
Sustainable Cities and Society 

Volume 51, November 2019, 101695 

1 

 

Predictive models for airtightness in social housing in a Mediterranean region 1 

Jesica Fernández-Agüera1, Samuel Domínguez-Amarillo1*, Juan José Sendra1, Rafael 2 
Suarez1 3 

1Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica 4 
Superior de Arquitectura, Universidad de Sevilla, Spain. jfernandezaguera@us.es; 5 
jsendra@us.es; rsuarez@us.es;  6 

*sdomin@us.es, Escuela Tecnica Superior de Arquitectura, Avenida de Reina Mercedes, 7 
nº2, 41014 España. 8 

Abstract  9 

This article describes two models developed to predict airtightness in multifamily buildings in a 10 
Mediterranean region. They are designed to enable city planners, architects and engineers to 11 
estimate airtightness in homes built from 1980 to date (predictive model 1) or prior to 1979 12 
(predictive model 2), when the first domestic energy conservation regulations entered into 13 
effect. They are based on a series of readily accessible parameters such as winter severity, 14 
envelope exposure, presence of a bathroom window and façade type. The estimated n50 data 15 
can be used with energy certification software, which presently envisages the same, non-16 
experimentally quantified mean value for all types of housing. They can also be entered into 17 
energy and comfort simulation programs to predict energy consumption and expected indoor 18 
temperatures. 19 

Keywords: Airtightness, residential buildings, blower door test, air infiltration, southern Europe, 20 
predictive model, clustering 21 

1. Introduction  22 

Spain’s 25 million homes account for 17 % (=14 865 kTep) of the country’s yearly energy 23 
consumption and 25 % (=6 025 kTep) of its electric power consumption. Further to European 24 
guidelines, national legislation presently in place in Spain and other Mediterranean countries 25 
establishes a legally binding target of 80 % lower carbon emissions in 2050 than in 1990 26 
(European Commission, 2011). That will call for implementing effective building rehabilitation 27 
able to both reduce energy consumption by the existing housing stock and raise indoor 28 
comfort levels. 29 

The uncontrolled exchange of air across the elements in building envelopes, known as 30 
infiltration or leakage, affects both indoor air quality and the temperature and relative 31 
humidity conditions prevailing in built environments (N. M. M. Ramos et al., 2018). It 32 
consequently has a direct impact on comfort, health and energy use in buildings and the 33 
associated CO2 emissions(J. Fernández-Agüera, Sendra, J., Suárez, Domínguez-Amarillo, & 34 
Oteiza, 2015; Nabinger & Persily, 2011; Salehi, Torres, & Ramos, 2017b). Envelope air 35 
permeability determines such exchanges of indoor and outdoor air. 36 

Assessments of how air leakage across building envelopes affects energy savings (Alalouch, Al-37 
Saadi, AlWaer, & Al-Khaled, 2019; Papadopoulos, Whiffen, Tilford, & Willson, 2018) are applied 38 
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in housing rehabilitation projects to enhance airtightness as a passive measure for reducing 39 
energy consumption (Suárez & Fernández-Agüera, 2015).  40 

In mild Mediterranean climates, the effect of infiltration on residential energy demand has 41 
generally been found to range from 5 kw/hm2 to 10 kW/hm2 (Domínguez-Amarillo et al., 2019; 42 
Feijó-Muñoz, Pardal, et al., 2019). Ventilation in such climes has traditionally depended on air 43 
leakage and uncontrolled opening of windows. In Spain, for instance, compulsory mechanical 44 
ventilation was not instituted until the twenty-first century (Fomento, 2013; Ministerio de 45 
Vivienda, 2006b). 46 

Traditional ventilation practice in Mediterranean housing has a substantial impact on indoor air 47 
quality, which is unsuitable in many homes, particularly in winter when windows are normally 48 
opened for no more than 30 minutes per day (Domínguez-Amarillo, Fernández-Agüera, Sendra, 49 
& Roaf, 2018). As indoor pollutant concentration often exceeds the outdoor values in cities 50 
(Scibor, 2019), appropriate ventilation is essential for maintaining healthy conditions inside 51 
homes (Hesaraki, Myhren, & Holmberg, 2015; Salehi, Torres, & Ramos, 2017a). 52 

An understanding of airtightness in the homes comprising the new-build and existing housing 53 
stock is consequently a key factor in planning energy consumption and environmental quality. 54 
The method most commonly accepted by the scientific community to assess airtightness is the 55 
blower door test (Hynek, 2011; M. Sherman, 1995). Airtightness in single family homes has been 56 
widely studied by researchers in northern Europe (Caillou & Van Orshoven, 2010; Gillott et al., 57 
2016; Johnston, Wingfield, Miles-Shenton, & Bell, 2004; Maaleudstyr, 1984; Paap, Mikola, Teet-58 
Andrus, & Kalamees, 2012; Vinha et al., 2015) and the United States (Chan, Joh, & Sherman, 59 
2012, 2013; Walker, Sherman, Joh, & Chan, 2013) over the last three decades. In Mediterranean 60 
areas, however, where such testing is not mandatory, its cost and the population’s general 61 
unawareness of its existence have limited its routine application in buildings. Nonetheless, 62 
scientific research in the area in recent years has contributed to enlarging the database in a 63 
number of countries (Alfano, Dell’Isola, Ficco, & Tassini, 2012; Alves, Fernández-Agüera, & 64 
Sendra, 2014; Pereira, Almeida, Ramos, & Sousa, 2014; N. Ramos et al., 2015; Sfakianaki et al., 65 
2008), including Spain. All the airtightness tests conducted in Spain are run by university 66 
research teams  (Feijó-Muñoz, González-Lezcano, Poza-Casado, Padilla-Marcos, & Meiss, 2019; 67 
Feijó-Muñoz, Pardal, et al., 2019; J. Fernández-Agüera et al., 2015; J. Fernández-Agüera, Sendra, 68 
& Domínguez, 2011; Jesica Fernández-Agüera, Domínguez-Amarillo, Sendra, & Suárez, 2016; 69 
Jesica Fernández-Agüera, Domínguez-Amarillo, Sendra, Suárez, & Oteiza, 2019; Jesús, Feijó-70 
Muñoz; Irene, Poza-Casado; Roberto Alonso, González-Lezcano; Cristina, Pardal; Víctor, Echarri; 71 
Rafael, Assiego L.; Jesica, Fernández-Agüera; María Jesús, Dios-Viéitez; Víctor José, del C.-D.; 72 
Manuel, Montesdeoca C.; Miguel Ángel, Padilla-Mar, 2018; María I. Montoya, Pastor, & Planas, 73 
2011). They are not undertaken by public or private construction companies, which have yet to 74 
be sensitised to the problems (impact on energy demand, occupant comfort and indoor air 75 
quality) posed when housing airtightness rates go uncontrolled. Such problems are the more 76 
severe in social housing, occupied by the most vulnerable segments of society that can afford 77 
neither to install HVAC systems nor to pay the high electric power bills associated with individual 78 
room heating/cooling. Despite its purportedly mild climate, Spain is the European country with 79 
the highest rate of cold weather-induced death.  80 
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Building envelope airtightness depends on many often interconnected factors. In addition to 81 
morphology, typology and construction, workmanship quality (a random component), also 82 
plays an important role. Given that infiltration is multi-parametric and at least partially 83 
stochastic, predicting and modelling this property of envelopes is particularly complex (Pan, 84 
2010; Prignon & Van Moeseke, 2017; M. Sherman & Mcwilliams, 2007; M.H. Sherman & Chan, 85 
2004).  86 

