
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 1

A mobile platform for movement tracking based on
a fast-execution-time optical-flow algorithm

Rafael de la Rosa-Vidal, Juan A. Leñero-Bardallo, Member, IEEE, José-Marı́a Guerrero-Rodrı́guez, and Ángel
Rodrı́guez-Vázquez, Life Fellow, IEEE

Abstract—A multi-purpose mechanical platform to track
moving objects in three-dimensional space has been developed.
It is composed of one main microcontroller board that processes
all system data, two cameras, three motors, and one secondary
microcontroller board to position a platform with three degrees
of freedom. The system computes the optical flow and moves the
cameras accordingly, tracking motion within the visual scene. The
platform operates autonomously. To the best of our knowledge,
there are no similar systems reported with low-resolution image
sensors and low-cost microcontrollers. Existing solutions rely on
personal computers and advanced FPGAs to process image data.
This article concludes that the optical flow operation is efficient
even using an image sensor with very low resolution. Thus,
the system complexity and image data processing are alleviated
significantly. The platform can be easily adapted to different
application scenarios by adding new peripherals, sensors, or
image processing algorithms. A detailed description of the system
design and experimental results are provided.

Index Terms—Mobile platform, object tracking, camera
positioning, optical flow, image processing.

I. INTRODUCTION

MULTIPLE applications require to control the position of
cameras to track moving objects. For instance, drone

vision [1], [2] or automotive systems [3], [4] may require
to stabilize the camera position to record static images of
moving objects. Several authors have also devised sensors and
instruments for space navigation that need precise positioning
when they navigate. For instance, solar sensors or star trackers
have to be continuously oriented directly to the sun or stars
to control the attitude of space navigation systems [5], [6].

In parallel, the rise of Artificial Intelligence (AI) has
developed many other vision systems [4], [7]–[9] that,
processing camera data outputs, can identify moving objects

This work was supported by Proyectos de I+D+i DE entidades públicas –
Convocatoria 2020 P20 01206 (VERSO), by Ayudas a Proyectos de I+D+I
Programa Operativo FEDER through Project US-1264940 (SPADARCH), by
Proyecto Singular de Transferencia del Conocimiento: Ecosistema Innovador
con Inteligencia Artificial para Andalucı́a 2025 RIS3 through Project CEI-
07, by Spanish Government MINECO and European Regional Development
Fund, (ERDF/FEDER) through Project RTI2018-097088-B-C31, and by ONR
grant ONR NICOP N00014-19-1-2156.
Rafael de la Rosa-Vidal was supported by the Spanish Government through
Ayudas para la Formación del Profesorado Universitario (FPU) under Grant
FPU 01561.

Rafael de la Rosa-Vidal, Juan A. Leñero-Bardallo, and Á. Rodrı́guez-
Vázquez are with the Institute of Microelectronics of Seville (IMSE-CNM),
CSIC-Universidad de Sevilla, Av. Américo Vespucio, 28, 41092, Seville,
Spain, (E-mails: {rdvidal, jlenero, arodri-vazquez}@us.es).

José M. Guerrero-Rodrı́guez is with the University of Cádiz,
Campus Universitario de Puerto Real, 11519 Cádiz, Spain, (E-mail:
josem.guerrero@uca.es)

Manuscript received XXX, 2021; revised December, 2021.

or classify elements in the visual scene. Once the relevant
scene visual elements have been identified, the corresponding
actuators can be activated to navigate or exchange data with
other systems.

Camera positioning to track mobile objects is a complex
problem whose difficulty increases exponentially when there
is more than one image sensor involved in the operation [10].
Since image quality is not a must in these scenarios where
fast and efficient object recognition is the priority, different
image sensor architectures are being investigated. Nowadays
the spread of event-driven asynchronous image sensors [11],
[12] open enticing possibilities to refine the operation by
reducing the computational cost [13].

Looking at nature for inspiration, biological organisms,
with single or compound eyes, can track moving objects
by identifying the optical flow variations. The concept of
optical flow detection to estimate movement within the
visual scene by biological organisms was proposed in the
1940s by Gibson, [14]. Afterward, many algorithms to
compute it were developed by many authors [15]–[18].
However, classical optical flow algorithms have inherently
high computational cost because they require processing and
storing multiple image frames [16]–[18]. For this reason, real-
time execution needs high-speed processing that would limit
their implementation in many scenarios that demand low-
power systems.

To the best of our knowledge, existing tracking systems
based on optical flow computation or movement detection
have been implemented on high-performance platforms,
using personal computers, utilizing high-level programs to
process high image data throughput [1], [3], [10], [19].
That is a limitation to deploy positioning systems on other
autonomous systems like drones, satellites, robots, etc. that
cannot cope with a high payload and subsystems with high-
power consumption. To solve these limitations, we have
implemented a compact platform with reduced payload and
power consumption. Furthermore, previous authors employ
medium or high-resolution arrays to improve the image
quality, at the expense of increasing the computational cost.
However, as will be discussed in the article, for an optimum
scene interpretation, it is not strictly necessary a large number
of pixels. Some biological organisms like dragonflies have
complex eyes compounded of simpler eyes that capture only
a portion of the visual scene [19]–[21].

Previously, the authors presented a live demo with a
optical flow tracker [22]. It was an early version of the
proposed system with one image sensor, one movement

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 2

Fig. 1. 3D system model and different ortogonal views of it rotated ±45°.

degree of freedom, and much less-elaborated mechanical
implementation than the one that will be described in this
article. The system description was not provided. Extending
this previous work, we report design insights about a new
moving platform with stereo vision intended to track moving
objects employing two low-resolution image sensors, a refined
physical design with three degrees of freedom, and lower
latency. We have adapted image processing algorithms to
the system requirements. Those can be implemented on
classic microprocessor-architectures and adapted to process
data from image sensors with different nature and applicability.
We demonstrate that the operation can be performed with
very low-resolution image sensors, involving a very low
computational cost that can be executed on a low-cost
microcontroller. To the best of our knowledge, tracking
involving the optical flow computation by means of the
algorithms reported has never been implemented with a
microcontroller with low computational capabilities and low-
resolution image sensors.

II. SYSTEM IMPLEMENTATION OVERVIEW

A concept of the system implementation is depicted in
Figure 1. The platform can position two cameras intended to
track moving objects. Movement is detected by computing
the optical flow variations [16]–[18], [23] within the visual
scene. The field of view of the two cameras is different to
achieve the possibility of implementing stereoscopic vision
algorithms to estimate rotations and depth within the visual
scene [24]. The two cameras are always moved solidarily.
There are three independent motors to position the system with
three degrees of freedom (Pitch, Roll and Yaw). The cameras
assembly describes a spherical movement similar to a body
head movement. There is a microcontroller STM32L476RG
that processes the image sensors data. Its mission is to compute
the optical flow and determine how the system has to be
positioned. There is a dedicated IMU MPU6050 to track the
motors positions and move them accordingly.

III. OPTICAL FLOW DETECTION ALGORITHM

The optical flow can be defined as the apparent movement
of luminous intensity patterns within a frame [16], assuming
that luminance variations inside the frame are only due to the
displacement of such patterns within the frame [25]. It is a
relative movement between the objects of the visual scene and
an observer [14], [25], [26]. Thus, it can provide very useful
information to locate and monitor the position of elements in
the space through a frame sequence [27].

