago de Compostela are also 
examples of good UGI connectivity. The same was observed by Masoudi 
and Tan (2019) in Singapore and Chen et al. (2014) in Beijing, where 
they found an important effect of the spatial pattern (size, shape 
complexity, fragmentation, and connectivity of the UGI). 

In many areas identified as unfavourable, there is no space available 
for including parks, gardens, or even trees. In those cases, the role of 
building-integrated vegetation (i.e., green roofs and vertical greening 
systems) to increase green areas and ensure connectivity is fundamental 
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(Herrera-Gomez et al., 2017). 
Not only does UGI affect the temperature in a particular area of the 

city, but also other factors come into play. The influence of the presence 
of water bodies is evident (Cai et al., 2018; Li et al., 2022). Unfavourable 
areas tend to be far from the coastline in Malaga, Palma de Mallorca and 
Barcelona, but, curiously, not in Valencia (where vast impervious, 
non-vegetated zones are observed near the sea). The influence of the UGI 
on the LST likewise tends to be higher far from the coast than near it 
(Ossola et al., 2021). 

Dynamic blue spaces such as rivers can absorb radiation by advection 
and release energy out of the urban system (Hathway and Sharples, 
2012). For example, the most unfavourable areas are not close to the 
River Guadalquivir in Seville or the River Ebro in Zaragoza. Exceptions 
to this can be seen, for example, in Lleida. Although the favourable effect 
on the urban temperatures provided by the river crossing the city and 
the large riverside forest located in the north-east sector of the city is 
perfectly observed, some very unfavourable areas are encountered near 
the river and the riverside forest. These areas correspond mainly to two 
urban typologies: (a) zones with large, paved surfaces (e.g., large 
squares, supermarket parking lots, school yards, etc) and (b) groups of 
large industrial buildings with metal or gravel-ballasted roofs, that are 
flat or slightly sloped. As shown in Fig. 3, neither the river nor the river 
forest can compensate for this negative effect on urban temperatures. 
Therefore, more trees should be planted on large paved plots and in
dustrial buildings should be encouraged to integrate green roofs or 
vertical greening systems. This is also applicable to large buildings in the 
city centre, such as train stations (e.g., Atocha Station in Madrid or Santa 
Justa Station in Seville). 

Industrial areas are usually included in the group of most disad
vantaged zones in all the cities studied, as they are formed by large 
buildings constructed with materials that accumulate heat and sur
rounded by impervious areas with very little vegetation. For example, 
the few unfavourable areas encountered in Vitoria and Huesca precisely 
have those characteristics, in contrast to the rest of the city where the 
UGI configuration is very spread and connected (Fig. 4). 

In some cases, the unfavourable zones are not in the city centre but in 
the outskirts where there are bare areas without buildings or vegetation. 
They usually have dark, dry soils that accumulate more temperature. 
This happens, for instance, in some areas of Madrid, Ciudad Real or 
Malaga. These bare areas present an enormous opportunity to create 
green belts around the cities. In these cases, the type (and colour) of the 
surface clearly affects their temperature (Aletba et al., 2021). As another 
example, one of the areas with a higher DAI value in Valencia comprises 
several sports courts (none of which have natural grass). 

Not only is the location of the UGI important, but there are also other 
variables to be considered. The type of vegetation used and the density 
are key factors affecting the effectiveness of reducing urban tempera
ture. Different cooling benefits are generated the different urban vege
tation types as in each of them a certain effect prevails (e.g., cooling by 
evapotranspiration, shading) (Su et al., 2022). For example, a study 
carried out in 293 European cities (Schwaab et al., 2021) showed that 
urban trees were related to reductions in LST 2–4 times higher than the 
reduction in LST associated with treeless UGI. Differences in LST of 1.6 
ºC on average were observed between trees and lawns, especially on the 
days with insufficient water supply Liu et al. (2022) and Li et al. (2022) 
reported a cooling effect of dense trees ranging from − 6.2 ◦C to 
− 1.4 ◦C. 

Small patches of vegetation seem to have less effect on decreasing the 
temperature even when there is a high number compared to larger green 
areas. This was also observed by Liu et al. (2022) in Shijiazhuang 
(China). They concluded that larger patches of vegetation leading to a 
less fragmented landscape tend to reduce LST. This contrasts with a 
study performed in Adelaide (Australia) (Ossola et al., 2021) which 
showed that even though small patches of vegetation did not affect LST 
at city scale using a 2 m ground resolution, they decreased local LST by 
up to 6 ̊C during the day. This effect largely depended, however, on their 
location within the urban area. 