The development of statistical models to predict building, in this case housing, airtightness 87 
contributes to progress in estimating energy demand and indoor air quality (Jones et al., 2015; 88 
M I Montoya, Pastor, Carrie, Guyot, & Planas, 2010; Pan, 2010; Persily, Musser, & Emmerich, 89 
2010; Prignon & Van Moeseke, 2017). Although such models do not aspire to highly accurate 90 
predictions for individual cases, they may deliver reasonably good estimates of leakage 91 
distribution in housing stocks. The most prominent model in place in Spain was developed to 92 
estimate leakage in single-family homes in Catalonia. Based on similarities in climate and 93 
construction types between Catalonia and south-eastern France and following a procedure 94 
inspired by the LBNL (Chan et al., 2012), the model was developed by applying regression 95 
analysis to the Centre d’Études Techniques de l’Équipement de Lyon’s airtightness database 96 
of single-family homes in France. It focused on determining initial leakage routes and exploring 97 
airtightness patterns by construction type, insulation, building age and occupancy (M I 98 
Montoya et al., 2010). 99 

Models developed using artificial neural networks with human learning and adaptation 100 
capacities are also in place. Such systems are based on a few simple processing units and many 101 
connections that prompt adaptive changes in the units as new data are acquired (Cesar & da 102 
Fontoura Costa, 1997). Krstic et al. (Krstić, Koški, Otković, & Španić, 2014) recently tested a 103 
neural network to predict airtightness in a series of residential buildings in Croatia. One year 104 
later, the methodology was validated in a second study in which it was applied to a suite of 105 
residential buildings in the Republic of Serbia (Krstic, Otkovic, & Todorovic, 2015). A powerful 106 
estimation tool, it exhibits sound capacities although its full validation will call for considerable 107 
further effort. 108 

Cluster analysis, introduced in architecture in 2007, has been used by researchers to fit 109 
predictive models to assess heating in schools or, more recently, identify energy consumption 110 
patterns (N Gaitani, Lehmann, Santamouris, Mihalakakou, & Patargias, 2010; Santamouris et al., 111 
2007), draw heat load profiles in residential buildings (An, Yan, & Hong, 2018; do Carmo & 112 
Christensen, 2016), define decarbonisation strategies (Sousa, Jones, Mirzaei, & Robinson, 2018) 113 
or (in Spain) even aggregate the building stock based on archetypes (Mata, Sasic Kalagasidis, & 114 
Johnsson, 2014). 115 

This study analyses the vulnerability to air leakage of social housing envelopes built prior to the 116 
entry in effect of CT79, Spain’s first legislation on the subject (Gobierno, 1979). It introduces 117 
empirical data-based predictive models that can be used by public and private organisations to 118 
estimate airtightness. That issue has become a key consideration in cost optimisation analysis 119 
as envisaged in the (recast) EPBD (Ferrara, Monetti, & Fabrizio, 2018) for both residential new-120 
builds (predictive model 1) and the existing housing stock (predictive model 2). The originality 121 
of the approach lies in the use of cluster analysis to significantly simplify predictive models based 122 
on climate zone and a small number of geometric, typological and construction parameters. 123 
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While designed for a broad sampling of multi-family residential buildings in southern Andalusia, 124 
these models can also serve as a basis for similar building typologies throughout the 125 
Mediterranean area. 126 

The measurement protocols and procedures deployed here to locate air leakage are set out in 127 
an earlier paper describing a preliminary approach to predictive models for airtightness in 128 
recently built multi-family housing in gallery type buildings in southern Europe, based on a 129 
sample of 45 dwellings (Jesica Fernández-Agüera et al., 2016).  130 

2. Methods 131 
2.1. Sampling 132 

The buildings on which blower door tests were conducted were selected by stratified random 133 
sampling. The attributes defined for stratification were the two deemed to have the greatest 134 
potential to induce differences (Alfano et al., 2012; Chan, Nazaroff, Price, Sohn, & Gadgil, 135 
2005) in the construction solutions adopted for building envelopes: area-dependent climate 136 
and date of construction (before or after enactment of legislation on building envelope 137 
airtightness requirements) (Domínguez-Amarillo, Sendra, & Oteiza San José, 2016).  138 

The region boasts a total of 568 455 (N) multi-family housing units (‘dwellings’ or ‘homes’). Given 139 
the regional scale of this research, the size of sample n (a subset of population N) initially 140 
estimated as necessary to ensure a normal distribution was on the order of 150 homes. The 141 
sample ultimately comprised 159 low-income dwellings located in multi-family buildings 142 
identified as particularly representative of the construction characteristics observed at the 143 
housing stock and sub-group levels. Variance and consequently the errors committed in 144 
selecting the 159 homes in the sample were found by entering the results in Equation 1 below: 145 

𝑒 =                 (E 1)  146 

 147 

The buildings chosen were located in five climate zones, with winters ranging from very mild 148 
(zone A) to cold (zone C) and summers from warm (zone 3) to very warm (zone 4) (de la Flor, 149 
Domínguez, Félix, & Falcón, 2008), classified as per the climate categories set out in Spain’s 150 
Technical Building Code (Ministerio de Vivienda, 2006b).  151 

2.2. Blower door test 152 

Dwelling envelope airtightness was measured with the standard blower door test and the 153 
specific methodology developed in (J. Fernández-Agüera et al., 2011). The ‘Minneapolis Blower 154 
Door Model 4’ kit used was connected to an automated performance testing system (flow range 155 
at 50 Pa, 25–7800 m3 h-1; accuracy, ±3%). All openings in contact with the outdoors were closed 156 
and ventilation ducts were sealed. Measurements were taken at pressures ranging from 20 Pa 157 
to 70 Pa at 5 Pa intervals further to the procedure described in Spanish and European standard 158 
UNE EN 13829:2002 (ISO, 2015). Method B, which measures the performance of the building 159 
envelope overall, was deemed most suitable for categorising the sample. In other words, as the 160 
objective was to study air leakage due to the constructional parameters of the envelope, all 161 
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intentional openings such as vents and shunts (which are unrelated to the materials or 162 
construction processes used) were sealed off to ensure they would not affect the 163 
measurements. The findings are summarised in Table 1. 164 

 165 
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ID. No. prop. Year Standard Climate zone n50 Med std 