Biological organisms compute it to navigate and get
across the environment [20], [21]. Although the concept
of optical flow computation was proposed many decades
ago [14], the first functional algorithms to computed it
are more recent [16]–[18], [23]. Traditionally, optical flow
computation has been limited by the strong computational
requirements associated with real-time algorithm execution.
Some authors have already devised systems that track
moving objects by computing the optical flow variations
[19], [28]. However, to the best of our knowledge, such
systems require large computational capabilities that limit
their autonomous implementation without using computers. In
many cases, complex convolution operations, filtering, storage,
and processing of several frames, etc. are required processing
steps. Those increase the computational load remarkably with
high-resolution pixel arrays.

The basis for the optical flow computation is the motion
constraint equation [25]. The light intensity on an instant t
of a pixel in the (x, y) coordinates is given by the equation
I(x, y, t). If the pixel displaces a distance ∆x y ∆y in the
Cartesian plane during a time interval ∆t, the new pixel
intensity is given by the function I(x+ ∆x, y + ∆y, t+ ∆t).
Since I(x, y, t) and I(x+ ∆x, y + ∆y, t+ ∆t) correspond to
pixels with identical intensity values, the movement equation,
I (x, y, t) = I (x + ∆x, y + ∆y, t + ∆t), must be satisfied.
This assumption is valid for first order approximations where
∆x, ∆y y ∆t are small values.

Among the algorithms to compute the optical flow, three
different families of algorithms were considered:
• Differential techniques. They are based on spatio-

temporal derivatives computation of image intensity (i.e.
Lucas-Kanade [18] and Horn-Schunck [16]).

• Frequency and phase based methods. They are based on
the velocity-tuned filters response applied to the frames
(i.e. Heeger [29] and Waxman [30]).

• Region-based matching. Those based on the searching of
the velocity vector which minimizes the error between
two successive frames (i.e. Srinivasan [23]).

For the proposed system implementation, a simplified
version of Srinivasan’s algorithm [23] proposed by the authors
was selected. The algorithm has interesting advantages over
the previous ones to embed it on a microcontroller:
• It does not require feature detection inside the frame.
• The optical flow is computed with only one iteration.
• It does not require spatial or temporal filtering. These two

operations have a high computational cost.
• The computation is robust to the image noise in non-

synthetic images.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 3

Fig. 2. Example illustrating the bidimensional functions fl, fr, fu, and fd
when considering a frame with 8×8 pixels. A subframe with 6×6 pixels
defined by the window function Ψ (x, y) represents a static region of interest.
The following values for the displacement parameters were set: ∆xref =
∆yref = 1

To explain the Srinivasan’s algorithm operation, let us define
a uniform spatial window Ψ (x, y) that selects a region of
interest (group of pixels) inside a frame. The pixels intensities
inside the window are defined by the function f (x, y). The
plane movement in the x- and y-directions within a time
interval ∆t is given by ∆̂x and ∆̂y. These two terms represent
the optical flow value in each direction. For convenience, let
us also denote the function that gives the initial pixel intensity
values (before the movement starts at t = 0) as f0 (x, y). Also,
the functions fl(x, y,∆t) and fr(x, y,∆t) will be defined.
They represent the pixel intensities values after a time interval
∆t and a frame displacement over the x-axis of a value xref ,
i.e.:

fl(x, y,∆t) = f0(x + ∆xref , y)

fr(x, y,∆t) = f0(x−∆xref , y)
(1)

Likewise, the functions fu(x, y,∆t) and fd(x, y,∆t) are
defined as the pixel intensities after a frame displacement yref
over the y-axis:

fu(x, y,∆t) = f0(x, y −∆yref)

fd(x, y,∆t) = f0(x, y + ∆yref)
(2)

For simplicity, we will denote the functions of Equations
1 and 2 as f, f0, fr, fl, fu, fd. For illustrative
purposes, in Figure 2, there is a representation of the different
bidimensional functions (fl, fr, fu, and fd) that are created
after a frame displacement in the x- and the y-directions
with the reference values xref = yref = 1. The frame

has a dimension of 8×8 pixels, and the window function
Ψ (x, y) defines a subframe with 6×6 pixels representing a
static region of interest. Let us assume that the time interval
∆t is very short and during it, the pixel intensities do not
change. Thus, f (x, y,∆t) is just a translation of the original
function f0 (x, y, t). Under this assumption, it is possible to
express f (x, y,∆t) as a function of fl, fr, fu, and fd, as it
is depicted by Equation 3.

̂f (x, y, t) is an interpolated version of f (x, y, t).

f̂ = f0 +
1

2

(
∆̂x

∆xref

)
(fr − fl) +

1

2

(
∆̂y

∆yref

)
(fu − fd)

(3)

The target is to obtain the values of ∆̂x and ∆̂y that
minimize the error between ̂f (x, y, t) and f (x, y, t). These
parameters correspond to the optical flow value. The error
minimization between f and f̂ is calculated by optimizing the
least quadratic error in the frame region of interest defined by
the window function Ψ(x, y). For a frame with M×N pixels,
the error, E, is:

E =

M−1∑
x=0

N−1∑
y=0

{
Ψ(x, y) ·

[
f(x, y)− f̂(x, y)

]2}
(4)

Where M is the number of pixel rows and N is the number
of pixel columns in the frame. In the previous equations,
∆xref and ∆yref are algorithm parameters. They have pixel
units and establish the algorithm sensitivity to the optical
flow variations. For low-resolution pixel arrays like the one
selected in the proposed system implementation, a value of
∆xref = ∆yref = 1 is adequate. This choice also reduces
the execution time because no extra calculations are needed
when dividing by ∆xref or ∆yref . For larger pixel arrays,
∆xref and ∆yref values must be increased to keep the same
algorithm sensitivity to the optical flow variations.

Substituting Equation 3 in Equation 4, the Equation 5 is
derived. To minimize the error, the partial derivatives functions
referred to ∆̂x and ∆̂y are forced to be equal to zero, leading
to the equation system composed by Equation 6 and Equation
7.

E =

M−1∑
x=0

N−1∑
y=0

{
Ψ (x, y) ·

{
f −

[
f0 +

1

2

(
∆̂x

∆xref

)(
fr − fl

)
+

1

2

(
∆̂y

∆yref

)(
fu − fd

)]}2}
(5)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 4

(
∆̂x

∆xref

)
·
M−1∑
x=0

N−1∑
y=0

[
Ψ (x, y) · (fr − fl)

2
]

+

(
∆̂y

∆yref

)
·
M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (fu − fd) · (fr − fl)]

= 2 ·
M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (f − f0) · (fr − fl)] (6)

(
∆̂x

∆xref

)
·
M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (fr − fl) · (fu − fd)]

+

(
∆̂y

∆yref

)
·
M−1∑
x=0

N−1∑
y=0

[
Ψ (x, y) · (fu − fd)2

]
= 2 ·

M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (f − f0) · (fu − fd)] (7)

The values of ∆̂x and ∆̂y result from solving the equation
system defined by Equations 8 and 9. They provide the optical
flow value in the region defined by Ψ(x, y).

