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RESUMEN 

Las aleaciones estructurales de magnesio (Mg) ofrecen propiedades deseables como baja densidad, maquinabilidad y 
alta resistencia específica. Estas propiedades hacen que dichas aleaciones sean ventajosas para su uso en muchas 
aplicaciones estructurales, pero también para aplicaciones como material de almacenamiento de hidrógeno debido al 
coste favorable y a las altas densidades gravimétrica y volumétrica del hidrógeno. Sin embargo, la susceptibilidad de las 
aleaciones de Mg a los fenómenos de fragilización por hidrógeno puede dar lugar a una baja ductilidad y tenacidad 
a temperatura ambiente, pudiendo dificultar sus aplicaciones potenciales. Para ello, se propone un marco teórico para la 
simulación de la difusión de hidrógeno en Mg basado en cálculos atomísticos utilizando Dinámica Molecular Difusiva 
(DMD) que nos permita estudiar el comportamiento del magnesio y sus hidruros en diferentes condiciones de 
presión-temperatura. Nuestro modelo resuelve un problema acoplado Termo-Chemo-Mecánico (TMC) mediante un 
esquema escalonado. Por un lado, la parte termo-mecánica considera un potencial ADP termalizado que es el más 
adecuado para modelar la transición de fase del Mg (bcc↔hcp) causada por la formación de MgH2 a temperatura 
finita. Finalmente, el problema químico, que rige la evolución temporal, se resuelve mediante una ecuación de 
difusión calibrada con información macroscópica. 

PALABRAS CLAVE: Difusión de Hidrógeno, Almacenamiento de Hidrógeno, Magnesio, Modelos atomísticos, 
Diffusive Molecular Dynamics 

ABSTRACT 

Magnesium (Mg) structural alloys offer desirable properties such as low density, machinability, and high specific 
strength. These properties make Mg alloys advantageous for use in many structural applications but also for applications 
as a hydrogen storage material due to the favorable cost and high gravimetric and volumetric densities of hydrogen. 
However, the susceptibility of Mg alloys to hydrogen embrittlement phenomena can lead to low ductility and low 
fracture toughness at room temperature, which may hinder their potential applications. Therefore, information about the 
behavior of magnesium and its hydrides under different pressure-temperature conditions is highly required. A 
theoretical framework for the simulation of hydrogen diffusion in Mg based on fully atomistic calculations using 
the Diffusive Molecular Dynamics (DMD) is proposed. Our model consists of the resolution of a Thermo-Chemo-
Mechanical (TMC) coupled problem solved thorough a staggered scheme. On the one hand, the thermo-
mechanical part considers a thermalized Angular Dependent Potential (ADP) which is best suited to model the phase 
transition of Mg (bcc↔hcp) caused by the formation of MgH2 at finite temperature. And, on the other hand, the 
chemical problem, which drives the time evolution, is solved by a diffusion equation calibrated with macroscopic 
information. 

KEYWORDS: Hydrogen diffusion, Hydrogen storage, Magnesium, Atomistic models, Diffusive Molecular Dynamics 
1. INTRODUCTION

Solute-induced phase transformation is a key process in 
various energy conversion and storage applications. 
Magnesium (Mg) alloys offer desirable properties such 
as low density, machinability, and high specific strength. 
These properties make Mg alloys advantageous for use 
as hydrogen storage container. However, the 
susceptibility of Mg alloys to hydrogen embrittlement 
phenomena can lead to low ductility and low fracture 
toughness at room temperature, which may hinder their 

potential applications, on top of that hydrogen diffusivity 
is not a constant, furthermore, experimental research [1]–
[4] performed at fixed hydrogen composition (near Mg
or near MgH2) shown that hydrogen diffusion varies at
various stages of magnesium (de)hydrogenation.
Therefore, there is no doubt that information about the
behavior of magnesium and its hydrides under different
pressure-temperature conditions is highly required.

Numerical analysis of this phenomenon is an attractive 
resource in order to achieve this goal since, well 
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calibrated, allow us to perform a large number of 
numerical experiments to enhance our comprehension of 
the phenomenon. Continuum approaches [5]–[7] has 
been widely applied to simulate hydrogen diffusion in 
metals and its posterior embrittlement achieving good 
agreement with experimental results. However, they fail 
to account for the fine atomistic structure (e.g. local 
lattice distortion and dislocations) across the phase 
boundary due to its non-continuum nature. On the other 
hand, classical Molecular Dynamics (DM) does supply 
fully atomistic detail but need to resolve the thermal 
vibration of the atoms which takes place in range of the 
picoseconds, several orders of magnitude below the 
hydrogen diffusion process, which takes this method out 
of consideration [8], [9].  