1 4 1954 preCT79 A3 5.13 0.39 

2 3 1968 preCT79 A3 7.93 0.34 

3 3 1971 preCT79 A3 5.73 0.57 

4 4 1972 preCT79 A3 6.58 1.01 

5 4 1974 preCT79 A3 6.89 1.03 

6 1 1976 preCT79 A3 3.89 0.00 

7 1 1978 preCT79 A3 13.14 0.00 

8 3 1966 preCT79 A4 7.68 2.82 

9 2 1969 preCT79 A4 7.16 0.16 

10 2 1970 preCT79 A4 3.01 0.13 

11 1 1961 preCT79 A4 11.62 0.00 

12 1 1951 preCT79 B4 10.12 0.00 

13 3 1963 preCT79 B4 6.24 0.54 

14 4 1964 preCT79 B4 7.32 1.92 

15 3 1965 preCT79 B4 9.48 1.58 

16 2 1970 preCT79 B4 12.30 1.09 

17 1 1973 preCT79 B4 11.80 0.00 

18 1 1978 preCT79 B4 14.68 0.00 

19 2 1959 preCT79 C3 5.11 0.31 

20 4 1964 preCT79 C4 6.46 2.59 

21 4 1967 preCT79 C4 6.80 1.65 

22 4 2010 CT79 A3 4.36 0.53 

23 8 2011 CT79 A3 8.41 1.13 

24 8 2012 CT79 A3 6.46 0.38 

25 8 2007 CT79 A4 3.93 0.34 

26 1 1993 CT79 B4 15.57 0.00 

27 7 1998 CT79 B4 8.45 0.86 

28 10 2004 CT79 B4 9.06 1.38 

29 8 2010 CT79 B4 5.30 0.51 

30 7 2011 CT79 B4 4.17 0.87 

31 5 2011 CT79 B4 8.37 0.09 

32 8 2010 CT79 B4 6.90 0.69 

33 8 2011 CT79 C3 4.70 0.52 

34 5 2011 CT79 C4 7.38 0.48 

35 8 2010 CT06 B4 4.95 0.28 

36 7 2011 CT06 B4 9.95 1.64 

37 4 2011 CT06 C3 2.74 0.48 

Tot 159       6.52 2.59 

Table 1. Characterization of n50. 166 

 167 
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2.3. Cluster analysis 168 

The primary aim of cluster analysis in this context was to find groups of individual dwellings 169 
exhibiting similar behaviours, i.e., common patterns or trends, not necessarily numerical 170 
proximity. Cluster analysis is a procedure designed to identify populational groups or subsets 171 
that share attributes. 172 

It consists essentially in grouping n distinguishable objects or items into subsets such that the 173 
objects in any given subset or cluster are similar to one another and different from the items 174 
in all the other clusters. The most common attribute, Nn = {1, 2, …, n}, in each cluster is used 175 
to label each distinguishable object in that cluster. When a clustering algorithm is applied, the 176 
dataset is partitioned into a disorderly collection of non-empty subsets. The main problem is 177 
to identify items in terms of their similarity and differentiate among clusters (Hand, 178 
McLachlan, & Basford, 1989; Steinley & Brusco, 2011). 179 

In complex datasets where the results depend on many factors (complex multi-dimensional 180 
systems) that may in turn be co-dependent, this approach is useful for categorising data items 181 
and parameters in the overall set to better process the information by identifying underlying 182 
patterns. Clustering consequently helps to roughly outline the data structure, which in turn 183 
serves as a support for analysis and to establish working hypotheses. The procedure makes it 184 
possible to partition the data (force them into a structure) into groups expected to exhibit 185 
similar behaviours in certain respects (Hennig et al., 2015). 186 

In the K-means procedure chosen for the analysis, data are distributed across a set of K groups 187 
that contain the centroids representing the mean of the members of each subset. The centroid 188 
is the point that minimises the sum of the distances of all the members of the group to that 189 
point (Kanungo et al., 2002). The Howard-Harris method, based on Lloyd’s algorithm (Lloyd, 190 
1982a), was the optimisation procedure applied. 191 

The initial assumption was that the factors determining airtightness should be related essentially 192 
to the morphological and constructional characteristics of housing envelopes. Whilst that 193 
relationship has been shown earlier to be neither linear no univocal, the performance of groups 194 
of dwellings may be expected to conform to a series of patterns. In other words, the aim was to 195 
identify clusters comprising homes very similar to one another and distinctly different from the 196 
rest of the sample. 197 

Principal components analysis (PCA) was conducted prior to establishing the clusters to 198 
determine which descriptive variables were of greatest significance in sample morphology. Only 199 
the variables characterising the clustered items in terms relevant to the intended analysis were 200 
selected. PCA, an analytical procedure for exploring datasets to build predictive models, entails 201 
breaking the covariance matrix down into eigenvalues after normalising each element or 202 
variable. It is primarily an approach designed to extract factors. PCA was run on all the 203 
morphological variables of the dwellings in the sample to define a small number of linear 204 
combinations of the 21 variables identified that would explain the largest possible proportion of 205 
variation in the data. 206 
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As the scale for each parameter differed from that of all the others, to ensure suitable data 207 
processing with the K-means method all the values were standardised using the min-max 208 
system: [x - min(x)]/[max(x) - min(x)]. 209 

 210 

In contrast to hierarchical clustering, in the partitioning clustering used here clusters are not 211 
merged. Rather, items are assigned to clusters in keeping with an objective criterion. 212 

The K-means method of partitioning minimises the within-cluster sum of squares (sum of 213 
squares of the distance of each item to the centroid): 214 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐷 =  ∑ ∑ (𝑥 − 𝑥∈∑ )    (E 2) 215 

The standard minimisation procedures developed by Forgy (E. Forgy, 1965) and Lloyd (Lloyd, 216 
1982b) are the ones most extensively used of all the methods reviewed by Xu and Wunsch 217 
(Taber, 2009), given their simplicity and effectiveness. 218 

In non-hierarchical partitioning clustering, a given item can be assigned to only one cluster. The 219 
Calinski-Harabasz index, which gives a measure of the distance between clusters, was used to 220 
determine the number of clusters of greatest significance. It entails calculating the sum of 221 
squares of the between-cluster variance (SSB) and the sum of squares of the within-cluster 222 
variance (SSW), while also attempting to minimise the error associated with over-partitioning. 223 
The aim is to define the optimal number of clusters (Calinski & Harabasz, 1974). 224 

The qualitative information furnished by clustering was also assessed. The model ultimately 225 
adopted was the one able to furnish the most powerful information on airtightness structure 226 
and performance trends.  227 

 228 
2.4. Predictive models 229 

Multiple linear regression was used to determine whether a mathematical model could be fitted 230 
to the relationship between airtightness and the parameters listed in Table 1. That method 231 
establishes the relationship between a dependent variable Y (airtightness) and a set of 232 
independent variables (X1, X2, ... XK) such as year, typology, climate zone or floor area. A closer 233 
fit to actual situations can be obtained with multiple than single linear regression, for 234 
construction-related factors are complex and must consequently be explained, as far as possible, 235 
by the many variables directly or indirectly involved.  236 

The mathematical notation for multiple linear regression is: 237 

Y = a + b1X1 + b2X2 + ... + bnXn        (E 3) 238 

where: 239 

Y: variable to be predicted  240 

X1, X2... Xn: independent variables 241 
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a, b1, b2, …., bn: unknown constants to be estimated.  242 

Some of the independent variables introduced were quantitative and others qualitative. They 243 
were included in the regression model by constructing what are known as dummy variables that 244 
ordinarily but not necessarily adopt the arbitrary values 1 and 0, although other values and more 245 
than two variables may be used. 246 

Dummy variables were entered in the model to determine the result that afforded the best fit 247 
in two ways: with additive dummy variables and with variable categorisation.  248 

The additive dummy variable procedure consisted in entering ‘X’ new dummy variables in the 249 
model, where ‘X’ is the ‘number of existing categories, less 1’. For instance, if the variable to be 250 
entered had five categories, four dummy variables were entered and attributed a value of 1 if 251 
they pertained to the category assigned and 0 otherwise. The dummy variable coefficient 252 
measures the difference in the effect of the two y-intercepts, i.e., the difference in the expected 253 
values of the dependent variable depending on whether it features or fails to feature a given 254 
characteristic of the qualitative factor. 255 