∆̂x = 2 · C ·D −B · E
A ·D −B2

·∆xref (8)

∆̂y = 2 · A · E −B · C
A ·D −B2

·∆yref (9)

where,

A =

M−1∑
x=0

N−1∑
y=0

[
Ψ (x, y) · (fr − fl)

2
]

(10)

B =

M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (fr − fl) · (fu − fd)] (11)

C =

M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (f − f0) · (fr − fl)] (12)

D =

M−1∑
x=0

N−1∑
y=0

[
Ψ (x, y) · (fu − fd)2

]
(13)

E =

M−1∑
x=0

N−1∑
y=0

[Ψ (x, y) · (f − f0) · (fu − fd)] (14)

These are coefficients defined by the authors that can be
calculated while the sensor frame is readout, facilitating the
entire system pipeline operation.

There are two situations where the system equation is
undetermined:
• The entire frame is exposed to the same illumination

value. Consequently, all the pixels intensities are
theoretically the same. In this case, all the equation
coefficients are null because fr = fl = fu = fd.

• The frame only has one-dimension features (vertical or
horizontal). For instance, this can happen whether there is

STM32L476RG - NUCLEO

EyeOF Module EyeOF Module

SPI1 peripheral SPI2 peripheral

UART PWM/RC

Eyes OF Gimbal
Platform

App

Gimbal Controller
STorm32 BGC

Fig. 3. Diagram showing the system connectivity among the different
hardware elements.

only an horizontal (fr = fl) or a vertical line (fu = fd) in
the frame. In such cases, there are multiple solutions for
the system equation leading to the well-known Aperture
Problem [31].

Such situations are detected by examining the parameter
values. Optical flow computation is discarded whether the
denominator in Equations 8 and 9 is close to zero. However,
this case is unlikely because frames incorporate Fixed Pattern
Noise (FPN) added by the image sensor that benefits the
algorithm operation.

IV. HARDWARE IMPLEMENTATION

In Figure 3, the different hardware elements are shown. The
kind of connectivity between them to exchange information
is depicted in the diagram. The main component is
the STM32L476RG-NUCLEO microcontroller development
board from ST Microelectronics. It controls the rest of the
modules. It sends/receives data and configuration instructions
to/from a PC through a UART interface. It is also connected to
two modules called Eye of Optical Flow (EyeOF) that acquire
raw images from the visual scene. Finally, the STM32L476RG
microcontroller drives using PWM signals three motors with
a STorm32 BGC Gimbal controller.

The STM32L476RG-NUCLEO development board
integrates as the main device an ARM® Cortex®-M4 core
that can operate at 80 MHz consuming 26 mW. It has been
conceived for low-power applications and presents multiple
SPI interfaces to connect different peripherals. It allows
Direct Memory Access (DMA) from the peripherals without
using the CPU. With this functionality, pipeline operation
between data transfer and data processing is implemented to
reduce the system latency.

A. Image acquisition module

Demonstrating that it is feasible to compute the optic flow
efficiently with very low-resolution images was one target in
this work. With this aim, the low resolution ADNS2610 sensor
was selected. This family of sensors was popular a few years

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 5

FD

(a)

(b)

Fig. 4. (a) 3D design of the module EyeOF. (b) Detail of the optics assembled
to it. FD is the focal distance from the optics to the sensor.

ago. They were implemented in optic mouses to track the
movement of a light source that was solidary with the mouse
movement. The sensor is compounded of a low-resolution
18×18 image sensor and a DSP that can implement basic
image processing operations. In this work, the ADNS2610
sensor just senses illumination values in the visual scene. Then
its data is transmitted to the STM32L476RG microcontroller
to compute the optical flow with the algorithm described.

To host the ADNS2610 sensor and its optics, a custom
PCB was designed and fabricated. We called it Eye of Optical
Flow (EyeOF). The EyeOF module has a 4-wire connector
to communicate the sensor with a microcontroller, power the
sensor, and to send or receive configuration parameters. In
Figure 4.(a), there is a 3D representation of the EyeOF module
and its main components. A lens holder can be attached to the
EyeOF module (see Figure 4.(b)) to easily mount and remove
the sensors optics.

B. Image acquisition and optical flow computation

A Finite State Machine (FSM) was implemented on the
microcontroller to control the EyeOF modules in charge of the
image acquisition. In Figure 5, there is a diagram illustrating
the different transitions between states in the FSM. To speed
up the optical flow calculation and to avoid dead times between
state transitions, all the required operations are performed
while the microcontroller is awaiting data from the EyeOF
modules. We provide a brief description of the operations
conducted by the FSM:
• SENSOR RESET. The EyeOF module and all its data

registers are initialized. The module operation starts from

SENSOR_RESET

TRIGGER_FRAME

REQ_READ_
FRAME

READING_FRAME
PROCESSING

RESET

RESET

RESETRESET

!PIXEL_STATUS

!RESET

!RESET

PIXEL_STATUS

PIXEL_QTY<323

PIXEL_STATUS &&
PIXEL_QTY==323

!RESET

Fig. 5. Diagram of the FSM implemented in the microcontroller for image
acquisition and processing.

this state that is accessible by all the other FSM states.
• TRIGGER FRAME. The ADNS2610 sensor is prepared

to initiate a frame acquisition. The operation requires to
write one control bit in a EyeOF configuration register
and wait for the EyeOF module to be prepared to acquire
a new frame. In the meantime, all the parameters from
the EyeOF module, to be monitored in the user interface,
can be transferred to the DMA. The frame pixels will be
readout one by one in the upcoming two states.

• REQ READ FRAME. In this state, a requirement to
readout a pixel is sent to the EyeOF module. In the
meantime, if the previous pixel was already readout,
the pixel status is checked. If possible, some operations
related to the optical flow computation are performed
with the previous readout pixels.

• READING FRAME. A register containing the pixel data
is readout. The number of readout pixels is updated. If
there are pending pixels, the FSM comes back to the
previous REQ READ FRAME state. If the entire frame
has been readout, the FSM machine moves to the next
state, PROCESSING.

• PROCESSING. At this state, the two frames required to
compute the optical flow are available. Since only two
frames are required for the computation, the oldest frame
stored in memory is discarded. A register that stores the
memory position that corresponds to the new frame and
the previous one is updated. The optical flow values are
determined and used to correct the motor position. After
completing these operations, the FSM returns to the initial
TRIGGER FRAME state. All the FSM previous steps are
repeated to acquire a new frame, compute the optical flow,
and update the motors’ position.

The maximum frame rate that can be achieved is limited by

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 6

TABLE I
TIME REQUIRED FOR THE DATA READING OPERATIONS WITH THE

ADNS2610 IMAGE SENSOR.

Operation Time required
Time to await between pixels consecutive
readings, t1.

50 µs

Time to send a pixel reading requirement and to
readout the pixel value, t2.

600 µs

Time to prepare the image sensor to acquire
pixel data and initiate the pixels readout
operation, t3.