In this work, we apply a novel computational 
framework referred as diffusive molecular dynamics 
(DMD). This method is a new paradigm for simulating 
the Thermo-Chemo-Mechanical (TMC) problems while 
maintaining full atomic resolution. The defining idea 
underlying DMD is the assumption that the time scale 
of diffusion is much larger than that of microscopic 
state transitions. Therefore, at an intermediate time 
scale, the microscopic state variables can be considered 
as random variables. This allows to couple a non-
equilibrium statistical thermodynamics model that 
supplies the requisite driving forces for kinetics with a 
discrete diffusion equation calibrated using macroscopic 
data. In comparison to the stablished atomistic models 
such as statistically averaged MD simulations [8], DMD 
has a larger simulation time window as it does not 
explicitly resolve thermal vibrations nor individual 
microscopic state transitions. The DMD has been 
applied to nanoindentation and sintering [10], 
dislocation extension [11], nanovoid growth [12], 
solute-defect interactions [13] and silicon lithiation [14]. 
A recent study by Sun et al. [9] shows that the DMD 
model, when equipped with an embedded atom method 
(EAM), can capture the separation of the 𝛼 and 𝛽 
phases of the system palladium-hydrogen (Pd-H).   

However, magnesium hydride is an example of a so-
called “trans-formational” material since magnesium 
and magnesium hydride have different crystal 
structures: hexagonal closely packed (hcp) structure for 
Mg and tetragonal rutile structure for α-MgH2 (bcc ↔ 
hcp). This contrasts with diffusional systems such as 
PdHx, for which palladium and palladium hydride have 
the same face-centered cubic (fcc) crystal structure. The 
main novelty of this paper in the proposal of a DMD 
model capable of modeling the phase transition of Mg 
during (de)hydrogenation at finite temperature by means 
of a thermalized Angular Dependent Potential (ADP) 
[15].  

The structure of this paper is a follow: we begin by 
presenting a succinct summary of DMD in the interest 

of completeness, in Section 2. The thermalized ADP is 
subsequently presented in Section 3. A summary and 
concluding remarks are consigned to Section 4, by way 
of closing.    

2. METHODOLOGY

We consider an HCP Mg sample, which includes host 
sites occupied by Mg atoms and interstitial hexahedral 
and octahedral sites that can be either occupied by H 
atom or unoccupied. Henceforth, we denote the sites 
belonging to the Mg lattice as 𝐼!", and the interstitial 
sites by 𝐼#. At each interstitial site 𝑖 ∈ 𝐼#, we introduce 
an occupancy function defined as 

𝑛! 	= 	 $
1	is	the	site	i	is	occupied	by	a	H	atom
0	if	the	site	i	is	unoccupied.																		 

(1) 

The microscopic states of the system are defined by the 
occupancy array {𝑛} = 	 (𝑛$)$∈&! and the instantaneous 
value of the phase space given by {𝑧} ≡
(q', p')$∈&"#∪&!, where 𝑞$ and 𝑝$ stands by position and 
momenta respectively. Based on the assumption of the 
scale separation and the ergodic hypothesis, these 
microscopic state variables that have a joint probability 
distribution characterized by the density function 
ρ(𝑧, 𝑛). We determine ρ by recurring to Jaynes’ 
principle of maximum entropy [16], [17], i.e., by 
maximizing the information-theoretical entropy to be 

max
{#},{&}

𝑆[𝜌] = 	−𝑘'〈log 𝜌〉,	 

(2) 

This system is required to fulfill the following 
macroscopic local restrictions 

$
〈ℎ!〉 = 𝑒! , 𝑖 ∈ 𝐼() ∪ 𝐼* ,
〈𝑛!〉 = 𝜒! , 𝑖 ∈ 𝐼* .											