Categorising consisted in ranking the categories from least to greatest effect on the airtightness 256 
findings. Deploying categorical regression, SPSS software assigned the categories a coefficient 257 
in keeping with their respective impact. 258 

The procedure followed to generate the multiple regression model was as follows: 259 

i. cluster identification  260 
ii. choice of parameters affecting airtightness  261 

iii. testing for multiple collinearities in the parameters studied 262 
iv. dummy variable classification and entry in keeping with the parameters classified  263 
v. implementation of the stepwise method to identify the model with the smallest number 264 

of variables that best explained the dependent variable or criteriondetermination of the 265 
goodness of fit of the data to the multiple regression model 266 

vii. estimation of equation or predictive model parameters.The predictive models were 267 
subject to a series of limitations imposed by the sample: i.e., to be included, homes had 268 
to constitute social, multi-family housing, lie in one of the climate zones defined in 269 
southern Spain and have a net floor area <105 m2 and a window area <17 m2. 270 

2.5. Characteristic parameters 271 

The independent variables with the greatest impact on building airtightness identified in a 272 
recent review of the literature informed the present selection (Prignon & Van Moeseke, 2017). 273 
The parameters deemed suitable for the study and listed and classified in Table 2 were defined 274 
on the grounds of the type of buildings sampled: reinforced concrete slab and column, multi-275 
family housing. 276 
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Geometry Technology and materials 
(Liddament, 1986; 

Sfakianaki et al., 2008) 

Other 

-A Area(Chan et al., 2012) 
-V Volume 
-AF Façade area 
-AR Roof area 
-ACA area adjacent to 
communal areas  
-AD area adjacent to other 
dwellings (Jesica 
Fernández-Agüera et al., 
2016) 
-AW Window area 
(Sfakianaki et al., 2008) 
-PW Window  
perimeter(Almeida, 
Ramos, & Pereira, 
2017),(Sfakianaki et al., 
2008) 

 

-TF Façade type(Kalamees, 
2007) 
-TW Window type(Krstic et 
al., 2015) 
-TB Blind type  
-B No blinds 
-M General condition 
-HVAC (yes or no) 

 

-WS Winter severity 
(Chan et al., 2013) 
-SS Summer severity 
(Chan et al., 2013) 
-Y Year (Chan et al., 
2013; Eskola et al., 
2015; M I Montoya et 
al., 2010; Sinnott & 
Dyer, 2012) 
-E Exposure type  
- Window in bathroom 
-Separate kitchen 
-Regulation 
 

 

Table 2. Classification of parameters studied 277 

The categorical variables established in this sample were as follows: 278 

- Facade type (F1: 1 or 1 and ½ foot brick fabric; F2: ½ foot brick fabric (or one-brick thick) 279 
outer wall + air cavity + hollow brick inner wall; F3: ½ foot brick fabric (or one-brick thick) 280 
outer wall + insulation layer + hollow brick inner wall; F4: ½ foot brick fabric (or one-281 
brick thick) outer wall + air cavity + plasterboard inner wall; F5: fired clay panelling + air 282 
cavity + insulation + fired clay block). 283 

- Window type (W1: hinge opening windows; W2: sliding windows; W3: hinged and 284 
sliding windows). 285 

- Blind type (B1: no blinds; B2: external blinds; B3: roller shutter in splayed openings; B4: 286 
roller shutter in compact blinds). 287 

- Exposure (E1: semi-detached, linearly aligned buildings with four homes per storey; E2: 288 
semi-detached, linearly aligned buildings with two homes per storey; E3: open gallery 289 
buildings; E4: stand-alone high rises; E5: semi-detached, linearly aligned buildings with 290 
two homes per storey and building, located at the corner of the compound or in stand-291 
alone buildings with H, T- or X-shaped ground plans). 292 

 293 
3. Results 294 

3.1. Cluster analysis 295 

The six principal components found with PCA to have eigenvalues greater than 1 were chosen 296 
for the analysis, for they explained 95.66 % of the variation in the raw data (Figure 1). 297 
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 298 

 299 

Figure 1. Components chosen 300 

Based on that criterion, the variables chosen were those with the capacity to significantly affect 301 
clustering. The variables selected were quantitative (associated with dimensional ratios: PW/V, 302 
PW/AF, AD/V, AF/V, ACA/V, AW/AF, AW/V), supplemented with a series of categorical parameters 303 
(façade (TF), window (TW) and blind (TB) types). The former was normalised to indoor volume of 304 
the home or façade area for better inter-comparison. 305 

On the grounds of the foregoing, two clusters were defined, one with 98 dwellings and the other 306 
with 53, along with eight outliers. The characteristic cluster values, i.e., the centroids for each 307 
variable, are given in Table 3.  308 

  Centroid   Most common 
value 

Cluster No. 
Pw/V 
(m-1) 

Pw/AF 
(m-1) 

ACA/V 
(m-1) 

AF/V 
(m-1) 

ACA/V 
(m-1) 

Aw/AF  
Aw/V 
(m-1) 

 TF TB TW 

1 98 0.179 0.718 0.263 0.254 0.059 0.231 0.056  3 3 1 
2 53 0.213 0.628 0.190 0.345 0.101 0.196 0.067  2 2 2 

Outliers 8                                      

Table 3. Morphological and construction characteristics defining clusters 309 

A series of statistical tests was conducted on the clustering as a whole and on the variables 310 
selected to determine their relative weights with a view to determining the significance and 311 
representativeness of the items clustered (Table 4). 312 
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Number of clusters: 2 

Number of datapoints: 149 

Between-cluster sum of squares: 17.75 

Total sum of squares: 78.97 
 

The partitioning of greatest significance was delivered by the aforementioned seven variables 
and two clusters (with eight unassigned outliers). Of all the approaches analysed, this was the 
one that maximised between-cluster variance (SSB), ensuring suitable separation among 
them. This metric quantifies between-cluster separation as the sum of squares of the distance 
between the centre of each cluster (measured as the mean value of its data points) and the 
centre of the entire dataset.  

The resulting clustering was deemed to afford a sufficiently robust description, for the total 
sum of squares explained nearly 80 % of the variance. 

Analysis of variance 

   Model Error 

Variable 
F-
statistic P-value Sum of squares DF Sum of squares DF 

AF/V 48.92 8.714 e-11 2.289 1 6.87 147 

AD/V 24.84 1.73 e-06 1.166 1 6.89 147 

ACA/V 17.97 3.942 e-05 0.553 1 4.53 147 

PW/V 16.53 7.786 e-05 0.536 1 4.76 147 
AW/V 12.76 0.000479 0.330 1 3.80 147 

PW/AF 12.48 0.000551 0.669 1 7.88 147 

AW/AF 10.04 0.001862 0.526 1 7.71 147 

(*) Categorical variables not included in the analysis of variance table 
 

Analysis of variance (ANOVA) is a collection of statistical models and associated procedures 
that identify the variance both within and between the observations associated with each 
cluster. Here ANOVA was calculated for each variable to determine which most effectively 
defined the clusters. 