700 µs

17 35 53 71 89 107 125 143 161 179 197 215 233 251 269 287 305 323

16 34 52 70 88 106 124 142 160 178 196 214 232 250 268 286 304 322

15 33 51 69 87 105 123 141 159 177 195 213 231 249 267 285 303 321

14 32 50 68 86 104 122 140 158 176 194 212 230 248 266 284 302 320

13 31 49 67 85 103 121 139 157 175 193 211 229 247 265 283 301 319

12 30 48 66 84 102 120 138 156 174 192 210 228 246 264 282 300 318

11 29 47 65 83 101 119 137 155 173 191 209 227 245 263 281 299 317

10 28 46 64 82 100 118 136 154 172 190 208 226 244 262 280 298 316

9 27 45 63 81 99 117 135 153 171 189 207 225 243 261 279 297 315

8 26 44 62 80 98 116 134 152 170 188 206 224 242 260 278 296 314

7 25 43 61 79 97 115 133 151 169 187 205 223 241 259 277 295 313

6 24 42 60 78 96 114 132 150 168 186 204 222 240 258 276 294 312

5 23 41 59 77 95 113 131 149 167 185 203 221 239 257 275 293 311

4 22 40 58 76 94 112 130 148 166 184 202 220 238 256 274 292 310

3 21 39 57 75 93 111 129 147 165 183 201 219 237 255 273 291 309

2 20 38 56 74 92 110 128 146 164 182 200 218 236 254 272 290 308

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307

0 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306

13 31 49 67 85

12 30 48 66 84

11 29 47 65 83

10 28 46 64 82

9 27 45 63 81

8 26 44 62 80

7 25 43 61 79

6 24 42 60 78

5 23 41 59 77

4 22 40 58 76

3 21 39 57 75

2 20 38 56 74

1 19 37 55 73

0 18 36 54 72

(a) (b)

Fig. 6. a) Table with pixels indexes: in blue, there are the indexes whose data
can be used to perform any optical flow computation when they are readout.
In red, there are the ones that require to wait for additional data to make a
computation. b) Indexes required to calculate the partial sums. Illustration of
the order they can be employed to make calculations.

the fact that pixels values has to readout one by one. However,
the FSM machine performs all the optical flow computations in
parallel while pixels are readout avoiding dead time. Thereafter
acquiring a frame, the motors position can be updated, and a
new frame can be acquired.

In Table I, the amount of time required for the data reading
operations with the ADNS2610 image sensor is reported.
Using this information, the amount of time to readout a frame
is computed:

tacq = (t1 + t2) ·M ·N + t3 = 211.3 ms (15)

FPS =
1

tacq
= 4.732 ≈ 5 fps (16)

A maximum frame rate of 5 fps can be achieved with the
selected image sensor. This value limits the system latency to
track fast moving objects. Such value qualifies to track moving
light sources that are far away, i.g. the sun, and objects that
do not move fast.

C. Optical flow algorithm implementation

The implementation of the Srinivasan’s optical flow
algorithm [23] has been devised to avoid a bottleneck in
the device operation. There are several computational steps

Common Plane

Fig. 7. Spatial arrangement for the EyeOF modules. In red, the reference
coordinate systems for each EyeOF module; in blue, the reference coordinate
system for the optical flow vectors fusion.

performed in parallel with the pixel readout operations.
Thus, there are pipeline operations continuously executed
by the microcontroller to speed up the system operation.
The algorithm implementation is based on the use of the
information provides in the tables of Figure 6.(a-b).

The two frames required for the optical flow computation
are stored on two one-dimensional arrays with M ×N=18·18
elements. To compute the optical flow, the coefficients A, B,
C, D and E, given by Equations 10, 11, 12, 13, and 14, must
be calculated. Each coefficient results from the partial sum
of M ×N elements. These elements are calculated while the
pixel values of the new frames are being readout. To calculate
the partial sums, the pixel intensity values are arranged in the
memory as it is depicted in Figure 6.(a). For simplicity, in
the plots, we have assumed that ∆x = ∆y =1. Pixels are
always readout in order, starting from the pixel labeled as 1
and finishing with the pixel labeled as 324. In Figure 6.(a),
we classify with a color code the indexes. In red, there are the
indexes that cannot be immediately used to compute a partial
sum when the pixels that represent are readout. Observing
the terms of the coefficients equations, it can be understood
that until a pixel neighborhood is not readout, any partial sum
computation is possible. In blue, there are marked the indexes
that can lead to an immediate partial sum computation when
they are readout.

In Figure 6.(b), it is illustrated how the different partial
sums can be calculated while the different pixels are readout
sequentially in the direction the arrow indicates. For the first
partial sum computation, the indexes 19, 18, 20, 1, 37 are
required; for the second partial sum, the indexes 21, 20, 22, 3,
39 and required; and so on. It can be noticed that to calculate
the first partial sum, the first 37th pixels have to be readout.
For this reason, the first 36th indexes are marked in red color
in Figure 6.(a).

In the proposed system implementation (Figure 7), two
coplanar cameras are mounted. This is the minimum amount

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 7

Pitch Motor Roll Motor Yaw motor

Radio
Control
Signals

External
IMU

DC power

USB to PC

Motor
drivers

On-board
IMU

Microcontroller

Fig. 8. STorM32 BGC control board. Its main functional modules are
highlighted.

of sensors necessary to implement a three-dimensional object
tracking that detects visual scene rotations referred to one axis.
Moreover, by increasing the number of cameras, the field of
view value is increased. The results of processing the frames
captured with each image sensor are two vectors. They indicate
the direction and the magnitude of the optical flow: −→v left =

[∆xleft,∆yleft]
T and −→v right = [∆xright,∆yright]

T . Then
two vectors are combined leading to:
• An optic flow vector that is the result of of averaging the

optical flow vectors provided by each image sensor, i.e.,
−→v fused =

−→v left+
−→v right

2 , as it is depicted in Figure 7.
• The two image sensors are aligned in the x-plane. Hence,

the variation of the y-coordinates for the two optical
flow vectors, ∆yfused = ∆yleft − ∆yright provides
information about the visual scene rotation referred to
the platform x-axis.

V. MOTORS AND CONTROLLERS

Three 2208 brushless DC motors were selected to position
the platform. They operate at 90 KV rotation-torque ratio and
have 14 poles.

To drive the three motors, the 3-axis STorM32 BGC
controller board were selected. The main sub-components and
interconnecting pin-outs and are shown in Figure 8. The upper
connections are intended for the pitch, roll, and, yaw motor
control. At the bottom, there is the power supply connection.
We fed the board with a DC power supply with 12 V and
5 A (60 W). On the left side, their connections to three
elements: a) Connections to control signals to modify the
system position. b) An external Inertial Measurement Unit
(IMU) with a gyroscope and accelerometer to determine the
module’s position. This IMU must be allocated in the same
plane as the motors and it is connected to the STorM32 BGC
device with a twisted pair. c) An USB port to configure the

MPU 6050
module

STorM32 BGC
controller

Pitch

Roll

Yaw

The slots
allow balancing

the gimbal

z

y x

Inertial
frame

Body
frame

Fig. 9. Platform mechanical design: 3D structural model.

board from a PC. In the center of the controller board, there
is another on-board IMU to detect the board’s position when
it is installed in moving surfaces, i.e. in a drone. A Graphical
User Interface (GUI) is available to tuning the STorM32 BGC
microcontroller.