Furthermore, the state of the vegetation and the environmental 
conditions are important. For example, the cooling provided by vege
tation in dry climates can be reduced by limited evapotranspiration 
(Manoli et al., 2020) if adequate irrigation is not provided. 

4.1. Limitations of the study 

The fact that the results obtained applying this methodology rely on 
the satellite images selected by the user and fed to the system constitutes 
its main drawback. The final result might be affected if this selection is 
inadequate, or there is missing or incorrect information in many pixels 
(e.g., due to clouds). This selection will also affect the map with the 
unfavourable zones as the user can also determine which areas will be 
included in the analysis within a particular city. For example, if the user 
decides to exclude industrial areas, the DAI values might change in other 
parts of the city. 

Taking into account the dates of the satellite images used for the 
analysis is important. Only images during the summer were considered 
in our study, when the most unfavourable situation is expected. Obvi
ously, the results will be different if images taken during other seasons of 
the year are used, which can also affect the visualization of the DAI 

Table 2 
Surface and proportion over the total area in the different categories: Moderate vegetation, low vegetation, no vegetation, water, unfavourable areas.    

Surface (km2) proportion over the total area (%)  unfavourable area 
Group City water no 

vegetation 
low 
vegetation 

moderate 
vegetation 

total water no 
vegetation 

low 
vegetation 

moderate 
vegetation 

Surface 
(km2) 

Proportion 
(%) 

I Madrid 0.7 199 69.3 5 274 0.2 72.6 25.3 1.8 80.7 29.4 
Seville 1.4 60.5 12.4 0.7 75 1.8 80.7 16.5 1 25.8 34.3 
Murcia 0.1 7.8 1.7 0 9.7 0.7 81.1 17.8 0.4 3.1 32.5 
Ciudad Real 0 7.3 1.5 0 9 0.5 81.8 17.3 0.4 2.5 27.9 
Alcobendas 0.1 9 8.8 0.8 18.7 0.5 48.2 47 4.3 7.4 39.4 

II Barcelona 0.3 66.3 10.2 0 76.8 0.4 86.3 13.3 0 41.3 53.8 
Valencia 11.3 52.6 8.5 0.6 73 15.4 72.1 11.6 0.8 47.8 65.4 
Malaga 11.3 71.2 10.5 0.3 93.3 12.1 76.3 11.3 0.3 52.3 56.1 
Palma de 
Mallorca 

0 20 7 0.7 27.7 0.2 72.2 25.1 2.6 14.1 50.8 

III Bilbao 0.7 11.3 3.9 1.6 17.5 3.8 64.7 22.1 9.3 11.2 64.1 
Vigo 0 4.5 1.3 0.1 5.9 0.2 76.1 21.9 1.8 3.5 58.2 
Vitoria 0.4 17.8 8.6 2 28.7 1.3 61.9 30 6.9 7.6 26.3 
Santiago de 
Compostela 

0 4.3 3.9 1.9 10.1 0.1 42.8 38.6 18.3 4.2 42 

IV Zaragoza 0.6 34.8 11.5 0.6 47.6 1.3 73.1 24.2 1.3 19.8 41.7 
Huesca 0 2.4 0.5 0 2.9 0 80.5 18.7 0.7 0.4 13 
Lleida 0 6.7 2.8 0.7 10.2 0.4 65.9 27.3 6.4 6.1 59.6  
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maps. For instance, areas labelled as unfavourable in a DAI map ob
tained from images captured in summer can appear with vegetation in 
an aerial view of a city in winter. This happens because they are 
completely dry and without living vegetation in summer but have a 
natural green cover in winter. 

As an example, Appendix C shows the spatial distribution of land 
surface temperatures (LST), Normalized Difference Vegetation Index 
(NDVI), and unfavourable areas with the Disadvantaged Area Index 

(DAI) values for Seville and Malaga in the different seasons of 2020. 
Obviously, the LST maps totally differ in the different seasons, but the 
NDVI maps also change, showing higher NDVI values in more zones in 
winter and spring, which influences the location and number of unfav
ourable areas. This is common in cities with mild winters, such as Seville 
or Malaga, where there are few frost events and the vegetation does not 
stop growing in this season. Also, the number of perennial species used 
in public gardening is greater than that of deciduous species. In addition, 

Fig. 2. The most unfavourable areas are depicted in the aerial photograph of each of the cities studied. A reddish colour indicates more disadvantaged zones.  
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as there is more humidity in winter, many vacant lots are covered with 
natural grass, while in summer they hardly have any vegetation. This 
can be easily observed in the south-eastern part of Seville, where areas 
with high DAI (labelled as unfavourable) in summer and autumn, have 
low DAI in winter and spring (mainly due to higher NDVI values). 