The F-statistic value indicates the proportion of variance explained by the variable (ratio of 
the between-cluster variance to the total variance). The higher the value of the F-statistic, the 
greater the inter-cluster difference in the variable. The F-statistic values are listed in 
descending order in the table. The associated P-value is an indication of the statistical 
significance of the F distribution. The lower its value, the greater is the expected between-
cluster difference of the values of the respective variable. 

The mean squares model is the ratio of the between-cluster sum of squares (SSB)to the 
degrees of freedom. The between-cluster sum of squares is a measure of the variance 
between the mean values of the clustered items. The closer the mean values, the smaller the 
SSB (for a model with k-1 degrees of freedom, where k is the number of clusters). 

Table 4: Analysis of variance between clusters  313 

 314 
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As the table shows, the factor with the heaviest impact on variation and consequently on 315 
clustering was the ratio between façade area and volume. The area adjacent to other dwellings 316 
was another differentiating factor, although it carried perceptibly less weight than the AF/V 317 
variable. The remaining parameters, all significant for clustering purposes, exhibited lower 318 
values. 319 

Window-related variables (area and perimeter), particularly the ratio to the façade area, varied 320 
the least across the sample. In other words, these parameters were similar in all the homes in 321 
the overall sample. Although the parameters defining these openings were important in 322 
establishing the principal components, due to the relative stability of the aforementioned ratios, 323 
they had a smaller effect on partitioning than the other parameters selected.  324 

Cluster composition is shown in Figure 2, which identifies the number of components in each 325 
cluster by development, listed by date of construction (from oldest to most recent). Clustering 326 
was observed to be closely correlated to age, for cluster 1 comprised the more recent and cluster 327 
2 the older developments.  328 

A transition period was detected in the late nineteen seventies and early eighties, with homes 329 
alternating between the two clusters. The dwellings in the developments sampled were 330 
distributed between the two clusters on the grounds of their individual morphologies. 331 
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 332 

Figure 2. Distribution of developments (in chronological order) by morphological cluster 333 
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The homes not assigned to any cluster were in developments 2, 18 and 37. The situations 334 
involved varied. On the one hand, developments 2 and 18, with remodelled homes (enclosed 335 
balconies, kitchens enlarged to include laundry rooms and similar), exhibited morphologies very 336 
different from the rest of the sample, especially as regards openings. On the other, the dwellings 337 
in development 37 were the least permeable of the entire sample, exhibiting a highly compact 338 
building type which, together with their windows with no blinds, distinguished them from all the 339 
others.  340 

Clustering suggested a close correlation between airtightness and the suite of morphological 341 
and construction factors, although these results were subject to a certain degree of stochasticity 342 
stemming essentially from the variation inherent in construction processes. That consideration 343 
was particularly significant in components such as façade walls and windows in which the 344 
substantial manual labour required could well have occasioned considerable differences 345 
between apparently equivalent homes within a given development. Nonetheless, with this 346 
division into clusters or families of dwellings, similar airtightness values could be determined 347 
from construction, typological and climate parameters.  348 

That underlying structure was used to build the multiple regression-based prediction models as 349 
discussed in the sections below. A specific performance model was generated for each cluster 350 
to predict permeability in keeping with parameters characteristic of each dwelling.  351 

Clustering therefore established two subsamples, taking the distinguishing factor (to simplify 352 
the process) to be the period when the homes were built. Significance was greatest when the 353 
distinction was drawn between those built in the first, pre-regulation period (1950 to 1979) and 354 
those erected in the second (post-1979), which covered developments governed both by Code 355 
CT-79 (Gobierno, 1979) and by the Technical Building Code (Ministerio de Vivienda, 2006a) 356 
presently in effect. 357 

Verification consisted initially in contrasting the two sub-samples to establish their 358 
independence and the consistency of their distributions. The parameter chosen was air 359 
infiltration rate at 50 Pa (n50), the criterion routinely used to characterise envelope airtightness 360 
in dwellings. Clustering suitability would be associated with the ability to furnish information on 361 
the specific airtightness of each group, i.e., the capacity to generate prediction models for that 362 
parameter. The key statistical descriptors for the two clusters are given in Table 5, which is 363 
followed by a description of the tests run to compare the two distributions. 364 

Cluster descriptor 
  Cluster 1 Cluster 2 
No. elements 98 53 
Mean 6.96 h-1 7.51 h-1 
Median 6.41 h-1 7.18 h-1 
Standard 
deviation 

2.31 h-1 2.74 h-1 

Coefficient of 
variation 

36.84% 31.79% 

Minimum 3.23 h-1 3.88 h-1 
Maximum 14.14 h-1 13.39 h-1 
Range 10.91 h-1 9.50 h-1 
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Table 5. Statistical descriptors for n50, clusters 1 and 2 365 

 366 

 367 

 368 

Figure 3. Q-Q (quantile-quantile) graph for cluster 1 vs cluster 2 distributions 369 

 370 

Figure 4. Smooth density curves for cluster 1 (blue) and cluster 2 (red) probability distributions 371 

Graphic analysis showed that the distributions associated with the two clusters differed 372 
significantly. A very prominent general shift was observed on the upper end of the linear 373 
regression line (where the values should cluster if the distributions concur) in the Q-Q graph 374 
(Figure 3). The differences in the probability density curves and the misalignment of their central 375 
values (Figure 4) further supported the independence of the two groups. 376 
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The cluster 1 values had a mean n50 of 6.96 h-1 although variation was generally wide, with a high 377 
(σ: 2.31 h-1) standard deviation relative to the mean. Sample values ranged over a wide interval, 378 
from a minimum of 3.23 h-1 to a maximum of 14.14 h-1 (Table 3). Cluster 2, with a mean n50 of 379 
7.51 h-1, likewise varied widely, with a standard deviation (σ: 2.74 h-1) even higher than observed 380 
for cluster 1. The minimum (3.88 h-1) and maximum (13.39 h-1) values also covered a broad 381 
spectrum.  382 

Further to the similarity tests, the two clusters exhibited distinctly different behaviours and 383 
distributions, confirming that they represented different populations. 384 

3.2. Predictive models 385 

A mathematical model able to fit airtightness-versus-selected-parameter curves was 386 
developed using discriminate analysis techniques and SPSS software. That exercise delivered 387 
two predictive airtightness models based on the specific characteristics of each home and 388 
building: one adapted to the characteristics of dwellings built prior to 1979 when the first 389 
general legislation to limit building energy demand was enacted in Spain, and a second to the 390 
homes built after that date. 391 

3.2.1. Cluster 1 392 

The best fit was obtained with backward stepwise multiple regression including a constant. For 393 
cluster 1, which covered homes built from 1979 to date, the characteristics addressed were 394 
location, morphology, construction and geometry. In the model, parameter YAW represented the 395 
coefficient for the quantitative variable window area and YPW window perimeter. The model also 396 
accommodated constants for the categorical variables: separate kitchen (βK), blinds (βB), 397 
bathroom window (βWS), winter severity (βwS), window type (βTW), exposure (βTE) and façade type 398 
(βTF), listed with their respective category in Table 6. 399 
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 Coefficient Category Value Std error 