VI. MECHANICAL DESIGN

In Figure 9, there is a detailed 3D view of the platform
design. The mechanical structure is based on the Gimbal
system concept. This type of structure is usual for system
camera stabilization. For the platform mechanical design, the
3D modeling software Fusion 360® from AutoDesk was used.
This software allows integrating the prior PCB design from
the EyeOF modules depicted in Figure 4 with the system
mechanical structure. The interaction of the moving structure
with the system elements: wires, motors, optics, EyeOF boards
was studied in detail before manufacturing. The different
platform parts were fabricated with a 3D printer.

For the representation of the position and attitude of
a moving object in a three-dimensional space, an inertial
reference system was considered. It is fixed and it does not
move during the platform operation. Additionally, a local
reference system is defined. Its coordinate origin is the system
center of gravity. Its axes are disposed as it is depicted in
Figure 9 and it is not inertial. Over the local reference system,
the attitude of a moving object is defined by quaternions. The
first quaternion component represents a rotation angle and the
other three components define the axis that is rotated the angle
defined by the first vector component.

For the right platform operation, it must be mechanically
balanced. This implies that the load’s center-mass must be
exactly allocated along the rotation axis for each motor.
Consequently, the load will be fixed at an optimum equilibrium
position to speed up the displacement. Otherwise, vibrations
of the gimbal system and consequently added overheating of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 8

Frame on
(k-1)

Motors
on the

platform

Frame on
k

IMU
module

Delay
(To wait platform
 establishment)

PID
Controller

STorM32
BGC

controller

Optical
flow

computation

It implements
PID controllers

internally
x
y

RC pitch
RC roll
RC yaw

Pitch
Roll
Yaw

Position
control loop

Tracking
control loop

Fig. 10. Diagram with the implemented control loops.

the corresponding motor could also occur. To facilitate the
balancing process, slots are present in some parts to balance
the center-mass of the pitch axis, as it is depicted in Figure 9.
The roll axis will be balanced because the loads allocated over
it are identical. For the yaw axis, the equilibrium condition is
not so critical because the platform will be held in a vertical
position during its operation. Hence, there is not any relevant
momentum; all the relevant forces are longitudinal to the motor
rotation axis. In Figure 1, the 3D design of the entire platform
is shown. The movement range is sufficient for the proposed
application scenarios.

VII. CONTROL LOOP IMPLEMENTATION

This section describes the system configuration process, its
stabilization, and how its parameters are trimmed.

The first step to initialize the STorM32 BGC board
is to calibrate the IMU that has been placed next to
the EyeOF modules, as it is depicted in Figure 9. The
controller GUI is used to define the IMU orientation. With
the calibration process, undesired offset values from the
gyroscopes measurement are canceled.

The control law is based on the software implementation
of three PID regulators to position every specific axis: pitch,
roll, and yaw, according to the control loop diagram illustrated
in Figure 10. The regulator input is the error between the
target position and the current one. The KP , KI , and KD

PID parameters were adjusted as described in Listing I. Their
values can directly be set using an available microcontroller
GUI.

The parameters KP and KD are responsible for the dynamic
platform response. They have selected to achieve a critically
damped response without oscillations. Once the platform is
stabilized, the modules EyeOF mounted on it move, tracking
the scene visual flow variations.

VIII. USER INTERFACE IMPLEMENTATION

To debug the system and monitor its outputs a custom
GUI was implemented. This GUI, shown in Figure 11, was
programmed with the Microsoft WPF technology and .NET
Core framework [32]. Currently, the WPF technology is
integrated in .NET Core that aims to be a multiplatform
environment compatible with Linux or MacOS. These
programming tools allow creating refined and modern user
interfaces that can exchange data and commands with custom
systems of diverse nature. The GUI’s purpose is to monitor

Listing I: PID control parameters adjustment.

1) All the control outputs are disabled, excepting the one
corresponding to the pitch axis. Under this configuration, the
following adjustments are performed:

a) The KD parameter is gradually increased until the system
starts vibrating at high frequency. Then the KD value
is decreased until the system vibrations stop. It must be
checked that there are no system vibrations for any of its
possible axis positions.

b) The KI parameter value is increased to the minimum
possible value above zero. For the STorM32 BGC
microcontroller, this value is 5.

c) The KP value is increased until the system starts oscillating
at low frequency. At this point, the KP value is reduced until
the system is stable. Again, it must be checked that there no
vibrations in any axes position.

d) The KI value is increased until the system becomes
unstable. In this situation, the motor position in the axis will
vary randomly. Then, the KI value must be reduced until
reaching the stability again.

2) The motor that controls the roll axis is activated. The steps 1.(a-d)
are repeated.

3) The motor that controls the yaw axis is activated. The steps 1.(a-d)
are repeated.

1 2

3

4

5

6

7

8

Fig. 11. Eyes OF Gimbal Platform custom interface. The main interface
buttons and functionalities are numbered in the plot.

the platform operation, debug it, and illustrate how it works.
It must be remarked that the system is autonomous and does
not require to be connected to the GUI to operate. In Figure
11, the custom user interface is shown. Its name is Eyes OF
Gimbal Platform.

The interface can represent simultaneously the two frames
rendered by the EyeOF modules. In Figure 12, the face of one
of the author is rendered. Although the image sensors pixel
resolution is limited (18×18 pixels), some parts of the face
can be easily distinguished. In practical situations, we do not
target to identify objects within the visual scene. The aim is to
detect the optical flow variations provoked by moving objects
and track them.

The interface allows to represent arrows vectors over the
rendered frames (see Figures 11 and 12). This possibility
leads to a very intuitive dynamic representation of optical flow

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 9

Fig. 12. Frames with a face captured with the EyeOF modules. In the left
one, the optical flow is not shown. In the right one, the result of the optical
flow computation and the system position correction to track the movement
are represented with two colored arrows, red and green respectively.

computation results, indicating its direction and magnitude.
Two colored arrows are displayed over the incoming frames
providing information continuously. This representation is
necessary to debug the system. The red arrow is the result of
the optical flow computation. The arrow length is proportional
to the optical flow magnitude. The green arrow indicates the
necessary system movement correction to capture a frame
equal to the previous one taken as a reference.

Several commands and operations are accessible through the
GUI interface. In Figure 11, the most representative windows
and interface buttons are numbered. We list them:

• Sections to display the frames acquired by the image
sensors, 1 , and 2 .

• Button to start or stop the platform operation, 3 .
• Button to start computing the optical flow taking an initial

frame as a reference, 4 .
• Button to calibrate the platform (5). This operation

consists of storing a reference frame to track the
movement referred to it.

• Arrows buttons, 6 , to force the platform movement in
different directions, i.e., South, North, East, and West.
These functions are useful to set an initial camera position
in the center of the visual scene.

• Tracking mode button, 7 . In this operation mode, the
platforms track moving objects within the visual scene
through the optical flow computation.

• Several items, labeled as 8 that display the numerical
value of the optical flow computation.