 

(3) 

Where 𝑘) is the Boltzmann constant, and 〈·〉 is an 
operator known as phase average, which applied over 
any function, say 𝐴({𝑧}, {𝑛}), returns the expected or 
macroscopic value of the given function. Here,  ℎ$ 
denotes the local Hamiltonian, 𝑒$ is the particle energy 
and 𝜒$ is the atomic fraction.  

In order to impose the set of restrictions Eqns. (3) into the 
optimization problem enunciated by Eqn. (2), we appeal 
to the classical method of Lagrange multipliers, where 
we transform the constrain maximization problem into an 
unconstrained problem resulting in  

𝜌 =
1
Ξ𝑒

+{	-}!{	.}	/	{0}!{	&}	, 
(4) 

where Ξ is the partition function, and {𝛽} and {𝛾}	are 
Lagrange multipliers. Eqn. (4), can be interpreted as non-
equilibrium generalization of the Gibbs grand-canonical 
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probability density function. Notice, 𝑇$ =
*

+$,%
 and 𝜇$ =

𝑘)𝑇$𝛾$ can be defined as the particle absolute 
temperature and the chemical potential of site 𝑖, 
respectively.  As in the equilibrium theory, it is 
sometimes convenient to work with the grand-canonical 
free entropy Φ, which can be obtained  substituting (4) 
into Eqn. (2) and getting the convex conjugate of the 
resulting expression by the application of the Legendre 
transformation 

Φ	({𝛽}, {𝛾}) = 	max
1
ℒ[𝜌, {𝛽}, {𝛾}] 	= 		 𝑘' log Ξ({𝛽}, {𝛾}	). 

(5) 

Because the Hamiltonian ℎ$ is typically a nonlinear 
function, the calculation of the thermodynamic potentials 
(e.g., 𝑒$ and Ξ) is generally intractable. This limitation 
can be surmounted by the application of a variational 
formulation, e.g. Ref. [18]. Let us define a trial energy 
ℎ- ∈ ℋ-, and ℋ- be the trial functional space. Following 
the standard rules of the calculus of variations, the 
variational-equivalent problem to the one stated in Eqn. 
(5) is

Φ	({𝛽}, {𝛾}) = max
{."}	∈	ℋ"

(𝑘'{𝛽}4{〈ℎ − ℎ5〉5} − 𝑘6 log 𝛯5) =

	−	 min
{."}	∈	ℋ"	

ℱ[{	ℎ5}, {𝛽}, {𝛾}]. 

(6) 

Related with the trial energy ℎ-, we have the trial phase 
space 𝑧-, and the difference between the physical phase 
space and the trial one is defined as 𝑧. = 𝑧 − 𝑧-. By 
appealing to the arbitrariness of ℎ-, we will adopt a 
convenient gaussian structure. Taking this into account, 
ℎ- has the following structure 

{ℎ5} =
7
8
{𝑧9}:	Q	{𝑧9} 	−	𝑘'𝑇	{𝛾5}4{n} =

		Z

;#4
8<$

% |𝑞! −	q5!|8 +
7
8=$

|	𝑝! − p5!|8, 𝑖𝑓	𝑖 ∈ 𝐼()																				
	;#4
8<$

% |𝑞! − q5!|8 +		
7
8=$

|	𝑝! − p5!|8 − 𝑘'𝑇𝛾5!𝑛! , 𝑖𝑓	𝑖 ∈ 𝐼* .
	

(7) 

Where a uniform temperature T has been considered 
seeking simplicity in further developments. After a 
careful inspection of  Eqn. (7), it can be shown that q-$ 
and 𝜎$ are the mean and standard deviation of 𝑞$, whereas 
p-$ is the mean of 𝑝$. Finally, 𝛾-$ indicates the 
dependence of chemical potential on H fraction 𝜒$.  

Substituting Eqn. (7) into Eqn. (6), and after 
straightforward algebraic manipulations, the 
optimization problem becomes 

min
{>?},{<@},{A̅}

ℒ5[{ℎ5}, {𝛾}]

= 𝑘B log Ξ5 +
1
𝑇
⟨𝑉⟩5 +

1
2𝑁𝑘B

− 𝑘' fg γ!
!∈DMg

+gγ!
eE(@/E$

1 + eE(@/E$
!∈DH

i, 

(8) 

where 𝑉({𝑞}, {𝑛}) denotes a general interatomic 
potential energy. The corresponding Euler-Lagrange 
equations are  

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕ℒ5
𝜕𝑞o!