Constant (α)   6.613 1.624 

Window area (ϒAW)  1.265 0.218 

Window perimeter (ϒPW)  -0.387 0.070 

 Separate kitchen (β ) 
 Yes -1.698 0.922 

No 0.000 0.000 

Blind (β ) 
Yes 1.957 1.051 

No 0.000 0.000 

Bathroom window (β ) 
Yes 1.498 0.315 

No  0.000 0.000 

Winter severity (β ) 
WS A * * 

WS B 4.143 0.368 

WS C 0.618 0.618 

Window type (β ) 
W1 -5.154 0.600 

W2 -2.445 0.493 

W3 * * 

Exposure (β ) 

E1 -0.075 0.473 

E2 -0.620 0.665 

E3 -1.558 0.588 

E4 -2.570 0.664 

E5 * * 

Façade type (β ) 

   
F3 1.179 0.619 

F4 -0.838 0.668 

F5 * * 

Table 6. Predictive model coefficients for cluster 1(*variable category included in constant ‘’) 400 

The predictive model was defined by the probability function shown in Equation 4 and the 401 
coefficients listed in Table 4. 402 

𝑛 = 𝛼 + 𝛾 ∙ 𝐴𝑊 + 𝛾 ∙ 𝑃𝑊 + 𝛽 + 𝛽 + 𝛽 + 𝛽 +𝛽 +𝛽 +𝛽              (E 4) 403 

The nine independent variables included in the model explained 88.70 % of dependent variable 404 
variation. At 0.849 h-1 (Table 7), the standard error for the prediction was very narrow relative 405 
to cluster variation and just 35.00 % of the standard deviation for cluster 1 (Table 5). To rule out 406 
inter-variable dependence which, even if present, would not denote causality, a series of 407 
ANOVAs was run to determine whether infiltration in the homes studied could be predicted with 408 
a model based on their classificatory characteristics. 409 
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R R2 Adjusted R2 

Standard error for the 
estimate 

 0.943 0.887 0.865 0.849 

Table 7. Predictive model for n50 in cluster 1: statistical descriptors 

The ANOVA table delivered an F-statistic with which to test the null hypothesis that R2 and the 
slope of the curve were equal to 0; in other words, that the two variables were not correlated. 
Since the p-value for the F-statistic was lower than the significance level, the null hypothesis 
was ruled out and the results obtained for the sample were deemed to be applicable to the 
population from which it was drawn (Table 8). 

 

Sum of 
squares df 

Root mean 
square F Sig. 

 
Regression 443.177 12 36.931 54.455 .000 

Residuals 54.934 81 0.678     
Total 498.111 93       

Table 8. ANOVA for the cluster 1 n50 predictive model 

Model predictions proved to closely mimic actual performance. The plot of the estimated vs the 410 
empirical values for n50 (Figure 5) showed that all but seven of the values lay in the area between 411 
the line of symmetry and the distance defined by the standard error for the estimate (± 0.87). 412 
No bias was observed and the points on the graph were clustered around the regression line. 413 

 414 
Figure 5. Tested vs estimated n50 values for cluster 1: scatter plot  415 

The cumulative frequency curves for the measured and estimated n50 values were practically 416 
identical, deviating by 5.30 % (estimated<measured) at n50=7.00 h-1 and by 3.00 % (estimated> 417 
measured) at n50=8.00 h-1. However, the actual values for the parameter showed a higher 418 
maximum infiltration rate (n50=14.40 h-1) than the predictive model, which delivered n50 values 419 
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no higher than 12.00 h-1 (Figure 6). As the estimated probability distribution exhibited a 420 
satisfactory fit to the empirical values, the model can be deemed to be a particularly useful tool 421 
for predicting airtightness in the cluster analysed. 422 

 423 
 424 

Figure 6. Cumulative frequency (%) of the measured (blue) and estimated (red) cluster 1 n50 425 
values 426 

 427 
3.2.2. Cluster 2 428 

In the model proposed for cluster 2, which included morphological, construction and geometric 429 
characteristics, parameter YSU was the coefficient for the quantitative variable net floor area. 430 
The constants defined for the categorical variables [bathroom window (βWB), general condition 431 
(βM), façade type (βF), exposure (βTE) and winter severity (βWS)] and their respective categories 432 
are listed in Table 9.  433 

0%

20%

40%

60%

80%

100%

3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
ec

ue
nc

y

n50 (h-1) 



Sustainable Cities and Society 

Volume 51, November 2019, 101695 

21 

 

Coefficient Category Value Std error 
  

Constant (α)   3.607 1.448 

  
Floor area (γ )   0.048 0.021 

  
Bathroom window (β ) 

Yes 2.220 0.546 
No 0 0 

General condition (β ) 
Poor 5.971 0.829 

Good condition  * * 
Energy retrofitting -4.611 1.309 

Façade type (β )) 
F 1 2.711 0.554 
F 2 * * 

Exposure (β )  

E 1 -0.399 0.976 
E 2 -1.805 0.711 
E 3 ** ** 
E 4 -0.968 0.919 
E 5 * * 

 Winter severity (β ) 
WS A * * 
WS B 2.578 0.486 
WS C 2.699 0.730 

Table 9. Predictive model coefficients for cluster 2 n50  (*variable category included in constant 434 
‘’; ** typology not observed in the sample)  435 

The predictive model was defined by the probability function shown in Equation 5 and the 436 
coefficients listed in Table 9. 437 

𝑛 = 𝛼 + 𝛾 ∙ 𝐴 + 𝛽 + 𝛽 +𝛽 +𝛽 +𝛽                         (E 5) 438 

The optimised model included six independent variables, together accounting for 62.60 % of the 439 
variation with a highly significant correlation coefficient. The standard error for the prediction 440 
was 1.37 h-1 (Table 10), which while significant afforded a more precise fit than the standard 441 
deviation of the values measured for cluster 2, for it was approximately half as wide as sigma. In 442 
light of possible inter-variable dependence, which even if present would not prove causality, 443 
ANOVAs and linear regressions were conducted to determine whether air permeability in the 444 
cluster of homes studied could be predicted with a model based on their classificatory 445 
characteristics, as premised in the initial hypothesis. 446 
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R R2 Adjusted R2 

Standard error for 
the estimate 

No. of variables  

 0.882 0.698 0.626 1.370 6 
Table 10. Predictive model for n50 in cluster 2: statistical descriptors  

The ANOVA delivered an F-statistic with which to test the null hypothesis that R2 and the slope 
of the curve were equal to 0; in other words, that the two variables were not correlated. Since 
the p-value for the F-statistic was lower than the significance level, the null hypothesis was 
ruled out and the results obtained for the sample were deemed to be applicable to the 
population from which it was drawn (Table 11). 

 

 
Sum of squares df 

Root mean 
square 

F Sig. 