IX. EXPERIMENTAL RESULTS

The entire system was characterized. Table II summarizes
the main system specifications. A photograph of the final
system implementation is shown in Figure 13. The entire
system is powered with a power supply source operating at
12 V with a power of 60 W.

The system tracking capability was tested in our
laboratories. The system can easily track walking people from
a distance of 1.5 meters or higher from the platform. Also, its
applicability to track bright light sources and walking people
was verified.

Fig. 13. Photograph showing the final moving platform implementation.

TABLE II
TRACKING PLATFORM MAIN FEATURES.

Functionality Optical flow computation
and object tracking

Microcontroller for data
processing

STM32L476RG, ARM
Cortex-M4 @ 64 MHz

Microcontroller for motor
positioning

STorm32 BGC Gimbal,
ARM 32-bit Cortex-M3 @

72 MHz
Motors Three 2208 brushless DC

motors, 90 KV, 14 poles
Dimensions 160 mm × 125 mm

Image sensor resolution 18 × 18 pixels
Field of view 100°

Latency 450 ms
Frame rate 5 fps

Power consumption 270 mA@12 V
Degrees of freedom Three (Pitch, Roll, and Yaw)

Stereo vision Yes
Scalability Possible to add multiple

image sensors
Optional frame postprocessing Yes

0 200 400 600 800 1000 1200 1400
0

0.25
0.5

0.75
1

D
eg

re
es

Pitch

0 200 400 600 800 1000 1200 1400
0

0.25
0.5

0.75
1

D
eg

re
es

Roll

0 200 400 600 800 1000 1200 1400
Time (ms)

0
0.25

0.5
0.75

1

D
eg

re
es

Yaw

Fig. 14. Experimental motors’ unit step-response.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 10

(a)

(b)

1
23

4 5
6

1
23

4 5
6

Fig. 15. Optical flow computation with the system following a rhomboidal
trajectory. a) System trajectory. b) Experimental data and expected response.

In Figure 14, experimental results illustrating the motors’
unit step response are shown. The communication interface
allows to timestamp the IMU recorded positions with a 10 ms
time resolution. Analyzing this data, it is possible to determine
the motors’ time constants for a unit step stimulus. Results
in Figure 14 show that the motors response is approximately
critically damped, as desired. The first-order system time
constant is similar for the movement in the pitch and roll axes,
and a bit higher in the yaw axis (≈154 ms). This time constant
makes the system suitable for applications where the objects
do not move at high speed or are far away from their basis.

In Figure 15, the optical flow calculation results when the
system was moved across a rhomboidal trajectory are shown.
Figure 15.(a) illustrates the trajectory followed by the image
sensors centroids. Arrows indicate the movement direction
and numbers the order in which each path was taken. In
Figure 15.(b), we represent with a blue trace the results of
the optical flow computation. The x and y-axes represent a

scaled version of the reference frame displacement over these
axes, i.e., ∆̂x and ∆̂y, respectively. To avoid floating-point
operations, these values are scaled to operate with integers,
which require less computation effort from the microcontroller.
In the z-axis, temporal information is recorded. The initial
and the final optical flow values are the same and equal
to zero because the system starts/stops from/at this point.
The red trace in Figure 15.(b) represents a low-pass filtered
version of the experimental data that is closer to the ideal
response expected in the experiment. Optical flow variations
must increase/decrease monotonically until a vertex of the
rhombus is reached. It can be observed that the system
output fluctuates around this filtered data suggesting that the
platform’s dynamics induces small mechanical oscillations that
affect the optical flow computation. Visual scene variations
before the system has stabilized itself, induce optical flow
computation errors. Thus, there is a trade-off between the
system tracking speed and the optical flow computation.

X. BENCHMARKING AND FUTURE WORK

Table III benchmarks the proposed system against other
related and relevant ones. Comparing the proposed platform
to the art, we did not find an autonomous tracking system
that performs all the optical flow computation and required
operations on a microcontroller device. All previous related
works [1], [3], [10], [33] employ image sensors with larger
pixel arrays. Personal computers, sometimes combined with
advanced FPGAs are needed for the optical flow computation.
This is an important limitation for the development of space
tracking systems as sun sensors [5], [6] because the amount
of power, the system dimensions, and the payload are quite
limited in satellites and on-board systems. The work of
Floreano et al. [19] demonstrated that it is possible to
implement a real-time optical flow computation with modern
microcontrollers. However, to the best of our knowledge,
autonomous tracking systems based on optical flow detection
have not been implemented. Some authors like Conroy
et al [34] incorporate dedicated boards to implement the
optical flow computation to avoid collisions of autonomous
systems in unknown environments. These modules add system
complexity and are closed solutions, not being always
compatible with a user image sensor choice. Neither can they
be easily expanded by adding extra cameras.

Competitive ad-hoc image sensors targeted to detect the
optical flow and track small moving objects have been reported
[35]–[37]. However, to the best of our knowledge, these
previous works are mainly focused on the image sensor
implementation. They do not report a detail system integration
of the sensors with a mechanical platform and its performance.

One important finding is the demonstration that the
optical flow can be computed efficiently with a very low-
resolution pixel array. To the best of our knowledge,
this has not been explored previously and can lead to
further development of autonomous systems with low power
consumption, implemented with low-cost microcontrollers.
The system scene perception and interpretation can differ from
ours, not being necessary to process high-resolution images
that, in many cases limit the system performance.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 11

TABLE III
STATE-OF-THE-ART COMPARISON.

Work This work Tsai et al. [1] Ko et al. [3] Deng et al. [10] Delbruck et al.
[33]

Functionality Optical flow
computation and
object tracking

Omnidirectional
mobile

manipulator

Mobile robotic
platform for
agricultural
applications

Testbed: Visual
tracking, 3D

control, image
processing.

Dynamic object
blocking

Dimensions 160 mm × 125
mm

ND 565 mm × 960
mm

Adaptive
(testbed

surrounded by
eigth cameras)

ND

Field of view 100◦ 90◦ (H) x 60◦
(V)

64◦ 77.32◦ ND

Image sensor
resolution

18 × 18 pixels 2560 × 720
pixels

ND (> 640 ×
480 pixels)

1280 × 720
pixels

128 × 128 pixels

Latency 450 ms 3 s ND (Real-time
navigation)

10 ms 3 ms

Power
consumption

270 mA @ 12 V
(STM32L476RG

ARM
microcontroller

for data
processing and
STorm32 BGC

Gimbal
microcontroller

for motor
positioning)

ND (One on
board Intel i7
laptop, One

Arduino
controller)

ND (One
computer on

board)

ND (Two on
board Intel i7

computers,
Zynq-7000

FPGA, and eight
image sensors)

ND (One
computer, one

HiTec HS-6965
MG digital servo,

and one DVS
sensor

System degrees
of freedom

Three (Pitch,
Roll, and Yaw)

Three (Pitch,
Roll, and Yaw)

Two (Terrestrial
vehicle)

None (It is
static)

One (Azimuth)

Number of
cameras

Two moving
cameras. Stereo

vision.