= 〈
𝜕𝑉
𝜕𝑞!

〉5 = 0,																																																								

𝜕ℒ5
𝜕𝜎o!

=
3	𝑘'
𝜎o!

+
1
𝑇	
𝜕〈𝑉〉5
𝜕𝜎o!

= 0,																																							

𝜕ℒ5
𝜕𝛾!

=	𝑘'
𝑒0@$/	0$

(1 +	𝑒0@$/	0$)8 	
(1 + 𝑒0@$/	0$ − 𝛾!	) = 0.

(9) 

We may regard the first equation as the meanfield 
condition of quasistatic equilibrium for the mean atomic 
positions {𝑞}, the second equation is known as the mean 
field optimality condition, and the third equation stands 
for the chemical equilibrium.  The presented system of 
Eqns. (10) is not closed. In order to close the system, 
kinetic equations for the evolution of the atomic molar 
fraction needs to be appended as in Ref. [18].  Without 
loss of generality, we begin by noting the mass flow into 
the site 𝑖 may be expressed in conservation form as 

�̇� = 	 g 𝑱!F
F,FG!	

,	

(10) 

where 𝑱𝒊𝒋 =	−	𝑱𝒋𝒊 is the discrete mass flux array from 
site 𝑗 to site 𝑖. The conjugate measure of 𝑱𝒊𝒋 is 𝑲𝒊𝒋, 
which measures the internal entropy production rate 
defined as  

𝑲𝒊𝒋 = 𝒌𝑩v𝜸𝒊 −	𝜸𝒋x. 
(11) 

Following Onsager, we postulate kinetics laws of the 
general form 

𝐽!F =	−
𝜕𝜓	({𝐾})
𝜕𝐾!F

, 

(12) 

where 𝜓 is a discrete kinetic potential, to be modeled. In 
that sense, Eqn. (12) can be regarded as a discrete Fick 
law of diffusion. Following Refs. [10], [19] the mass 
transport equation takes the form 

𝜕𝜒$
𝜕𝑡 = − L

𝜕𝜓	({𝐾})
𝜕𝐾$11,13$	

𝜕𝜒$
𝜕𝑡 	= 		L𝜈$ 	𝑒5,	6& 	O𝜒1 	(1 −	𝜒$)	𝑒,	78'	58%9	/;	

〈$,1〉

− 𝜒$Q1 −	𝜒1R𝑒,	78%	5	8'9/;S

(13) 

Where the sum runs over all connected neighbors, 𝜈 is 
the hoping frequency, and 𝐸> is a barrier energy which 
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can be calibrated using the macroscopic diffusion 
coefficient, see Refs. [14], [18]. 

3. THE MEANFIELD ADP POTENTIAL

For the system MgHx we consider the Angular 
Dependent Potential (ADP) proposed by Mishin, see 
Ref.[20], since it is more adequate in description of non-
cubic structures. This aspect is crucial if we want to 
describe the phase transition of Mg properly. This 
process occurs during the formation of the hydride 
MgH2, see Ref.[15].  On top of that, to accommodate the 
ADP to the present approach we will be interested in the 
macroscopic value or expected value of the potential V. 
Therefore, following the max-ent formalism, the 
thermalized value of V is given by the following 
expression 

〈𝑉〉- =	 〈𝑉?〉- 	+	 〈𝑉@〉- 	+ 〈𝑉8〉- +	〈𝑉A〉- 
(14) 

The term 〈𝑉?〉- represents pair-interactions between 
atomic sites via the pair potential 𝜙$1Q𝑟$1R 

〈𝑉?〉- =	
1
2 L 〈𝜙$1Q𝑟$1R	〉-
$∈&"#,1∈&"#,13$

+	
1
2 L 𝜒1 	〈𝜙$1Q𝑟$1R	〉-
$∈&"#,1∈&!,13$

+	
1
2 L 𝜒$ 	〈𝜙$1Q𝑟$1R	〉-
$∈&!,1∈&"#,13$

+	
1
2 L 𝜒$𝜒1 	〈𝜙$1Q𝑟$1R	〉-
$∈&!,1∈&!,13$

, 

(15) 

where the summation is over all j-th neighbors of i-th 
atom within a cut-off distance. The second term, 
〈𝑉@〉-,  is the embedding energy that is a function of the 
total electron density and represents many-body 
interactions between atoms 

〈𝑉@〉- =	
1
2 L 𝐹(�̅�$)
$∈&"#

+	
1
2L 𝜒$ 	𝐹(�̅�$)
$∈&!