 Regression 263.875 10 26.387 14.371 .000 

Residuals 75.285 41 1.836     

Total 339.160 51       

Table 11. ANOVA for the cluster 2 n50 predictive model 

The model results mimicked actual behaviour very closely. The plot of the estimated vs the 447 
empirical n50 values (Figure 7) showed that nearly all lay in the area between the line of 448 
symmetry and the distance defined by the standard error for the estimate (± 1.35), with only six 449 
outliers. 450 

 451 
Figure 7. Tested vs estimated n50 values for cluster 2: scatter plot   452 

The cumulative frequency curves for the measured and estimated n50 values deviated across the 453 
entire spectrum by approximately 4 % to 17 %, except at n50=7 h-1, where the estimated value 454 
was 30 % higher than the measured value. The most visible changes in cumulative frequency 455 
were observed between n50 values of 5 h-1 and 8 h-1 (Figure 8). The estimated probability 456 
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distribution exhibited an approximate fit to the distribution for the measured data. The 457 
divergence found in the central values was somewhat wider than observed for cluster 1, 458 
however, a finding that may be attributed to the greater scatter and differential evolution 459 
expected in the older than in the newer housing stock. 460 

 461 

 462 
 463 

Figure 8. Cumulative frequency of the measured (blue) and estimated (red) cluster 2 n50 464 
values.  465 

4. Discussion  466 
4.1. Model assessment and weighting 467 

Predicting envelope airtightness is a complex endeavour due to the large number of variables 468 
and factors involved. The predictive model applied here was built with the variables best able to 469 
reduce the variation in the results, even though they were not the only factors affecting 470 
permeability. The others, associated with the building envelope or particulars such as year of 471 
construction or climate zone, were found to be inapt for model construction, either because 472 
they had a scant impact on the results or because they introduced too much variation. That 473 
notwithstanding, their effects must not be disregarded, in particular when referred to specific 474 
items in the population, as discussed in the analysis of the elements comprising building 475 
envelopes. 476 

The models developed revealed different behaviours attributable to cluster particulars. The 477 
homes built after CT79 tended to exhibit greater uniformity in connection with their basic 478 
characteristics such as morphological ratios and construction systems. That may be related to 479 
greater stability in design regulations and ordinances for social housing which, outside of a few 480 
exceptions analysed in the section on characterisation, had a standardising effect on the housing 481 
stock. In contrast, in the cluster grouping housing built prior to 1979, the values of their basic 482 
parameters were more scattered, which may be attributed to a certain diversity of legislative 483 
provisions and construction programmes that evolved during that period. That diversity gave 484 
rise to substantial differences in housing formats, compounded by a wider variety of 485 
construction processes (Domínguez-Amarillo et al., 2016).  486 
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That situation is mirrored in the performance models proposed, for variation was narrower in 487 
the cluster 1 than in the cluster 2 model. The limitations inherent in models designed to predict 488 
building airtightness of individual homes must be assumed in their formulation, for 489 
performance, as discussed earlier, is not attributable only to deterministic factors. Rather, faulty 490 
envelope workmanship, the absence or presence of conservation or specific retrofits may 491 
translate into very different values for homes in one and the same building. Consequently, the 492 
basic factors that most differentiated the two clusters were individual retrofitting and dwelling 493 
deterioration, which had a lesser impact on the more modern than on the older cluster. 494 

Two sets of factors can be defined in the assessment of the two predictive models: those 495 
common to both and consequently essential to determining dwelling envelope airtightness and 496 
those specific to each cluster. 497 

The factors common to both included: 498 

 winter severity 499 
 degree of envelope exposure 500 
 existence of a bathroom window 501 
 façade type. 502 

All the factors affecting both models were categorical (as opposed to continuous) variables, 503 
associated either with geographic location or basic envelope morphology.  504 

The common factor with the heaviest impact was winter severity. Location in areas with scantly 505 
severe winters was factored into the model, for it predicted a lower value for parameter n50. 506 
Location in areas with severe or moderately severe winters lowered the airtightness values 507 
predicted.  508 

The better performance of mild winter (winter severity 1) than severe winter homes was 509 
associated primarily with the coastal location of the former, where the effects of wind action 510 
are normally greater (García de Pedraza & García Vega, 1990; Sánchez Gallardo, 2002). In other 511 
words, construction strategies in such areas apparently focused more on airtightness than on 512 
thermal issues. In contrast, winter severity zones 2 and 3 were located inland, where wind action 513 
is less intense and less frequent. A distinction may be drawn in these two zones between colder 514 
(severity 3) and more temperate (severity 2) winters, with the least airtight homes found in the 515 
latter. That effect was visible in the regression coefficients associated with the two models, 516 
(although with a narrower difference in the older than in the more modern homes), possibly an 517 
indication of greater concern in more modern construction about airtightness control in colder 518 
areas. 519 

The second most significant factor was the degree of envelope exposure, which was more 520 
significant than façade area. The former, while categorical, accommodated the possibility of 521 
singular points and inter-surface abutments, as observed in the model, where type TE4 had a 522 
significant effect in the more modern and types TE2 and TE4 in the older homes. 523 
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The presence of windows in bathrooms, the third factor of interest, was almost as significant in 524 
the models as the preceding variable, given the problem posed by the abutments between 525 
joinery and the tile finishes normally found in bathrooms (Jesica Fernández-Agüera et al., 2016). 526 

The fourth common factor, façade type, was somewhat less significant than the preceding 527 
variables, particularly in more contemporary buildings. This factor was of greater significance in 528 
cluster 2 buildings with single-wythe (TF1) façades than in the others. Here, however, that might 529 
be attributed to co-linearity with other particulars not addressed in the analysis, such as quality 530 
or type of abutments, rather than to any specific façade system. Although given their 531 
constructional characteristics the likelihood of infiltration across such enclosures is low, such 532 
façades were associated with the oldest homes in the sample, possibly denoting the presence 533 
of secondary factors that might contribute to such poorer performance. 534 

4.2. Factors specific to cluster 1 535 

The predictive model for cluster 1 developments showed them to be affected by four additional 536 
parameters: 537 

a. window area and perimeter 538 
b. window type 539 
c. absence of partition between kitchen and living room 540 
d. presence of blinds on windows. 541 

The total window area and perimeter were the factors mainly affecting predicted airtightness, 542 
for their dimensional scales were perceptibly larger than those used for the categorical 543 
variables. The two dimensions, area and perimeter, were observed to have a similar impact, for 544 
normally the ratio between them was on the order of 1 to 3, while the coefficients for these 545 
independent variables exhibited a ratio of the same order of magnitude, but inverted.  546 

In this cluster, unlike cluster 2, the floor area of the homes taken by itself carried less weight in 547 
the airtightness model than other factors. Nonetheless, dwelling size had to be included in the 548 
model, for the analysis conducted to characterise envelopes revealed a clear relationship 549 
between home size and the size and area of its openings, primarily in response to the minimum 550 
dimensions established in the legislation (standardised in the modern period). Consequently, 551 
whilst dwelling size affected relative (more than absolute) permeability, the number and 552 
geometry of openings furnished more information on the airtightness of the homes in this 553 
cluster. 554 

The importance of openings in airtightness was reinforced by the fact that the second most 555 
relevant factor in the model was window type. Joinery type had a heavy impact on permeability, 556 
for all other factors being equal, hinged windows were observed to be more airtight than sliding 557 
windows, with a higher n50 value, a finding consistent with specific studies and earlier reports 558 
(Max H. Sherman & Chan, 2006). Although window type has been widely analysed in qualitative 559 
terms, the identification here of its weight in the factor matrix is of particular utility and its 560 
significance in the more modern homes is of special interest. 561 

The absence of partitions between kitchen and living room was the third and the presence of 562 
blinds the fourth weightiest factor in cluster 1.  Both represented fairly singular situations extant 563 
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in a short number of homes in the sample, although where present they modified airtightness 564 
performance in the model significantly. Kitchens opening onto the living room generated greater 565 
porosity in the envelope. The possible explanation is that in enclosed kitchens, the service piping 566 
is better confined and normally closer to the building exterior, whereas in the open arrangement 567 
it normally runs across longer distances, weakening the envelope. The homes built after 1979 568 
that had no blinds were observed to be more airtight.  569 