Static camera
with stereo vision

One static camera Eight static
cameras

One Dynamic
Vision Sensor

(DVS)
Scalability Possible to add

multiple image
sensors and
processing
algorithms

Possible to add
additional
processing
algorithms

Possible to add
additional
processing
algorithms

Possible to add
multiple image

sensors and
processing
algorithms

Possible to add
additional
processing
algorithms

System
adaptability to

different
application
scenarios

Yes No Yes Yes No

The main system limitation is its high latency response time.
This is mainly due to the choice of low-speed image sensors
whose pixel data has to be readout one by one until completing
the pixel matrix. Since the system dynamics is very fast, it
would be possible to operate with image sensors with a higher
frame rate. Although this limitation, the system qualifies for
the aforementioned application scenarios.

Among the further work, it must be remarked that extra
image sensors could be added to the platform to increase the
field of view, emulating biological systems with multiple eyes
[19]–[21]. Finally, additional image processing algorithms
could be embedded on the microcontroller, depending on
the system application scenario, given flexibility to adapt the
platform to different applications.

XI. CONCLUSIONS

An autonomous platform to track movement has been
presented. It detects objects’ movement by computing the
optical flow variations when they move across the system
field of view. A custom optical flow computation algorithm

was developed. It can be embedded in microcontrollers with
low-computation capabilities. The algorithm can process the
images rendered with low-resolution image sensors alleviating,
even more, the computational cost. Over similar reported
systems, this one operates autonomously, demonstrating that
low-resolution image sensors qualify for object tracking. The
system can be used as a test platform where new image
processing algorithms can be combined with the implemented
one. Thus, it can be easily adapted to meet the specific
requirements of different application scenarios involving
object trajectory tracking and positioning using cameras.
System scalability is possible by increasing the number of
image sensors, still keeping a reduced computational load.

REFERENCES

[1] C. Tsai, Y. Chou, C. Wong, Y. Lai, and C. Huang, “Visually guided
picking control of an omnidirectional mobile manipulator based on end-
to-end multi-task imitation learning,” IEEE Access, vol. 8, pp. 1882–
1891, 2020.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 12

[2] C. Troiani, A. Martinelli, C. Laugier, and D. Scaramuzza, “Low
computational-complexity algorithms for vision-aided inertial navigation
of micro aerial vehicles,” Robotics and Autonomous Systems, vol. 69,
pp. 80–97, 2015.

[3] M. H. Ko, B. Ryuh, K. C. Kim, A. Suprem, and N. P.
Mahalik, “Autonomous greenhouse mobile robot driving strategies from
system integration perspective: Review and application,” IEEE/ASME
Transactions on Mechatronics, vol. 20, no. 4, pp. 1705–1716, 2015.

[4] R. Sabzevari and D. Scaramuzza, “Multi-body motion estimation from
monocular vehicle-mounted cameras,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 638–651, 2016.

[5] J. A. Leñero-Bardallo, L. Farian, J. M. Guerrero-Rodrı́guez,
R. Carmona-Galán, and Á. Rodrı́guez-Vázquez, “Sun sensor based on a
luminance spiking pixel array,” IEEE Sensors Journal, vol. 17, no. 20,
pp. 6578–6588, Oct. 2017.

[6] L. Farian, P. Häfliger, and J. A. Leñero-Bardallo, “A miniaturized
two-axis ultra low latency and low-power sun sensor for attitude
determination of micro space probes,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 5, pp. 1543–1554, May
2018.

[7] C. Cédras and M. Shah, “Motion-based recognition a survey,” Image
Vis. Comput., vol. 13, pp. 129–155, 1995.

[8] A. Dundar, J. Jin, and E. Culurciello, “Visual tracking with similarity
matching ratio,” CoRR, vol. abs/1209.2696, 2012.

[9] Y. Yang, A. Loquercio, D. Scaramuzza, and S. Soatto, “Unsupervised
moving object detection via contextual information separation,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 879–888.

[10] H. Deng, Q. Fu, Q. Quan, K. Yang, and K. Cai, “Indoor multi-camera-
based testbed for 3-D tracking and control of UAVs,” IEEE Transactions
on Instrumentation and Measurement, vol. 69, no. 6, pp. 3139–3156,
2020.

[11] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and
T. Delbruck, “Retinomorphic event-based vision sensors: Bioinspired
cameras with spiking output,” Proceedings of the IEEE, vol. 102,
no. 10, pp. 1470–1484, Oct. 2014.

[12] J. A. Leñero-Bardallo, R. Carmona-Galán, and A. Rodrı́guez-Vázquez,
“Applications of event-based image sensors –Review and analysis,”
International Journal of Circuit Theory and Applications, vol. 46, 08
2018.

[13] G. Gallego, T. Delbruck, G. M. Orchard et al., “Event-based vision:
A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2020.

[14] J. J. Gibson, The Perception of the Visual World. Boston: Houghton
Mifflin, 1950.

[15] J. J. Koenderink, “Optic flow,” Vision Research, vol. 26, no. 1, pp. 161–
179, 1986.

[16] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1, pp. 185–203, 1981.

[17] M. J. Black and P. Anandan, “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Computer Vision and
Image Understanding, vol. 63, no. 1, pp. 75–104, 1996.

[18] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th
International Joint Conference on Artificial Intelligence - Volume 2, ser.
IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1981, pp. 674–679.

[19] D. Floreano, R. Pericet-Camara, S. Viollet et al., “Miniature curved
artificial compound eyes,” Proceedings of the National Academy of
Sciences, vol. 110, no. 23, pp. 9267–9272, 2013.

[20] P. Anandan, “Measuring visual motion from image sequences” Ph.D.
dissertation, University of Massachusetts Amherst, 1987.

[21] J. E. Dowling, The Retina : An Approachable Part of the Brain.
Cambrigde, Mass: Belknap Press of Harvard University Press, 1987.

[22] R. de la Rosa-Vidal, J. M. Guerrero-Rodrı́guez, and J. A. Leńero-
Bardallo, “Live Demonstration: A Tracking System Based on a Real-
Time Bio-Inspired Optical Flow Sensor,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–1.

[23] M. V. Srinivasan, “An image-interpolation technique for the computation
of optic flow and egomotion,” Biological Cybernetics, vol. 71, no. 5, pp.
401–415, 1994.

[24] L. A. Camuñas-Mesa, T. Serrano-Gotarredona, S. Ieng, R. Benosman,
and B. Linares-Barranco, “Event-driven stereo visual tracking algorithm
to solve object occlusion,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 9, pp. 4223–4237, 2018.

[25] J. L. Barron and N. a Thacker, “Tutorial: Computing 2D and 3D optical
flow,” Imaging Science and Biomedical Engineering Division, Medical
School, University of Manchester, no. 2004, pp. 1–12, 2005.

[26] J. Gibson, The senses considered as perceptual systems. Boston:
Houghton Mifflin, 1966.

[27] J. J. Gibson, “On the analysis of change in the optic array,” Scandinavian
Journal of Psychology, vol. 18, no. 1, pp. 161–163, 1977.

[28] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in Proceedings of 2010
IEEE International Symposium on Circuits and Systems, 2010, pp. 2426–
2429.

[29] D. J. Heeger, “Optical flow using spatiotemporal filters,” International
journal of computer vision, vol. 1, no. 4, pp. 279–302, 1988.