 

(16) 

The function 𝐹(�̅�$) is the embedding energy of atom	𝑖 in 
the host electron density �̅�$ induced at site 𝑖 by all other 
atoms of the system. The host electron density is given 
by 

�̅�$ = L 𝜌1Q\𝑟$1\R
1,13$,1∈&"#	

+ L 𝑛1 	𝜌1Q\𝑟$1\R
1,13$,1∈&!

(17) 

Where 𝜌1 is the electron density function assigned to an 
atom 𝑗.   

This two first terms in Eqn. (14),  give the principal 
contribution to the system energy. Additionally,  the two 
remaining terms, 〈𝑉8〉-  and  〈𝑉A〉-, introduce non-
central interactions through the dipole vectors 
and quadrupole tensors. They are intended to reflect 
deviations of local environment from the cubic 
symmetry. The contribution of the dipole term is given 
by the scalar product of the measure of the dipole 
distortion, 𝜇$, at the local environment of atom 𝑖  

𝜇$ =	 L 𝑛$ 	𝑛1 	𝑢Q\𝑟$1\R
1,13$

	𝑟$1 	 

(18) 

After some algebraic manipulations and taking the 
thermal average the contribution of the dipole term to the 
thermalized potential is  

〈𝑉8〉- =	
1
2	L

〈𝜇$ ⋅ 𝜇$〉-
$

=
1
2	L L 𝑢Q\𝑟$1\R	𝑢Q\𝑟$1∗\R

〈1,1∗〉		,			1,1∗3$

	Q	𝑟$1 · 𝑟$1∗R
$

 

(19) 

The contribution of the quadrupole term is given by the 
deviatoric part of the quadrupole term 𝜆$ 

〈𝑉A〉- =	
1
2L

〈𝜆$ ∶ 𝜆$〉-	
$

	−	
1
6	L

〈𝑡𝑟(𝜆$);〉-	
$

 

(20) 

where 𝜆$ is 
𝜆$ =	 L 𝑛$ 	𝑛1 	𝑤Q\𝑟$1\R	𝑟$1 ⊗𝑟$1

1,13$

 

(21) 

As in the Modified Embedded-Atom Method (MEAM) 
and Electric Dipole Moments (EDM) methods, the role 
of the angular terms,	〈𝑉8〉-		 and 〈𝑉A〉- is to penalize the 
total energy for deviations of the atomic environments 
from cubic symmetry. While these terms vanish in a 
perfect cubic structure such as fcc or bcc regardless of its 
volume due to the properties of the scalar product, they 
take non-zero values under non-hydrostatic strains and 
thus affect the elastic constants of both cubic and non-
cubic crystals. These terms are especially important in 
non-centrosymmetric structures hpc likewise pure 
Magnesium. A final remark on this section is, thermal 
averages, 〈·〉-, required for the evaluation of the potential 
can be calculated by recurse to third-order Hermitian 
quadrature [21], however, the higher order terms which 
arise due to the presence of the dipole and quadrupole 
contribution may affect the accuracy of the early 
mentioned integration rule, this aspect will be covered in 
future research. 

Revista de Mecánica de la Fractura Vol.5 (2023)

184



4. SUMMARY AND CONCLUDING REMARKS

We have introduced an ADP-based DMD model which 
is more appropriate to reproduce the phase transition of 
Magnesium during hydrogenation than conventional 
potentials. The main advantage of this approach is the 
ability to consider phase transitions in the Magnesium 
lattice structure during the hydrogen diffusion process.  

Therefore, the large time window and atomistic 
resolution of DMD renders it an excellent tool for 
studding hydride phase-transformation within Mg 
nanoparticles, which operates on time scales of seconds 
to minutes. 

As already mentioned, the narrow aim of this paper 
focus on the proposal of a formulation rather. Whereas 
aspects such as the rigorous description of the model, its 
numerical resolution and ability predict macroscopic 
mechanical properties of Mg and MgHx such as thermal 
expansion, bulk and poisson moduli will be assessed in 
a future publication.  
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