The number of images considered to study the situation in a certain 
city is also important. Several images should be employed to make good 
use of the tool for urban planning, as a too low number of images could 
lead to unrepresentative results. However, though different seasons can 
be analysed, it is advisable to use images corresponding to the most 

Fig. 3. Aerial photograph of a region of Lleida including two of the most unfavourable areas circled in red (left) and the corresponding thermal image showing high 
temperatures in red and low in blue (right). 

Fig. 4. Details of the industrial areas catalogued as unfavourable in Vitoria (top) and Huesca (bottom).  
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unfavourable situations (that is, higher temperatures, usually in 
summer). 

In addition, the time of acquisition of the image is conditioned to the 
hour when the satellite is over a certain city. For that reason, evaluating 
the effect of UGI on LST during the evening or at night was not possible 
in our case. Images from other satellites passing at the desired time 
should have been used. 

The resolution of the images acquired by the satellite also greatly 
influences the results. For example, in our study, the NDVI values were 
usually not high, barely exceeding 0.6 (dense vegetation category). This 
can be explained due to the use of Landsat 30x30m images, given that it 
is difficult for a complete pixel of 900 m2 to be full of vegetation, and it 
frequently includes some areas without plants that lower the average 
NDVI of the pixel. As an example, Farina (2012) also reported low NDVI 
values with an average of 0.36 for green urban areas of Seville, using 
data acquired by Landsat 7. Some NDVI values would be higher in 
smaller pixels for images acquired by other satellites with higher reso
lution (e.g., Sentinel, Worldview) or aerial platforms (e.g., UAV), as 
shown by other authors in Seville (Herrera-Gomez et al., 2017) or in 
other locations (Nouri et al., 2014). This will affect the precision of the 
classification of the different areas (Labib and Harris, 2018). At the same 
time, the effects of UGI in LST will be less appreciated when using low 
resolution images (Liu et al., 2022). 

Precisely due to these issues with the resolution or the time of 
acquisition of the image, using vegetation indexes such as NDVI can be 
problematic in order to accurately quantify the vegetation present in an 
area. Therefore, combining these indexes with other methods such as 
ground truth collection, machine learning from aerial RGB images, or 
LIDAR can improve the results (Lafortezza and Giannico, 2019). 

In any case, in order to validate the identification of vegetated areas 
according to NDVI values performed in our study, we compared the 
green areas detected in two of the cities (Malaga and Seville) with the 
Land Cover/Use classes established in the Urban Atlas Copernicus 
project (Appendix D). As observed, the level of coincidence between the 
identified green areas and the land uses corresponding to the existence 
of vegetation is high. In both cities used as examples, there are addi
tional areas catalogued as green that are not within the land uses 
considered. However, in most cases, they correspond to zones with many 
street trees or locations devoted to sport facilities (such as golf courses) 
or urban agriculture. 

The methodology used serves as a tool to consider which areas are 
more in need of including green spaces. Within the resulting unfav
ourable zones, other factors should be considered, such as space avail
ability, land use, or existing constructions (and the feasibility of 
integrating vegetation on them). 

5. Conclusions 

A methodology was developed for the use of satellite images to 
identify which parts of a city are in greater need of vegetation due to 
excessive temperatures and lack of green spaces. It was applied to 
sixteen Spanish cities with different characteristics where the most 
unfavourable areas were determined and showed on a map. The calcu
lation of the Disadvantaged Area Index offers an indicator that allows 
the degree of unfavorability to be defined. 

In a context of limited resources to increase vegetation in cities, 
detecting unfavourable areas constitutes a very interesting tool for 
public administrations, municipal policy makers and urban planners to 
define the future planning strategy for green spaces in order to decide 
which locations should be prioritised to be vegetated in a city. In this 
sense, the usefulness of the information provided by the DAI map is 
clear, since it allows those that are really much more unfavourable, 
within the critical areas, to be detected. 
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