[30] A. Waxman, J. Wu, and F. Bergholm, “Convected activation profiles and
the measurement of visual motion,” Computer Vision and Pattern, 1988.

[31] C. C. Pack, “The aperture problem for visual motion and its solution in
primate cortex,” Science Progress, vol. 1, pp. 255–256, 2001.

[32] P. Yosifovich, Windows Presentation Foundation 4.5 Cookbook.
Birmingham: Packt Publishing, 2012.

[33] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction
time at 4% CPU load using event-based dynamic vision sensor,”
Frontiers in Neuroscience, vol. 7, p. 223, 2013. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2013.00223

[34] J. Conroy, G. Gremillion, B. Ranganathan, and J. Humbert,
“Implementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” Autonomous Robots, vol. 27, pp. 189–198, 10
2009.

[35] C. Higgins and V. Pant, “A biomimetic VLSI sensor for visual tracking
of small moving targets,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 51, no. 12, pp. 2384–2394, 2004.

[36] S. Mehta and R. Etienne-Cummings, “A simplified normal optical
flow measurement CMOS camera,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 53, no. 6, pp. 1223–1234, 2006.

[37] A. Stocker, “Analog VLSI focal-plane array with dynamic connections
for the estimation of piecewise-smooth optical flow,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 51, no. 5, pp. 963–973,
2004.

Rafael de la Rosa-Vidal Received the B.Sc. degree
in electronics engineering from the University of
Cadiz, Cadiz, Spain, in 2017 and the M.Sc. degree
in microelectronics from the University of Seville,
Seville, Spain, in 2020. His work is supported by
the Spanish Government through FPU under Grant
FPU20/01561. Before he ended the B.Sc. degree,
in 2016, he started working as an R&D engineer
in a start-up. From July 2018 to September 2020,
he worked as a Flight Test Ground Station engineer
in Airbus Ground Station (Seville) as subcontracted

personnel. He was the main developer of several R&D projects, one of which
was exposed in the European Telemetry and Test Conference (ETTC) in 2019.
Since October 2020, he undertook a Ph.D. degree in microelectronics in the
Microelectronics Institute of Seville. His researching is focused on Address
Event Representation (AER) vision systems. Other research interests for him
include embedded systems, smart sensors and biomedical systems.

https://www.frontiersin.org/article/10.3389/fnins.2013.00223

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, AUGUST 2021 13

Juan A. Leñero-Bardallo (Member, IEEE)
received the M.Sc. degree in telecommunications
engineering and the Ph.D. degree in microelectronics
from the University of Seville, Seville, Spain, in
2005 and 2010, respectively. After the completion of
his Ph.D., he served in several academic institutions
and worked for the semiconductor industry at
Chronocam inc. From September 2010 to March
2010, he worked as a Postdoctoral Associate at Yale
University, New Haven, CT, USA. From March 2010
to August 2013, he was a Postdoctoral Associate at

the University of Oslo. From September 2016 to January 2018, he was an
Assistant Teacher at the University of Cádiz, Spain. Since February 2018, he
is an Associate Professor at the University of Seville, Spain. His main research
interests include Address Event Representation (AER) vision systems, frame-
based vision sensors, smart sensors, and biomedical systems. He was the
Financial and Local Chair of IEEE ISCAS 2020.

José-Marı́a Guerrero-Rodrı́guez received a B.Sc.
degree in Electronic Engineering from the University
of Cadiz (Spain) in 1987 and a B.Sc. degree in
Physics, specialized in Electronics, from UNED
University (Madrid, Spain) in 1999. He worked for
several electronic sector companies as test-engineer
or R&D engineer. Later, he received a Ph.D. in
Industrial Electronics from the University of Cadiz
(Cadiz, Spain), in 2009. He joined the Engineering
School (University of Cadiz) as a professor in
the Electronic Area of the Department of Systems

Engineering and Electronics, in 1997. His research is focused on electronic
instrumentation and sensors devices and AI techniques application on
Intelligent Instrumentation.

Ángel Rodrı́guez-Vázquez (Life Fellow, IEEE)
received the Ph.D. degree in Physics-Electronics
(Universidad de Sevilla, 1982) with several awards,
including the IEEE Rogelio Segovia Torres Award
(1981). After stays at the University of California-
Berkeley and Texas A&M University, he became
a Full Professor of Electronics at the University
of Sevilla in 1995. He co-founded the Instituto
de Microelectrónica de Sevilla, a joint undertaken
of Consejo Superior de Investigaciones Cientı́ficas
(CSIC) and Universidad de Sevilla, and started

a Research Lab on Analog and Mixed-Signal Circuits for Sensors and
Communications. He has always been looking for a balance between long-
term research and industrial innovation. In 2001, he was the main promotor
of AnaFocus Ltd. and served it as CEO until June 2009, when the company
reached maturity as a worldwide provider of smart CMOS imagers. He
also participated in the foundation of the Hungarian start-up AnaLogic Ltd.
He has ten patents filed; AnaFocus started based on his patents on vision
chip architectures. His research embraces smart imagers, vision chips, and
biomedical circuits, always with an emphasis on system integration. His
Lab designed many high-performance mixed-signal chips in the framework
of Spanish, European, and USA R&D programs. These included three
generations of vision chips, analog front-ends for XDSL MoDems, ADCs
for wireless communications, ADCs for automotive sensors, chaotic signals
generators, complete MoDems for power-line communications, etc. Many of
these chips were state-of-the-art in their respective fields. Some of them
entered massive production. He also produced teaching materials on data
converters that were delivered to companies and got the Quality Label of
EuroPractice. His publications have some 9,900 citations and several awards:
the IEEE Guillemin-Cauer Best Paper Award, two Wiley’s IJCTA Best Paper
Awards, two IEEE ECCTD Best Paper Awards, one IEEE-ISCAS Best Paper
Award, one SPIE-IST Electronic Imaging Best Paper Award, the IEEE ISCAS
Best Demo-Paper Award, and the IEEE ICECS Best Demo-Paper Award.
He has an h-index of 49 and an i10-index of 192 (Google Scholar). He
got the 2019 Mac Van Valkenburg award of IEEE-CASS. He has served as
Editor for IEEE and non-IEEE journals and is on the committee of several
international journals and conferences. He chaired several international IEEE
(NDES 1996, CNNA 1996, ECCTD 2007, ESSCIRC 2010, ICECS 2013) and
SPIE conferences. He served as VP Region 8 of IEEE CASS (2009-2012)
and as Chair of the IEEE CASS Fellow Evaluation Committee (2010, 2012,
2013, 2014, and 2015). He was General Co-Chair of IEEE ISCAS 2020.

	Introduction
	System implementation overview
	Optical flow detection algorithm
	Hardware implementation
	Image acquisition module
	Image acquisition and optical flow computation
	Optical flow algorithm implementation

	Motors and controllers
	Mechanical design
	Control loop implementation
	User interface implementation
	Experimental results
	Benchmarking and future work
	Conclusions
	References
	Biographies
	Rafael de la Rosa-Vidal
	Juan A. Leñero-Bardallo
	José-María Guerrero-Rodríguez
	Ángel Rodríguez-Vázquez