The conclusion drawn from this model was that in more modern homes air permeability tended 570 
to be concentrated around windows (or semi-transparent envelopes). In contrast to older flats, 571 
airtightness appeared to be governed more evenly by the many components of these dwellings 572 
and be less dependent upon window / façade abutments. 573 

4.3. Factors specific to cluster 2 574 

In addition to the four common characteristics, two specific parameters were observed in the 575 
cluster 2 developments: one continuous and quantitative, and the other categorical: 576 

a. floor area 577 
b. general condition. 578 

As noted in the preceding section, air flows might be related to more of the envelope 579 
components in the older than in the newer buildings. Consequently, the most determinant of 580 
the dimensional parameters was home size, here defined as floor area as a predictor. 581 
Nonetheless, in contrast to cluster 1, here this factor carried less relative weight than the other 582 
model predictors. 583 

The most influential factor in the cluster 2 model for predicting overall airtightness, considering 584 
both the common and specific variables, was general condition or degree of conservation. That 585 
finding is of particular interest, inasmuch as it infers potential for improvement through sealing 586 
and other measures to improve envelope airtightness. The model revealed air flow differences 587 
of up to 10 h-1 between poorly conserved and rehabilitated dwellings. 588 

4.4. Adaptation of the models to other samples 589 

The predictive models developed in this study will be cross-validated with the homes measured 590 
in the national Infiles project ‘Energy impact of air permeability in residential buildings in Spain. 591 
Study and characterisation of infiltration’ (Feijó-Muñoz, Jesús and Meiss, Alberto and Poza-592 
Casado, Irene and Padilla-Marcos, Miguel and Rabanillo-Herrero, Mario and Royuela del Val, 593 
Andrés and Gonzalez-Lezcano, Roberto and Pardal, Cristina and Echarri Iribarren, Victor and 594 
Assiego de Larriva, Rafae, 2019), funded by the Spanish Ministry of the Economy and 595 
Competitiveness, to verify their applicability and accuracy (Figure 9). 596 

The plot of the estimated vs the empirical values for n50 in cluster 1 showed that half of the 597 
values lay in the area between the line of symmetry and the distance defined by the standard 598 
error for the estimate (± 0.87); and in cluster 2 only two values lay in that area (standard error=± 599 
1.35). In contrast to the findings for the sample studied here, cluster 2 had a higher R2 than 600 
cluster 1 when a different sample was used. With R2 values of 0.77 (cluster 1) and 0.82 (cluster 601 
2), the sample studied was deemed to fit the model developed. 602 
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 603 
Figure 9. Tested vs estimated n50 values for other samples built after 1979 (a) and before 1979 604 

(b): scatter plot 605 

5. Conclusions  606 

This paper establishes a series of predictive airtightness models based on measured data with 607 
which public and private organisations can estimate airtightness in new-builds (predictive model 608 
1) and the existing stock (predictive model 2). Designed for the Mediterranean region, they are 609 
based on a series of readily recognisable parameters that would preclude the need for 610 
airtightness testing. The resulting n50 data can be used with energy certification software, which 611 
presently envisages a mean value for all types of housing, not quantified by testing. They can 612 
also be entered into energy and comfort simulation programs to predict housing consumption 613 
and expected indoor temperatures.  614 

The air infiltration rate at 50 Pa for the stock as a whole is 7.00 h-1 (with a median of 6.52 h_1). 615 
The values for the stock in southern Spain are widely scattered (with values fluctuating from 616 
2.50 h-1 to 15.57 h-1), particularly as compared to other areas, a finding associated with the 617 
breadth of the sample studied, which covered a number of time periods and construction 618 
typologies.  619 

The housing stock can be divided into two performance-based sets based on the results 620 
attributable to their specific characteristics, from which two models can be derived. For social 621 
housing in southern Spain built from 1950 to date, one of the models developed fits pre-1979 622 
developments and the other the homes constructed after that year. 623 

The wider diversity of solutions and morphologies in the pre-1979 stock explains the greater 624 
variation and stochasticity observed in this (cluster 2) than in the later group (cluster 1) of 625 
dwellings. 626 

Inter-model comparison shows that the most prominent differentiating factors are related to 627 
the probability of time-driven alteration, the appearance of individual change and the effects of 628 
deterioration. These factors carry greater weight in the cluster comprising older than in the one 629 
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consisting in more modern dwellings (although individual cases exhibiting a heavier impact may 630 
be found in the latter).  631 

Two sets of factors can be defined: those common to both clusters and consequently essential 632 
to determining dwelling envelope airtightness and those that are specific to each cluster. Both 633 
constitute sets of associated factors that while not individually able to prompt significant 634 
differences, taken together induce specific performance patterns. 635 

The factors common to the two models include winter severity, envelope exposure, bathroom 636 
window and façade type. The parameters observed to affect the predictive model for cluster 1 637 
(post-1979) developments only include window area, perimeter and type, separate kitchen and 638 
blinds on windows. One of the two parameters specific to the (pre-1979) developments, floor 639 
area, is quantitative, while the other, a general condition, is qualitative.  640 

Despite the uncertainty associated with largely manual envelope construction methods, the 641 
models proposed can predict the airtightness in such dwellings with acceptable accuracy, 642 
particularly on the housing stock or development scale. 643 
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Symbols 649 

- α Constant 650 
- A Floor Area 651 
- AF Façade area 652 
- ACA Area adjacent to communal areas  653 
- AD Area adjacent to other dwellings 654 
- AW Window area  655 
- B Blind 656 
- HVAC Heating, ventilation, and air conditioning 657 
- K Kitchen  658 
- M General condition  659 
- n50 Air infiltration rate at 50 Pa 660 
- PW Window perimeter 661 
- TB Blind type 662 
- B1 No blinds 663 
- B2 External blinds 664 
- B3 Blinds in splayed openings 665 
- B4 Compact windows blinds) 666 
- TE Exposure type  667 
- E1 Semi-detached, linearly aligned buildings with four homes per storey  668 
- E2 Semi-detached, linearly aligned buildings with two homes per storey  669 
- E3 Open gallery buildings  670 
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- E4 Stand-alone high rises 671 
- E5 Semi-detached, linearly aligned buildings with two sper storey and building, located 672 

at the corner of the compound or in stand-alone buildings with H, T- or X-shaped ground 673 
plans 674 

- TF: façade type 675 
- F1: 1 or 1 and ½ foot brick fabric 676 
- F2: ½ foot brick fabric(or one-brick thick) outer wall + air cavity + hollow brick inner wall 677 
- F3: ½ foot brick fabric (or one-brick thick) outer wall + insulation layer + hollow brick 678 

inner wall 679 
- F4: ½ foot brick fabric (or one-brick thick) outer wall + air cavity + plasterboard inner 680 

wall 681 
- F5: fired clay panelling + air cavity + insulation + fired clay block 682 
- TW Window type 683 
- W1: hinge opening windows 684 
- W2: sliding windows 685 
- W3: hinged and sliding windows 686 
- SS Summer severity  687 
- V Volume 688 
- WS Winter severity  689 
- WB bathroom window  690 
- Y Year  691 

  692 
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